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Abstract

While outcrop models can provide important information on reservoir architecture
and heterogeneity, it is not entirely clear how such information can be used exhaus-
tively in geostatistical reservoir modeling. Traditional, variogram-based geostatistics
is inadequate in that regard since the variogram is too limiting in capturing geological
heterogeneity from outcrops. A new field, termed multiple-point geostatistics does not
rely on variogram models¿ Instead, it allows capturing structure from so-called ”training
images”. Multiple-point geostatistics borrows multiple-point patterns from the training
image, then anchors them to subsurface well-log, seismic and production data. Never-
theless, multiple-point geostatistics does not escape from the same principles as tradi-
tional variogram-based geostatistics: it is still a stochastic method, hence relies on the
often forgotten principles of stationarity and ergodicity. These principles dictate that the
training image used in multiple-point geostatistics cannot be chosen arbitrarily, and that
not all outcrops might be suitable training image models. In this paper we outline the
guiding principles of using analog models in multiple-point geostatistics and show that
simple so-called modular training images can be used to build complex reservoir models
using geostatistics algorithms.
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Introduction

Over the last decade, geostatistics has been popularized as a quantitative tool for generating
multiple reservoir models constrained to geologic, seismic and production data. Geostatisti-
cal reservoir characterization aims at achieving three goals

� Provide reservoir models that depict a certain believed or interpreted ”geological het-
erogeneity”;

� Provide a quantification of uncertainty through multiple reservoir models, all honoring
that same geological heterogeneity;

� Integrate various types of data, each type bringing information on possibly different
scales and with different precision.

Despite its widespread use, the application of geostatistics is hampered through the formal
definition of ”geological heterogeneity”. As part of the mathematical sciences, geostatisti-
cal quantification and formalization of physical concepts is guided by strict mathematical
rules and equations. This inevitably leads to a serious simplification or description of the
natural processes or phenomenon under investigation. The champion of such simplification
in geostatistics is the variogram, a measure of geological heterogeneity or continuity. The
variogram is a statistical tool (not a geologic one) describing the dissimilarity of a variable
observed at any two spatial locations. Successful application of the geostatistical methodol-
ogy relies on the variogram, yet being a mere mathematical concept it has little connection
to reality. Various strongly different types of reservoir heterogeneities may produce a similar
experimental variogram, as shown in Figure 1.

The popularity of variogram-based geostatistics lies in the mathematical simplicity of
the variogram model, not in its power to generate different types of geological models. Such
mathematical convenience is developed in a ”geostatistics lab”, by geostatisticians who re-
quire a mathematical framework to make their estimation or simulation methods mathemat-
ically consistent. The concept of the variogram is, unfortunately, little motivated by actual
geological considerations, and many practitioners have rightfully complained about its te-
dious interpretation and limited connection to actual geological phenomena. Outcrop data
provide a rich source of geological structure in terms of faults, fractures, facies distribution
and bedding configuration. The variogram is too limiting to capture this rich amount of infor-
mation. Yet at the same time, a unified and flexible geostatistical methodology for capturing
the geological richness of outcrop data is still lacking.

Before elaborating on our new geostatistical methodology, we will revisit the two ba-
sic, often forgotten, concepts in geostatistical reservoir modelling. First we discuss the
principle of stationarity that requires ”similarity” and ”repetitivity” when pooling informa-
tion together for the purpose of calculating univariate, bivariate (two-point) or multivariate
(multiple-point) statistics. Next we elaborate on the concept of ergodicity which explain the
inevitable fluctuation of these statistics and the consequence it has on model building. We
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will discuss these guiding principles from a non-mathematical point of view. Here we aim at
presenting essentially the capabilities of current and future geostatistical methods and most
importantly their limitations. Next, we present a novel approach to geostatistical reservoir
modeling, termed multiple-point geostatistics. This methodology builds on the traditional
two-point geostatistics (or variogram-based geostatistics), in the sense that its development
strongly follows the two concepts outlined before. Multiple-point geostatistics has the po-
tential to use outcrop data more completely than variogram-based geostatistics, to constrain
better the reservoir heterogeneity. However, careful consideration is required on how to use
outcrop data in geostatistics. This paper provides a guide to the successful use of such data in
this new geostatistical approach to reservoir modeling. Rather than focussing on a particular
case study, we present hypothetical examples that illustrate succinctly the points raised in
this paper.

The geostatistical philosophy

Stationarity

Geostatistics relies on the well-known concept of random variables, in simple terms, reser-
voir properties at various grid location are largely unknown or uncertain, hence each prop-
erty of interest at every grid block is turned into a random variable whose variability is
described by a probability distribution function. In order to perform any type of geosta-
tistical estimation or simulation one requires a decision or assumption of stationarity. Any
statistical method, including geostatistics, relies on this assumption. Otherwise estimation
of uncertain/random variables would not be possible. Various mathematical descriptions of
this concept exist (Deutsch and Journel, 1998; Chiles and Delfiner, 1999). We will provide
an intuitive one.

In order to determine the porosity histogram of a reservoir one relies on stationarity in
the sense that information from various wells are pooled together into one single histogram.
Implicitly, it is assumed that, in terms of a histogram, all the porosity values in that histogram
originate from a single ”population”. The definition of population being a subjective choice
itself. The population is often referred to as the zone of stationarity, a region that allows
pooling information together. Hence any estimation of statistics such as mean and variance
relies implicitly on a decision of stationarity. Such stationarity decision is not only relevant
for simple statistics such as histograms, it carries over to higher order statistics. The vari-
ogram is a statistical measure of order two, since it describes the dissimilarity between the
same (or different) variables at two spatial locations. Variograms are calculated by pooling
information at similar lag distances together into a single scatter plot (a bivariate histogram
essentially) from which the variogram value is calculated. Hence variogram calculations rely
on a decision or assumption of stationarity.

It is important to list or make explicit the assumptions of stationarity. The model his-
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togram and variogram are used for estimation and simulation purposes in all areas of the
reservoir, often in areas where little a-priori information is present; We will see that a similar
assumption of stationarity is required when exporting a variogram calculated from outcrop
data to an actual reservoir.

While most users are well aware of stationarity decisions for the variogram and his-
togram, less attention is paid to the stationarity assumption of higher-order statistics of cur-
rent geostatistical simulation methods. Indeed, one should accept that any mapping algo-
rithm (also non-geostatistical) calls for the same amount of higher-order (or multiple-point)
statistics. One cannot uniquely draw a map by knowing the histogram and variogram only,
see Figure 1. Additional information in terms of higher-order statistics are needed. Take for
example the well-known and popular sequential Gaussian simulation (sGs) algorithm. Most
users are aware that only a variogram and histogram model are needed for this conditional
simulation method to work. Nevertheless, hidden in the algorithm is the strong assumption
that everywhere in the reservoir the higher-order/multiple-point statistics are multivariate-
Gaussian. While such observation appears to be only relevant for a happy few mathematical
geostatisticians, it has serious impact on the practice of reservoir modeling. The stationarity
decision of multi-variate Gaussianity by definition generates reservoir models that are ”ho-
mogeneously heterogeneous”. The latter simply means that amongst all possible reservoir
models that reproduce a given variogram model, sGs generates models that are maximally
disconnected in the low and high values. This property of sGs is also termed the ”maxi-
mum entropy” property. It is therefore troubling to observe that a large majority of reservoir
models built today are based on assumptions that carry little geological relevance.

Geostatistics is driven, and at the same time limited, by a stationarity decision which
is needed to make it work. Deciding on using geostatistics inherently includes a decision
of stationarity. Essential parameters of the model are estimated based on a stationarity as-
sumption. Algorithms are driven by stationarity assumptions since one relies on the fact
the same algorithmic operation can be applied/repeated in every grid cell whose property
requires estimation/simulation. We will develop a framework within the realm of multiple-
point geostatistics where the strong stationarity assumption can somehow be relaxed.

Ergodicity

Geostatistical simulation algorithms reproduce input statistics such as a variogram and his-
togram under certain ”ergodic fluctuations”. These fluctuations are due to the limited, finite
extent of the spatial domain being simulated. Sample statistics (net-to-gross ratio, porosity
histograms, covariances) are not reproduced exactly in the sense that the variogram calcu-
lated from a single geostatistical realization does not match to the last digit, the input val-
ues of the variogram model. Such a match is not desirable anyway since sample statistics
are inherently uncertain themselves. Ergodic fluctuations are not due to some geostatisti-
cal/mathematical trick that allows sample statistics to float due to their uncertainty. Simula-
tion on an infinitely large domain will result in statistics of a realization that exactly match
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the model statistics. Therefore, when simulating on a finite domain, some statistics have
smaller variations than other. For example the variogram statistics of a realization for small
lag distances typically show less variability then the variogram for larger lag distances.

Ergodicity therefore plays an important role in both the estimation of model parameters
as well as their simulation. It is typically advised in traditional geostatistical practice not to
use any lag distance information beyond 1/2 the size of the field since they are not reliable
(not enough samples to provide a reliable estimate of the variogram). Similar considerations
will have to be made when using multiple-point geostatistics.

Multiple-point geostatistics

Variogram-free geostatistics

The application of variogram-based geostatistics in the petroleum industry is essentially car-
ried over from its successful application in the mining world. Unfortunately, the purpose
of utilizing geostatistics and the type of information available are quite different in mining
applications than in oil/gas exploration and production. So too is the purpose of using geo-
statistics. While mining has abundant, so-called hard data (core measurement), oil and gas
reservoirs are often typified by a lack of direct information. The purpose in mining is to
estimate local recoverable grades of ore, while reservoir characterization aims at producing
models that accurately predict global flow properties. Reservoir heterogeneity and accurate
determination of the type of flow paths present are more important than a locally accurate
quantification of permeability. Permeability models therefore do not have to be locally ac-
curate, but do have to produce an accurate flow response, characterizing an integrated global
measure of permeability heterogeneity.

The variogram cripples the petroleum geologist in her/his quest to produce accurate mod-
els of reservoir heterogeneity that may have serious impact on fluid flow. By describing
merely correlations between only two spatial locations, a variogram cannot capture math-
ematically the complexity of curvilinear features (e.g. channels, cross bedding) nor can it
describe any strong connectivities within a reservoir. Even if the variogram could be consid-
ered to be a reliable descriptor of reservoir heterogeneity, it is often very hard to determine
its lateral component when only very few wells are available. The variogram provides an
adequate description of geological heterogeneity within a single stratigraphic unit or facies.
However, the definition of these stratigraphic units or facies models in three dimensions that
has the largest impact on fluid flow in the reservoir.

One often refers to exhaustive data sets, such as outcrop analogs, to extract the required
variogram parameters such as nugget, range and direction of anisotropy. But if such an
abundance of information is available from outcrops, why restrict one selves to mere two-
point correlations. Reproduction of curvilinear features from outcrops would require at least
correlations between three spatial locations at a time and possible more, namely: multiple-
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point correlations or multiple-point statistics.

What is a training image ?

Multiple-point geostatistics relies on the concept of training images. Training images (the
word image is slightly confusing because training images can be 3D) are essentially a database
of geological patterns, from which multiple-point statistics, including the variogram, can be
borrowed. Once the required patterns are extracted from the training image, they need to
be anchored to subsurface data (e.g. well-log, seismic and production data). The variogram
essentially is a statistical device to store patterns in a mathematical form, yet the complex-
ity of the patterns is severely limiting: first, it is only two-point, secondly, its mathematical
representation makes it hard to handle for non-experts. The training image replaces the var-
iogram in multiple-point geostatistics as a measure for geological heterogeneity, it contains
multiple-point information and, more importantly, is much more intuitive since one can ob-
serve, prior to any geostatistical estimation/simulation, what patterns will be reproduced in
a set of multiple reservoir models.

Training images are often considered hard to come by; it appears in many cases easier
to invent some variogram model than to define an entire complex 3D reservoir analog. Even
if 3D exhaustive data is available, they are often considered too specific for the actual reser-
voir under investigation. Indeed limiting one selves to two-point statistics provides a false
feeling of objectivity, namely, borrowing only two-points is less constraining than borrowing
multiple-point statistics First of all, selecting a variogram model instead of a training image
is not less ”subjective” or constraining. Recall the discussion above: any 2D or 3D modeling
technique calls for the same amount of higher order statistics. If one chooses a variogram-
based geostatistical method, the higher-order or multiple-point statistics are generated by
the algorithm itself, hence hidden to the non-expert user, who might blissfully ignore the
existence of any higher-order statistics. Training images allow an explicit quantification of
geological heterogeneity prior to using any geostatistical method. It is easier to reject a
training image based on visual inspection/interpretation for geological reality than to refute
a variogram model or multi-Gaussian assumptions.

Nevertheless, similar to variogram estimation and modeling, the construction and use
of training images are bound by the same principles of stationarity and ergodicity. Figure 2
shows three possible candidates for a training image: a set of elliptical shapes, a fluvial chan-
nel reservoir and a fan-like deposit. Under the principle of stationarity, only training image 2
can be used as a training image. Recall that training images are essentially databases to store
patterns. If patterns are to be extracted from it, we will need to rely, as any statistical method
does, on the stationarity of that pattern over the entire domain covered by that image. In other
words, enough repetitivity is required to estimate or extract a set of multiple-point statistics
from the training image. It is clear that training image 1 does not follow the principle of
stationarity in the sense that patterns are changing over the training image. Consistency of
patterns/texture is required. Training image 3 appears to be reasonably stationary in terms of
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its pattern but a closer inspection reveals that channels are thinner in the SE corner than in
the NW, also the angle at which channel features occur varies from 0o azimuth to 90o, hence
non-stationarity is present in the anisotropy of local patterns.

The size of the training image is an important factor. More importantly, the relative size
of the training image with respect to the largest feature/pattern to be reproduced in the actual
reservoir model needs to be carefully considered before any simulation takes place. This
size consideration is required under the principle of ergodicity. When estimating parameters
from a finite domain or when simulating reservoir models on a finite region, any statistics,
including multiple-point statistics tend to fluctuate and that fluctuation becomes larger as the
distances over which these statistics are calculated becomes larger. For example reproduction
of large scale patterns (long correlations) such as channels (training image 2), would require
a large training image, at least double the reservoir size in the direction of the channels
continuity is recommended. A small training image would lead to large fluctuations of large
range correlations, hence channels will tend to break up if the training image is taken the
same size or smaller than the actual reservoir size. If smaller features are to be generated,
such as in training image 1, a much smaller training image is required. In such case the
training image can have a size much less than the actual reservoir.

It appears that under the restriction of stationarity and ergodicity, training images would
be even harder to come by as may have been originally perceived (Caers et al., 2000; Stre-
belle, 2002). It should be clear that mere outcrop models, photographs of present day de-
posits or depositional systems, or simple drawings cannot necessarily be used as training im-
ages if they do not follow these underlying principles. One would expect that many outcrops
essentially contain non-stationary features (as do actual reservoirs). The sizes of channel
features or a net-to-gross ratio can vary considerably in the vertical as well as horizontal
directions. Deltaic or turbidite deposits are inherently non-stationary in terms of geological
patterns due to the changing depositional systems over the scale of a reservoir system (e.g.
from tidal to subtidal for deltas). Does this doom the widespread use of multiple-point geo-
statistics ? On the contrary, we will develop simple techniques that relieves us essentially
of the task of having to build a complicated 3D training image from outcrop data. In fact,
we will show that strongly heterogeneous models can be built from simple so-called ”train-
ing image modules”, in the same sense as complex variograms can be built from a set of
basic variogram models (e.g. spherical, Gaussian, nugget, etc ..). Before we proceed with
building non-stationary models, we review the core geostatistical algorithm of multiple-point
geostatistics.

The ”snesim” algorithm

Suppose a training image is available, such as training image 2 in Figure 2. The question
considered in this section is how to design a geostatistical algorithm that can reproduce the
patterns of this training image and at the same time honor any well and seismic data. A
practical pixel-based algorithm to achieve this goal is the snesim algorithm (single normal
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equation simulation, see Strebelle, 2000, 2001). Snesim is a sequential simulation algo-
rithm, much in the style of well-known methods such as sequential Gaussian simulation and
sequential indicator simulation (Isaaks, 1990; Gomez and Journel, 1990). It relies on the
idea of simulating each grid cell facies or petrophysical property sequentially along a ran-
dom path, where the simulation of cells later in the process is constrained by cells earlier
simulated, along with well and seismic data. Recall that a generic sequential simulation
algorithm proceeds as follows:

� Construct a fine 3D grid with well-data assigned to closest grid cells

� Define a random path

� Until each non-datum cell on the random path is visited

step 1. Search for closest nearby well data and previously simulated cells

step 2. Construct a probability model for the property to be simulated based on the data
found in step 1. and possibly any seismic data

step 3. Draw an outcome from the probability model in step 2 and assign that value to
the current grid cell

� end simulation

Traditional to geostatistics is to use some form of kriging in step 2 to determine parame-
ters of the probability model. The type of kriging determins the specific type (e.g. Gaussian,
indicator, etc..) of sequential simulation. Kriging relies on a variogram model inferred from
the data. In the snesim approach one shortcuts this step entirely by directly determining the
probability model in step 2 from the training image, no kriging or variograms are involved.
The details of this procedure are outlined in Strebelle (2000, 2002). Conditioning to soft
(seismic) or production data is discussed in Strebelle (2002), Caers et al. (2001), Caers and
Srinivasan (2001), Caers (2002).

The algorithm allows the definition of various training images at multiple scales. Instead
of having to build a large complex training images, the method allows the use of a set of
training images, each defining a variability at a different scale. For example, in the large
scale training image one can define the large scale variability of channels, while smaller
scale training images determine local channel features such as point bars, levees or crevasse
splays, see Strebelle and Journel (2001).

Figure 3 shows a 3D training image generated using a Boolean approach (example bor-
rowed from Strebelle, 2000). It should be stressed that this 3D model is not constrained by
any specific well or seismic data, it is unconditional reflecting prior statistics on channel pa-
rameters. Figure 4 shows a single realization constrained to 20 vertical well data and a given
vertical proportion curve (not shown). The resulting model reflects the channel patterns well,
honors exactly all well data and reproduces the vertical proportion curve. To generate this
100.000 cell model, the method takes approximately 20 seconds on a 1GHz PC.
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Figure 5 demonstrates the impact of ergodic fluctuation on using the snesim program.
A 250x250 training image is provided, from which a single realization for each a 250 �
250, 100 � 100, 75 � 75 and 75 � 250 reservoir is simulated using snesim. It appears that
disconnected channels occur in the 250� 250 realization and not in any of the other models.
The training image size must be at least 2 times larger than the largest feature reproduced in
the reservoir model. Since NS channel features (=channel thickness) occur repeatedly in the
NS direction, the reservoir size can be of dimension 250 in the NS direction as illustrated in
Figure 5(e), without any major channel discontinuities in the simulated reservoir model.

Building non-stationary models: affinity and rotation invariance

Multiple-point geostatistics relies on the same principle of stationarity. The estimation or
construction of a stochastic model relies on the availability of ”repeated pattern information”.
Nevertheless, actual reservoirs may contain many non-stationary elements such as vertical
and areal proportion variations, or a change in shapes of important flow bodies. This section
addresses the question of how to borrow patterns from a stationary training image, then
construct non-stationary reservoir models from it. First we introduce the notion of rotation
and affinity invariance.

Rotation and affine transformations

Traditional variogram-based geostatistics relies on the estimation and modeling of nested
variogram models from basic variogram structures. Basic models such as a unit range Gaus-
sian, spherical, exponential and hole effect model are appropriately rotated and affinely (lin-
early) transformed, then combined with an appropriate nugget effect to form a model to fit
experimental data. A typical fitting procedure consists of first determining major anisotropy
directions (azimuth, dip), then determining the magnitude of continuity (or range) along that
direction for each basic component. Once these angle and affinity parameters are determined
a suitable transformation is setup to change the Cartesian coordinate system accordingly. In
its more general form a nested variogram model is written as:

(jhj) =
KX
k=1

(jhkj)

where each component has its own anisotropy structure hk defined by a linear transforma-
tion:

hk = AR� h

The matrix R� contains the rotation angle azimuth � (if we work in 2D for demonstration
purposes):

R� =

 
cos(�) � sin(�)
sin(�) cos(�)

!
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The matrix A contains the major and minor range of continuity, ax and ay:

A =

 
ax 0
0 ay

!

Based on the same principles of rotation and affinity transformation, we can build a sim-
ilar rich set of multiple-point structures. Nesting of models is obtained by using different
training images for different scales of observations as outlined above. Using rotation and
affinity transforms, we can start from a simple training image of rectilinear channels, then
generate a large variety of channel-type reservoirs from it. For example, suppose a training
image X of channels running East-West is available with channel thickness equaling 100m
on average. The principle of rotation and affinity transformation allows generating chan-
nel reservoir Y using training image X, where Y has North-South channels of only 50m
thickness. This is achieved through the following proposed modification of the ”snesim”
algorithm, see also Figure 6.

� Construct a fine 3D grid of well-data to closest grid cells

� Define a random path

� Until each non-datum cell u on the random path is visited

step 1a. Search for closest nearby well data and previously simulated cells. Call this set a
”data event”.

step 1b. Rotate and affinely transform the data event accordingly. The center of such
transformation is the visited cell location u to be simulated.

step 2. From the training image, read a probability for the property to be simulated based
on the rotated data from step 1b. and possibly any seismic data

step 3. Draw an outcome from the probability model in step 2 and assign that value to
the current grid cell

� end simulation

The local data event is rotated in the opposite direction of the desired continuity. Then the
facies probability model is determined from the original non-rotated training image. Note
that this procedure does not rotate the training image itself, rather it rotates local data events
along the path of sequential simulation. In mathematical terms, each single datum with
original coordinates uorig = (xorig; yorig; zorig) in the entire data event is rotated along the
center node to new coordinates unew = (xnew; ynew; znew) according to

u
new = AR� u

orig

Figure 7 demonstrates the rotation and affinity transforms. Figure 7 provides the training
image for each of the resulting reservoir models in Figure 7(b) to (f). Note that the training
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image is not rotated or affinely transformed itself, the EW trending channel patterns of the
training image are used to construct various other channel features that have differing chan-
nel sinuousities, thicknesses and orientation. The training image can therefore be termed
a training image module, a template image or basic image (like a basic variogram) whose
patterns can be rotated and affinely transformed.

Local rotation and affinity variations

An even richer set of reservoir models can be generated from a single training image module,
by allowing the rotation angle and affinity correction factor to vary locally. The snesim
algorithm remains exactly the same, only one allows for local variability in

u
new = A(u)R�(u) u

orig

where u are the coordinates of the center cell and

A(u) =

 
ax(u) 0
0 ay(u)

!
R�(u) =

 
cos(�(u)) �sin(�(u))
sin(�(u)) cos(�(u))

!

This procedure requires the local angle and affinity factors to be known in every grid cell.
Very often such parameters can be easily determined or interpreted from seismic, well-data
or geological information, or could be stochastic (unknown) by itself, hence their (two-point)
statistics borrowed from outcrop data (Xu, 1996).

Figure 8 provides an example of this approach. Two maps of local rotation and affinity
transform factors are provided in Figure 8(b) and (c), a training image of EW channels shown
in Figure 8(a). Three realizations constrained to the local angle and affinity factors are shown
in Figure 8(d-f).

It would be a mistake to use a training image of a distributed system, such as Figure 8(d)
as a training image in the snesim algorithm. Figure 9 shows that the use of a ”non-stationary”
training image leads to reservoir models that do not capture the training image structure.

Net-to-gross ratio variations

The snesim algorithm does not require the training image to have the same facies proportion
as the actual reservoir, although reservoir and training image net-to-gross ratio should not be
greatly different (e.g. 30 % versus 75 %). A so-called servo-system (see Strebelle, 2000,
2001) is in place which progressively corrects any difference in facies proportions between
the target proportions and the training image facies proportions. In fact, the technique allows
one to constrain reservoir models easily to target vertical proportion curves (see Strebelle and
Journel, 2001), or areal proportion maps, obtained from seismic and production data (Caers
and Srinivasan, 2001).
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Comparison with Boolean models

Multiple-point geostatistics is an alternative to building reservoir models using object-based
techniques (Deutsch & Wang, 1996; Holden et al., 1998). While object-based techniques
are a considerable improvement over traditional variogram-based methods, they have some
important shortcoming compared to multiple-point geostatistics, namely:

� Conditioning to dense data set is virtually impossible

� Conditioning to seismic data is usually limited to constraining to vertical proportion
curves and areal proportion maps. Actual integration of the physics itself is not viable
for large models within a reasonable CPU. Multiple-point geostatistics is much more
flexible in integrating multiple seismic attributes, as well as accounting for the rock
physics considerations (Caers et al. 2001).

� Runtimes can be large for large models with dense data sets.

� Require geological models to be in the form of objects. This might work well for
channel-type reservoirs but is likely to work to a lesser degree for carbonates, where
facies association are important and important architectural elements might not be
easily parameterized by simple objects. Multiple-point geostatistics can integrate any
type of geology as long as it can be represented as a training image or a combination
of training image modules.

A final perspective

Probably the best way to construct a single geologically realistic reservoir model is to build
it manually using ones’ own expert knowledge. The problem with this approach is that it
will provide only a single model and that integrating other types of data, such as seismic
and production data, requires other expertise. Geostatistics essentially provides a reason-
ably automated approach to building multiple reservoir models integrating (compromising)
between multiple types of information. This automation comes at the price of model sim-
plification. Automated or stochastic methods rely on a model or algorithm that can produce
multiple models without much user intervention. This requires the design of a model or
algorithm that can capture the complexity of all available information. Such model necessar-
ily relies on the principle of repetitivity or stationarity. The improvement of multiple-point
geostatistics over traditional geostatistics lies in the capability of capturing complex hetero-
geneity. Nevertheless, the geostatistical guiding principles remain the same: if information
is not repetitive (stationary) it cannot be captured and reproduced by a model that relies on
stationarity.

Therefore not all outcrop models can be directly used in multiple-point geostatistics as a
reservoir analog or training image, see Figure 9. Some outcrops might be too specific, i.e. do

13



not contain enough stationary information/geological patterns to be captured by the snesim
technique. This paper proposes the first steps to modular training images as to resolving
this problem. Such training images contain regularly occurring patterns within outcrops
(channel, ellipse, cross-bedding, fracture shapes). A combination (nesting) of, rotation and
affinity transformations of training image modules facilitates the generation of a wide variety
of complex structures. The remaining research challenge now lies in finding a systematic
procedure for

1. Finding which are the most important modular training images. Analogous to the
existing basic variogram models, a limited set of modular training images could allow
capturing geologic variability within most existing reservoir types.

2. Combining/rotating/affine transforming modular training images (similar to variogram
fitting). This could ultimately lead to a catalog of training images from which most
reservoir could be modeled. to obtain a desired geologic model. In this paper we
only discuss the possibility of using the basic and simple modular training images for
generating complex reservoir reservoirs. We did not discuss or propose a technique for
determining the parameters that define such transformations. In essence this problem
is similar to determining the rotation and affinity parameters for a given experimental
variogram model.

Although this methodology has been applied to actual reservoirs, we avoided any demon-
stration in order not to confuse the methodological and conceptual emphasis of this paper. in
this regard, we refer to other recent (see references) and upcoming publications.
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3 different "heterogeneities"

Variograms EW

0.4

0.8

1.2

10 20 30 400

0.4

0.8

1.2

10 20 30 400

3

1

2

Variograms NS

1 2 3

N

Figure 1: The variogram as a poor descriptor of geological heterogeneity. Three different
geological heterogeneities result in three similar variograms

16



Training image 1

Training image 3

Training image 2

Figure 2: Three possible candidates for a training image. (a) elliptical shapes, (b) fluvial type
reservoir, (c) deltaic type reservoir. Only image two can be used as a training image since
pattern are stationary over the entire image.
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Figure 3: 3D training image generated from a Boolean method
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Figure 4: Single snesim realization constrained to 20 vertical well data, using the training
image of 3
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Figure 5: Demonstration of the effect of ergodic fluctuations on snesim, (a) 250�250 training
image (b) 250 � 250 single reservoir model, (c) 100 � 100 model, (d) 75 � 275 model, (e)
75� 250 model. Note that the each realization has a different scaling of the axis. Compared
to other realizations, model (b) has discontinuity in the channel features. This is due to
too large ergodic fluctation of the higher-order statistics defined at large distances. Ideally
the training image should be more than twice the reservoir size in the direction of largest
continuity. This condition is met in cases (c-e), hence no discontinuities are present.
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Original data event
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Figure 6: A data event consists of a center location u plus a set of neighboring well-data and
previously simulated node located at coordinates u�). Each coordinate is first rotated, then
affinely transformed (stretching or shrinking).
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Figure 7: (a) Training image, (b-e) various examples of rotation and affinity transforms.
Each realization uses the same training image, displayed in (a).
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Figure 8: (a) Training image, (b) locally varying rotation angle, (c) locally varying affinity
factor ax=ay, (d-f) three resulting reservoir models. Using a stationary training image a
possibly large variety of reservoir models can be built.
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Figure 9: Principle of stationarity: (a) Training image, (b) resulting realization. The use
of the non-stationary training image (top) does not provide a reproduction of non-stationary
patterns in a model realization (bottom).

24


