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Abstract
Systems composed of microprocessors interacting with
ASICs are necessarily multiple-process systems, since
the controller in the microprocessor is separate from any
controllers on the ASIC. For this reason, the design of
such systems offers an opportunity to exploit not only
hardware-software trade-offs, but concurrency trade-offs
as well. The paper describes an automated iterative-
improvement technique for performing concurrency op-
timization and hardware-software trade-offs simultane-
ously. Experimental results illustrate that addressing these
two issues simultaneously enables us to identify a number
of interesting cost/performance points that would not have
been found otherwise.

1 Introduction

Systems composed of microprocessors interacting with
ASICs are necessarily multiple-process systems, since
the controller in the microprocessor is separate from any
controllers on the ASIC. For this reason, the design of
such systems offers an opportunity to exploit not only
hardware-software trade-offs, but concurrency trade-offs
as well. Recently, some researchers have begun to ad-
dress automatic synthesis of multiple-process systems, an
area that we callmultiple-process behavioral synthesis.
Some have addressed the issue of synthesizing multiple-
process systems for which the behavior of each process
is specified explicitly [1] [2], while others have suggested
transforming the behaviors of the processes (e.g., moving
functionality from one process to another) to explore a
larger subset of the design space [3] [4] [5]. The focus
of this paper is the latter case. The goal is to explore
the benefits of addressing concurrency optimization and
hardware-software trade-offs simultaneously.

In general, multiple-process behavioral synthesis pre-
sents three optimization problems:process partitioning,
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global resource allocation, and global scheduling. We
speak of global resource allocation and scheduling to
contrast these concerns from thelocal resource alloca-
tion and scheduling that occurs in traditional high-level
synthesis. For mixed hardware-software systems, there is
also the hardware-software partitioning problem. If, how-
ever, we assume that the processes in a multiple-process
system might have differing implementation technologies,
the hardware-software partitioning problem is subsumed
by the process partitioning and global resource allocation
problems.

Process partitioning is the act of dividing the original
behavioral specification into a number of concurrent pro-
cesses. The result is a behavioral description composed of
either more or fewer processes than the original behavioral
description. Since the processes may have differing im-
plementation technologies (e.g., software or custom hard-
ware), process partitioning must consider the capabilities
of the technology. The goal is to maximize the perfor-
mance of the system by maximizing the availability of
concurrency and choosing an appropriate implementation
technology for each function.

Global resource allocation determines how much of the
available custom hardware resources should be dedicated
to each process. Hardware synthesis tools are capable
of producing designs that represent a number of differ-
ent cost/performance tradeoffs. Global resource allocation
selects the cost/performance point that is appropriate for
each section of each process. Resource allocation must
also take into account the implementation technology of
each process, since, clearly, it has an impact on the amount
of hardware resources used.

Global scheduling is concerned with the coarse order-
ing of the computation and the process interactions within
each process. Global scheduling has an impact on the
amount of concurrency that is achieved. Global schedul-
ing is also clearly affected by global resource allocation
and process partitioning.

The problems of multiple-process behavioral synthesis



appear to be interrelated, making it difficult to solve them
sequentially. This paper presents a technique for solving
the multiple-process behavioral synthesis problem as it re-
lates to synthesis of a class of mixed hardware-software
systems. The key to our approach is addressing the inter-
related problems simultaneously. One benefit is that the
hardware-software trade-offs are considered at the same
time as concurrency and global scheduling and allocation
issues.

The mixed hardware-software systems we address are
characterized by the presence of a number of concurrent
processes implemented in custom hardware and a single
statically scheduled process implemented in software. We
restrict ourselves to a single statically scheduled software
process so that it can be implemented with a single off-
the-shelf CPU without requiring the presence of a runtime
system capable of performing dynamic scheduling.

The goals of this work are similar to those of [6], [7],
and [8]. However, previous work in this area has not con-
sidered how concurrency trade-offs impact the hardware-
software trade-off. Some work has addressed concur-
rency transformation for behavioral synthesis [4] [5], but
none yet has sought to optimize concurrency for mixed
hardware-software systems.

Our optimization technique, which is based on itera-
tive improvement, is described in the following section.
The experimental results shown in Section 3 illustrate that
considering concurrency and hardware-software trade-offs
simultaneously enables us to identify a number of inter-
esting cost/performance points that would not have been
found otherwise.

2 Approach

Figure 1 illustrates the steps used to optimize the process
partitioning (and thus the hardware/software partition) and
the global schedule.

The first step is to cluster the operations in the behav-
ioral descriptions into groups of operations calledtasks.
These tasks represent the atomic units of functionality
for the rest of the synthesis process. This clustering is
done for two reasons: to simplify the remaining synthesis
phases by reducing the number of objects in the design,
and to improve the accuracy of estimators for hardware
resource usage and hardware and software runtime. Fur-
ther discussion of the importance of task clustering in
co-synthesis can be found in [9] and [10]. Currently, we
form tasks by simply grouping the operations within a
basic block.

Once the clustered system behavioral description is ob-
tained, the next step is to estimate the characteristics of
hardware and software implementations of each task. The
characteristics estimated are the hardware and software
runtimes of the task and the amount of hardware required
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Figure 1: Steps involved in hardware/software
process partitioning.

to implement the task. Estimating the software runtimes
of the tasks is fairly straightforward since in most cases,
the tasks are sequences of operations that can be executed
as straight-line code. Gathering the hardware runtime and
resource statistics is done with the aid of a high-level
hardware synthesis and profiling tools [11].

Once estimates of the task implementations have been
generated, this information, along with the clustered be-
havioral description, is passed on to a hardware/software
process partitioning and global scheduling optimization
tool. This phase of the synthesis evaluates the hard-
ware/software trade-offs, performs the optimization, and
generates behavioral descriptions of the hardware and
software processes. Although it is not shown in Fig-
ure 1, after the optimization step the resulting hardware
processes can then be synthesized by a hardware behav-
ioral synthesis tool, and the software process compiled by
a conventional software compiler.

The remainder of this section describes the technique
used for optimizing the partitioning of tasks into hardware
and software processes and the global scheduling of task
invocations and process interactions.

2.1 Design state representation

The design state representation must capture the mapping
of task invocations to processes (the process partition) and
the control flow within each process among task invoca-
tions, control structures, and communication operations
(the global schedule). In addition, it is also important for
the representation to capture data flow among task invo-
cations and communication operations so that the control
flow can be modified without altering the semantics. Data



...
y = init ();
x = RECV(in);
flag = lookup (x,y);
if ( flag ) begin

x = adjust (x);
SEND(out,x);

end
else begin

x = incr (x);
end
store (x,y);
...

R

S

receive

send

branch

flow

MUX

flow

data

control

task

lookup

init

incradjust

store

S

R

Figure 2: A behavioral description and the corre-
sponding design representation.

flow information is also useful for determining the needed
process communication operations when a task invoca-
tion is moved from one process to another. To capture
the needed data flow information, we use a static single-
assignment representation of the system behavior.

Figure 2 shows a fragment of a Verilog behavioral de-
scription and a diagram of the our design representation.
The behavioral model consists of processes, task invoca-
tions, conditional branches, loops, and send and receive
operations.

2.2 Design space exploration

To explore alternative amounts of concurrency and hard-
ware-software partitions, transformations are needed that
move functionality (task invocations and control struc-
tures) from one process to another. The basic transfor-
mation we use to accomplish this isinter-process code
motion. This transformation moves a task invocation or
control structure from one process to another, creating any
process communication operations necessary for the task
to be performed in the new process.

Figure 3 shows an example of what happens to the de-
sign representation when a task invocation (in this case,
the invocation of task ‘b’) is moved to another process.
The figure shows control sequences in two processes that
are executed under the same conditions. The invocation
of b is first removed from the control flow of the originat-
ing process and communication operations are created for
transferring the needed values (Figure 3b). The task invo-
cation and communication operations are then randomly
inserted into the control flow of the destination process
(part (c) of the figure). Finally, the needed communica-

tion operations are randomly inserted into the control flow
of the originating process (Figure 3d). There are simi-
lar transformations for moving other behavioral structures
such as conditional branches and loops from one process
to another.

For the inter-process code motion transformation to be
applicable, there must be control sequences in the two
processes that are executed under the same conditions.
For this reason, it is useful to have a transformation that
copies control structures (loops and conditionals) from one
process to another. Our code copying transformation is
similar to the code motion transformation.

To explore alternate global schedules, it is also neces-
sary to transform the control flow within a process, re-
ordering task invocations, process interactions, and con-
trol structures relative to one another. This is accom-
plished in our case byintra-process code motiontransfor-
mations, which remove an item from the control flow of
a process then randomly reinsert the item into the same
control flow.

Repeatedly applying transformations to parts of the de-
sign chosen at random provides us with a way of randomly
exploring alternative global schedules and process parti-
tions. In addition to moving code from one process to
another, it is also necessary to have the ability to create a
new processes, so that alternative amounts of concurrency
can be considered. In our case, inter-process code motion
has the option of creating a new process and moving code
into it.

Because these transformations have an unpredictable
effect, it is also necessary to provide some way of undoing
them if the effects are not desirable. This is accomplished
in our case by a mechanism for noting the changes made
to the design state as the transformations progress, and
reversing those changes if the transformation needs to be
undone.

While the transformations outlined above have an un-
predictable effect, some transformations are known to be
helpful in all cases. These transformations, which we call
clean-uptransformations, perform modifications such as
simplifying complex or redundant inter-process commu-
nication, eliminating useless control structures, and de-
stroying empty processes. In our case, the clean-up trans-
formations are performed after every code motion trans-
formation. The clean-up transformations must be done
before the effect of the intra- or inter-process code mo-
tion is evaluated, since creating a clean-up opportunity is
clearly part of the merit of a code motion transformation.
However, since the clean-up transformations are contin-
gent upon the code motion transformation being accepted,
it is necessary for the clean-up transformations, like the
code motion transformations, to be undoable.

All code motion and clean-up transformations must
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Figure 3: Example of inter-process code motion.

take care not to create a deadlock situation among the
processes. Since process communication operations im-
ply synchronization, it is important that these operations
be scheduled correctly.

We address the deadlock avoidance problem by use of
the port/data flow graph. The port/data flow graph con-
tains a node for each task invocation, control structure,
and synchronization operation. The graph contains a di-
rected edge for each data dependence and control flow
relation and an undirected edge for each synchronization
(between the send and receive operation). Deadlock can
be avoided as long as this graph is acyclic. As the code
motion and clean-up transformations are performed, the
port/data flow graph is examined to ensure that no change
to the design induces a cycle in the graph.

2.3 Design state evaluation

The design state is evaluated based on two characteristics:
the amount of custom hardware required to implement the
design and the execution time (in terms of throughput) of
the system.

The amount of hardware required to implement the de-
sign can be estimated based on the hardware implemen-
tation statistics for each of the tasks that are mapped to
hardware processes. The simplest way to estimate the re-
quired amount of hardware would be to simply sum up,
for each task that is to be implemented in hardware, the
amount of custom hardware required to implement that
task. However, this strategy does not take into account
the possibility that tasks within a process will be able to

share hardware resources. Hardware sharing is an impor-
tant factor to take into account, since it tends to group
similar computations into the same process, reducing the
cost of the hardware implementation. To include the pos-
sibility of hardware sharing in our estimation we use a
multi-parameter estimation technique, similar to that of
[10], that is based on the results of behavioral synthesis.

The estimate of the system performance should take
into account the impact of each task execution on the
overall performance. Tasks that are invoked from within
an inner loop, for example, will likely have more impact
than others. Determining which functions of the system
are the most time-critical, however, is difficult and cannot
simply be done at the outset, since transformations may
alter which tasks are in the critical path. For this rea-
son, we have chosen to evaluate the performance of the
system by performing an abstract simulation after each
transformation.

The abstract simulation relies on knowledge of the se-
quence of directions a branch takes each time it is en-
countered. Gathering this information, which we refer to
as theexecution trace, can be done before beginning the
optimization by simulating the entire system description
using a sample input data set and recording the sequence
of directions taken by the each conditional branch. Note
that the transformations we make to the design do not
alter the execution trace.

The abstract simulation is performed by simply sum-
ming up the delays required by the processes as they in-
voke tasks or perform conditional branches. Since the
directions of all the branches are known ahead of time,
the abstract simulation need only track the computation
time required by each task and the delays incurred due to
process communication, and not the actual computation
being performed. Because of this, the abstract simulation
can be done quickly, even for fairly long execution traces.

Basing performance evaluation on information derived
from simulating the system description on a sample data
set is also the general approached presented in [12]. In
our case, however, we wish evaluate the effects of process
interaction and global scheduling, and therefore must per-
form the simulation many times as we explore the design
space.

2.4 Optimization

The optimization technique we use is non-deterministic
iterative improvement in which the current design state
is randomly perturbed, the resulting design state is eval-
uated, and the perturbation is either accepted or rejected
according to some acceptance criteria. If the perturbation
is accepted, the new design state becomes the current de-
sign state for further iterations of the optimization. Three
basic elements are need to implement this type of opti-



mization: a set of design perturbations, a means for eval-
uating a design state, and a set of criteria for accepting or
rejecting design perturbations.

The design space perturbations we use are the non-
deterministic intra- and inter-process code motion trans-
formations followed by a series of clean-up transforma-
tions described above. We evaluate design points using
a cost function that is a weighted sum of the hardware
required to implement the design and the throughput the
design is able to achieve. We use simulated annealing
to define the criterion for accepting or rejecting design
perturbations.

3 Results

The technique described in the previous section has been
implemented in Co-SAW, the Co-design System Archi-
tect’s Workbench, which comprises just over 18,000 lines
of C code. We used Co-SAW to partition two systems
into concurrent hardware and software processes under a
variety of constraints. In all cases we assumed that there
would be only one CPU available and that the software
would be statically scheduled (i.e., there is no runtime
software to do scheduling). Even though the CPU can
run only one process, we made no assumption about the
number of hardware processes that would be present.

The two behavioral descriptions we used in our exper-
iments were ‘lzw-des,’ which performs LZW data com-
pression followed by DES encryption, and ‘jpeg,’ which
implements the JPEG image compression standard. The
‘lzw-des’ design example is described in approximately
330 lines of behavioral Verilog. The ‘jpeg’ design exam-
ple consists of 400 lines of Verilog.

Table 1 shows several of the results obtained for the
‘lzw-des’ example. The first column shows the hardware
size constraint that was specified (in arbitrary units). The
remaining columns show the resulting hardware size, sys-
tem performance (in terms of cycles per input byte), and
numbers of hardware and software processes. The rows
labeled “all SW” or “all HW” in the first column are
designs done by hand. This table shows that when the
hardware size is less than 3500, only incremental gains in
performance can be realized by increasing the amount of
hardware available. When a sufficient amount of custom
hardware is available, however, the optimizer is able to
realize a significant performance improvement by creat-
ing two fairly independent concurrent processes, one in
software and the other in hardware. As the hardware size
constraint is increased from 4000, gains in performance
are again incremental until 7500 units of custom hardware
are available, at which time a quantum improvement in
performance can be achieved by placing all of the time-
critical computation into hardware. Another step in per-
formance improvement is seen when 8000 units of hard-

HW size HW size performance processes
constraint result (cycles/byte) SW HW

all SW 0 122.9 1 0
500 0 122.9 1 0

1000 614 121.3 1 1
1500 1208 119.4 1 1
2000 1208 119.4 1 1
2500 2426 112.4 1 2
3000 2426 112.4 1 2
3500 2426 112.4 1 2
4000 3794 40.0 1 1
4500 3794 40.0 1 1
4750 4692 39.0 1 2
5000 5012 33.0 1 2
5500 5012 33.0 1 2
6000 5012 33.0 1 2
6500 5012 33.0 1 2
7000 5012 33.0 1 2
7500 7063 16.6 1 1

all HW 7692 16.6 0 1
8000 7790 10.2 1 2

all HW 8189 9.8 0 3

Table 1: Results for the LZW-DES design exam-
ple.

ware are available, when it becomes possible to further
increase the concurrency by creating more independent
hardware processes.

The results of the optimization are also affected by the
sample data set on which the performance evaluation is
based. With the ‘lzw-des’ example, we have noticed that
when the data set exhibits an average to low compression
ratio, the DES computation represents the performance
bottleneck. In this case, the optimizer attempts to use
the hardware resources to implement that part of the sys-
tem. When the data set exhibits a high compression ratio,
however, the LZW compression computation represents
the performance bottleneck. The optimizer responds, in
this case, by using custom hardware to implement the
compression routines.

The results in Table 2 show the experimental results
obtained for the ‘jpeg’ example. The results of the opti-
mization are shown for different hardware size constraints.
Again, the optimizer is able to make effective use of the
custom hardware resources over a wide range of con-
straints.

The experimental results we have obtained illustrate
the benefit of addressing concurrency optimization and
hardware-software partitioning simultaneously. The extra
degrees of freedom enable the optimizer to explore a wide
range of implementation options, ranging from incremen-
tal performance gains achieved by placing selected com-
putations in hardware, to substantial performance gains



HW size HW size performance processes
constraint result (cycles/byte) SW HW

all SW 0 679 1 0
2000 258 672 1 1
4000 2862 442 1 2
6000 5840 315 1 1

all HW 6824 183 0 1

Table 2: Results for the JPEG design example.

achieved by forming concurrent hardware and software
processes.

4 Conclusion

Optimization of mixed hardware/software systems of the
type we have described can be seen as an instance of
multiple-process behavioral synthesis, since the controller
and datapath of an off-the-shelf CPU are necessarily sep-
arate from the controller(s) and datapaths(s) implemented
with custom hardware. Multiple-process behavioral syn-
thesis raises the possibility of altering the concurrency im-
plied by the initial system behavioral description to suit
the implementation or to improve system performance.
However, several problems of multiple-process behavioral
synthesis (process partitioning, global resource allocation,
and global scheduling) appear to be interdependent and,
therefore, difficult to solve sequentially.

We have described a technique for addressing multi-
ple-process behavioral synthesis as it relates to the co-
synthesis of mixed hardware/software systems. We ad-
dress the interdependency of the synthesis problems by at-
tempting to optimize them simultaneously using iterative-
improvement techniques. This enables an optimizer to
consider concurrency issues at the same time as hardware-
software trade-offs. The result is the ability to explore a
wide range of design options, ranging from simply placing
computations in hardware to forming concurrent hardware
and software processes. Experimental results show that
this approach is effective at optimizing the performance
of a mixed hardware/software system over a wide range
of constraints on the amount of custom hardware avail-
able. The experimental results also illustrate that signifi-
cant gains in performance can be achieved by taking ad-
vantage of the concurrency inherent in hardware/software
systems.
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