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We characterize operationally meaningful quantum gains in a paradigmatic model of lossless multiple-phase
interferometry and stress insufficiency of the analysis based solely on the concept of quantum Fisher informa-
tion. We show that the advantage of the optimal simultaneous estimation scheme amounts to a constant factor
improvement when compared with schemes where each phase is estimated separately—contrary to a widely
cited results claiming a better precision scaling in terms of the number of phases involved.

Introduction and the summary of results. Quantum
metrology aims at identifying optimal ways of utilizing quan-
tum systems as sensing probes [1–9]. When N quantum
probes are used independently, estimation variance decreases
inversely proportional to the number of probes—the standard
quantum limit (SQL). The hallmark of quantum metrology is
the potential quadratic scaling improvement over the SQL—
the Heisenberg limit (HL) [10–20].

In multiple-parameter estimation scenarios, simultaneous
estimation of p parameters in a single experiment may ad-
ditionally provide an improved performance when compared
with strategies where each parameter is estimated separately
[21–27].

A paradigmatic model to study the potential of multi-
parameter quantum enhanced metrological protocols is the
multiple-phase estimation problem. The goal is to estimate
all the relative phase shifts in a multiple-arm interferometer
with the best precision possible given a constraint on the total
number of photons used, see Fig. 1.

The most common tool to analyze the potential of quan-
tum metrological strategies is the Quantum Fisher Informa-
tion (QFI), inverse of which lower-bounds the variance of any
locally unbiased estimator θ̃ via the famous quantum Cramer-
Rao (CR) bound [28–30]. In the single parameter case the CR
bound takes the form:

∆2θ̃ ≥ 1

kF (ρnθ )
, (1)

where k is the number of repetitions of an experiment, while
F (ρnθ ) is the QFI computed on the n-probe output state on
which the parameter θ has been encoded. In case of the stan-
dard two-arm optical interferometry, a single relative phase
between the two arms is being estimated, and F (ρnθ ) = n for
n uncorrelated photons sent into the interferometer, while the
maximum value F (ρnθ ) = n2 is obtained for optimally entan-
gled state of n photons—the n00n state—resulting in the 1/n2

Heisenberg scaling (HS) of precision [5, 12–19]. In general,
this bound is operationally saturable provided one takes the
asymptotic limit k → ∞, while keeping the n fixed. Such
a case corresponds to an experimental realization, where the
amount of resources used in a single realization is large but
limited, while experiment may be repeated arbitrary number
of times.

However, a fundamental question is what is the true HL for
precision if the total amount of resources N = n · k is re-
stricted and the N → ∞ limit is taken. Since the scaling of

FIG. 1. Multiple-phase estimation schemes, where a constraint is im-
posed on the total resources used (left column) or resources used in
a single experiment (right column). The top and bottom rows rep-
resent respectively the protocols where all the phases are measured
jointly or the estimation procedure is repeated for each of the phases
separately.
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TABLE I. Asymptotically achievable lower bounds on the sum of
variances of estimated phases. The main result of the paper is the
bolded formula representing the proper mutiple-phase Heisenberg
limit (HL) and demonstrating the p3 scaling with the number of esti-
mated phases. All bounds are tight in the asymptotic limit N → ∞
(or k → ∞) while in case of joint phases estimation tightness re-
quires an additional p → ∞ limit (c = 1.89 yields a universally
valid bound, while c = 2 yields an asymptotically achievable cost).
The SQL column can be regarded as a special case of the HS column
when n = 1, and k = N .

precision is quadratic in n and linear in k, the optimal choice
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appears to be n = N, k = 1. However, in this case one can not
use saturability arguments based on the many-repetition sce-
nario and the predictions of the QFI may be misleading with
respect to the choice of the optimal probe states as well as
the asymptotically achievable precision limit. This becomes
clear when the results are contrasted with the ones obtained
the minimax [31], Bayesian [32] or information theoretic ap-
proach [33].

The use of a single N00N state (note N instead of n is in-
tentional) is clearly not an operationally meaningful strategy
when discussing the HL, as it is not capable of discriminating
phases that differ by a multiple of 2π/N . There is clearly a
need to sacrifice part of the resources to get rid of the arising
ambiguity, and this leads to a π2 increase in the asymptoti-
cally saturable bound, which can be rigorously shown within
a Bayesian estimation framework [32, 34–39]. Therefore, in
order to avoid confusion, we will introduce a clear distinction
between the two approaches and refer to them as

(HS) the amount resources used in single repetition of exper-
iment n large but finite, and whole experiment may be
repeated k →∞ times: ∆2θ̃ ∝ 1

kn2

(HL) the total amount of resources N is restricted, and no
repetitions of an experiment are assumed: ∆2θ̃ ∝ 1

N2 .

The two approaches may only be reconciled provided one is
able to properly account for the scaling of the required number
of repetitions k with the increasing number of probes n used in
a single experiment, that guarantees saturability within the HS
approach. This is, however, hardly ever possible and typically
the issue is simply ignored in the literature.

In the multiparameter case a rigorous study of the achiev-
able HL is much more challenging and the common approach
is to rather work in the HS paradigm where efficiently com-
putable multiparameter generalizations of CR bounds are used
[23, 27, 40–45]. Rigorous analysis of the actual saturable HL
are typically restricted to Bayesian framework case studies
utilizing some underlying group structure of the problem [46–
53]. However, quite surprisingly, the actual analytical form of
the asymptotically saturable HL for the paradigmatic multi-
ple phase estimation problem is missing (see [54] for a recent
numerical attempt to tackle the problem).

In this paper, we employ an operationally meaningful min-
imax approach to derive an asymptotically saturable HL for
the multiple-phase estimation problem and demonstrate that
it manifests a p3 scaling, with the number of parameters in-
volved, rather than the p2 that is advocated when following the
HS approach [55]. We also clarify apparent gains that may be
obtained thanks to simultaneous phase estimation, when com-
pared with strategies that estimate all the phases separately.
We show that the advantage amounts to a constant factor gain
and, contrary to the claims of [55–57], does not lead to a
better scaling of precision with the number of parameters in-
volved. We explain the apparent contradiction by pointing out
the improper use of saturability arguments that are often in-
voked when following the HS approach—Tab. I summarizes
the main results of this paper.

Multiple-phase estimation problem. Consider a multiple-
phase estimation problem as depicted in Fig. 1, where the goal
is to estimate the value of p-phases θ = [θ1, . . . , θp]— relative
phase delays in the i-th arm of an interferometer with respect
to the reference arm. For a general n-photon state at the input,
the output state with phase information encoded will have the
form:

|Ψn
θ〉 =

∑
m:

∑p
i=1mi≤n

cme
im·θ |m1,m2, ...mp〉 , (2)

with m = [m1, . . . ,mp], where mi represents the number of
photons in the i-th ‘signal’ arm, while remaining n−

∑p
i=1mi

photons are sent through reference arm. A general quan-
tum measurement is then performed in order to extract in-
formation on the encoded phases, mathematically specified
by a set of positive operators {Mx},

∑
xMx = 11, where

x labels a measurement outcome observed with probability
pθ(x) = 〈Ψn

θ |Mx |Ψn
θ〉. The measurement outcome(s) is then

fed into an estimator function which yields the inferred val-
ues of the phases. In the scenario (i), the estimator θ̃(x) is
a function of just a single measurement outcome (in this case
n = N as all resources are used in a single shot); in (ii) the ex-
periment is repeated k times and the estimator is a function of
all k measurement outcomes θ̃(x1, . . . , xk); in (iii) p separate
protocols, involving p different states (each containig N/p
photons) and different measurements, are performed yield-
ing measurement outcomes x1, . . . , xp where each outcome
xi feeds the estimator of the i-th phase θ̃i(xi); finally, in (iv)
each of the p separate protocol is repeated k/p times, yield-
ing in total p × k/p = k measurement outcomes and result-
ing in p separate estimators of each phase θ̃i(x1

i , . . . , x
k/p
i ),

i ∈ {1, . . . , p}.
Irrespectively of which scenario is considered, the figure of

merit to be minimized is the sum of squared errors of esti-
mated phases

∆2θ̃ =

∫
dx pθ(x)(θ̃(x)− θ)2, (3)

where
∫

dx formally represents integration over all (possi-
bly continuous) measurement outcomes and (θ̃(x) − θ)2 =∑p
i=1(θ̃i(x) − θi)

2. As this is a point-wise figure of merit
(calculated at a given θ), in order to make the minimization
task meaningful one needs to impose additional constraints on
the estimator function—otherwise a trivial solution θ̃(x) = θ
yields zero cost.

The most common one is the locally unbiasedness condi-
tion, which is also the key assumption behind the derivation
of the CR-type bounds [28–30, 45, 57]. This assumption it-
self may not be sufficient to obtain an operationally saturable
bounds, as in principle the region where the use of the local-
unbiased estimator makes sense may shrink when taking the
asymptotic limit N →∞ [31–33].

Alternatively, one may follow the so called minimax ap-
proach, and define a region Θ inside which the true value of
θ is guaranteed to be and then consider the estimator which
gives the best results in the most pessimistic scenario, i.e.
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which minimizes the cost maximized over all θ ∈ Θ:

∆2θ̃minimax ≡ inf
Mx,θ̃(x)

sup
θ∈Θ

∫
dx pθ(x)(θ̃(x)− θ)2. (4)

The advantage of the approach is that Θ is fixed while taking
the asymptotic limit N → ∞ and hence no region shrinking
issues arise. We now proceed to derive an asymptotically sat-
urable lower bound on the above cost in the most fundamental
scenario (i) and then contrast it with scenarios (ii), (iii), (iv).

Derivation of the multiple-phase HL. Below we present
the sketch of the proof. For more formal derivation see Sup-
plemental Material (SM) A [29, 32, 52, 58–65]. First, we con-
sider an extension of the model by replacing discrete variables
mi ∈ {0, 1, ..., N} with continuous ones mi

N → µi ∈ [0, 1],
and the sums by the respective integrals. Note that such an
extension may only decrease the minimal achievable cost, as
the discrete model may be always arbitrary well approximated
as a special case of the continuous model. The probe-state is
now characterized by a p-dimensional wave function f(µ):∣∣ΨN

f,θ

〉
=

∫
∀µi≥0,

∑
i µi≤1

dµ f(µ)eiNµθ |µ1, µ2, ..µp〉 . (5)

Next, as we argue in detail in the SM, the asymptotic bound
for any finite region Θ is equivalent, up to the leading 1/N2

order, to the cost when the region is unbounded Θ = Rp.
In the latter case the problem is covariant with respect to
the translation group and the optimal measurement can be re-
stricted to the class of covariant measurements [29] (thanks to
the generalization of the Hunt-Stein lemma [59, 60] for non-
compact groups [52, 61, 62]) and without loss of generality
may be chosen to be the momentum projection measurement,
Mθ̃ =

∣∣χθ̃〉〈χθ̃∣∣, where∣∣χθ̃〉 =
1√

(2π/N)p

∫
dµ eiNµθ̃ |µ〉 . (6)

Note that we have implicitly replaced the measurement out-
comes x with the actual estimated values θ̃. Minimization of
the resulting lower bound over the probe state wave function
f(θ) leads to the following lower bound on the cost ∆2θ̃:

min
f

∫
Rp

dθ̃ |〈χθ̃|Ψ
N
f,θ〉|2(θ̃−θ)2 =

1

N2
min
f

∫
Rp

dθ̃
∣∣∣f̂(θ̃)

∣∣∣2 θ̃2

(7)
where f̂ is the Fourier transform of f and we dropped the irrel-
evant dependence on θ. Going back to the µ-representation,
the minimization problem takes the following form:

1

N2
min
f

∫
∀µi≥0,

∑
i µi≤1

dµ f∗(µ)

(
p∑
k=1

−∂2
µk

)
f(µ),

with

∫
∀µi≥0,

∑
i µi≤1

dµ |f(µ)|2 = 1,

f(µ) = 0 for µ on the boundary (µi = 0 ∨
∑
i

µi = 1).

(8)

This problem is therefore equivalent to identifying the ground
state energy of a quantum particle in a p-dimensional simplex-
shaped infinite potential well, which in general has not known
analytical solution (apart from specific cases [66–68]). Still,
it may be easily bounded from below in following way.

Since the problem enjoys an inherent symmetry with re-
spect to permuting the p ‘phase’ arms (the reference arm is
distinguished by the choice of the cost function), and the total
number of photons in p ‘phase’ arms is ≤ N , the expectation
value of the number of photons in each single ‘phase arm’ is
≤ N/p. Now we will neglect the fact, than the distribution
of photons in each single arm comes from the multi-arm dis-
tribution of N photons and keep only the constraint on the
photon expectation value. Such a constraint is a weaker one
than the original one, but as it refers just to a single ‘phase’
mode it allows for an effective separation of variables. This
allows us to lower bound the total cost by p times the minimal
single-phase estimation cost given mean number of photons
in the mode N/p:

∆2θ̃ ≥ p× 1

N2
min
g

∫ ∞
0

dµ g∗(µ)

(
− ∂2

∂µ2

)
g(µ) (9)

with constraints:

g(0) = 0,

∫ ∞
0

dµ |g(µ)|2 = 1,

∫ ∞
0

dµ |g(µ)|2Nµ = N/p.

(10)
The single mode problem may be solved using the standard
Lagrange multiplier method, and we obtain the solution g(µ)
to be the Airy function Ai(·) (see also [69, 70], where the
same solution appeared in a single phase estimation context),
leading to the final bound

∆2θ̃ ≥ p3

N2

4|A0|3

27
≈ 1.89p3

N2
, (11)

where A0 ≈ −2.34 is the first zero of Ai(·). The most impor-
tant feature of the bound is the p3 scaling. This bound is valid,
even if one considers the most general adaptive strategy with
arbitrary large ancilla is allowed, see SM A.

Note, that an analogue reasoning could not be performed
to bound the QFI, as the QFI may be arbitrary large when
only the constraint on the mean (and not the maximal) number
of photons in the sensing arm is imposed, and leads to some
operationally unjustified claims of sub-Heisenberg estimation
strategies [71, 72], as discussed in [73].

Comparison of different approaches. When following the
(ii) approach and minimizing the trace of the inverse of the
QFI matrix of the output state, one obtains the following
bound on the total cost arising from the applicaton of the
multi-parameter version of the CR bound [55] (see also [23]
for justification of fundamental optimality):

∆2θ̃ ≥ 1

k
min
|Ψn〉

Tr[F−1(|Ψn
θ〉)] =

(1 +
√
p)2p

4kn2

p�1
≈ p2

4kn2
,

(12)
where the optimal input state has the form

|Ψn〉 = β |n, 0, ..., 0〉+ α (|0, n, ..., 0〉+ ... |0, 0, ..., n〉) ,
(13)
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with α = 1/
√
p+
√
p, β = 1/

√
1 +
√
p. The most visible

difference between the two approach is the scaling of the cost
with the number of parameters estimated, p3 in (i) vs p2 in (ii).
In order to avoid contradiction, this implies that when consid-
ering k repetitions in the (ii) scenario, the actual number of
repetitions required to saturate the CR bound will in fact need
to increase at least linearly with p. This fact lies at the heart
of the discrepancy between the claims of [55] and ours. Inter-
estingly, when considering the Gaussian states only, the QFI
based study [74] yields results qualitatively equivalent to ours
(p3 cost scaling for both joint and separate strategies) which
should be attributed to the fact that the saturability of the CR-
type bounds in Gaussian models is guaranteed already at the
single shot level without invoking the multiple repetition ar-
gument [29, 45].

In scenario (iii), one separately sends N/p photons states,
into the i-th and the reference arm, in order to measure a given
θi phase, using the optimal state for sensing a single com-
pletely unknown phase [34–36]:

∣∣∣ΨN/p
i

〉
=

√
2

N/p + 2

N/p∑
m=0

sin

[
(m+ 1)π
N/p + 2

]
|N/p−m〉0 |m〉i ,

(14)
where |N/p−m〉0 |m〉i denotes a state where m photons is
sent into the i-th arm and N/p − m into the reference arm.
The resulting bound on the total variance is therefore lower
bounded by p times the single phase estimation variance [34–
36]:

∆2θ̃
N/p�1

& p× π2

(N/p)2
=
p3π2

N2
. (15)

We see the same scaling as in the joint phase estimation pro-
tocol (i), which implies that the largest possible gain com-
ing from joint phase estimation amounts to a constant factor
≤ π2/1.89. In order to show that the gain over the separate
strategy is indeed achievable, we need to find a state wave-
function f(µ) that manifests an advantage over the separate
strategy, when plugged into the joint estimation cost formula
Eq. (8). We propose a simple ansatz for the structure of the
state that satisfies the boundary conditions

f(µ) ∝

(
p∏
i=1

µi

)α(
1−

p∑
i=1

µi

)β
. (16)

The minimal cost

∆2θ̃ =
p(1 + 2

√
p)2√p(4p+ 2

√
p− 1)

(8
√
p− 4)N2

p�1
≈ 2p3

N2
. (17)

is obtained for α = 3/2, β =
√
p. For large p the cost ap-

proaches closely the fundamental bound (2 vs. 1.89 coeffi-
cient), demonstrating that the π2/2 ≈ 4.93 advantage of joint
phase estimation over separate strategies is achievable. Note
that although this result was obtained for the problem with
continuous variables µi, it may be arbitrary well approximated
within the original discrete model Eq. (2) with increasing N
(in the same spirit as discussed in [75] for the single parameter

case). See also SM B [34–36, 75], for the details of computa-
tion, more discussion on the structure of the state and numer-
ical investigation of the convergence of the discrete model to
the continuous one when N is being increased.

Finally, the optimal strategy in (iv) is to use subsequently p
n00n states

|Ψn
i 〉 =

1√
2

(|0〉0 |n〉i + |n〉0 |0〉i) (18)

each designed to sense the i-th phase optimally. Since the
total number of repetitions is k, each phase will be sensed k/p
times and hence the final cost resulting from the application of
the CR bound reads:

∆2θ̃ ≥ p× 1
k/p
× 1

n2
=

p2

kn2
. (19)

Comparing this result with Eq. (12) we see that joint phase es-
timation offers again just a constant factor improvement over
separate strategies. This result contrasts the claims of [55]
where a scaling improvement (p2 vs p3) was claimed. In-
deed, if n/p photons were used in a single phase estimation
experiment, instead of considering k/p uses of the n-photon
state, one would obtain the bound on the cost in the form:
∆2θ̃ ≥ p × 1

k
1

(n/p)2 = p3

kn2 . This latter calculation, however,
does not reflects the cost of the optimal separate strategy in
the framework that there is some fixed number of photons n
used in a single experiment and the experiment is repeated k
times. The optimal strategy is captured by the former reason-
ing, leading to the p2 scaling, as we can always regard this
strategy as an equivalent k repetitions of an experiment using
a mixed state ρn = 1

p

∑p
i=1 |Ψn

i 〉 〈Ψn
i |, where the factor 1

p

in formula for ρn express the fact, that in each repetition we
measure only one parameter, with equal probability for each
of them. Effectively k/p repetition for each parameter is per-
formed, with n resources each time.

Conclusions and discussion. In this paper we have clar-
ified the relation between formulas for the optimal cost
in multiple-phase interferometry obtained within different
paradigms, involving either fixing the total resources used
or the resources used in a single experiment. Doing so, we
have shown that within both paradigms joint phases estima-
tion leads to at most constant factor improvement over the op-
timal separate strategies. This constant factor improvement
may be attributed to the fact, that in the limit of many phases
being sensed, the number of photons needed to be sent into
the reference arm becomes negligible compared with the total
number of photons used, whereas in the separate strategy it ef-
fectively consumes half of the resources available (see SM B
for broader discussion). This claim remains valid also in the
lossy optical interferometry case (where, however, HS does
not occurs) as shown in [76].

Note, that similar issues regarding the apparent scaling ad-
vantage of joint vs. separate parameter estimation may arise
in other multiparameter estimation problems [22, 23] and in
order to arrive at operationally meaningful conclusions, one
should avoid implicit switching between (i-iv) paradigms and
be aware of non-trivial saturability issues when following the
QFI based approach.
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Animesh Datta and Luca Pezzé for useful comments. This
work was supported by the National Science Center (Poland)
grant No. 2016/22/E/ST2/00559.

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,
010401 (2006).

[2] M. G. A. Paris, Int. J. Quantum Inf. 07, 125 (2009).
[3] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5,

222 (2011).
[4] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006

(2014).
[5] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Kołodyński, in
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030301 (2004).
[50] G. Chiribella, G. M. D’Ariano, and M. F. Sacchi, Phys. Rev. A

72, 042338 (2005).
[51] M. Hayashi, Physics Letters A 354, 183 (2006).
[52] M. Hayashi, Communications in Mathematical Physics 347, 3

(2016).
[53] J. Kahn, Phys. Rev. A 75, 022326 (2007).
[54] V. Gebhart, A. Smerzi, and L. Pezzè, Phys. Rev. Applied 16,
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Appendix A: Formal derivation of the bound Eq. (11) and its application for local estimation problem

In this appendix we discuss the problem of p-phase shift estimation for the continuous model (i.e. after replacing mi
N → µi ∈

[0, 1]). Moreover, we consider the most general adaptive strategy, when the amount of resources N is the number of application
of an elementary gate Uθ, where arbitrary large ancilla is allowed as well as the action on the state with additional unitaries Vi
during the evolution.

Formally, let us consider HS = L2({[µ1, ..., µp] : ∀iµi ≥ 0,
∑p
i=1 µ1 ≤ 1}) (square-integrable functions on the

set {[µ1, ..., µp] : ∀iµi ≥ 0,
∑p
i=1 µ1 ≤ 1} ⊂ Rp). We define Uθ to be a unitary gate, which action on the state∫

∀µi≥0,
∑
i µi≤1

dµf(µ) |µ〉 ∈ HS is defined as:

Uθ

 ∫
∀µi≥0,

∑
i µi≤1

dµf(µ) |µ〉

 =

∫
∀µi≥0,

∑
i µi≤1

dµeiµθf(µ) |µ〉 . (A1)

Consider the most general adaptive strategy, where one chooses an arbitrary initial state |Ψin〉 ∈ HS ⊗HA (where HA may be
arbitrary large) and acts on it with a unitary gate Uθ ⊗ 11A N times and unitary controls Vi in between:∣∣ΨN

θ

〉
= VN (Uθ ⊗ 11A)VN−1...Vi(Uθ ⊗ 11A) |Ψin〉 . (A2)

In particular, if one choosesHA = C, Vi = 11 and |Ψin〉 =
∫
∀µi≥0,

∑
i µi≤1

dµf(µ) |µ〉 they receive the state from Eq. (5):

∣∣ΨN
θ

〉
=

∫
∀µi≥0,

∑
i µi≤1

dµeiNµθf(µ) |µ〉 . (A3)

Let us name by minimax(Θ, N) the minimax cost for θ ∈ Θ, optimized over initial state, unitary controls during evolution
and the measurement:

minimax(Θ, N) ≡ inf
Mθ̃,{Vi},|Ψin〉∈HS⊗HA

sup
θ∈Θ

∫
dθ̃
〈
ΨN
θ

∣∣Mθ̃

∣∣ΨN
θ

〉
(θ̃ − θ)2. (A4)

Then the following theorems hold:
Theorem 1. For completely unknown parameters Θ = Rp, the optimal cost may be obtained by applying covariant measure-

ment, without invoking unitary controls during the evolution (e.i. ∀iVi = 11), resulting in eqrefeq:jointenergy:

minimax(Rp, N) =
1

N2
min
f

∫
∀µi≥0,

∑
i µi≤1

dµ f∗(µ)

(
p∑
k=1

−∂2
µk

)
f(µ),

with

∫
∀µi≥0,

∑
i µi≤1

dµ |f(µ)|2 = 1,

f(µ) = 0 for µ on the boundary (µi = 0 ∨
∑
i

µi = 1).

(A5)
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Theorem 2. The minimax(Rp, N) may be bounded from below by Eq. (11):

minimax(Rp, N) ≥ p3

N2

4|A0|3

27︸ ︷︷ ︸
c≈1.89

. (A6)

where A0 ≈ −2.34 is the first zero of the Airy function Ai(·).
Theorem 3. Assuming that Θ is not degenerated in any direction, i.e. there exists finite-size cube [−δ/2,+δ/2]p ∈ Θ, the

leading term ∼ 1
N2 of minimax(Θ, N) does not depend on Θ:

∀Θ lim
N→∞

N2minimax(Θ, N) = lim
N→∞

N2minimax(Rp, N). (A7)

Moreover, for finite N , satisfying pNδ ≥ 2, the following lower bound holds:

minimax(Θ, N) ≥ minimax([−δ/2,+δ/2]p, N) ≥ cp3

N2

(
1− 8p log(pNδ)

Nδ

)
. (A8)

1. Irrelevance of adaptiveness in deriving the fundamental bound in estimation of completely uknown phases (proof of Theorem 1)

We start the proof by presenting an argument that in case of estimation of completely unknown phases, general adaptive
estimation strategies do not provide any fundamental advantage compared with the strategy where all the photons are send
through the interferometer together (provided they can be prepared in an arbitrary multimode entangled state) — i.e. the strategy
where all Vi = 11. This argument was shared with us by Dominic Berry [58].

First, let us discuss the structure of the output state Eq. (A2) (this is analogous to what was considered in [32] in the case of sin-
gle parameter estimation). As each action of the gate Uθ multiplies its eigenvectors by the factor eiµθ: Uθ =

∫
dµ eiµθ |µ〉 〈µ|,

the final state Eq. (A2) may be written as:∣∣ΨN
θ

〉
= VN (Uθ ⊗ 11A)VN−1...V1(Uθ ⊗ 11A) |Ψin〉 =∫

dµ(N)...

∫
dµ(1)e

i(µ(N)+...µ(1))θ
∣∣µ(N)

〉(N−1∏
i=1

〈µ(i+1)|Vi|µ(i)〉

)
〈µ(1)|Ψin〉 =

∫
d(µ(1) + ...µ(N))e

i(µ(1)+...µ(N))θ

∫
dµ⊥

∣∣µ(N)

〉(N−1∏
i=1

〈µ(i+1)|Vi|µ(i)〉

)
〈µ(1)|Ψin〉, (A9)

where we have split the integral into integration over (µ(1) + ...µ(N)) and µ⊥ which represents all directions for which (µ(1) +
...+µ(N)) is constant and also includes any necessary normalization factors. Note that in the above notation 〈µ(1)|Ψin〉 ∈ HA,
as well as 〈µ(i+1)|Vi|µi〉 is an operator acting on HA. Next, by rescaling the variable in the first integral µ =

µ(1)+...µ(N)

N and
naming the last one by 1

N c(µ) |gµ〉 (where 〈gµ|gµ〉 = 1) we end with:

∣∣ΨN
θ

〉
=

∫
∀µi≥0,

∑
i µi≤1

dµ eiNµθc(µ) |gµ〉 . (A10)

Note, that |gµ〉 constructed in such a way are not necessary mutually orthogonal, which in general makes the class of the states
of the form Eq. (A10) larger than that in Eq. (A3). For a given measurement {Mθ̃} the cost maximized over θ ∈ Rp is given by:

max
θ∈Rp

∫
dθ̃
〈
ΨN
θ

∣∣Mθ̃

∣∣ΨN
θ

〉
(θ̃ − θ)2. (A11)

Next we show, that for any state of the form Eq. (A10) and the measurement {Mθ̃} there exists a non-adaptive strategy with
at least the same final precision. Consider the input state of the form ∝

∫
c(µ) |µ〉 dµ. After a free evolution, as a part of

the measurement procedure, we entangle each |µ〉 with an ancillary system in |gµ〉 state (this is possible since |µ〉 basis is
orthogonal) obtaining: ∣∣∣ΨN ′

θ

〉
∝
∫
c(µ)eiNµθ |µ〉 ⊗ |gµ〉 dµ (A12)
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and perform a measurement in the Fourier basis on the initial system:

|ϕ〉 =
1√

(2π/N)p

∫
dµ eiNµϕ |µ〉 . (A13)

The resulting state, given outcome ϕ, reads∣∣∣ΨN ′′

θ (ϕ)
〉
∝
∫
dµ c(µ)eiNµ(θ−ϕ) |gµ〉 =

∣∣ΨN
θ−ϕ

〉
(A14)

and is obtained with probability distribution p(ϕ) =
〈

ΨN ′

θ

∣∣∣ |ϕ〉 〈ϕ| ⊗ 11
∣∣∣ΨN ′

θ

〉
. Next we apply the measurement which is

optimal for the output state Eq. (A10), and properly shift the indication of estimator by the measured value ϕ. In consequence,
the mean cost for the true value of parameter θ will be the same as the cost in the previously considered adaptive strategy
Eq. (A10) for the value of parameter θ −ϕ, averaged with probability distribution p(ϕ):

max
θ∈Rp

∫
dθ̃
∫

dϕ p(ϕ)
〈
ΨN
θ−ϕ

∣∣Mθ̃−ϕ
∣∣ΨN
θ−ϕ

〉
(θ̃ − θ)2. (A15)

As averaging the cost may only decrease the minimax bound, the statement is proven.
Therefore, from now on, when looking for the optimal strategy, we may focus on the output states of the form Eq. (A3).

Moreover, for technical reasons, we will treat the function f(µ) as a function defined on the whole Rp, but with the condition,
that it is equal to 0 outside of the region ∀µi ≥ 0,

∑
i µi ≤ 1.

Note that when only non-adaptive strategy is considered, it is a covariant problem of the group element estimation. Therefore,
from the Hunt-Stein lemma [59, 60] (generalized for noncompact group case [52, 61, 62]) it follows that the search for the
optimal measurement strategy may be restricted to projective covariant measurements [29]:∣∣χθ̃〉 =

1√
(2π/N)p

∫
Rp

dµ eiNµθ̃ |µ〉 . (A16)

One can also provide an intuitive argument: as the problem is exactly equivalent to the position-shift estimation (when θ is
treated as position), or momentum shift estimation problem (when θ is treated as momentum), the optimal way is to measure
this observable directly using measurement operators projecting on the observable eigenbasis [63].

After applying the covariant measurement we get:

∆2θ̃ ≥ min
f

∫
Rp

dθ̃ |〈χθ̃|Ψ
N
f,θ〉|2(θ̃ − θ)2 = min

f

∫
Rp

dθ̃ |〈χθ̃|Ψ
N
f,0〉|2θ̃2 = min

f

∫
Rp

dθ̃

∣∣∣∣∣ 1√
(2π/N)p

∫
dµe−iNµθ̃f(µ)

∣∣∣∣∣
2

θ̃2

= min
f

∫
Rp

d(N θ̃)
∣∣∣f̂(N θ̃)

∣∣∣2 θ̃2 N θ̃→θ̃
=

1

N2
min
f

∫
Rp

dθ̃
∣∣∣f̂(θ̃)

∣∣∣2 θ̃2, (A17)

where in the first step we dropped the irrelevant dependence on θ, f̂ is the Fourier transform of f and at the end we rescaled
N θ̃ → θ̃ to move the factor 1

N2 in front of the integral. Going back to the position representation, and recalling the constraints
on f , we get Eq. (A5).

2. Bound on the ground energy of a particle in a simplex potential well via a single degree of freedom formula (proof of Theorem 2)

Given a general multimode pure state: ∣∣ΨN
f

〉
=

∫
∀µi≥0,

∑
i µi≤1

dµ f(µ) |µ1, µ2, ..µp〉 (A18)

let us define a single mode reduced density matrix corresponding to the i-th sensing arm mode:

ρi(µi;µ
′
i) =

∫ ∏
j 6=i

dµjdµ′j δ(µj − µ′j)

 f(µ)f∗(µ′). (A19)
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The formula for the lower bound on the estimation cost Eq. (A5) may be equivalently written in terms of the single mode reduced
density matrices:

∆2θ̃ ≥ 1

N2
min
f(µ)

∫
∀µi≥0,

∑
i µi≤1

p∑
i=1

dµidµ′i δ(µi − µ′i)
(
− ∂2

∂µ2
i

)
ρi(µi;µ

′
i). (A20)

Due to the inherent symmetry of the problem, we assume all the reduced density matrices to be identical and hence we do not
distinguish them by a subscript i. As discussed in the main text, this symmetry implies also that the expectation value of the
number of photons in each single ‘phase arm’ is ≤ N/p. Therefore, looking for the lower bound of the above formula, we
may relax the original constraints by ignoring the fact that ρ(µ;µ) comes from the multimode state satisfying conditions from
Eq. (A5), and perform optimization with a weaker single mode constraints:

ρ(0; 0) = 0,

∫
dµρ(µ;µ) = 1,

∫
dµρ(µ;µ)Nµ ≤ N/p, ρ ≥ 0. (A21)

This allows us to write the lower bound as:

∆2θ̃ ≥ p× 1

N2
min
ρ

∫ ∞
0

dµdµ′ δ(µ− µ′)
(
− ∂2

∂µ2

)
ρ(µ;µ′) (A22)

with the above constraints imposed.
Let ρ̄(µ;µ′) be the solution of the above minimization problem. It implies that

∫
dµ ρ̄(µ;µ)Nµ = N/p (note that we have

replaced the inequality with the equality here, since any function with average photon number t · N/p, where 0 < t < 1, can
always be rescaled ρ̄(µ;µ′) → tρ̄(tµ; tµ′), which reduces the cost without breaking constrains). If, in addition, the solution
corresponds to a pure state ρ̄(µ;µ′) = g(µ)g∗(µ′) then we indeed arrive at formula for the bound Eq. (9) stated in the main text.

∆2θ̃ ≥ p× 1

N2
min
g

∫ ∞
0

dµ g∗(µ)

(
− ∂2

∂µ2

)
g(µ) (A23)

with constraints:

g(0) = 0,

∫ ∞
0

dµ g∗(µ)g(µ) = 1,

∫ ∞
0

dµ g∗(µ)g(µ)Nµ = N/p. (A24)

The solution may be found using the standard Lagrange multiplier method,

− ∂2

∂µ2
g(µ) + g(µ)(λ1 + µλ2) = 0⇒ g(µ) ∝ Ai

(
λ1 + λ2µ

λ
2/3
2

)
, (A25)

where Ai(·) is the Airy function of the first kind and after taking into account conditions Eq. (A24) we obtain:

g(µ) =
1

Ai′(A0)

√
2p|A0|

3
Ai
(
A0 +

2p|A0|
3

µ

)
, (A26)

where A0 ≈ −2.34 is the first zero of the Airy function and Ai′(·) is its first derivative. The corresponding bound on the cost
reads:

∆2θ̃ ≥ p× p2

N2

4|A0|3

27
=

p3

N2

4|A0|3

27︸ ︷︷ ︸
c≈1.89

. (A27)

What remains to be shown is that the assumption of a pure state is justified and that a mixed state cannot provide a lower value
for the bound. The solution of the pure state case implies that for the mean photon number N̄ fixed (in this case N̄ = N/p), the
resulting optimal cost (for single phase) is equal 1

N2 ming
∫∞

0
dµ g∗(µ)

(
− ∂2

∂µ2

)
g(µ) = c/N̄2. Consider now, instead of a pure

state ρ̄ = |g〉 〈g|, an exemplary mixed state which for concreteness we choose to be a probabilistic mixture of two pure states
ρ̄′ = p1 |g1〉 〈g1|+ p2 |g2〉 〈g2|. The constraint on the mean photon number implies that

p1N̄1 + p2N̄2 = N̄ , (A28)
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where N̄k are mean photon numbers in states |gk〉 respectively. The corresponding cost for the mixed state will be a weighted
sum for the costs of the respective pure states,

p1
c

N̄2
1

+ p2
c

N̄2
2

≥ c

(p1N̄1 + p2N̄2)2
=

c

N̄2
, (A29)

where the inequality follows from the convexity property of the 1/x2 function (Jensen inequality). This reasoning can be trivially
generalized to mixed states involving mixtures of more than two states and proves that a mixed state cannot provide a lower value
for the bound Eq. (A22) than the optimal pure state.

3. Application for the local estimation problem (proof of Theorem 3)

We assume that the prior parameter region Θ has a finite volume and hence we can always find δ > 0 such that
[−δ/2,+δ/2]p ⊂ Θ. Replacing Θ with its subset may only lower the minimax cost and hence any lower bound we obtain
for the easier problem will also be valid for the original one. Therefore, in what follows we assume Θ = [−δ/2,+δ/2]p.

For the purposes of the proof, let us imagine for the moment that instead of knowing that θ ∈ [−δ/2,+δ/2]p, we assume that
θ is completely unknown and hence the region to consider is θ ∈ Rp. Let us also assume that we have N + p · N0 gates at
our disposal and that we spend p ·N0 resources to find an approximated values of the parameters θ̃, such that the true value of
the θ (with high probability) lies in its close neighborhood [θ̃1 − δ/2, θ̃1 + δ/2] × ... × [θ̃p − δ/2, θ̃p + δ/2]. Next we use the
remaining N in the optimal way to estimate θ, taking into account this knowledge. This approach may be suboptimal, from the
point o view of the optimal use of all N + p ·N0 resources, and hence we may write the following inequality:

minimax(Rp, N + p ·N0) ≤ minimax([−δ/2,+δ/2]p, N) +R(p, δ,N0), (A30)

where in minimax([−δ/2,+δ/2]p, N) we have shifted the region to the origin (which does not change the minimax cost). Here
the termR(p, δ,N0) corresponds to the risk, that true value of θ lies outside of predicted region [−δ/2,+δ/2]p (formal definition
will be given later). Intuitively, as the discrimination error decreases exponentially with N0, for large value of N it is enough to
take N0 sublinear in N to make the term R(p, δ,N0) small enough to become irrelevant. Therefore, we expect that the minimax
costs for the finite and infinite regions approach the same limit in the leading order. Below we discuss the rate of convergence.

a. From no prior knowledge to finite knowledge

Consider the following strategy. First, for each phase we use N0 gates to get the state
∣∣∣ΨN0

θi

〉
=
∫ 1

0
dµi eiN0µiθiw(µi) |µi〉

(where all remaining µj 6=i = 0). After performing the covariant measurement we obtain the result θ̃i with probability:

|〈χθ̃i |Ψ
N0

θi
〉|2 = |ŵ(θi − θ̃i)|2 = pN0

(θi − θ̃i︸ ︷︷ ︸
φi

). (A31)

We repeat it for all phases an get pN0(φ) =
∏p
i=1 pN0(φi). In the next step we need to estimate the value of the difference

φ = θ − θ̃. Note that while θ has a fixed value, φ is a random variable and hence we may make use of the Bayesian cost
formulas. Since such a procedure of estimating θ using N + p ·N0 gates is in general suboptimal, the final mean variance may
be bounded by the minimal cost when the total amount of resources N + p ·N0 are used:

minimax(Rp, N + p ·N0) ≤ min
Mφ̃,ρ

N
φ

∫
dφ pN0

(φ)

∫
dφ̃Tr(Mφ̃ρ

N
φ )(φ̃− φ)2

︸ ︷︷ ︸
bayesian(pN0

,N)

. (A32)

This bounds from below the minimal obtainable Bayesian cost with a priori distribution pN0(φ) and use of N gates,
bayesian(pN0 , N).

Now we would like to use this result to state the bound for the minimax cost for θ ∈ [−δ/2,+δ/2]p. By definition the
minimax cost is greater or equal than the minimal Bayesian cost for any prior with support inside of [−δ/2,+δ/2]p (formal
justification will be given in Eq. (A35)). As pN0

(φ) is given by the square of modulus of the Fourier transform of a finite support
function w(µi), pN0

(φ) will always stick outside any finite size region [−δ/2,+δ/2]p. However, in principle these tails may be
arbitrary small if sufficiently large N0 is allowed (the exemplary choice of w(µi) will be given in next section).



11

For the purpose of the proof, let us define the distribution corresponding to pN0
(φ), but with the tails cut:

pδN0
(φi) =

{
1

1−R1
pN0

(φi) for φi ∈ [−δ/2,+δ/2]

0 for φi /∈ [−δ/2,+δ/2]
, (A33)

where 1
1−R1

is a proper normalization factor, i.e.

R1 = 2

∫ +∞

δ/2

dφi pN0(φi). (A34)

For such a distribution we may formally bound the minimax cost using the minimal Bayesian cost. Let ρN,minimax
φ , Mminimax

φ̃

be the output state and the measurement optimizing the minimax cost. Then:

minimax([−δ/2,+δ/2]p, N) = max
φ∈[−δ/2,+δ/2]p

∫
dφ̃Tr(ρN,minimax

φ Mminimax
φ̃

)(φ̃− φ)2

≥
∫

[−δ/2,+δ/2]p
pδN0

(φ)dφ
∫

dφ̃Tr(ρN,minimax
φ Mminimax

φ̃
)(φ̃− φ)2

≥ min
Mφ̃,ρ

N
φ

∫
[−δ/2,+δ/2]p

pδN0
(φ)dφ

∫
dφ̃Tr(ρNφMφ̃)(φ̃− φ)2 = bayesian(pN0

, N). (A35)

Alternatively, the above inequality may be derived directly using the fact, that the optimal minimax cost is equal to the minimal
Bayesian cost with the least favorable prior [64].

Summarizing Eq. (A32) and Eq. (A35) we have:

minimax(Rp, N + p ·N0) ≤ bayesian(pN0
, N),

bayesian(pδN0
, N) ≤ minimax([−δ/2,+δ/2]p, N).

(A36)

What remains is to connect bayesian(pN0 , N) with bayesian(pδN0
, N).

Let ρδ,Nφ ,Mδ
φ̃

be the output state and the measurement minimizing the Bayesian cost for pδN0
(φ). Obviously φ̃ that appear in

M δ
φ̃

are only inside of [−δ/2,+δ/2]p. By applying this state and measurement with the original prior distribution pN0
(φ) we

get:

bayesian(pN0 , N) ≤
∫
Rp

dφ pN0(φ)

∫
[−δ/2,+δ/2]p

dφ̃Tr(Mδ
φ̃
ρδ,Nφ )(φ̃− φ)2. (A37)

Expanding (φ̃ − φ)2 =
∑
i(φ̃i − φi)2, and considering a single term from the sum corresponding to φi, we can divide the

resulting integrals appearing on the RHS of the above equation into three parts:

∫
Rp

dφ pN0
(φ)

∫
[−δ/2,+δ/2]

dφ̃i Tr


(∫

[−δ/2,+δ/2]p−1

dφ̃j 6=iMδ
φ̃

)
︸ ︷︷ ︸

M
δ
φi

ρδ,Nφ

 (φ̃i − φi)2 =

(a)

∫
[−δ/2,+δ/2]p

dφ pN0(φ)

∫
[−δ/2,+δ/2]

dφ̃i Tr
[
M

δ

φiρ
δ,N
φ

]
(φ̃i − φi)2+

(b)

∫
[−δ/2,+δ/2]

dφi pN0
(φi)

∫
[−δ/2,+δ/2]

dφ̃i Tr

M
δ

φi

∫
Rp−1\[−δ/2,+δ/2]p−1

dφj 6=i p(φj)ρ
δ,N
φ︸ ︷︷ ︸

ρδ,Nφi

 (φ̃i − φi)2+

(c)

∫
R\[−δ/2,+δ/2]

dφi pN0
(φi)

∫
[−δ/2,+δ/2]

dφ̃i Tr

[
M

δ

φi

∫
Rp−1

dφj 6=i p(φj)ρ
δ,N
φ

]
(φ̃i − φi)2.

(A38)
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Part (a) represents the contribution where φ ∈ [−δ/2,+δ/2]p, so after summing over all i it is exactly equal (1 − R1)p ·
bayesian(pδN0

, N). Part (b) corresponds to the case where φi belongs to [−δ/2,+δ/2] (probability 1 − R1) but at least one of
φj 6=i does not (probability 1− (1−R1)(p−1) = Tr(ρδ,Nφi )). It means that this integral may be bounded from above by the worst
possible estimation strategy (resulting in squared error δ2) multiplied by this probability—(1−R1)(1− (1−R1)(p−1))δ2. For
our purpose it is enough to use a weaker, but simpler, bound (1−R1)(1− (1−R1)(p−1))δ2 ≤ (p− 1)R1δ

2.
Finally (c), where φi is outside of [−δ/2,+δ/2], may be bounded from above by:

R2 = 2

∫ +∞

δ/2

dφi pN0(φi)(φi − (−δ/2))2, (A39)

where the most pessimistic scenario is assumed (each time when the true value of φi is to the right of [−δ/2,+δ/2], our estimator
point is at the left border of the region −δ/2; similarly in the opposite situation).

Combining all that was said above and taking the sum over p parameters, we may bound the RHS of Eq. (A37) by:

(1−R1)pbayesian(pδN0
, N) + p(p− 1)R1δ

2 + pR2︸ ︷︷ ︸
R(p,δ,N0)

, (A40)

and we arrive at:

bayesian(pN0 , N) ≤ (1−R1)pbayesian(pδN0
, N) +R(p, δ,N0). (A41)

By rearranging this inequality and using (1−R1) < 1 we get:

bayesian(pδN0
, N) ≥ bayesian(pN0

, N)−R(p, δ,N0). (A42)

After applying the above to Eq. (A36) we end up with:

minimax([−δ/2,+δ/2]p, N) ≥ minimax(Rp, N + p ·N0)−R(p, δ,N0), (A43)

which was to be proved. What remains is to findw(µi) (with corresponding pN0
(φi)), for whichR(p, δ,N0) decrease sufficiently

fast with N0.

b. Irrelevance ot the size of Θ in the limit N →∞

Following [32] we choose w(µi) to be proportional to the self-convolution of the Kaiser window function with window
duration N0/2. Then pN0

(φi) is proportional to the fourth power of the Fourier transform of the Kaiser window function (from
now on in this section the subscript i in φi will be omitted to simplify notation):

pα,L(φ) = NαLsinc4
(
πα
√

(Lφ/4α)2 − 1
)

= NαL
sinh4

(
πα
√

1− (Lφ/4α)2
)

(
πα
√

1− (Lφ/4α)2
)4 , (A44)

where L = 2N0 is the bandwidth, α determines the shape and Nα may be bounded by:

Nα . 4
√

2π4α7/2e−4πα, (A45)

where the bound is tight for big α [32]. As shown in [32] only exponentially small (with α) part lays outside of region
[−4α/L, 4α/L] and, therefore, for our purpose we choose δ/2 = 4α/L. We may bound R1 and R2 by:

R1 = 2Nα
∫ +∞

4α/L

dφLsinc4
(
πα
√

(Lφ/4α)2 − 1
)

= 2Nα
4α

L

∫ +∞

1

dxLsinc4
(
πα
√
x2 − 1

)
≤

≤ 8Nαα
(∫ 2

1

dx+
1

π4α4

∫ ∞
2

dx
1

(x2 − 1)2

)
= 8Nαα

(
1 +

1/3− log(3)/4

π4α4

) α>1/2

≤ 16Nαα, (A46)

R2 = 2Nα
∫ +∞

4α/L

dφLsinc4
(
πα
√

(Lφ/4α)2 − 1
)

(θ+δ/2)2 = 2Nα
4α

L

∫ +∞

1

dxLsinc4
(
πα
√
x2 − 1

)
(x+1)2

(
4α

L

)2

≤

≤ 2NαL
(

4α

L

)3 (∫ 2

1

dx (x+1)2 +
1

π4α4

∫ +∞

2

dx
(x+ 1)2

(x2 − 1)2

)
= 2NαL

(
4α

L

)3 (19

3
+

1

π4α4

) α>1/2

≤ 14NαL
(

4α

L

)3

,

(A47)
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where inequalities sinc(x) ≤ 1 and sinc(x) ≤ 1/x were used. We have:

R(p, δ,N0) = p(p−1)R1δ
2 +pR2 ≤ 16p2Nαα

(
8α

L

)2

+14pNαL
(

4α

L

)3

= Nα
α3

L2
(1024p2 +896p) ≤ 1920Nα

α3

L2
p2,

(A48)

which after substituting L = 2N0, α = N0δ/4, yields:

R(p, δ,N0) ≤ 15

2
NN0δ/4N0δ

3p2. (A49)

To derive Eq. (A7), we use a trivial fact ∀Θminimax(Rp, N) ≥ minimax(Θ, N) and Eq. (A43) and we get:

minimax(Rp, N) ≥ minimax(Θ, N) ≥ minimax(Rp, N + p ·N0)− 15

2
NN0δ/4N0δ

3p2. (A50)

Next, as minimax(Rp, N + p ·N0) = N2

(N+pN0)2 minimax(Rp, N), we choose N0 =
√
N and apply limN→∞N2· to the above

inequality in order to get:

lim
N→∞

N2minimax(Rp, N) ≥ lim
N→∞

N2minimax(Θ, N) ≥ lim
N→∞

N2minimax(Rp, N), (A51)

which was to be proven. In order to prove Eq. (A8) more subtle choice of N0 will be required.

c. Convergence of the bound for finite-size Θ

From Eq. (A6) we have

minimax(Rp, N + p ·N0) ≥ cp3

(N + p ·N0)2
=
cp3

N2

(
1− 2pN0

N
+

3(pN0/N)2 + 2(pN0/N)3

(1 + pN0/N)2

)
, (A52)

with c = 4|A0|3
27 ≈ 1.89. Therefore, when combining this formula with Eq. (A43), we obtain a corresponding bound for the

finite prior case:

minimax([−δ/2,+δ/2]p, N) ≥ cp3

N2

(
1− 2pN0

N
+

3(pN0/N)2 + 2(pN0/N)3

(1 + pN0/N)2
− N2R(p, δ,N0)

cp3

)
. (A53)

To make R(p, δ,N0) sufficiently small regardless of p and δ, we choose N0 = 4
δ log(pNδ). Next we will show that the

difference of two last terms appearing in above equation is strictly positive for sufficiently big pNδ, so they may be neglected
without breaking inequality. To do that, let us bound it from below by the function of pNδ.

Note that 3x2+2x3

(1+x)2 is monotonically increasing for positive x and therefore:

3(pN0/N)2 + 2(pN0/N)3

(1 + pN0/N)2
≥ 3(N0/(pN))2 + 2(N0/(pN))3

(1 +N0/(pN))2
=

3(4 log(pNδ)/(pNδ))2 + 2(4 log(pNδ)/(pNδ))3

(1 + 4 log(pNδ)/(pNδ))2
, (A54)

where in the first step pN0/N was replaced by N0/(pN) everywhere. Moreover, using Eq. (A49):

N2R(p, δ,N0)

cp3
≤ N2

cp3

15

2
NN0δ/4N0δ

3p2 ≤ N2

c

15

2
NN0δ/4N0δ

3p2 =
30

c
(pNδ)2Nlog(pNδ) log(pNδ), (A55)

where in the second step the factor p3 was removed from denominator.
Taking two above together, naming by y = pNδ an using the bound for Nlog(pNδ) Eq. (A45) we have therefore:

3(pN0/N)2 + 2(pN0/N)3

(1 + pN0/N)2
− N2R(p, δ,N0)

cp3
≥ 48(log(y)/y)2 + 128(log(y)/y)3

(1 + 4 log(y)/y))2
− 120

√
2π4

c
y2−4π log9/2(y) (A56)

It may be checked numerically, that for c ≥ 1.89 it is strictly positive for y ≥ 2. Therefore, for pNδ ≥ 2 (which justify also
usage α > 1/2 in Eq. (A46) and Eq. (A47)), Eq. (A53) implies:

minimax([−δ/2,+δ/2]p, N) ≥ cp3

N2

(
1− 8p log(pNδ)

Nδ

)
. (A57)
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d. Relation with the single-parameter Bayesian estimation bound

For completeness, we show here how the above reasoning might be used to rederive the Bayesian bound for the single
parameter unitary estimation with finite bandwidth prior, Eq. (12) from [32], as well as the minimax analogy of the Bayesian
bound for rectangular prior of width δ, Eq. (14) from [32]. Note the difference in notation as the N from this paper corresponds
to n from [32].

Indeed, starting with Eq. (A32), and using the fact that the minimal achievable cost, when estimating a completely unknown
single phase using N phase gates, is given by π2/N2, we get:

bayesian(pN0 , N) ≥ π2

(N +N0)2
. (A58)

Next, we extend the result to an arbitrary generator with spectrum in [λ−, λ+] (instead of {0, 1}), which corresponds to the
replacement N → N(λ+ − λ−), N0 → N0(λ+ − λ−) in RHS of the equation above. Finally, from Eq. (A31), as ŵ(θ) has
a finite banwidth of size N0(λ+ − λ−), the bandwidth of pN0

(θ) is at most 2N0(λ+ − λ−). Moreover, from [32, 65], for
any non-negative integrable finite bandwidth function pL(θ) there exists a proper function ŵ(θ) with bandwidth L/2 satisfying
pL(θ) = |ŵ(θ)|2. Therefore:

bayesian(pL, N) ≥ π2

(N(λ+ − λ−) + L/2)2
, (A59)

which is exactly Eq. (12) from [32].
Analogously, using Eq. (A57) with c→ π2, p→ 1, N → N(λ+ − λ−) we get:

minimax([−δ/2,+δ/2], N) ≥ π2

[N(λ+ − λ−)]2

(
1− 8 log(N(λ+ − λ−)δ)

N(λ+ − λ−)δ

)
, (A60)

which is similar to the bound for the Bayesian cost Eq. (14) from [32], but converges faster due to the lack of square root over
the last term.

Appendix B: Demonstrating joint phase estimation advantage over separate strategies using the state given in Eq. (16)

1. Joint phase estimation cost

For a given (not normalized) function:

f(µ) =

(
p∏
i=1

µi

)α(
1−

p∑
i=1

µi

)β
, (B1)

(where α, β ≥ 1
2 ) we will first calculate the normalization factor:

N =

∫
∀µi≥0,

∑
i µi≤1

dµf∗(µ)f(µ) (B2)

and then the corresponding ‘mean energy’:

E =

∫
∀µi≥0,

∑
i µi≤1

dµf∗(µ)

(
p∑
i=1

−∂2
i

)
f(µ). (B3)

The final estimation cost will correspond to the ratio 1/N2 · E/N .
Let us introduce the objects representing ‘(P)roduct’ and ’1 minus (S)um’ of coordinates:

Pk =

p∏
i=1+k

µi, Sk = 1−
p∑

i=1+k

µi, (B4)
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so k indicates which coordinates are dropped. Then f(µ) = Pα0 S
β
0 and:

N =

∫ Sp

0

dµp · · ·
∫ S2

0

dµ2

∫ S1

0

dµ1P
2α
0 S2β

0 . (B5)

For the first integral we have:∫ S1

0

dµ1 P
2α
0 S2β

0 =

∫ S1

0

(P1µ1)2α(S1 − µ1)2βdµ1 = P 2α
1 S

2β+(1+2α)
1

Γ(1 + 2α)Γ(1 + 2β)

Γ(1 + 2β + (1 + 2α))
. (B6)

For the kth one:∫ Sk

0

dµk P 2α
k−1S

2β+(k−1)(1+2α)
k−1 =

∫ Sk

0

dµk (Pkµk)2α(Sk − µk)2β+(k−1)(1+2α) = P 2α
k S

2β+k(1+2α)
k Cα,β,k, (B7)

where

Cα,β,k =
Γ(1 + 2α)Γ(1 + 2β + (k − 1)(1 + 2α))

Γ(1 + 2β + k(1 + 2α))
. (B8)

As Pp = 1, Sp = 1, the N is therefore given by:

N =

p∏
k=1

Cα,β,k =
Γ(1 + 2α)pΓ(1 + 2β)

Γ(1 + 2β + p(1 + 2α))
. (B9)

Due to symmetry of f(µ), the mean value of −∂2
i operator is the same for each coordinate. Therefore it is sufficient to calculate

it for i = 1. We have

|∂1f(µ)|2 =
(
∂1(P1µ1)α(S1 − µ1)β

)2
= (S1 − µ1)2(β−1)(P1µ1)2α(αS1 − (α+ β)µ1)2µ−2

1 , (B10)

so for the first integral we have:∫ S1

0

dµ1 |∂1f(µ)|2 = P 2α
1 S−1+2α+2β

1

αβΓ(−1 + 2α)Γ(−1 + 2β)

(−1 + 2α+ 2β)Γ(2(−1 + α+ β))
(B11)

and for the kth one (k ≥ 2): ∫ Sk

0

dµk P 2α
k−1S

2(β−1)+(k−1)(1+2α)
k−1 = P 2α

k S
2(β−1)+k(1+2α)
k Dα,β,k, (B12)

with

Dα,β,k =
Γ(1 + 2α)Γ(1 + 2(β − 1) + (k − 1)(1 + 2α))

Γ(1 + 2(β − 1) + k(1 + 2α))
. (B13)

Therefore the total energy reads

E = p× αβΓ(−1 + 2α)Γ(−1 + 2β)

(−1 + 2α+ 2β)Γ(2(−1 + α+ β))

p∏
k=2

Dα,β,k (B14)

where:

p∏
k=2

Dα,β,k =
Γ(1 + 2α)p−1Γ(1 + 2(β − 1) + (1 + 2α))

Γ(1 + 2(β − 1) + p(1 + 2α))
. (B15)

The variance of the estimator ∆2θ̃ = 1/N2 · E/N can be simplified to:

∆2θ̃ =
1

N2
· E
N

=
1

N2
· p× (1− α− β)(−1 + 2β + p+ 2αp)(2β + p+ 2α)

2(−1 + 2α)(−1 + 2β)
. (B16)
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Eq. (B16) for α=3/2,β= p

Eq. (B16) for αmin,βmin

Eq. (15), separate strategy p3π2/N2

Eq. (11), fundamental bound 1.89p3/N2

FIG. B1. Comparison between the cost obtained by the ansatz state, by the optimal separate strategy and the fundamental bound. The lines are
plotted as continuous only for better visibility (but they are defined only for natural p). For p = 1 and p = 2 also analytically found optimal
costs are marked respectively by N and �.

By direct calculation one may find, that α, β ≥ 1
2 which minimize the expression above are

αmin =
1

2
+

√
4p2 + 6p+ 2− 4

√
p(1 + 2p)2

4(p− 1)2
=

3

2
+O

(
1
√
p

)
, (B17)

βmin =
1 + 2p+

√
2
√
p(1 + 2p)2

√
p(3+2p)+1−2

√
p(1+2p)2

(p−1)2

4p+ 2
=
√
p+O(1). (B18)

Looking for the leading term for large p we may therefore set α = 3
2 , β =

√
p and then:

∆2θ̃ =
1

N2
· E
N

=
p(1 + 2

√
p)2√p(4p+ 2

√
p− 1)

N2(8
√
p− 4)

p�1
≈ 2p3

N2
. (B19)

In Fig. B1 we compare how the cost obtained for the ansatz Eq. (B16) changes with increasing p for α, β equal respectively
3
2 ,
√
p and αmin, βmin. As a reference we also plot the cost corresponding to the separate strategy and the fundamental bound

Eq. (11) (not necessary saturable). We see that the difference in the cost obtained by α, β equal 3
2 ,
√
p and αmin, βmin is relatively

small (almost negligible for p ≥ 10); therefore, for the simplicity of calculation further we discuss case with α = 3
2 , β =

√
p.

It is worth to remind here, that, as mentioned in the main text, the problem given in eqrefeq:jointenergy has a known exact
solution for p = 1, 2 [32, 66], which are respectively:

N p = 1 : f(µ1) ∝ sin(πµ1) → ∆2θ̃ =
π2

N2
(B20)

� p = 2 : f(µ1, µ2) ∝ sin(πµ1) sin(2πµ2) + sin(2πµ1) sin(πµ2) → ∆2θ̃ =
5π2

N2
. (B21)

From Fig. B1 one can see that for p = 1, 2 the cost obtained by the ansatz is very close to the optimal one.

2. The distribution of photons between the arms of the interferometer

For α = 3
2 , β =

√
p, chosen to minimize the total cost of estimation, let us investigate some more features of the state

Eq. (B1). The distribution of photons in the ith sensing arm is given by the diagonal elements of the corresponding single
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mode reduced density matrix Eq. (A19). By applying the methods from previous section one may immediately see that it is
proportional to:

ρ(µi;µi) ∝ µ3
i (1− µi)2(2p+

√
p−2). (B22)

The mean number of photons in each sensing arm is therefore given as:

E[Nµi] =

∫ 1

0

dµiρ(µi;µi)Nµi =
4N

1 + 2
√
p+ 4p

≈ N

p
. (B23)

From that, the expectation value of the number of photons in the reference arm is:

E[N −
∑p
i=1Nµi] = N − p× E[Nµi] =

(1 + 2
√
p)N

1 + 2
√
p+ 4p

≈ N

2
√
p
. (B24)

We see, that it decreases slower with p than the mean number of photons for any single sensing arm; still, in the asymptotic
regime p → ∞ it tends to zero and almost all photons are distributed between the sensing arms. Note that analogous situations
occurs for the state maximizing QFI Eq. (13). As mentioned in the main text, this is where the advantage of the joint over
separate estimation strategy comes from—by using a single reference arm to measure all the phases, more photons remain for
the sensing arms.

An interesting question is if the distributions of photons in different sensing arms are mutually correlated. For the joint
distribution of photons in ith and jth sensing arms we have:

ρ(µi, µj ;µi, µj) ∝ (µiµj)
3(1− µi − µj)2(2p+

√
p−4), (B25)

corr(Nµi, Nµj) =
E[NµiNµj ]− E[Nµi]E[Nµj ]√

E[(Nµi)2]− E[Nµi]2 ·
√
E[(Nµj)2]− E[Nµj ]2

= − 4

4p+ 2
√
p− 3

≈ −1

p
, (B26)

which tends to zero with increasing p (unlike for the state maximizing QFI, where numbers of photons in different arms are
strongly anti-correlated). Together with the fact that the total cost of estimation for the state Eq. (B1) is very close to the funda-
mental bound, it strongly suggests that this state may have a lot in common with the function optimal for single phase estimation
with fixed mean number of photons Eq. (A26). To see it directly, we compare the distributions of photons corresponding to both
these cases, i.e. Eq. (B22) with:

|g(µ)|2 ∝ Ai2
(
A0 +

2p|A0|
3

µ

)
. (B27)

From Fig. B2 one can see, that for big number of phases p both distributions are indeed similar.

3. Superiority of joint measurement for finite number of photons N—discrete version of Eq. (16)

So far we have shown that for the model where discrete variables from the original problem mi ∈ {0, 1, ..., N} are replaced
with continuous ones mi

N → µi ∈ [0, 1], and all the parameters are initially completely unknown θ ∈ Rp, the state of the form
given in Eq. (16) offers a significant advantage:[

∆2θ̃
]jointly,continuous

ansatz
=
p(1 + 2

√
p)2√p(4p+ 2

√
p− 1)

N2(8
√
p− 4)

(B28)

over the optimal separate strategy, for which the cost reads:[
∆2θ̃

]separately,continuous

optimal
=
p3π2

N2
. (B29)

Following the reasoning from [75] (where single phase estimation problem was analyzed) we infer that the results obtained for
discrete model converge to the above in the limit N → ∞. Still it is an interesting question to investigate this convergence in
more detail for finite number N . Below we present the respective numerical analysis.

The output state reads: ∣∣ΨN
θ

〉
=

∑
m:|m|≤N

cme
im·θ |m〉 , θ ∈ (−π,+π]p. (B30)
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FIG. B2. See how the distribution of photons in single sensing arm changes with increasing number of phases. The black solid line is
normalized square of corresponding Airy function Eq. (B27). The dashed lines correspond to single mode photons number distribution
Eq. (B22) for p equal to 10 (blue), 50 (orange) and 250 (green).

Let us consider the covariant cost of the form

p∑
i=1

(min{|θ̃i − θi|, 2π − |θ̃i − θi|})2, (B31)

which takes into account that two phases +π− ε, −π+ ε should be seen as arbitrary close when ε→ 0. We make this choice in
order not to keep the cost as similar as possible to the standard quadratic cost but at the same time respect the phase periodicity
(covariant cost)—other common choice

∑p
i=1 4 sin2

(
θ̃i−θi

2

)
[34–36], is (except of the point |θ̃i− θi| = 0) strictly smaller than

the variance and this fact would have an impact on the numerical results and demonstrating the convergence of the results would
require going to much higher values ofN . For such a problem, the minimal cost may be obtained by the covariant measurement:

∣∣χθ̃〉 =
1√

(2π)p

∑
m:|m|≤N

eim·θ̃ |m〉 (B32)

(note that in this case, unlike in continuous model, the measurement is not projective; still it is well defined as∫
(−π,+π]p

dθ̃
∣∣χθ̃〉 〈χθ̃∣∣ = 11). Then we have:

∆2θ̃ = max
θ∈Θ

∫
(−π,+π]p

dθ̃ |〈χθ̃|Ψ
N
θ 〉|2

p∑
i=1

(min{|θ̃i − θi|, 2π − |θ̃i − θi|})2 =

p∑
i=1

∫
(−π,π]p

dθ̃ |〈χθ̃|Ψ
N
0 〉|2θ̃2

i . (B33)

Let us now focus on ith element of above sum:∫
(−π,π]p

dθ̃ |〈χθ̃|Ψ
N
0 〉|2θ̃2

i =

=
1

(2π)p

∫
(−π,π]p

dθ̃
∑
m

∑
m′

c∗mcm′e
i(m′−m)θ̃ θ̃2

i =
∑
m

∑
m′

c∗mcm′

∏
j 6=i

δmj ,m′j

·{(−1)mi−m
′
i 2

(mi−m′i)2
for mi 6= m′i,

π2

3 for mi = m′i
,

(B34)

where in the last step discrete Fourier transform of θ̃2
i was applied.
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Now we plug into the above formula the coefficients cm coming from the discretization of Eq. (16), and arrive at:

[
∆2θ̃

]jointly,discrete

ansatz
=p ·

∑
m

∑
m′

c∗mcm′

∏
j 6=i

δmj ,m′j

 ·{(−1)mi−m
′
i 2

(mi−m′i)2
for mi 6= m′i,

π2

3 for mi = m′i

with cm ∝ f(m/N) =

(
p∏
i=1

mi/N

) 3
2
(

1−
p∑
i=1

mi/N

)√p
,
∑
m

|cm|2 = 1.

(B35)

In the left panel of Fig. B3, we investigate how Eq. (B35) converges to Eq. (B28) with the increasing number of photons N for
different number of phases p. From the plot in may be seen that a good convergence (up to 1%) is obtained for N/p of the order
10.

To make the analysis complete, we should also investigate how the advantage of our strategy over optimal separate one
converge to the advantage obtained in continuous case. A certain subtlety should be noted here. The minimal cost obtainable for
separate strategy is given as:

[
∆2θ̃

]separately,discrete

optimal
= p ·min

cm

N/p∑
m=0

N/p∑
m′=0

c∗mcm′ ·

{
(−1)m−m

′ 2
(m−m′)2 for m 6= m′,

π2

3 for m = m′

 (B36)

and, in principle, it may be smaller than Eq. (B29). The reason for this is that for finite N the cost depend on the size of
Θ – which is finite in discrete case, and infinite in continuous. As the consequence, superiority of our ansatz over optimal
strategy cannot be judged directly from convergence Eq. (B35) to Eq. (B28). Therefore in the right panel of Fig. B3 we present

the convergence of the advantage itself, e.i. how
[∆2θ̃]

jointly,discrete

ansatz

[∆2θ̃]
separate,discrete

optimal

converge to
[∆2θ̃]

jointly,continuous

ansatz

[∆2θ̃]
separate,continuous

optimal

. Compering both panels

one see that convergence of the advantage is indeed slower than convergence of the cost; still, for N/p = 16 the advantage is
observed for any number of phases.
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FIG. B3. In the left panel we present how the cost obtained by applying the Ansazt for discrete model
[
∆2θ̃

]jointly,discrete
ansatz

Eq. (B35) converges

to the one from the continuous model
[
∆2θ̃

]jointly,continuous
ansatz

Eq. (B28) with increasing number of photons N . The cost obtained for different

number of phases is rescaled in the plot by the factor 1/p3 in order to increase the visibility. We see that a good agreement is obtained
for N/p of order 10. In the right panel we perform a similar analysis for the advantage of the ansatz over the optimal separate strategy—[

∆2θ̃
]jointly,discrete
ansatz

/[
∆2θ̃

]separate,discrete
optimal

, where the advantage is achieved for a ratio value below 1 (black dashed line). One can see that

for N/p = 16 the advantage is observed for any number of phases p. In both cases blue lines corresponding to asymptotic limits are plotted
as continuous for better visibility (but they are defined only for natural p).

4. Applying to local estimation problem

Now let us discuss how one may apply above procedure to initial problem, where θ ∈ Θ (where Θ is some small finite-
sized neighborhood of θ0) and standard quadratic cost is considered. Without loss of generality let as fixed θ0 = 0 (otherwise
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one could apply proper phase shift −θ0i in each inferetometer’s arm) and then choose the smallest cube containing Θ, e.i.
Θ ∈ [−d/2, d/2]p (in the opposite to [−δ/2,+δ/2]p laying inside of Θ). Then we apply the covariant measurement Eq. (B32),
but each time when the results of measurement point outside of region [−d/2, d/2]p, we choose as the indication of the estimator
proper point of the border of this cube. More formally, let as label the measurement outcomes by x ∈ (−π,+π]p:

|x〉 =
1√

(2π)p

∑
m:|m|≤N

eim·x |m〉 . (B37)

The estimator θ̃(x) = [θ̃1(x), θ̃2(x), ..., θ̃p(x)] is then:

θ̃i(x) =


xi for xi ∈ [−d/2,+d/2],

−d/2 for xi ∈ (−π,−d/2),

+d/2 for xi ∈ (+d/2,+π],

(B38)

By its construction such procedure for any θ ∈ [−d/2,+d/2]p (assuming d ≤ π) gives smaller mean cost than the original
covariant one discussed previously.

We expect that the difference disappear with increasing N , as we expect that propability of poinitng measurement outisde of
[−d/2,+d/2] decrease faster than 1/N2 (however, we did not prove it analitically). Still, for any finite N results obtained for
covariant case bound from above the cost of this strategy.

Therefore, based on the numerical results presented in Fig. B3 and the analytical bound Eq. (11) we may therefore say, that
for any non-degenerate Θ, in the limit of large N :

∀Θ1.89p3 ≤ lim
N→∞

N2∆2θ̃ .
p(1 + 2

√
p)2√p(4p+ 2

√
p− 1)

8
√
p− 4

. (B39)
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