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ABSTRACT

This paper considers on-line identification of hidden
Markov models via multiple-prediction-horizon recursive
prediction error (RPE) methods. Working with multiple
prediction horizons ensures that there is consistent param-
eter estimation, under appropriate excitation conditions.

Simulation studies are included to illustrate the advantages
of the proposed approach when compared to standard meth-

ods (which do not ensure consistent parameter estimation).

1. INTRODUCTION

Recently, Hidden Markov models (HMMs) with states in a
finite-discrete set have been widely applied in many areaa
of signaf processing. Applications include communication
systems [1], speech processing [2], frequency trackiug [3],
and biological signal processing [4]. In each of these areas,
on-line identification can have many advantages.

In [5], a sequential linear convergent expectation-
maximisation (EM) algorithm is presented for on-line iden-
tification of HMMs. A quadratically convergent scheme is
achieved in [6], via recursive prediction error (RPE) tech-

niques. Unfortunately, when appfied to HMMs, the RPE

approach sometimes results in convergence to local, rather
than global, minimums, or at least to biased parameter es-
timates.

This paper presents a modification to the scheme in [6],
which provides consistent parameter estimation in cases
where previous on-line schemes have identifiability problems

(especially in low noise environments). The parameters to
be identified are the transition probabilities and state val-
ues of the Markov chain (The measurement noise variance
can also be estimated, however this is not presented here).

A key to the approach is that instead of simply using a

prediction one time step ahead, we use predictions over mul-

tiple time horizons. This achieves improved parameter ob-

servability. In caaes where a biased estimate is found for one
step prediction, the scheme presented here, achieves consis-

tent estimation (under persistence of excitation conditions)
by combining the estimates obtained from multiple-horizon
predictions.

The model parametrisation considered here, uses the
square root of the transition probabilities constrained to
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prediction error, for the RPE scheme, are thus constrained
to the tangent space of the smooth manifold. The advan-
tage of working on the sphere is that estimates of transition
probabilities are assured to be non-negative, and derivatives
are smooth.

Simulation examples are presented to illustrate the com-
parative advantages of the proposed algorithms. These ex-
amples show that the proposed schemes can satisfactorily

identify HMM parameters in cases where previous predic-
tion error approaches result in biased estimates.

2. SIGNAL MODEL

2.1. State Space Signal Model

Let Xk be a discrete-time homogeneous, first order Markov

process belonging to a finite-discrete set. The term finite-
discrete is used to indicate that the set has a finite num-
ber of elements which have discretized values. The state

space of X, without loss of generality, can be identified
with the set of unit vectors S = {el, ez, . . . . ejV }, where

e, = (O, ..., 0,1,0, ....0)’ c IRN, with 1 in the i’h position.

These vectors are termed indicator vectors, as they indicate
which of the discrete-states is active at each time k.

The probability of transitioning from state i to state j is
denoted by a,j = P(X~+l = ej [ Xk = e:). These proba-
bilities are the elements of the state transition probability

matrix, A. Of course a,j > 0, for all Z, j, and ~yN=l atj = 1,

for each i.
The dynamics of Xk are given by the state equation

Xk+l = A’xk + ~k+l

where kfk+l is a martingale increment [7]. This equation,
while not being used explicitly in the remainder of this pa-

per, provides a major clue to the use of recursive prediction

error techniques for HMM identification. It is now possi-

ble to see, more clearly, the parallels between HMMs and
standard linear and nonlinear systems.

The observation process, y~, is a linear function of the

state Xk plus additive noise. It is in this sense that the
Markov model is hidden. Without loss of generality we can
write gk in the following form:

Yk=dx’k+wk (1)

where Wk N IV[O, a;], and g c IRN is the vector of state-

ualues of the Markov chain. Let ~[ be the u-field generated

by Yk, k<l, and define Yk :(yo, . . ..yk).
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It should be noted that any nonlinear function of an indi-
cator vector can be represented in a linear form. Therefore,

(1) is a quite general function, not limited to linear systems.

2.2. Model Parameterisation

Consider that the HMM is parametrised by an unknown
vector 9 (that is, the elements which define the HMM,
namely A and g, are functions of 0). Of course, the values
this parameter can take are constrained by the fact that A

is a stochastic matrix.
As in [6], the following parametrisation is used:

@ = (gl,..., gN,911, sljv,s21, s,ls NN),.sNN)’ ,

where a,] = s~j. Defining 0 in this way ensures the con-
straint manifold is differentiable at all points. Also, esti-
mates of a,j wilf afways be positive, and only the equality

constraint of the sphere surface, S~–l, remains, where

‘N-]={s+s’]=’}‘2)
2.3. Parametrised Information State Signal Model

Let ~klo denote the conditional filtered state estimate of
.Yk at time k, that is,

~~le ~ EIX~lY~, 0] = (~klfl,~)-l ~k’p ,

where L is the column vector containing all ones, and

the “forward” variable ff kIe is such that the it h element
. .

&kp(i) ~ P(Yk,Xk = et [ 6).

The information state, ~kl~, is conveniently computed
using the foflowing recursion [2]:

~k+lle = B(yk+l, 8)A’(0) ~kle (3)

where B(y~, 0) = diag(b(yk, gl), . . .. b(?Jk. gN)), and

b(yk, gt) = ~[!/k I Xk = ei, e].

3. THE MULTIPLE-PREDICTION-HORIZON
APPROACH

The aim of the identification task is to estimate 0, based
on the observations Yk. The approach in [6] employs an
RPE algorithm which evaluate! a prediction error, one-step
ahead, and uses it to update 8k, the recursive estimate of
the parameter vector based on yk. The one-step prediction

error is defined by

fiklk-1 = ?/k — jklk-1 ,

where ~klk_, denotes the predicted output at time k based

on measurements up to time k — i. For one-step prediction
it is given by

jklk-1 = @~-l,l A~-l,lxk_116k_1,1 ! (4)

where jk,~ = g(tik,~ ) and ~k,l = A(~k,l ) (this notation is

used to indicate that the estimates for g and A are functions

of the parameter estimate 6). Also, @k,l ~ {81,1, . . ..dk.l},

and

.tk_i,6k_, , = (ak-t@k_,,,, ~-l ak-t@k_,,, 1

where the second subscript denotes that the parameters
are those evaluated by the i-step-ahead prediction scheme
(where z = I in equation (4)).

Good results can be obtained from this approach. Un-
fortunately, however, in some cases it is possible that even
though the product g’A’ is consistently estimated, g and A
themselves, are not. In order to overcome this identifiabil-

ity problem, we propose a multiple-prediction-horizon RPE
scheme.

Our approach is to have a number of HMM/RPE on-line
identification algorithms operating in paraflel, each with
a different prediction horizon. For example, take a state
model with N = 2 for simplicity. The two-step ahead mea-
surement prediction is

jklk-z = i;–2,2&-2,2 A;-2,2xk-2@k_2,2 (5)

Exploiting both (4) and (5) in an RPE scheme allows consis-

tent estimation of both g’A’ and g’A’A’, with Xk_,16~_,,,

persistently exciting for z = 1,2. Now, even if ~k,i and

~k,: do not approach g and A in either the one-step-ahead
(i = 1) or two-step-ahead (i = 2) prediction case, there can

be consistent estimation
neous equations:

lj;A;

g;A; A;

&~

by solving the following simulta-

where ok and & are the resultant estimates derived from

estimates ~k,, and Ak,i from the i-step ahead RPE scheme.

The fact that the products of g and A are estimated
correctly, might suggest a different choice of parametrisa-

tion, namely 0 = (g’A’, g’A’A’)’. Unfortunately, however,
the derivatives necessary for any gradient descent algorithm

can not be calculated for such a parametrisation, as wifl be
seen in Section 5 (specifically, &r/6’0 can not be evaluated).

A block diagram of the multiple-prediction-horizon ap-
proach is given in Figure 1.

4. THE MULTIPLE-PREDICTION-HORIZON
RPE ALGORITHM

In this section we present the on-line prediction error al-
gorithm for estimation of 8. Here the estimate of O’k is

recursively computed at each iteration, by substituting the
best estimate of 8 at each time k into (3):

ak+l@~ = B(yk+l,8k) A’(ek) ‘k@k_, (6)

The RPE parameter update equations for the ith predic-
tion horizon are, ([8] p. 94)

& = rproj {ek-1 + 7k R;’ $k,k-, fik,k-,}

where ~k is a gain sequence (often referred to m step size),
. .

and ?iklk_, is the i step ahead prediction error, tiklk_, =
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y~ – y~lk–, Also vkl~-, is the gradient

@klk-, 2 (-~fiklk-t/~@)’ ,=ek_, , (7)

and Rk is the Hessian, or covariance matrix, approxima-

tion. The notation rP,OJ {.} represents a projection into the
constraint domain, given by the manifold S ‘–1 in (2).

5. ON-LINE GRADIENT VECTOR AND
PROJECTION CALCULATIONS

In this section we consider only the two step prediction case,
however extension to M-steps follows directly.

The derivative vector, vk [k_,, defined in (7), is given, for

m,n E [1, . . .. N]. by

(

@jkl&, t$jkl&, ‘~jklk-: .—
tik~k-t ‘ ~

C?gm ‘ asmn
e=eh_, ) e=ek_t

where the one-step and two-step output predictions, jklk_~

and ~klk_~ are given in (4) and (5) respectively. In the
remainder of this paper we omit the obvious dependence of

&k on ~k_l (from (6)), and we denote Nk ~ (dk,~–l.
We now have the following expressions for the gradients,

evaluated on the surface of the constraint manifold S~-l:

–N~~’rlk(m)g’A’&k (8)

~jk+llk
= 2Nk&k(772)Srr@’

El’smn
(en- diag(s~(,))!k(.))

+Nkg’A’<k(m, n) – N~~’lj(m, n)g’Ji’&k (9)

ajk+ll&l
= Nk_la{,)mA’&k_l

tl’gm

+~k_lg’A’A’qk_l(m)

–N~–1~’9k-l (m)g’A’A’&~_l

@j~+,l&_, =
2Nk-1 [&k-l (m)s~~g’A’

asmn

+ (A’&k_l) (m)s~~g’] (en – diag(s~(.)

+Nk-~g’A’A’<k-~ (m, n)

(lo)

4))

–N~_l~’(k-l(m, n)g’A’A’&k_l (11)

where a( )m = (al~, . . . , ~Nm)’ and s~(,) = (s~l, . . ., ~mN).

The N-dimensionaf vectors ~k (j, m) ~ 6’&k (j)/6’gm and

~k(~, m, n) ~ ~&k(~)/~s~~ can be expressed recurs;ueiy by
the following equations, obtained using (6):

Vk+l(m) = B(yk+l, d) fi’qk(rn)

(

Yk+l – gm
+diag(e~ ) ~L

)
B(yk+,, 8)A’&k (12)

~k+l(m, n) = B(yk+l,8)A’.fk( m,n)

–2s~~&k(m)B(yk+ l,~)diag(9m( .))9~(,)

+2&k(m) diag(e~)13(Yk+l, d)~~(.) (13)

Of course, in this two state (N = 2) case, equations (8)
and (9) would be used in the one-step-ahead RPE algo-
rithm, while equations (10) and (11) would be for the two-

stepahead RPE algorithm. Equations (12) and (13) relate

to both RPE algorithms, however of course, they would

have different estimates of g and A in each case.

6. SIMULATION STUDIES

These examples demonstrate that the on-line multi-step al-

gorithm presented in this paper, provides the global solu-
tion, for cases where the single step algorithm does not have
a unique solution.

Example 1: in this example, the parameters of the

Markov chain are g = [0, 1]’ and a,, = 0.8. The SNR is
therefore given by 10 Iog( 1/u~ ). In this example a relatively
low noise level is used in order to clearly demonstrate the
undesirable behaviour of the single-step algorithm. Initial

parameter estimates were ~ = [0.4, 0.6]’ and tiii = 0.1.

The estimates for a typicaf observation sequence are
shown in Figures 2 and 3. The estimates of the state values

are presented in Figure 2 and the estimates of the transi-
tion probabilities are presented in Figure 3. In each case,

the dashed lines are the single step estimates and the solid
lines are the combined multi-step estimates. The figures
show that the multi-step HMM/RPE algorithm converges
to the correct values, even though the single-step algorithm

does not.

Example 2: This example presents the outcome from

more extensive Monticarlo simulations. The results are

shown in Tables 1 to 3. Table 1 presents results for the

HMM given in Example 1, while Tables 2 and 3 show the
algorithm performance for different HMMs. Again, these

results demonstrate the superior performance of the multi-
step HMM/RPE algorithm presented in this paper.
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Figure 1. Block diagram of Multiple-Prediction-Horizon RPE

scheme

1.2

1$ ~

. .

1
,\ ,“.

0.8 ; ““ “---’’’’ --’’’’ --’-- ”’’--’’’’ ”-’---

I
— multi-step estimate

- –– one-step estimate

I

2 4 8 10
Time k (x 10~0)

I Parameter True Value Mean of Estimate I
One-step I Two-step

91 0 0.3187 -0.0736

92 1 0.6786 1.0506

all 0.8 0.8895 0.7755

I a12 II 0.2 II 0.1105 I 0.2245

a21 0.2 0.0830 0.2227 I
a22 0.8 0.9170 0.7773

Table 1. Mean Values of Parameter Estimates

Parameter I True Value Mean of Estimate

One-step Two-step

91 0 0.5378 -0.0840

!72 2 1.8955 2.0244

all 0.7 0.9394 0.6716

I a12 II 0.3 II 0.0606 I 0.3284

a21 0.1 0.0793 0.1075 I
a22 0.9 0.9207 0.8925 J

Table 2. Mean Values of Parameter Estimates

Parameter True Value Mean of Estimate

One-steD I Two-sterz. ,

91 0 0.2269 -0.0507

92 1 0.7721 1.0603

all 0.7 0.8194 0.6893

alz 0.3 0.1806 0.3107

a21 0.3 0.1807 0.3143

a22 0.7 0.8193 0.6857

Table 3. Mean Values of Parameter Estimates
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Figure 2, State value estimates
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Figure 3. Transition probability estimates


