
Multiple Pre/Post Specifications for Heap-Manipulating Methods

Wei-Ngan Chin1,2 Cristina David1 Huu Hai Nguyen2 Shengchao Qin3

1 Department of Computer Science, National University of Singapore
2 Computer Science Programme, Singapore-MIT Alliance

3 Department of Computer Science, Durham University
{chinwn,davidcri,nguyenh2}@comp.nus.edu.sg shengchao.qin@durham.ac.uk

Abstract

Automated verification plays an important role for high
assurance software. This typically uses a pair of pre/post
conditions as a formal (but possibly partial) specification
of each method before it is systematically verified. In this
paper, we advocate for multiple pairs of pre/post conditions
to be associated with each method which provides a way
for such specification to be used in more scenarios. Multiple
pre/post specifications are important for heap-manipulating
programs where they can be precisely expressed using sep-
aration logic. This work highlights the importance of mul-
tiple pre/post specifications, and a methodology to capture
them via set of states during proof search.

1 Introduction

In recent years, separation logic formalism has been
successfully applied to analysing and verifying heap-
manipulating programs. This formalism supports suc-
cinct description of shapely data structures, such as near-
balanced AVL-trees [10], and has been used to analyse and
verify various program properties. One important feature of
separation logic is its support for accurate references into
memory states which can be captured with the help of in-
ductive shape predicate and separating conjunction. For ex-
ample, a list segment of length n can be specified by the
following predicate definition:

lseg(root, p, n) ≡ root=p ∧ n=0 ∨
∃q · root�→node〈 , q〉 ∗ lseg(q, p, n−1) inv n≥0

where node is an object type declared as
data node { int val; node next }

In separation logic notation, x �→node〈a, b〉 captures a
distinct memory cell referenced from x, while separating
conjunction ∆1 ∗ ∆2 captures two disjoint heaps described
by ∆1 and ∆2, respectively. In contrast, ∆3 ∧ ∆4 captures
two overlapping heaps, ∆3 and ∆4. The formula n≥0 after
the inv keyword captures a heap-independent invariant for

the predicate. This invariant is an approximation of the
predicate, in the sense that whenever the predicate holds,
the invariant also holds. By default, each shape predicate is
expected to have a special (first) parameter, named root,
that can transitively reach all its memory cells. This “root”
parameter will be instantiated with an actual argument for
each instance of its predicate that appears in formulas.
Furthermore, we shall use a uniform notation where object
x �→node〈a, ..〉 is written as x::node〈a, ..〉, and predicate
pred(x, a, ..) is written as x::pred〈a, ..〉. We refer to them
collectively as heap nodes. With this new notation, we can
omit the root parameter in the head of the predicate, and
define a non-empty circular list, as follows:
clist〈n〉 ≡ ∃p · root::node〈 , p〉 ∗ p::lseg〈root, n−1〉

inv n ≥ 1

Shape predicates can also be used to describe more
complex data structures with stronger properties. An
example is the non-empty sorted list:
sortl〈n, s, b〉 ≡ root::node〈s, null〉 ∧ s = b ∧ n = 1

∨ ∃p, t · root::node〈s, p〉 ∗ p::sortl〈n−1, t, b〉 ∧ s≤t
inv n > 0 ∧ s ≤ b

Predicate sortl〈n, s, b〉 ensures that all values in the list
are sorted in ascending order, with s and b to capture its
min and max values, respectively. The sortedness property
is ensured by the presence of s ≤ t in the above predicate.
The parameters n, s, b actually capture some derived prop-
erties of the heap data structure, as stated in the predicate
definition. These parameters play a role similar to “model
fields” in some specification languages, such as Spec# [9, 1]
and JML [3]. As a shorthand, we may omit the existential
quantifiers without ambiguity.

Though separation logic with inductive predicates can
be highly expressive, current automated theorem provers
hardly provide any support for this form of substructural
logic. Several recent works, such as [2, 4], have attempted
to address this shortcoming by building specialised solvers
that work for a fixed set of predicates (e.g. lseg without
the size parameter). Our recent work [10] has lifted one
crucial limitation by supporting the automated reasoning of

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.19

355

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.19

355

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.19

357

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.19

357

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.19

357

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.19

357

user-defined predicates. To this end, we have designed a
general prover that uses unfold/fold reasoning on predicates
to support entailment between two heap states, and also for
computing its residual heap. This is essentially a prover
with “frame inferring” capability. Given two heap states ∆a
and ∆c, our prover can check for an entailment of the form:
∆a � ∆c ∗ ∆r, where ∆r is a residual heap from ∆a after fully
accounting for the memory heap state of ∆c. The residue is
a consequence of the frame rule from separation logic that
can be determined by an incremental matching algorithm in
our prover. Our entailment also handles disjunctive formu-
lae and existential quantifiers. While our prover is sound,
terminating and automated, it is incomplete.

In this paper, we propose one approach to partially
overcome this incompleteness shortcoming, by providing a
mechanism for specifying and handling multiple pre/post
conditions in separation logic. Traditionally, each method
is given a single pair of pre/post conditions which describes
the expected pre-state prior to a method call and its subse-
quent post-state. Furthermore, even when multiple pre/post
conditions are allowed in some specification languages,
such as JML [3], the standard technique for handling them
is to re-combine into a single pre/post condition. As an ex-
ample, consider a method with two (pairs of) pre/post con-
ditions, (pre1, post1) and (pre2, post2), as shown:

requires pre1 ensures post1
also

requires pre2 ensures post2
The proposed solution in JML [6] is to transform the two

pre/post conditions into an integrated pre/post condition:
requires pre1 ∨ pre2
ensures old(pre1) =⇒ post1 ∧ old(pre2) =⇒ post2
While this re-combination may work with traditional

Hoare logic that is based on pure formulae, it cannot be
used for an arbitrary heap state ∆ of separation logic, since
old(∆) is not always determinable. As an example of multi-
ple pre/post conditions in separation logic formula, consider
the append method for joining two lists together:

void append(node x, node y)
{if x.next �=null then { append(x.next, y) }
else {x.next:=y } }

A simple specification for this method is for joining two
disjoint lists into a single longer list, as illustrated by the
first pre/post condition below:
requires x::lseg〈null, n1〉∗y::lseg〈null, n2〉∧n1>0
ensures x::lseg〈null, n1+n2〉}
The n1>0 constraint ensures that the first input is

non-empty. As a result, the pointer access operation
x.next �=null can be proven to be safe. Another radically
different view of this method is for the purpose of joining
two sorted lists, whereby the largest value of the first sorted
list is less than the smallest value of the second sorted list.
This view is captured by a second pre/post condition below:

requires x::sortl〈n1, a, b〉∗y::sortl〈n2, c, d〉∧b≤c
ensures x::sortl〈n1+n2, a, d〉}
With a more specialised pre-state, our specification is

able to conclude that the resulting list is a longer sorted
list. Furthermore, the sortl predicate is non-empty
which can prove that dereferencing by x.next �=null
is safe. Such a specification captures a different view
for the same append method, which would be needed
towards the verification of the sortedness property for the
quicksort algorithm. Our thesis is that it is often futile
to combine these widely different pre/post conditions
into a single pre/post condition, as the translations for
old(x::lseg〈null, n1〉∗y::lseg〈null, n2〉∧n1>0) and
old(x::sortl〈n1, a, b〉∗y::sortl〈n2, c, d〉∧b≤c) into
heap (or pure) formulae cannot be systematically deter-
mined. For example, in JML, old(e) is guaranteed to be
safe to use if e denotes a primitive value, or an immutable
object [7] (sec 11.4.2). Otherwise, some ambiguity in
specification is possible.

In this paper, we propose a new mechanism to support
the direct handling of multiple pre/post conditions. Our
mechanism is based on a set of states {∆1, .., ∆n} which
represent abstract states that may arise during proof search
used by automated verification. As a first step, we pro-
pose to generalise the entailment procedure into a non-
deterministic version that explicitly returns a set of resid-
ual states, namely: ∆a � ∆c ∗ {∆1, .., ∆n}, such that for all
1 ≤ i ≤ n, ∆a � ∆c ∗ ∆i holds. In the event of an entail-
ment failure, the set of residual states is empty. Note that
“states” here are formulas, representing the abstract states
of the program.

The set of residual states is meant to contain syntactically
different states. This does not imply that all the states in the
set are semantically different. Our approach may indeed
cause some redundancy in the search for proofs, but it does
not affect soundness of the entailment prover. Explicit set
of states allows easier integration between the prover and
other components of our verification system. In particular,
its use is critical for handling multiple pre/post specifica-
tions which can now be viewed as part of proof search.

This paper makes the following contributions:

• Multiple pre/post: This mechanism allows users to
specify more properties of a procedure. Our system
automatically verifies that each user-provided speci-
fication is correct, prior to using them for systematic
proof search.

• Set of states: Provers for separation logic typically
need to derive residues (or frames), which have to be
communicated to program verifiers. Our direct sup-
port for non-deterministic proof search via set of states
notation makes this task both explicit and exhaustive.

• Implementation: We have implemented a verification

356356358358358358

spred ::= c〈v∗〉 ≡ Φ inv π0

Φ ::=
�

(∃v∗·κ∧π)∗ π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 �=v2 | v �=null | γ1∧γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v·φ | ∀v·φ
b ::=true | false | v | b1 =b2

a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2

| −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1�B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1�B2 | B1B2 | B1−B2 | {} | {v}

Figure 1. Syntax for Formulas

system that supports multiple pre/post specifications.
Initial experiments show that the cost of conducting
proof search via set of states remains low, but is cru-
cial to verify some examples. Moreover, the smaller
heap formulae from using multiple pre/post specifica-
tions may sometimes result in significant improvement
to the performance of automated verification.

2 Separation Logic Formalism Used

The syntax for separation logic formulae that we will use
is given in Figure 1. Each shape predicate spred has a body
Φ, which can be recursive as it can mention the predicate
being defined. Each predicate can also be equipped with
a heap-independent invariant π0 that is user-supplied but
machine-checked for its validity. The invariant is marked
with a prior keyword inv.

The separation constraints we use are in a disjunctive
normal form Φ. Each disjunct consists of a ∗-separated
heap constraint κ, referred to as heap part, and a heap-
independent formula π, referred to as pure part. The
pure part does not contain any heap nodes and is restricted
to pointer equality/disequality (to facilitate precise alias-
ing and non-aliasing), Presburger arithmetic and set/bag
constraints that can capture a collection of reachable val-
ues/addresses. Furthermore, ∆ denotes a composite formula
that could always be normalised into the Φ form (see Fig. 5
in Sec 4.1).

Separation constraints are used in pre/post conditions
and shape definitions. We will also use another special vari-
able “res” to denote the returned value of an expression (in-
cluding the method body). In order to handle them correctly
without running into unmatched residual heap nodes, we re-
quire all constraints used in specifications be well-formed.

Definition 2.1 (Accessible) A variable in a specification is
said to be accessible if it is a method parameter or a special
variable, i.e. root or res.

Definition 2.2 (Reachable) Given a heap constraint κ
such that κ = p::c〈v∗〉∗κ1, node p::c〈v∗〉 is reachable from
a variable q iff they satisfy the following relation:
reach(κ1, q, p::c〈v∗〉) =df (p = q)
∨(κ1 = q::cq〈.., r, ..〉 ∗ κ2 ∧ reach(κ2, r, p::c〈v∗〉))

Definition 2.3 (Well-Formed Constraint) A separation
constraint Φ is well-formed if (i) all objects and predicate
instances in the constraint are reachable from acces-
sible variables, (ii) Φ is in a disjunctive normal form∨

(∃v∗ · κ ∧ π)∗ where κ denotes heap constraints, π
pointer, arithmetic and set/bag constraints.

The primary significance of the well-formed condition
is that all heap nodes of a heap constraint are reachable
from accessible variables. This allows the entailment prov-
ing procedure to correctly match nodes from the consequent
with nodes from the antecedent of an entailment relation.
Furthermore, arbitrary recursive shape relation can lead to
non-termination in unfold/fold reasoning. We avoid this pit-
fall by using only well-founded shape predicates:

Definition 2.4 (Well-Founded Predicate) A shape predi-
cate is said to be well-founded if its body satisfies three
conditions, namely: (i) it is a well-formed constraint, (ii)
the parameter root may not be bound to a predicate in-
stance, (iii) there is at most one object in each disjunct.

3 Multiple Pre/Post Specifications

Our approach currently expects pre/post conditions to be
specified for each method. With the rich variety of shapes
that can be specified, there are often multiple ways of view-
ing a method’s intended behaviour. In this section, we ex-
plore the contexts in which multiple pre/post specifications
are useful for heap-manipulating methods. For simplicity,
we shall illustrate via our running append method, that is
reproduced below.

void append(node x, node y)
{if x.next �=null then { append(x.next, y) }
else {x.next:=y } }

Firstly, multiple pre/post specifications are helpful for
capturing strong aliasing properties in separation logic. Our
previous specification was for two disjoint input lists. We
can also provide a pre/post specification in which x and y
parameters are aliased, as follows:

requires x::lseg〈null, n〉∧n>0∧x=y
ensures x::clist〈n〉

The aliasing by x=y causes the append function to return a
circular list instead! To successfully verify the recursive call
of append, we also require another pre/post specification
that returns a list segment, as follows:

requires x::lseg〈null, n〉∧n>0
ensures x::lseg〈n, y〉

357357359359359359

Secondly, we may require pre/post specification to han-
dle missing cases that are absent in our predicates. Our
earlier example made use of a non-empty sortl predicate
which was essential for the first x parameter, but not re-
quired for the second y parameter. To allow the y parame-
ter to be possibly empty, we shall provide an extra pre/post
specification, as follows:

requires x::sortl〈n1, i1, j1〉∧y=null
ensures x::sortl〈n1, i1, j1〉

Thirdly, we may use smaller predicates to specify ad-
ditional properties of our method. This is helpful towards
better functional correctness and also scalable verification.
For example, we can further introduce another predicate
that captures the reachability of a linked-list as a bag of its
values, as follows:

llR〈B〉 ≡ (root=null∧B={}) ∨
(∃v, B1 · root::node〈v, r〉 ∗ r::llR〈B1〉∧B={v}∪B1)

This new predicate captures the reachable values in a
linked-list but requires a bag constraint solver. It is useful as
it can help specify the reachability property by the append
method, as captured by the following extra pre/post specifi-
cation:

requires x::llR〈B1〉∗y::llR〈B2〉∧x �=null
ensures x::llR〈B1∪B2〉}

Multiple pre/post specifications allow us to freely use
smaller predicates whereby different properties can be sep-
arately proven. As illustrated later by our experiments, this
can help support scalable verification.

As stated before, the concept of multiple pre/post spec-
ification is not new. Conceptually, it is also related to the
notion of intersection types [11], especially when it is com-
pared with a dependent type system with effects on heap
states. While the concept of multiple pre/post is not new,
its use in separation logic is novel and provides a fresh chal-
lenge for automated verification.

In this paper, we propose the concept of set of states
to handle multiple pre/post specification, and as a means
towards systematic proof search. Our solution avoids the
need to transform multiple pre/post specification into a sin-
gle pre/post specification. We chose this path for the fol-
lowing reasons: (i) it is more concise, (ii) it allows pre/post
conditions to be decomposed in a modular fashion, (iii) it
integrates well with set of states, and (iv) its use results
in smaller heap states. As smaller heap states are likely to
be faster to verify, we expect multiple pre/post to give bet-
ter support for scalable verification, whereby smaller pred-
icates are strongly encouraged. This facilitates modular
reuse of the verification processes, in addition to support for
systematic proof search. The next two sections highlight the
techniques we have formulated to support multiple pre/post
specification in separation logic, and some experiments we
conducted to validate its utility.

4 Our Approach

In our approach to verification, we expect users to sup-
ply two things that can assist in automatic verification of
their code, namely shape predicate definitions and multiple
pre/post specifications for each method. Our system has two
major components, namely (i) Hoare-style verifier and (ii)
entailment prover for separation logic, as shown in Figure 2.

Hoare-style
Forward Verifier

Entailment
Prover

Program
Code

User Supplied Items

Automated Verification with Multiple Pre/Post

Sets of
Pre/Post

Shape
Predicates

Figure 2. Our Approach to Verification

4.1 Forward Verifier

Our Hoare-style verifier is defined for an imperative
object-based language with syntax in Figure 3. A pro-
gram P consists of declarations tdecl and methods meth.
Declarations can be shape predicates spred or object types
objt. Each method is decorated with the specification
{Φi

pr ∗→Φi
po}p

i=1 that is made up of a collection of pre- and
post-condition pairs. This more precise syntax for multiple
pre/post pairs shall be used in our formalization. The in-
tended meaning is that whenever the method is called in a
program state satisfying precondition Φi

pr and if the method
terminates, the resulting state will satisfy the corresponding
postcondition Φi

po. We handle while loop in a similar way.
Other constructs are standard.

Hoare-style code verifier is based on forward rules of the
form {∆1}code{∆2}, where ∆1 is a prestate in separation
formula that is given, while ∆2 is a poststate that shall be
computed by forward reasoning. To capture proof search,
we generalize the forward rule to the form {∆}code{S}
where S is a set of heap states, discovered by a search-based

P ::= tdecl∗ meth∗ tdecl ::= objt | spred
objt ::= data c { field∗ } field ::= t v
t ::= c | τ τ ::= int | bool
meth ::= (t | void) mn ((t v)∗) where mspec {e}
mspec ::= {Φi

pr ∗→Φi
po}p

i=1

e ::= null | kτ | v | v.f | v:=e | v1.f :=v2

| new c(v∗) | e1; e2 | t v; e | mn(v∗)
| if v then e1 else e2

| while v where mspec do e
c, v ::= identifiers

Figure 3. A Core Imperative Language

358358360360360360

verification process. When S is empty, the forward verifica-
tion is said to have failed for ∆ as prestate. For convenience,
we also provide lifted variant of the forward verifier to take
a set of prestates. Verification in such a case succeeds if any
of the prestates gives rise to a successful verification, that
is if at least one of the Si is non-empty. This rule is useful
when the forward verifier has processed at least one subex-
pression, potentially giving rise to a set of residual states.

∀i ∈ 1..n · {∆i} code {Si}
� {{∆1, ..,∆n}} code {⋃n

i=1 Si}

Verification of a method starts with each precondition,
and proves that the corresponding postcondition is guaran-
teed at the end of the method. The verification is formalized
in the following rule:

[FV−METH]

V ={v1..vn} W=prime(V)
∀i = 1, .., p · (� {Φi

pr∧nochange(V)} e {Si
1}

(∃W·Si
1)�Φi

po ∗Si
2 Si

2 �={})
� t0 mn(t1 v1, .., tn vn) where {Φi

pr ∗→Φi
po}p

i=1 {e}

The function prime(V) returns {v′ | v ∈ V }. The pred-
icate nochange(V) returns

∧
v∈V (v = v′). If V = {},

nochange(V)=true. ∃W · S returns {∃W · Si|Si ∈ S}. The
entailment (∃W·Si

1)�Φi
po ∗Si

2 is discharged by the entail-
ment prover described in the next subsection.

At a method call, each of the method’s precondition is
checked. The combination of the residue Si and the post-
condition is added to the poststate. If a precondition is not
entailed by the program state ∆, the corresponding residue
is not added to the set of states. The test S �={} ensures that
at least one precondition is satisfied.

[FV−CALL]

t0 m(t1 v1, .., tn vn) where {Φi
pr ∗→Φi

po}p
i=1 {e} ∈ P

ρ=[v′
j/vj]

n
j=1 ∆�ρΦi

pr ∗Si ∀i=1, .., p
S =

�p
i=1 Si ∗ Φi

po S �= {}
� {∆}m(v1..vn) {S}

Note that the verification rule also invokes the entailment
prover to discharge ∆�ρΦi

pr ∗Si, where ρ represents a sub-
stitution of vj by v′j , for all j = 1, .., n.. The lifted sepa-
ration conjunction ∗ over a set (i.e., Si ∗ Φi

po) is defined in
Fig. 5 in the next subsection.

Our verifier also ensures that each field access is safe
from null dereferencing. This is shown in the field access
rules in Fig. 4 which also includes other forward verifica-
tion rules for the language. The verification rules attempt
to track heap states, as accurately as possible, with path-
sensitivity captured by [FV−IF] rule, flow-sensitivity by
[FV−SEQ] rule and context sensitivity by the [FV−CALL]
rule. In a nutshell, verification is carried out at three places.
For each call site, the [FV−CALL] rule (mentioned earlier)
ensures that at least one of its method’s preconditions is

satisfied. At each method definition, the [FV−METH] rule
checks that every postcondition holds for the method body
assuming its respective precondition. At each shape def-
inition, [FV−SPRED] checks that its given invariant πinv

is sound w.r.t. (i.e. semantic consequence of) the well-
formed heap formula Φ. (The rule for while loop is omit-
ted but is essentially similar to the mechanics for handling
tail-recursive methods.) The function XPure0(Φ) generates
a sound and heap-independent approximation of the heap
constraint Φ. For instance,

XPure0(x::node〈 , 〉) ≡ x > 0
XPure0(x::node〈 , 〉 ∗ y::node〈 , 〉) ≡ x>0∧y>0∧x �=y
XPure0(x::lseg〈p, n〉) ≡ n ≥ 0

For the shape predicate case above, we can get a more
precise approximation by unrolling the predicate definition
once, for example:

XPure1(x::lseg〈p, n〉) ≡ (x=p∧n=0 ∨ x>0∧n>0)

The definition for the general approximation procedure
XPuren(Φ) (also used in the entailment prover) can be found
in [10] where n denotes the number of unrollings done on
the shape predicates.

The operators∧{v} (in assignment rule) and ∗W (in while
rule) are composition with update operators. Given a state
∆1, a state change ∆2, and a set of variables to be updated
X={x1, .., xn}, the composition operator⊕X is defined as:

∆1 ⊕X ∆2 =df ∃ r1..rn · ρ1 ∆1 ⊕ ρ2 ∆2

where r1, . . . , rn are fresh variables;
ρ1 = [ri/x′

i]
n
i=1 ; ρ2 = [ri/xi]ni=1

Note that ρ1 and ρ2 are substitutions that link each latest
value of x′

i in ∆1 with the corresponding initial value xi in
∆2 via a fresh variable ri. The binary operator ⊕ is either
∧ or ∗.

Normalization rules for separation constraints and lifted
operators over sets of states are given in Fig. 5.

4.2 Entailment Prover

The other major component of our system is the entail-
ment prover. This prover directly uses the definitions of
shape predicates to reason about entailment between two
heap formulae. A key novelty is the use of a set of heap
states to support non-deterministic entailment. By non-
determinism, we mean a search process that returns mul-
tiple answers, any one of which indicates a successful ver-
ification. Our entailment prover has the form ∆a � ∆c ∗ S
where S is a set of possible residual poststates. The entail-
ment succeeds when S is non-empty, otherwise it is deemed
to have failed. When S captures multiple residual states,
they signify different search outcomes during proving.

During entailment, each pair of aliased ob-
jects/predicates from ∆a and ∆c are matched up, whenever

359359361361361361

[FV−SPRED]

XPure0(Φ) =⇒ [0/null](πinv)

� c〈v∗〉 ≡ Φ inv πinv

[FV−VAR]

S={∆∧res=v′}
� {∆} v {S}

[FV−CONST]

S = {∆∧eqτ (res, k)}
� {∆} kτ {S}

[FV−LOCAL]

� {∆} e {S}
� {∆} {t v; e} {∃ v, v′·S}

[FV−IF]

� {∆∧v′} e1 {S1} � {∆∧¬v′} e2 {S2}
� {∆} if v then e1 else e2 {S1∨S2}

[FV−NEW]

S={∆ ∗ res::c〈v′
1, .., v

′
n〉}

� {∆}new c(v1, .., vn) {S}

[FV−SEQ]

� {∆} e1 {S1} � {S1} e2 {S2}
� {∆} e1; e2 {S2}

[FV−ASSIGN]

� {∆} e {S1}
S2=∃res·(S1∧{v}v

′=res)

� {∆} v:=e {S2}

[FV−FIELD−READ]

∆�v′::c〈v1..n〉 ∗S1 S1 �={} fresh v1..vn

S2 = ∃v1..vn·(S1 ∗ v′::c〈v1..n〉∧res=vi)

� {∆} v.fi {S2}

[FV−FIELD−UPDATE]

∆�v′::c〈v1..n〉 ∗S1 S1 �={} fresh v1..vn

S2 = ∃v1..vn·(S1 ∗ v′::[v′
0/vi]c〈v1..n〉)

� {∆} v.fi:=v0 {S2}

Figure 4. Forward Verification Rules with Non-Determinism

(∆1 ∨ ∆2) ∧ π � (∆1 ∧ π) ∨ (∆2 ∧ π)
(∆1 ∨ ∆2) ∗ ∆ � (∆1 ∗ ∆) ∨ (∆2 ∗ ∆)
(κ1∧π1) ∗ (κ2∧π2) � (κ1∗κ2)∧(π1∧π2)
(κ1∧π1) ∧ (π2) � κ1∧(π1∧π2)
(γ1∧φ1) ∧ (γ2∧φ2) � (γ1∧γ2) ∧ (φ1∧φ2)
(∃x · ∆) ∧ π � ∃y · ([y/x]∆ ∧ π)

(∃x · ∆1) ∗ ∆2 � ∃y · ([y/x]∆1 ∗ ∆2)
(S1 ∨ S2) � {∆1∨∆2 | ∆1 ∈ S1, ∆2 ∈ S2}
F (S) � {F (∆) | ∆ ∈ S}

where
F (A) ::= A∧π | A ∧W π | A∗∆ | A ∗W ∆ | ∃x·A
y denotes fresh variable

Figure 5. Normalization Rules for Separation Constraints and with operators lifted to a Set

they are proven identical. The formal rule for matching is:

XPuren(p1::c〈v∗
1〉∗κ1∧π1) =⇒ p1=p2 ρ=[v∗

1/v∗
2]

κ1∧π1∧freeEqn(ρ, V)�κ∗p1::c〈v∗
1 〉

V −{v∗
2}

ρ(κ2∧π2) ∗S

p1::c〈v∗
1〉∗κ1∧π1�κ

V (p2::c〈v∗
2〉∗κ2∧π2) ∗S

Note that the complete form for the entailment relation
is ∆a�κ

V∆c ∗ S which denotes κ∗∆a�∃V·(κ∗∆c)∗S. As
mentioned earlier, the purpose of the entailment prover is to
check that heap nodes in the antecedent ∆a are sufficiently
precise to cover all nodes from the consequent ∆c, and to
compute a set of possible residual heap states S (which is
empty if the entailment search fails). κ is the history of
nodes from the antecedent that have been used to match
nodes from the consequent, V is the list of existentially
quantified variables from the consequent. Note that κ and V
are derived. The entailment prover is invoked with κ=emp
and V =∅. When a match occurs, the bindings between
free variables from the matched node in the consequent
and the corresponding variables from the antecedent are
generated and kept in the antecedent via freeEqn(ρ, V)
which is defined as follows:

freeEqn([ui/vi]
n
i=1, V) =df

let πi = (if vi ∈ V then true else vi=ui) in
�n

i=1 πi

If no immediate match can be identified, an unfold/fold
operation may be invoked. The rule for unfolding given
below is to unfold a predicate in the antecedent ∆a so as to
match up with an object in the consequent ∆c:

XPuren(p1::c〈v∗
1〉∗κ1∧π1) =⇒ p1=p2

IsPred(c1)∧IsObj(c2)
unfold(p1::c1〈v∗

1〉)∗κ1∧π1�κ
V (p2::c2〈v∗

2〉∗κ2∧π2) ∗S

p1::c1〈v∗
1〉∗κ1∧π1�κ

V (p2::c2〈v∗
2〉∗κ2∧π2) ∗S

The test IsPred(c) (resp. IsObj(c)) returns true if c is
defined as a shape predicate (resp. an object).

Alternatively, a predicate in the consequent that is aliased
with an object in the antecedent is handled by folding. The
folding rule given next is a recursive invocation of the en-
tailment procedure for a predicate from the consequent, in
order to identify a set of heap nodes that match with that
predicate’s definition. It is different from unfolding a predi-
cate in the antecedent as we allow bindings on free variables
to transfer into the antecedent at the end of folding. This is
critical for capturing free variables from preconditions that
are used in postconditions.

IsPred(c2)∧IsObj(c1)
{(∆i, κ

f
i , πf

i)}n
i=1=foldκ(p1::c1〈v∗

1〉∗κ1∧π1, p2::c2〈v∗
2〉)

XPuren(p1::c〈v∗
1〉∗κ1∧π1) =⇒ p1=p2

(πa
i , πc

i)=split
{v∗

2}
V (πf

i) ∆i∧πa
i �κr

i
V κ2∧(π2∧πc

i) ∗Si

p1::c1〈v∗
1〉∗κ1∧π1�κ

V (p2::c2〈v∗
2〉∗κ2∧π2) ∗ �n

i=1 Si

When a fold to a predicate p2::c2〈v∗2〉 is performed, the con-
straints related to variables v∗2 are important. The split func-
tion projects these constraints out and differentiates them
based on free variables. For instance, let us consider that the
parameters of the folded predicate are n and B, and the bind-
ings introduced by the folding process are n=0∧B={1}. If
B is a free variable and n is bound, then the split function
differentiate the given constraints as follows:

split{n,B}
{n} (n=0∧B={1}) = (B={1}, n=0)

The binding B={1} on the free variable B is to be trans-
ferred to the antecedent, while n=0 will be kept in the con-
sequent.

360360362362362362

The folding operation requires a special version of en-
tailment that returns three extra things: (i) consumed heap
nodes, κi, (ii) existential variables used, Vi, and (iii) final
consequent, πi. The final consequent is used to return a
constraint for {v∗} via ∃Wi·πi. A set of answers is re-
turned by the fold step as we allow it to explore multiple
ways of matching up with its disjunctive definition:

c〈v∗〉≡Φ inv π ∈ P Wi=Vi−{v∗, p}
κ∧π�κ′

{p,v∗}[p/root]Φ ∗ {(∆i, κi, Vi, πi)}n
i=1

foldκ′
(κ∧π, p::c〈v∗〉) =df {(∆i, κi,∃Wi·πi)}n

i=1

5 Implementation

We have built a prototype system using Objective Caml.
The proof obligations generated by our verification are dis-
charged by our entailment proving procedure with the help
of Omega Calculator [12] for arithmetic constraints of Pres-
burger form and MONA [5] for set constraints.

Our system uses the set-of-states technique to implement
multiple pre/post specification, but this technique is orthog-
onal to multiple pre/post. Set-of-states may also arise from
disjunction in the consequent from entailment proving, even
when single pre/post specifications are used. Our first set of
experiments, in Figure 6, was designed to evaluate the cost
of supporting set-of-states. We provide the time taken (in
seconds) to verify each of those programs. Most of our ex-
amples can be verified within 5 seconds despite the use of
a Presburger solver. Verification time of a function includes
time to verify all functions that it calls.

The examples show that proof search via set of states
does not incur much overhead, since most of the time there
is only one state. The average overhead introduced by the
set of states for our examples is around 0.05 seconds. How-
ever, set of states is crucial to verify the count or delete
methods of circular list, which is based on the lseg pred-
icate, and in those examples that have been marked with a
failed (to verify). From the experiments presented in Fig-
ure 6, we may conclude that the cost of supporting set of
states is quite low. However, set of states may be crucial
for some examples, as it may be required when handling
disjunctive consequent or multiple pre/post.

Even if multiple pre/post conditions are not critically
needed, there may be occasions when they are desirable
due to the possibility of relying on smaller and simpler con-
straints during verification. In order to highlight the per-
formance gains due to the use of multiple pre/post, Fig-
ure 7 compares the timings obtained for some programs
with single pre/post (capturing the reachability property)
that have been translated to equivalent programs with mul-
tiple pre/post. This translation exploits the use of smaller
and simpler predicates, where possible, which resulted in
faster overall verification. As the proof obligations gener-
ated for the examples in Figure 7 contain set constraints,

Programs Timing (in secs) with Omega solver
set-of-states one-state

Linked List verifies size/length
delete 0.08 0.06
reverse 0.06 0.05

Circular Linked List verifies size + cyclic structure
delete 0.2 failed
count 0.24 failed

Doubly Linked List verifies size + double links
append 0.16 0.12

flatten (from tree) 0.35 0.33
Sorted List verifies size + min + max + sortedness

delete 0.16 0.18
insertion sort 0.5 0.48
selection sort 0.37 0.33

merge sort 0.74 0.72
quick sort 0.82 0.82

AVL Tree verifies size + height + height-balanced
insert 5.06 5.00

Red-Black Tree verifies size + black-height properties
insert 1.53 1.39
delete 17.44 14.72

2-3 Tree verifies height-balanced
insert 24.41 failed

Perfect Tree verifies perfectness
insert 0.28 0.24

Complete Tree verifies completeness
insert 1.62 1.49

Figure 6. Comparing one-state vs set-of-states.

we used MONA to discharge them when needed. However,
for some examples with single pre/post, the complexity of
the constraints caused an out-of-memory error.

As an example of breaking a single specification into
multiple pre/post, let us consider the following predicate
which describes a non-empty list sorted in ascending order.
The predicate tracks the length of the list, n, the minimum
value, m, and with the entire set/bag of values stored in the
list, B. The sorting property is ensured by m≤m1.
sllM〈n, m, B〉 ≡ root::node〈m, null〉 ∧ B = {m} ∧ n=1

∨ ∃p · root::node〈m, p〉 ∗ p::sllM〈n− 1, m1, B1〉
∧ m ≤ m1 ∧ B = B1 ∪ {m} inv n>0

In order to transform an example using the above pred-
icate into multiple pre/post, sllM can be split into three
smaller predicates, each of them specialized on a certain
property: llR which captures the set/bag of values and was
already defined in Section 3, sllm which captures the sort-
edness and ll which captures the size.
sllm〈m〉 ≡ root::node〈m, null〉
∨ ∃p · root::node〈m, p〉 ∗ p::sllm〈m1〉 ∧ m ≤ m1

ll〈n〉 ≡ root = null ∧ n = 0
∨ ∃p · root::node〈 , p〉 ∗ p::ll〈n− 1〉 inv n ≥ 0

By applying the above splitting to the insertion sort algo-
rithm to obtain three smaller pairs of pre/post specification,
we have managed to verify it in 3.96 seconds, while with a

361361363363363363

Timing (in seconds)
Programs Method with Omega & MONA

single multiple
pre/post pre/post

Linked List append 2.68 0.42
insert 0.95 0.4

reverse 2.7 0.41

Circular insert 0.47 0.22
Linked List delete 2.51 0.67

Doubly insert 1.51 0.55
Linked List append 29.75 1.8

flatten (from tree) out-of-mem 5.49

Sorted List insertion sort out-of-mem 3.96
selection sort out-of-mem 2.6

Binary insert out-of-mem 2.04
Search Tree delete out-of-mem 4.7

Figure 7. Comparing single vs multiple pre/post

single pre/post we obtained an out-of-memory error.

6 Related Work

Recently, separation logic has been advocated to reason
about heap-manipulating programs [2], but most of these
early works support only a limited set of predicates. Our re-
cent work [10] allowed size properties to be defined in user-
supplied recursive predicates in separation logic, which are
then automatically verified via a sound, terminating but in-
complete proof system. Building on this work, the current
paper advocates the use of multiple pre/post for better ex-
pressivity in method specifications using separation logic.
We also propose a non-deterministic proof search procedure
by carrying over sets of abstract states, which proves to be
crucial in verifying certain complicated properties for heap
manipulating programs.

On the inference front, Lee et al. [8] has conducted an
intraprocedural analysis for loop invariants using grammar
approximation under separation logic. Their analysis can
handle a wide range of shape predicates with local shar-
ing but is restricted to predicates with two parameters and
without size/bag properties. A recent work [4] has also for-
mulated interprocedural shape inference but is restricted to
just the list segment shape predicate. While our system does
not perform inference of pre/post specification, we provide
better support for automated verification via an expressive
specification mechanism. For example, data structures with
strong invariants, such as balanced heights and sortedness,
are captured by our specification mechanism (with the help
of multiple pre/post) prior to automatic verification.

7 Conclusion

We have introduced set of states as a way to support mul-
tiple pre/post specifications in separation logic. This ap-
proach allows proof search to be captured explicitly, per-
mitting a simple automated search strategy to be developed.
Our current search strategy is exhaustive but directed and is
guaranteed to terminate.

Multiple pre/post method specifications enhances proof
search in separation logic. This feature puts creative control
back into users’ hands. Nevertheless, we provide machine
support for automatically checking and then applying each
high-level specification from the user. We believe that mul-
tiple pre/post specifications can greatly enhance both the
expressivity and performance of automated verification via
separation logic. As shown by our initial experiments, it al-
lows more verifications to be carried out successfully and
with potential improvement to performance.

Acknowledgement

This work is supported by A*STAR research grant R-252-000-
233-205, and Shengchao Qin is supported in part by EPSRC grant
EP/E021948/1.

References

[1] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# program-
ming system: An overview. In Int’l Workshop on Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices. Springer-
Verlag, LNCS, 2004.

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution
with Separation Logic. In APLAS. Springer-Verlag, November 2005.

[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML tools and
applications. Software Tools for Technology Transfer, 2005.

[4] A. Gotsman, J. Berdine, and B. Cook. Interprocedural Shape Anal-
ysis with Separated Heap Abstractions. In SAS, Springer LNCS,
Seoul, Korea, August 2006.

[5] Nils Klarlund and Anders Mller. Mona version 1.4 - user manual.

[6] G. T. Leavens. JML’s Rich, Inherited Specifications for Behavioral
Subtypes. In ICFEM, Macao, China, November 2006. Springer-
Verlag.

[7] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
P. Mller, and J. Kiniry. JML Reference Manual (DRAFT), February
2007.

[8] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer pro-
grams using grammar-based shape analysis. In ESOP. Springer Ver-
lag, April 2005.

[9] K.R.M. Leino and P. Muller. A verification methodology for model
fields. In 15th ESOP, March 2006.

[10] H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Automated Veri-
fication of Shape And Size Properties via Separation Logic. In VM-
CAI, Nice, France, January 2007.

[11] Benjamin C. Pierce. Programming with Intersection Types and
Bounded Polymorphism. PhD thesis, Carnegie Mellon University,
1991.

[12] W. Pugh. The Omega Test: A fast practical integer programming
algorithm for dependence analysis. Communications of the ACM,
8:102–114, 1992.

362362364364364364

