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1. Introduction. In this paper we consider the existence of multiple positive
fixed points of completely continuous nonlinear operators defined on the cone
K of an ordered Banach space E. Our main results give sufficient conditions for
such an operator to have two, and in some cases three, positive fixed points.

The methods developed here improve a well-known multiple fixed point
technique formulated by Krasnosel’skii and Stecenko [6] for certain boundary
value problems and Hammerstein integral operators. Those authors considered
an operator A bounded above and below by suitable order-preserving operators
A; and A,. They showed that if A, and A, have alternating sections of rapid and
slow growth, it is sometimes possible to find disjoint order intervals (that is,
sets of the form (x, y) = {z € K : x = z < y}) left invariant by A. If order
intervals in K are bounded, the existence of a fixed point of A in each of the A-
invariant order intervals then follows from Schauder’s fixed point theorem.
Using the fixed point index, Amann [1] has shown, under assumptions very
similar to those in [6], that additional ‘‘intermediate’’ fixed points can some-
times be found outside the invariant order intervals. Results closely related to
those of [6] and [1] can be found in [2], [3], [7], [8], and [9]. (Also, see [10].)

Here we investigate the existence of multiple positive fixed points of oper-
ators that need not satisfy the stringent monotonicity and growth assumptions
imposed by the methods of [6]. In fact, the results proved here require no
monotonicity assumptions whatever on the operator A. Hence they allow the
determination of multiple fixed points that stem, in some sense, from a ‘‘change
in direction’’ of A in the cone as well as in a change in the growth rate of A.

Consider, as an example, the nonlinear boundary value problem

(1.1 X = —fx(r), 0=r=1,
(1.2) x(0) = 0 = x'(1),
where f maps R continuously into R. The solutions of (1.1)-(1.2) are the fixed

points of the operator A defined on C[0, 1], the space of real-valued, continuous
functions on [0, 1], by
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(1.3) Ax(f) = Jl Gz, s)f(x(s))ds
where
(1.4) G(r, s) = min{t, s}.

Our abstract results can be applied to the operator A to prove the following
theorem.

Theorem 1.1 Suppose there exist numbers a and d, with 0 < d < a, satis-
Jying the following properties:

(i) fx) =0, 0=x=2a,

(ii) f(x) < 2d, 0=x=d,
and

(iii) f(x) = 4a, a=x=2a.
Then the boundary value problem (1.1)(1.2) has at least two nonnegative solu-
tions. If, in addition, fis bounded above on [0, ), then (1.1)-(1.2) has at least
three nonnegative solutions.

The operator A defined by (1.3) is completely continuous and, by condition
(i), maps a portion of the cone C,[0, 1] (the nonnegative functions in C[0, 1])
back into C,[0, 1]. Clearly f (and hence A) may be badly nonmonotonic, and in
general there do not exist two disjoint A-invariant order intervals. In fact, un-
der the conditions of Theorem 1.1 the method of Krasnosel’skii and Stecenko
would yield only one solution of (1.1)-(1.2).

In studying the existence of multiple positive fixed points of operators A that
may be very nonmonotonic on a cone K, we have found it useful to consider (as
an analog to order intervals) sets of the form

S, a,b) ={x €K:alx)=a and lixll = b},

where « is a concave positive functional defined on K. An important feature of
our method is that the sets S(«, a, b) (and, in some cases, the domain of A) are
not required to be left invariant by A. To a large extent, it is this feature that
produces a generality and ease of application of our abstract results that is not
possible with the approach of Krasnosel’skii and Stecenko.

In Section 2 we collect the definitions and notions basic to our work. The
main results are stated and proved in Section 3, and in Section 4 we give a proof
of Theorem 1.1 and provide additional applications of our abstract results. We
conclude the paper by deriving a simplified version of the central result of
Krasnosel’skii and Stecenko (Theorem 2 of [6]) for Hammerstein integral oper-
ators.

2. Definitions. Let E be a real Banach space. A closed, convex set K C Eis
called a (positive) cone if the following conditions are satisfied:

(i) if x € K, then Ax € K for A = 0;

(ii) if x € Kand —x € K, then x = 0.
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A cone K induces a partial ordering < in E by
x < yifandonly if y - x€ K.

A Banach space E with a partial ordering = induced by a cone K is called an
ordered Banach space. By acompletely continuous map we mean a continuous
function which takes bounded sets into relatively compact sets. In this paper
we consider completely continuous maps which take some subset K, 0 < ¢ =
o, of a cone K back into K, where K, = {x € K : llxll = ¢},0< ¢ <o, and K,, =
K.

Of particular importance to our applications is the ordered Banach space
C(Q), the continuous real-valued functions on the compact region € in R
C(Q)) is endowed with the usual sup norm, and the cone of interest is C,.({}), the
nonnegative functions in C(Q}).

We have been led by studies of various integral operators arising in applied
problems to consider maps A : K, — K satisfying the following property:

(2.1) A has a continuous extension A, : K — K such that range A, = range A
and A, has no fixed points in K \ K.

In the following we give examples of maps A satisfying property (2.1). In these
examples, and throughout the paper, K denotes a positive cone of some or-
dered Banach space.

Example 2.1. (a) Suppose A : K. — K is completely continuous and
A(K,) C K,.. Define A, : K — K by

Ax ifx €K,

Aux A(—‘l ) if x € K\ K.
Hxll
Then range A, = range A, A, is continuous, and all fixed points of A; must lie in
K., so that condition (2.1) is satisfied.
(b) More generally, assume that A : K. — K is completely continuous and
that Ax € K, for each x € K, with lixll = ¢. Again define A, as in Example 2.1
(a). Clearly range A, = range A and A, is continuous. If x € K\ K., then 4A,x =

A(ﬁcﬁ) € K., so that A;x # x. Hence condition (2.1) is satisfied.

Example 2.2. Consider the nonlinear differential equation

d dx
@) 4 e, 0 2 |+ 0,0 =,

with boundary conditions:
2.3) x'(0) — ax(0) = 0, x’(1) = 0;

or
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2.4) x(0) = x'(1) = 0.

Such boundary value problems are used as mathematical models for a number
of physical problems, including nonlinear heat conduction in one dimension,
chemical reactions in adiabatic tubular reactors, and (with A = 1) final value
control problems. We consider functions 4 and f mapping [0, 1] x [0, ¢] (¢ = »)
continuously into [0, ) such that 4 is bounded away from zero. Set K =
C,[0, 1]. Solutions to the boundary value problems (2.2)-(2.3) or (2.2)-(2.4) are
fixed points of the completely continuous operator A on K, defined by

@.5) Ax() = k[ah(0, x(0)]! Ll f(s, x(s))ds

+ Lt [h(u, x(u))]“Uu1 fs, x(s))ds]du,

where « = 1 if (2.3) is assumed to hold and x = 0 if (2.4) is assumed to hold.
Suppose f(t, ¢) = 0,0 = ¢ =< 1, and define A, and f, by

hit,x), O0=x=c,
hl(t’ x) =
ht, ¢, c<x,
and
flt,x), O0=x=c,
flt, x) = l
, c < Xx.

If A, is defined as in (2.5) with fand & replaced by f; and 4, respectively, then
A, is an extension of A which satisfies property (2.1). It is easy to see that A, is
continuous and that range A, = range A. Let x be a fixed point of A; and note
that x(r) = A,x(¢) is a nondecreasing function of . Assume that x(1) = ¢. Then
there exists t,, 0 < t, = 1, such that x(t;) = c and x(f) = cfor 1, = t = 1.

Therefore for u = 1, r fils, x(s))ds = 0, so that
Ax(l) = Wah(0, x(O)]" [ ' fi(s, x(s))ds

+ Lto [Ay(u, x(u))]”]Uul Hls, x(s))ds du]
= Ax(t,) = c.

Hence x € K, and A, has no fixed points in K\ K.
A notion central to our results is that of a concave positive functional on a
cone K, that is, a continuous map « : K — [0, ») satisfying

allx + (1 = Ny) = halx) + (1 — Na(y), O0=A=1.
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For example, if x, is an interior element of K, it is not difficult to show that the
map a : K — [0, ) defined by

a(x) = max {r:tx, < x}

is a concave positive functional on K. Also, consider the cone K = C.(Q),
where Q is a compact subset of IR™ Let , be a closed subset of (). Then the
maps defined by

a(x) = tnelig x(1)

and

alx) = L x(t)dt

are concave positive functionals on K.
If « is a concave positive functional on the cone K, a set of the form

Sla,a, b)) ={x€ K:a=alx) and Ilxl =< b}

is closed, bounded, and convex in K. As will become evident, in proofs of
existence of multiple fixed points of nonmonotonic operators on a cone, the
sets S(a, a, b) often serve as suitable replacements for the order intervals com-
monly used in connection with monotonically increasing operators.

3. Main results. Most of the proofs in this section involve the fixed point
index, the basic properties of which are listed in the following lemma. A proof
of this lemma based on the Leray-Schauder degree theory can be found in [3)].

Lemma 3.1. Let Qbe a retract of a Banach space E. For every open subset
U of Q and every completely continuous map A : U — Q which has no fixed
points on U = boundary of U, there exists an integer i(A, U, Q) satisfying:

(i) if A : U— Uis a constant map, then i(A, U, Q) = 1,

(ii) if U, and U, are disjoint open subsets of U such that A has no fixed
points on UN\(U, U Uy), then i(A, U, Q) = i(A, Uy, Q) + i(A, U,, O),
where i(A, Uy, Q) = i(AlUy, Uy, Q), k = 1, 2;

(iii) if Iis a compact interval in R and h: I x U~ Qis a continuous map
with relatively compact range such that h(\, x} # x for (\, x) € I X 3U,
then i(h(\, +), U, Q) is well-defined and independent of \;

(iv) if (A, U, Q) # 0,then A has at least one fixed point in U,

(v) if Q,is aretract of Qand A(U)C Q,, then i(A, U, Q) = i(A, UN Qy, Ov),
where i(A, UN Q;, Q) = iAIUN Q,, UN O, Q1)

(vi) if Vis open in Uand A has no fixed points in U\V, then i(A, U, Q) =
i(A, V, Q).

Our first result gives sufficient conditions for an operator A : K, — K to have
at least one nonzero fixed point.
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Theorem 3.2. Suppose A : K. — K is completely continuous and suppose
there exist a concave positive functional awith a(x) = llxll (x € K) and num-
bers b > a > 0 (b =< ¢) satisfying the following conditions:

(1) {x € S(a, a, b): alx) > a} # ¢, and a(Ax) > aif x € S(a, a, b,);

(2) Ax€ K, if x € S(a, a, ¢);

(3) alAx) > a forall x € S (a, a, c) with ||Ax| > b.

Then A has a fixed point xin S(a, a, c).

Proof. Set U = {x € S(a, a, ¢) : a(x) > a}. Then U is the interior of
S{w, a, ¢) in K,. Suppose that x € 9U is a fixed point of A. Then a(x) = a and
either x € S(a, a, b) or lixl > b; but if x € S(a, a, b), then a(x) = a(Ax) > a,and
if Ixl > b, then llAxll > b and afx) = a(Ax) > a. Hence A has no fixed points in
dU, and there exists an integer i(A, U, K,) satisfying properties (i)-(vi) of Lem-
ma 3.1.

Choose x, € S(e, a, b) such that a(x,) > a, and define the map # : [0, 1] x U
— K, by

hit, x) = (1 — HAx + tx,.

Clearly h is continuous and ([0, 1] x D) is relatively compact. Suppose there
exists (¢, x) € [0, 1] x U such that A(¢, x) = x. Then a(x) = a. If llAx|l > b, then
by condition (3) a(Ax) > a, so that

a(x) = alh(t, x)) = a((1 — HAx + tx,)
= (1 — Ha(Ax) + ta(x,) > a,
a contradiction. On the other hand, if HAxll = b, then
lxll = 1I(1 — HAx + txoll = (1 — HAxI + dlxgll = b,

so that x € S(a, a, b). Hence, by condition (1), a(Ax) > a and again we arrive at
the contradiction a(x) = a((1 — )Ax + tx,) > a. It follows that for each (¢, x) €
[0, 1] X U, h(t, x) # x. Therefore by (i) and (iii) of Lemma 3.1, i(A, U, K,) =
i(xe, U, K.) = 1. Hence by (iv) of Lemma 3.1, A has a fixed point in U.

Remark 1. Condition (3) of Theorem 3.2 will be satisfied if either of the
following conditions holds:

(i) a(Ax) = %HAxH, x € Sa, a, ¢);

(i) 1Ax!l ~ a(Ax) = b — a, x € S(a, a, ¢).

In applications of Theorem 3.2 and of the results which follow, it is often easier
to establish the validity of (i) or (ii) than to establish the more general condition
(3) directly.

Remark 2. Note that, in Theorem 3.2, the sets S(a, a, b) and S(«, a, ¢) (and
in this theorem, the set K,) are not required to be left invariant by A. In prac-
tice, it is usually very difficult to construct invariant concave sets in a cone
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other than order intervals containing zero and sets of the form K,, and the
requirement that other types of sets be left invariant by an operator severely
restricts the applicability of a fixed point result for a cone.

In the following two theorems (Theorems 3.3 and 3.4) we place additional
restrictions on the operator A of Theorem 3.2 and establish the existence of at
least three fixed points of A. The use of the fixed point index in Theorems 3.3
and 3.4 is similar to the proof of Theorem 2 in [1]. However, in [1] it is assumed
that the domain D and two disjoint, convex subsets of D are left invariant by
A. In Theorem 3.3 we assume the invariance of the domain K. and of a set K; C
K., and in Theorem 3.4 we assume the invariance of only the smaller set K.

Theorem 3.3. Suppose A : K, — K, is completely continuous, and suppose
there exist a concave positive functional awith a(x) =< llxll (x € K) and numbers
a,b,and d, with 0 <d <a < b < c, satisfying the following conditions:

(1) {x € S(a, a, b) : alx) > a} # ¢ and a(Ax) > aif x € S{a, a, b);

(2) lAxll < dif x € Ky,

(3) alAx) > afor all x € S(a, a, ¢) with llAx|l > b.

Then A has at least three fixed points in K..

Proof. LetU, ={x€K,: x| <d}and U, = {x € S(a, a, ¢):a(x) > a}. Then
U, and U, are convex open sets in K, and A has no fixed pointson gU, U U, =
d(U; U U,). By (ii) of Lemma 3.1,

i(As Kc’ Kc) = I(A’ Ul U UZ, Kc) + l(A’ Kc\(Ul U U2)7 Kc)

and
(A, U U U, Ko) = i(A, Uy, K) +i(A, Us, Ko),

so that

—_ 2
i(A, K.\(U, U Uy), Ko) = (A, K, Ko) = X i(A, Uy, Ko).
i=1
Suppose V is a convex open subset of K, such that A : V — V and A has no
fixed points on ¢V. By property (v) of Lemma 3.1, i(4, V, K.) = i(4, V, V),
since V is a retract of K.. Fix x, in V and define # : [0, 1] X V— V by

h(t, x) = (1 — HAx + tx,.

Now if h(t, x) = x for some x € 9V, then ¢ = 0, since otherwise h(z, x) € V. But
then Ax = x for some x € 8V, which is assumed not to be the case. Then by (i)
and (i) of Lemma 3.1, i(A, V, V) = i(x,, V, V) = 1.

Now A(U,) C U, and A(K,) C K, so that i(A, U,, K.,) = | = i(A, K., K,).
(Note that A has no fixed points on the boundary of U, in K., and that the
boundary of K, in K, is empty.) Also, it follows from the proof of Theorem 3.2
that i(A, U,, K.) = 1. Therefore (A, K\(U, U U,), K) =1—-2 = —1. By
property (iv) of Lemma 3.1, A has a fixed point in K, \(U; U U,). By Schau-
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der’s theorem, A has a fixed point in U,, and by Theorem 3.2, A has a fixed
point in U,. Therefore A has at least three fixed points in K.

In the following theorem we replace the assumption in Theorem 3.3 that
A(K,) C K, with the more general property (2.1). However, condition (3) of
Theorem 3.3 must be modified somewhat.

Theorem 3.4. Let A: K, — K be a completely continuous operator satis-
fying property (2.1). Suppose there exist a concave positive functional a with
alx) < ||x|| (x € K) and numbers a,b,and d, with 0 <d < a <b = c, satisfying
the following conditions:

(1) {x &€ S(a, a, b) : alx) > a} # ¢ and a(Ax) > aif x € S(a, a, b);

(2) 1A < dif x € K,

(3) a(Ax) > aif x € K.and |Axll > b.

Then A has at least three fixed points in K,.

Proof. Let A, be the extension of A described in property (2.1) and choose
r = ¢ such that A,(K,) C K,. Note that conditions (1) and (2) of Theorem 3.3
hold for A,. If x € S(a, a, r) and [|A 4! > b, then A.x = Ayfor some y € K, and
a(Ax) = a(Ay) > a (since ||Ayll > b). Hence condition (3) of Theorem 3.3 is
satisfied for K, and A,, and A, has at least three fixed points in K,. Since A, has
no fixed points in K\ K., these fixed points lie in K, and therefore are fixed
points of A.

It is possible to obtain two fixed points of A even if A does not satisfy proper-
ty (2.1). In this case condition (3) of Theorem 3.4 must be replaced by stronger
conditions of the type in Remark 1.

Theorem 3.5. Suppose A : K,— Kis completely continuous, and suppose
there exist a concave positive functional awith a(x) < |Ixl (x € K)and numbers
a and d, with 0 < d < a < c, satisfying the following conditions:

(1) {x € S(a, a, ¢): alx) > a} # pand a(Ax) > aif x € S(a, a, c);

(2) 1Al < dif x € Kg
and either

(3) lAxll — a(Ax) = ¢ — afor each x € K, such that ||Axll > c;
or

4) a(Ax) > % Il Axll for each x € K, such that IlAxll > c.
Then A has at least two fixed points in K..
Proof. The existence of a fixed point x, in K, follows from Schauder’s fixed

point theorem. To prove the existence of a second fixed point in K, define the
auxiliary operator B: K, — K, by

Ax if 1Axll = ¢

Bx =1 cAx
1A X

if 114Xl > c.
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Clearly B is completely continuous and [|1Bx! < d if x € K,; Suppose x €
S(a, a, c). If lAxll = c, then a(Bx) = a(Ax) > a. If 1AMl > ¢, then a(Bx) =

¢ a(Ax), for

TAX
a(Bx)=a(CAx)=a( ¢ Ax+(1 ¢ )0)

Il AxI LA A

C C c
= T aAn + (1 B HAxII)a(O) = Tax *A0-

Therefore if l|1Axll > ¢ and condition (3) holds, then
1Bxl — a(Bx) = [l — a(Ax)/I1AxI]
clAxI~[IIAxI — a(Ax)]

= dlAdI™ ¢ —a) < ¢ — a,

so that a(Bx) > lIBxll + a — ¢ = a. If l1Axll > ¢ and condition (4) holds, then
a(Bx) = ca(Ax)IAxI™ > cllAxlI"fac”IAX] = a.

The hypotheses of Theorem 3.3 are now satisfied (with b = ¢) for the
operator B. By the proof of Theorem 3.3, B has a fixed point x, € K.\ (K; U
S(a, a, ¢)). Therefore a(x;) < a. If |Ax,/| > ¢ and condition (3) holds, then

a > afx,) = a(Bx,) = cllAxyla(Ax,)
= cllAxll " [IlAx)l + a — ¢] = ¢ = cllAxll™ (¢ — a)
z¢~(—a)=a,
a contradiction. Finally, if l|lAx,ll > ¢ and condition (4) holds, then
a > ofx,) = a(Bxy) = cllAx,ll 'a(Ax,)
> clAxgll ™ [ac™WAx,] = a,
a contradiction. Therefore ([Ax,/| < ¢, and Ax, = Bx, = x,.
4, Applications. Consider the Hammerstein integral operator defined on
C(Q) by
4.1) Ax(H) = L G(t, 5)f (s, x(s))ds, te Q.

Here Q is a compact region in IR™, f: Q X [0, ¢] — [0, =) is continuous, and G :
QO X Q — [0, ) is such that A is completely continuous on K, = [C,(Q)].. (For
example, if G is continuous, then A is completely continuous.) Let (), be a
closed subset of Q of positive Lebesgue measure, and assume that

Gt = sup J G(t, s)ds < o,
a

te Q
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€= inf J G(t, s)ds > 0,
2,

teq,

and

8= sup J 1G(t, s) — G(u, s)ds > 0.

Theorem 3.3 can be reduced to the following result for Hammerstein integral
operators.

Theorem 4.1. Suppose there exist positive numbers a, b, and d, with 0 <
d < a < b = ¢,satisfying the following conditions:

(1) f(t,x) > aelif t€ Oy, a = x = b;

(2) f(t, x) < diGItifte Q,0=x=d;

3B) fe,x)=8'b—-a)ifte D, 0=x =g

4) ft, x) =dGNtifte Q,0=x =< c.
Then the Hammerstein operator (4.1) has at least three fixed points in K, =
[C+(D)]e-

Proof. Condition (2) implies that l|Axll < d if llxll = d, and condition (4)
insures that A maps K, into K,. Define o on K by a{x) = mig x(1). Obviously,
te O,

afx) =< |lxll and there exists x € S(a, a, b) with a(x) > a. If x € S(a, a, b), then

a(Ax) = trgi(r)l J G(¢, 8)f(s, x(s)ds

> min J G(t, 8)f(s, x(s))ds

ten,

> min J G(t, s) ae™'ds = a.
‘Q’l

te 0,

Finally, if x € S(a, a, ¢), then for t € Q and u € Q,,
[ G(t, ) f(s, x(s))ds — j G(u, s)f(s, x(s))ds
O 0
= L IG(t, s) — G(u, $) f(s, x(s))ds

= f IG(t, 5) — Gu, sI5(b — a)ds = b — a.

Thus llAx| — a{Ax) < b — a, and if [|Axll > b, then a(Ax) > a. The theorem now
follows from Theorem 3.3.

Proof of Theorem 1.1. It is easy to show that the solutions of (1.1)-(1.2)
correspond to fixed points of the operator A defined by (1.3)-(1.4), and that A
maps K, into K, where cis any positive number such that f(x) = 0 for x € [0, c].
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Also, an easy application of the Arzela-Ascoli theorem shows that A is com-
pletely continuous on K,.

First we assume that conditions (i), (ii), and (iii) of Theorem 1.1 hold, and we
apply Theorem 3.5 to establish the existence of at least two fixed points of A. If
x € K,, then

0

JAx]| = Ax(1) = [ "G, $)f((s)ds < 2d J "sds = d,

and condition (2) of Theorem 3.5 is satisfied. Let a(x) = min  x(¢).Clearly
12=t=s1
{xe€ S, a,2a) : a(x) > a} # ¢, and if x € S(a, a, 2a), then

a(Ax)

12=t=1

min Ll G(t, 8)f(x(s))ds
- L’ G(% , s) Flx(s))ds

> L; G(% , s) F(x(s))ds

> L‘/Z (—;—)(4a)ds = a.

Hence condition (1) of Theorem 3.5 is satisfied. Furthermore, if f is non-
negative on any interval [0, c], and if x € K, and l|Axll > 2a, then

a(Ax) = J l G(% : s) Fx(s))ds

L' sf (x(s))ds + j L (x(s))/2)ds

> L sf(x(s)ds + J f(x(s))dsJ/Z

= J sf x(s))dsJ/Z
= L G(1, s)f(x(s))dsJ/Z

Ax(1)/2 = llAxl1/2 = (c/2c)lIAxl.

I

If we let ¢ = 24, then condition (4) of Theorem 3.5 holds, and A has at least two
fixed points in K,.

We next assume that f is bounded above on [0, «) and show that A has at
least three fixed points in K. If f(x) > 0 for all x > 2a, then there exists r > 2a
such that A maps K, into K,, and the existence of three fixed points of A in K
will follow from Theorem 3.3 (with » = 2aq and ¢ = r), together with the preced-
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ing proof of the existence of two fixed points. If f(r) = 0 for some smallest r in
[2a, =), then the existence of three fixed points of A in K, will follow from
Theorem 3.4 and Example 2.2, since (1.1)—(1.2) can be written as (2.2)-(2.4)
with A(¢, x) = 1 and AlK, can be written in the form

Ax() = Lt Uulf(x(s))ds}du.

Thus AlK, has an extension A, : K — K such that range A; = range AlK, and A,
has no fixed points in X,.
Next, we consider the boundary value problem

4.2) Bx'(t) — x'(6) + f(x(1) = 0, O0=r=1,8>0,
(4.3) Bx'(0) — x(0) = 0, x'(1) = 0,

where f maps [0, ©) continuously into (—, ). This boundary value problem
arises in the theory of adiabatic tubular chemical reactors and has been studied
extensively for the case in which fis the Arrhenius reaction rate

4.4) f&) = plg — x) exp (—=k/(1 + x)).

(See, e.g., [4], [5], [10].)
The Green’s function for (4.2)-(4.3) is given by

I — s
‘3 B

1, O=s=<t=<],

exp O0=r=s=1

Git, s) =

and solutions of (4.2)-(4.3) can be identified with fixed points of the completely
continuous operator A : C, [0, 1] — C[0, 1] defined by

Ax(t) = Jl G(t, 5)f(x(s))ds.
0

Theorem 4.2. Suppose there exist positive numbers a and d with 0 <d <a
such that

(1) fx) Z0if 0 < x =< ae'’;

2) fx) <dif0=x=d,
and

3 f)>aB-Be ™ tifa=x=ae'®
Then (4.1)~(4.2) has at least two nonnegative solutions. If, in addition, f(x) is
bounded above on [0, ®), or if there exists ¢ = ae'® such that 0 < f(x) < c for
0= x = c, then (4.1)44.2) has at least three nonnegative solutions.

Proof. Let K = C,[0, 1], and let a(x) = min x(¢), x € K. Note that G(z, s)
0=st=1

is an increasing function of ¢ for fixed s. If x € K and lixll = d, then
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HAxll = Ax(1) = Jl G(1, s)f(x(s))ds

1
< dj G(1, s)ds = d.
)
Further, if x € S(«, a, ae'®) then

a(Ax) = Ax(0) = Jl e~ 5Bf (x(s))ds

1
> a(B — ,Be‘”")‘lj e~8ds = a.
0
Finally, if x € K, llAxll > 0, and f(x(s)) = 0 for 0 < s < 1, then

wm=mw=rwmmws

1

> e—l/BJ fx(s)ds = e 18Ax(1)
0

= e YAxll = a(ae'®) U Axll.

Thus the existence of at least two nonnegative solutions follows from Theorem
3.5 (with ¢ = ge'’®).
Now if 0 = f(x) = ¢ for 0 < x = ¢, where ¢ = ae'®, then

HAxIl = Ax(1) = rf(x(s))ds =c,x €K,

Hence, if we set b = ae'’®, the existence of three nonnegative solutions follows
from Theorem 3.3.

If fis bounded above and is nonnegative, there exists ¢ = ae'’® such that 0 <
fx) = c for 0 = x = ¢, and again there exist at least three nonnegative solu-
tions. If fis bounded above and f(x) < 0 for some x € [0, ), then there exists
¢ > ae'’® such that f(c) = 0 and f(x) = 0 for 0 < x < c. Define f,: [0, ) — [0, =)
by

_[fx) if 0=sx=c
ﬁ”‘[ 0 if x>ec.
Then the operator
“4.5) Ax(f) = fl G(t, s) fi{x(s))ds

has at least three fixed points in K. Since (4.2) with f replaced by f; can be
written in the form

i (e G )+ i) = o,



686 R. W. LEGGETT & L. R. WILLIAMS

(4.2)-(4.3) is a special case of the boundary value problem (2.2)-(2.3) in Ex-
ample 2.2. Thus all solutions of (4.2)-(4.3) (again, with freplaced by f)) and all
fixed points of the operator (4.5) must have norm no greater than ¢. Hence
these three solutions are solutions of the original boundary value problem
(4.2)-(4.3).

For the nonlinearity (4.4), the boundary value problem (4.2)-(4.3) has a
unique solution provided & = 4 + 4/q (see [S]). If kK > 4 + 4q, then f(x)/x is
increasing in an interval [r,, r,] and is decreasing elsewhere in [0, «), where

ri = 2k + 2q)"'tkq — 2q — [kqlkq — 4q — 41"},
and
re = 2k + 2q9)"Ykq — 2q + [kqlkq — 4q — 4)]'*}.

If p in (4.4) is chosen so that f(r,)/r;, < 1 and f(ry)/r, > 1, then (4.2)-(4.3)-(4.4)
will have at least three solutions for a range of values of 8. Choose d = ry, a €
(ry, ro] with f(a)/a > 1, and b > r, such that f(a) = f(b). Then Theorem 4.2 will
apply to give three solutions provided 8 satisfies the inequalities

ae'® < p

and

B — Be™* > a/fl(a).

We conclude by demonstrating how the notion of a concave positive func-
tional can be used to obtain an improved version of the central result of
Krasnosel’skii and Stecenko [6, Theorem 2] for the Hammerstein integral oper-
ator (4.1). We have eliminated superfluous hypotheses and present a simpler
formulation and simpler proof of essentially the same result. In the following,
Q, Q,, f, G, IGli, and € are the same as in the first paragraph of Section 4; the
quantity § defined in that paragraph is not used here.

Theorem 4.3. Suppose there exist numbers a and b, with 0 < a < b, such
that

(1) aje = f(s, ) if s € Qy,
and

2) f(s,x) =b/IGNifsEQand 0 < x < b.
Then there is a nonnegative function x € C(Q) such that x(f) = bif t € Q, x(f) =
aift € Oy, and Ax = x.

Proof. Define a : C(Q}) - IRby alx) = trrelig x(t). If x € S(a, a, b), then for
each r € (,,

Ax() = J G(t, 5)f(s, x(s))ds

- [ G(t, $) (s, x(s))ds
2
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= (a/e) J G(t, 5)ds = a.
€

Thus a(Ax) = a. Furthermore, for each 1 € Q,

It

0 =< Ax(p) J G(t, s)f(s, x(s))ds

i

J G(t, s)(b/IGl)ds = b.
Q

Therefore A leaves S(«, a, b) invariant, and the theorem now follows from
Schauder’s fixed point theorem.

Remark 3. In Theorem 2 of [6], it is assumed that there exist functions
Jfi(s, x) and f5(s, x), nondecreasing in x, such that 0 < fi(s, x) < f(s, x) =< fo(s, x)
for each s € ) and x € [0, b]. Conditions (1) and (2) take the form

(1) a/e < fi(s, a) for each s € Q,
and

Q) fy(s, b) = b/IIG for each s € ().

Note that condition (1) of Theorem 4.3 is required to hold only for s € (),.

Remark 4. As with Theorem 2 of [6], the preceding result may be expanded
into a multiple fixed point result. However, as indicated earlier with regard to
Theorem 2 of [6], the applications of such a fixed point result would be very
limited. We have presented Theorem 4.3 only to demonstrate the relative sim-
plicity of our methods compared with those of [6].

Remark 5. If strict inequality were assumed to hold in condition (1) of The-
orem 4.3, then Theorem 4.3 would be a special case of Theorem 3.2.

REFERENCES

1. H. AMANN, On the number of solutions of nonlinear equations in ordered Banach spaces, J.
Functional Analysis 11 (1972), 346-384.

2. H. AMANN, Existence of multiple solutions for nonlinear elliptic boundary value problems,
Indiana Univ. Math. J. 21 (1972), 925-935.

3. H. AMANN, Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces, SIAM Review 18 (1976), 620-709.

4. N. R. AMUNDsON & D. Luss, Qualitative and quantitative observations on the tubular reac-
tor, Canadian J. Chem. Eng. 46 (1968), 424-433.

5. D. CoHEN, Multiple stable solutions of nonlinear boundary value problems arising in chemical
reactor theory, SIAM J. Appl. Math. 20 (1971), 1-13.

6. M. A. KrRASNOSEL'SKIl & V. JA. STECENKO, Some nonlinear problems with many solutions,
Amer. Math. Soc. Transl., Ser. 2, 54 (1966), 29-48.

7. T. LAETSCH, Existence and bounds for multiple solutions of nonlinear equations, SIAM J.
Appl. Math. 18 (1970), 389-400.

8. S. V. PARTER, Solutions of a differential equation arising in chemical reactor processes, SIAM
J. Appl. Math. 26 (1974), 687-716.

9. M. STEUERWALT, Stability of solutions of mildly nonlinear elliptic problems, Indiana Univ.
Math. J. 25 (1976), 1083-1103.



688 R. W. LEGGETT & L. R. WILLIAMS

10. L. R. WiLLiams & R. W. LEGGETT, Multiple fixed point theorems for problems in chemical
reactor theory, Journal Math. Anal. Appl. 69 (1979).

The work of the first author was partially supported by Union Carbide Cor-
poration under contract W-7405-eng-26 with the U.S. Department of Energy.
The work of the second author was partially supported by a summer faculty
fellowship from Indiana University at South Bend.

Received August 2, 1978

LeEGGETT: HEALTH & SAFETY RESEARCH DIVISION, OAK RIDGE NATIONAL LABORATORY, OAK
RipGe, TN 37830

WiLLiAMS: INDIANA UNIVERSITY AT SOUTH BEND, SouTH BEND, IN 46615



