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We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been
performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of
intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser
cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states
of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of
information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave
emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found
that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton
interaction in passive mode-locked fiber lasers are discussed.

1. Introduction

Lasers generating ultrashort optical pulses are widely em-
ployed in diversified areas of science, technology, and
engineering [1–7]. Applications of such lasers range from
testing of ultrahigh speed semiconductor devices to precision
processing of materials, from triggering of tracing chemical
reactions to sophisticated surgical applications in medicine.
These lasers are used for study of ultrahigh speed processes in
atomic and molecular physics, in solid-state physics, and in
chemistry and biology. They are employed for investigation
of light-matter interactions under ultrahigh intensity levels.
Lasers of ultrashort optical pulse with a high repetition rate
are a key element in high-speed optical communications.
Ultrashort pulse lasers are extensively used for micromachin-
ing, biomedical diagnostic, in light detection, and ranging
(lidar) systems, and so forth.

The great diversity of applications of ultrashort pulse
lasers calls for further development and perfection of this
type of quantum generators. At the present time, one of main
ways for creation of perfect ultrashort pulse sources is related

to passive mode-locked fiber lasers [8–16]. Nonlinear losses
forming ultrashort pulses in fiber lasers are usually realized
by the nonlinear polarization rotation technique. These
lasers have unique potentialities. They are reliable, compact,
flexible, and of low cost. Such generators can be conveniently
pumped with commercially available semiconductor lasers.
The nonlinear losses based on the nonlinear polarization
rotation technique are fast, practically inertia-free. For them,
the depth of the modulation and the saturating intensity are
easily controlled through the orientation angles of intracavity
phase plates. The great variety of operating regimes is
an important feature of this type of lasers. Indeed, these
lasers have demonstrated bistability between continuous
wave and mode-locking regimes, spike operation, and Q-
switching [17, 18]. They can operate either with a single
pulse in the laser cavity or in a multiple-pulse regime.
The latter is connected with the effect of a quantization
of intracavity lasing radiation into individual identical
solitons [17–21]. Lasers operating in multiple-pulse regimes
demonstrate multistability: the number of pulses in an
established operation depends on initial conditions [17, 20].
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The dependence of the number of pulses on pumping and
on orientation angles exhibits hysteresis phenomena [22].
Analogical regimes are realized in lasers with another mecha-
nisms of nonlinear losses (semiconductor saturable absorber
mirror (SESAM), saturable absorbers based on quantum
dots, carbon nanotubes, graphene, and so on [23–25]).

The type of a soliton interaction plays a crucial role
in the established multiple-pulse regimes of fiber lasers
[26–30]. In the case of pulse attraction, bound solitons
structures can be formed. Such structures were theoretically
and experimentally investigated by many authors [11, 13, 16,
26, 28, 30–32]. Possibility of a realization of strong bonds
between solitons (∼10% of an individual soliton energy) was
found in the paper [33]. As this takes place, steady states of
pair interacting solitons form a two-soliton molecule with
a set of energy levels corresponding to various types of
bonds between pulses. With a use of this effect, the high-
stable noise-proof information sequences of bound solitons
can be realized. In such sequences, a high-density coding of
the information is realized through various distributions of
different energy bonds along the soliton chains.

A long-distance mechanism of repulsion of ultrasort
pulses results in the regime of harmonic passive mode-
locking [34–37] (the regime of a multiple-pulse generation in
which distances between all neighboring pulses take the same
value). The harmonic passive mode-locked fiber lasers are of
great interest as ultrashort optical pulse sources with a high
repetition rate which are employed in high-speed optical
communications. This lasing regime can be also realized on
basis of a sequence of bound solitons with a single type of
a bond between neighboring pulses which fills completely
a total laser resonator. In this case, the expected rate of
repetition of ultrashort pulses in the output laser radiation
is of the order of inverse ultrashort pulse duration and can
lay in the terahertz frequency range for subpicosecond pulses
[38, 39].

A quantization of intracavity radiation into individual
identical solitons is a useful phenomenon for a creation of
ultrashort pulse generators with a high rate of a repetition of
ultrashort pulses. The greater number of pulses in laser cavity
results in the greater rate of the repetition of pulses in output
radiation. However, this phenomenon is a serious obstacle
for creation of generators with high energy of individual
pulses. Really, in consequence of this phenomenon, an
increase of pumping results in an increase in number of
pulses in the laser resonator, thus the energy of an individual
pulse remains approximately as before.

The effective control of intersoliton interactions opens
new opportunities for management of generation regimes of
fiber lasers. For realization of such control, it is necessary to
know the properties of soliton interaction at a fundamental
level. In this paper, we present our results on a formation
of multiple-pulse regimes connected with interaction of
lasing solitons through a gain medium, inertia-free nonlinear
losses, and a nonlinear refractive index. The paper contains
the original results on the multihysteresis dependence of
the lasing energy characteristics (a total energy of an
intracavity radiation, peak intensities of individual solitons,
an amplification coefficient, etc.) on pumping, the results
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Figure 1: Schematic representation of the investigated ring passive
mode-locked fiber laser.

on the realization of hard and soft regimes of excitation
and annihilation of solitons in a laser cavity under multiple-
pulse operation, and the results on an interaction of solitons
through dispersive waves (these waves are emitted by solitons
because of lumped elements in a laser cavity). For a
completeness of a description of these phenomena, we also
discuss earlier our results on the given subjects (a soliton
quantization, information ultrashort pulse trains in fiber
lasers with the nonlinear polarization rotation technique,
etc.).

This paper is organized as follows. In Section 2, we
present the results on multihysteresis phenomena due to a
competition and a coexistence of solitons in a laser cavity.
Section 3 is devoted to bound steady states related with
the interaction of solitons through an interference of their
wings in a intracavity medium with fast nonlinear losses
and Kerr nonlinearity of refractive index. In Section 4, we
analyze the interaction of solitons in fiber laser with lumped
saturable absorber. Section 5 is devoted to mechanisms of
a realization of powerful long-distance soliton wings which
are connected with dispersive waves emitted by solitons
because of lumped intracavity elements. Such powerful
wings result in a strong intersoliton interaction with great
bound energies. In Section 6, we discuss the presented
results. The most important ones from them are presented
in Section 7.

2. Multiple-Pulse Operation and Hysteresis
Phenomena in Fiber Lasers

The laser under investigation is schematically represented
in Figure 1. The system forming nonlinear losses through a
nonlinear polarization rotation technique was described in
detail in [20]. For isotropic fiber, it involves all necessary
elements for the polarization control. In this system, a
radiation passes sequentially through the first quarter wave
plate, the second half wave plate, the polarizer, and the third
quarter wave plate. The space orientation of the three phase
plates is determined by the angles α1, α2, α3, respectively
(αi is an angle of one eigenaxis of a corresponding plate
with respect to the passing axis of the polarizer). After
the polarizing isolator, the electric field has a well-defined
linear polarization. Such state of polarization does not
experience polarization rotation in the fiber because the
rotation angle is proportional to the area of the polarization
ellipse. Consequently, it is necessary to place the third
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quarter wave plate after the polarizer which transforms
the linear polarization into the elliptic one. The rotation
of the polarization ellipse resulting from the optical Kerr
nonlinearity is proportional to the light intensity, the area of
the polarization ellipse, and the fiber length. At the output
of the fiber, the direction of the elliptical polarization of the
central part of the pulse can be rotated towards the passing
axis of the polarizer by the second half wave plate. Then, this
elliptical polarization can be transformed into a linear one
by the first quarter wave plate. In this situation, the losses
for the central part of the pulse are minimized while the
wings undergo strong losses. The evolution of the radiation
in the investigated laser is described by the following set of
equations [20]:

∂E

∂ζ
= (Dr + iDi)

∂2E

∂τ2
+
(

G + iq|E|2
)

E, (1)

En+1(τ) = −η
[

cos
(

pIn + α0

)

cos(α1 − α3)

+i sin
(

pIn + α0

)

sin(α1 + α3)
]

En(τ),
(2)

where E(ζ , τ) is the electric field amplitude, τ is a time

coordinate expressed in units δt =
√

|β2|L/2 (here β2 is

the second-order group-velocity dispersion for fiber and L
is the fiber length), ζ is the normalized propagation distance
ζ = z/L, Dr and Di are the frequency dispersions for a gain-
loss and for a refractive index, respectively, and q is the Kerr
nonlinearity. The term G in the second parenthesis in (1)
describes the saturable amplification

G = a

1 + bJ
, (3)

where J =
∫

|E|2dτ is the total energy of the intracavity
radiation (the integration is carried out on the whole round-
trip period), a is the pumping parameter, and b is the
saturation one). The second term in these parentheses is
connected with Kerr nonlinearity of the fiber. Equation (2)
determines the relation between the time-distributions of
the field before and after n-th pass of radiation through the
polarizer (η is the transmission coefficient of the intracavity
polarizer). Parameters α0, I , p are determined by relations
α0 = 2α2 − α1 − α3, I = |E|2, p = sin(2α3)/3. The amplitude
E(τ) is subject to periodic boundary conditions with period
equal to one round trip.

The numerical procedure starts from the evaluation of
the electric field after passing through the Kerr medium,
the phase plates, and the polarizer, using (2). The resulting
electric field is then used as the input field to solve (1) over a
distance L, using a standard split-step Fourier algorithm. The
computed output field is used as the new input for (2). This
iterative procedure is repeated until a steady state is achieved.
For the numerical simulations, we use typical parameters of
ytterbium- and erbium-doped fiber lasers operating in the
normal and anomalous dispersion regimes.

Figure 2 shows the distribution of radiation in a laser
resonator I(τ) as the function of a number of passes of
the field through the cavity ζ . After a transient process, the
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Figure 2: Transient evolution of the field in the fiber laser. The
temporal distribution of the intracavity intensity I(τ) versus the
round-trip number ζ . a = 3, b = 0.017, q = 1, Di = −1,
Dr = Dr0G,Dr0 = 0.34, α0 = −1.1, α3 = −α1 = 0.2.

stationary operation with identical pulses is realized. The
difference in the peak intensities of initial pulses models a
random spread in amplitudes of pulses of an initial noise
radiation. Figure 3 demonstrates the number of identical
pulses in a laser cavity in the established stationary operation
as the function of pumping a. With changing pump a
the pulses are created and annihilated one by one. The
corresponding changes in the intracavity radiation energy
J , in the peak intensity of intracavity identical pulses I0,
and in the amplification G are shown in Figures 4, 5,
and 6, respectively. The vertical arrows in these figures
are connected to a change of a number of pulses N in
the laser resonator that is due to a change of pumping
a (see Figure 3). From the dependences I0 = I0(a) and
G = G(a) (see Figures 5 and 6), we obtain the dependence
G = G(I0). The total amplification of a steady-state pulse
consists of two parts. The first part is due to the gain
G(I0). The second part Λ is due to nonlinear losses and a
dispersion of intracavity elements. In stationary regime, the
total amplification is equal to zero, that is Λ = −G(I0).
The dependence of nonlinear-dispersion part Λ of the total
amplification coefficient for an individual soliton as the
function of its peak intensity I0 is presented in Figure 7.
This dependence is a key factor determining a competition
and a coexistence of solitons in an established stationary
regime. In the interval I0 < Icr2, the dependence Λ = Λ(I0)
is monotonously increasing. Here, the pulse with a greater
peak intensity I0 has a greater amplification Λ. As a result
of the soliton competition, no multiple-pulse regimes is
realized. After a transient process, the generation with single
soliton in a laser cavity is established. In the interval Icr2 <
I0 < Icr1, a multiple-pulse generation is possible. Here, the
pulse with a greater peak intensity I0 has a less amplification
Λ. As a result, after transient process, all pulses in a laser
cavity have the same peak intensity I0 and the same other
parameters (a duration, an energy, a chirp, and so on). It
is, so-called, the effect of quantization of a laser radiation
on identical solitons. When, with decreasing pump a, the
peak intensity of identical pulses I0 reaches the value Icr2
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Figure 3: Multihysteresis dependence of the number of pulses N in
established stationary operation on pumping a.
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Figure 4: Dependence of the intracavity radiation energy J in
established operation on pumping a. Digits indicate a number of
pulses in a laser cavity for a corresponding branch.

the pulses disappear one by one as one can see in Figure 3
(the left step dependence N = N(a)). To the contrary, when,
with increasing pump, the peak intensity of identical pulses
reaches the value Icr1, new pulses appear in the cavity one
by one (the right step dependence in Figure 3). They are
formed from weak seed pulses of a radiation noise. As a
rule, the solitons appear and disappear by a threshold way
(hard excitation and annihilation of the solitons [40]). That
is, a peak intensity of each soliton is changed by a jump
from 0 to I0 and from I0 to 0 (see Figure 5). However, the
soft regime of excitation and annihilation of solitons [40] (a
continuous change of the peak intensity with continuously
changing pump a) is also possible. Figure 8 demonstrates
the examples of the two types of changes in the second
pulse (the first pulse already exists in the laser resonator).
The corresponding dependences Λ = Λ(I0) are presented in
Figure 9. The soft excitation and annihilation of pulses are
realized if the slope of the decreasing part of the dependence
Λ = Λ(I0) is greater than the slope of the increasing one.

It should be pointed out that the dependence Λ = Λ(I0)
determines the phase relations of interacting solitons in
bound steady states: for peak intensities in the vicinity of top
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Figure 5: Dependence of the peak intensity I0 of intracavity
identical pulses in established operation on pumping a.
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Figure 9: Dependences of the nonlinear-dispersion part of amplification Λ for intracavity pulses on their peak intensity I0 for hard (a) and
soft (b) regimes of excitation and annihilation of the second soliton.

of this dependence, as a rule, the phase difference is close
to π/2, whereas far from the top (the decreasing part of the
dependence), as a rule, the phase difference is close to 0 or π
(see Section 3).

3. Bound Steady States of Interacting Solitons

In the previous section, we have studied phenomena which
are related with the interaction of solitons through the
gain medium in a condition of fast nonlinear losses and
Kerr nonlinearity of refractive index. For these phenomena,
the interaction of solitons due to an interference of their
wings is insignificant (if the distances between pulses is
sufficiently large, then the interference effects are weak). In
this section, we study the soliton interaction which is due
to an interference of their wings in conditions of the fast
complex nonlinearity of intracavity elements.

3.1. Steady States of Pair Bound Solitons. In this section, for
our numerical simulation, we have used typical parameters

of Er-doped fiber laser with anomalous net dispersion of
group velocity. Figure 10 demonstrates the temporal and
spectral profiles of a single soliton. Figure 10(a) shows also
the change in a phase along the pulse. The soliton has
powerful wings which result in large energy bounding pair
interacting solitons.

Because of the interaction between solitons, the pair of
such solitons is united in the stability formation with a large
binding energy—highly-stable “two soliton molecule.” The
radiation energy of such molecule is less than the energy
of two solitons placed from each other on a long distance.
The binding energy for two solitons in this molecule takes
the discrete set of values shown on Figure 11. Large binding
energies for the low-energy steady states are due to powerful
wings of solitons. These steady states are stable.

For the ground steady-state (the first energy level) and
for the all odd levels, the field functions are antisymmetric
Ek(τ) = −Ek(−τ) if the origin of the coordinate τ = 0
corresponds to the point equally spaced from the peaks
of the solitons. In this case, the peaks amplitudes of two
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Figure 10: Temporal (a) and spectral (b) distributions of radiation for the single-soliton passive mode-locking. The upper right inset in (a)
shows the multiplied soliton pedestal. The change of the phase along the pulse is presented in (a). All phase magnitudes are reduced to the
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Figure 11: Binding energy of two solitons in stable steady states J
expressed in relative units (the binding energy divided by the energy
of a single soliton). The laser parameters are the same as in the case
of Figure 10.

solitons are in opposite phase (δϕ ≈ π). For all even steady
states, the field functions are symmetric Ek(τ) = Ek(−τ)
and the peak amplitudes of two solitons have the same phase
(δϕ ≈ 0). Figures 12(a), 12(b), and 12(c) show the temporal
distributions of intensities in the two-soliton molecule for
the cases of the ground steady state (the minimal distance d1

between solitons) and for the first and second excited steady-
states (the distances between solitons approximately equals
the double and triple minimal one d1, resp.). In the cases of
the ground (k = 1) and second excited (k = 3) states, the
intensity is equal to zero in the center point between solitons.
For the first excited state k = 2, the intensity in this point
is distinct from zero. Figures 12(d), 12(e), and 12(f) show
the spectral profiles of the two-soliton molecule. They are
symmetric. For odd states, the center spectral component
is equal to zero. For even states, it is maximum. For used
laser parameters, as indicated above, all steady states of the

pair interacting solitons are stable. That is, the two soliton
molecule is multistable.

In the bound steady states, the second soliton in the two
soliton molecule is arranged in the space point where the first
soliton has the phase equal to 0 or π (see Figure 10(a)). Under
such arrangement, the peak amplitude of one pulse and
the wing amplitude of other pulse have the opposite-phase
interference. For such interference, the peak intensities of
the pulses are decreased and their amplification coefficients
become larger (see the dependence Λ = Λ(I0) for I0 > Icr2

presented in Figures 7 and 9). We have also obtained the
phase difference for the pair pulses equal to π/2. In this case,
the peak intensity was in vicinity of the maximum of the
dependence Λ = Λ(I0) (I0 is close to Icr2). As this takes place,
for one pulse, the opposite-phase interference is realized, for
the other, the in-phase one is done [33].

3.2. Information Sequences of Bound Solitons. One of the
usual way of coding the information for its transfer through
optical communication fiber lines consists in the following.
In equidistant initial sequences of pulses, some pulses are
removed. It arises two positions (a pulse is present, and a
pulse is absent) which are required for the coding of the
information in binary system (zero and unit). Displacement
and merge of pulses in such information pulse sequences,
that is due to various types of technical perturbations
including noise radiation, results in loss of the information.
There are various ways of increase of a tolerance to these
perturbations. Among them, there is an increase in distance
between the neighboring pulses in initial pulse sequence.
However, this way results in the decrease in the speed
of a transfer of information. In this section, we consider
the nonlinear regime of propagation of pulse information
sequences. The interaction of neighboring pulses results in
the stabilization of this sequence. Because various types of
bonds between neighboring pulses can be realized, accord-
ingly, the coding of the information in such sequences can
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Figure 12: Temporal and spectral distributions of intensity of the two-soliton molecule (a), (d) for the ground steady state (minimal distance
d1 between solitons), (b), (e) for the first excited steady state, and (c), (f) for the second excited steady state. All steady states are stable. The
laser parameters are the same as in the case of Figure 10.

be realized through various distributions of types of bonds
between neighboring pulses along a soliton train. Thanks to
powerful wings, the binding energy for such solitons appears
high, that provides the high degree of tolerance against
various perturbations in the case of such sequences. Dense
packing of pulses in such sequence provides high speed of
transfer information. Due to large binding energies, such
multisoliton molecules are highly stable and noise-proof.
Placing several initial pulses on certain distances from each
other, after transient process, we have obtained stationary
“molecular chains” with any desirable distribution of types of
bonds between neighboring solitons along a pulse train. Such
sequence is realized more simply with a use of the ground
and first excited types of intersoliton bonds for which the

binding energies are especially great. Figure 13 shows such
information soliton sequence in which the number 28062010
is coded in binary system (28.06.2010 is the data of the
Second International Conference: Nonlinear Waves-Theory
and Application [41]). Here, the ground type of a bond
(smaller distance between pulses) corresponds to unit, and
the first excited type of a bond (the greater distance between
pulses) corresponds to zero. In binary system, this sequence
corresponds to the number 1101011000011000100111010,
that in decimal system is the number 28062010. Really, 1 ·
224 + 1 · 223 + 0 · 222 + · · · + 1 · 21 + 0 · 20 = 28062010.

Such soliton trains are highly stable formations. The
high stability is primarily due to large binding energies. Fur-
thermore, there exists a second reason of the high stability.
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and first excited types of bonds in which the number 28062010 is
coded in binary system 1101011000011000100111010. The greater
distance between pulses corresponds to zero. The smaller distance
between pulses does to unit. The laser parameters are the same as in
the case of Figure 10.

It consists in the following. The perturbation energy which
was initially localized in the vicinity of some pair of bound
solitons is quickly collectivized among all solitons of the
train. In the numerical simulation, we have used the random
radiation noise to prove this stability. This noise induces up
to 10% fluctuations of peak intensities of solitons but does
not change the structure of soliton sequences.

4. Steady States of Interacting Solitons in Fiber
Lasers with Lumped Saturable Absorber

In the previous sections, we have studied steady states of
interacting solitons in passive mode-locking fiber lasers with
a nonlinear polarization rotation technique. In this section,
we investigate another type of nonlinear losses when passive
mode-locking is realized thanks to a saturable absorber. The
role of such nonlinear absorber can be played by various
materials: carbon nanotubes, graphene, saturable absorbers
based on quantum dots, and so on [23–25]. In this case, (2)
is replaced by the following one:

En+1(τ) = En(τ) exp

(

− snl
1 + pIn(τ)

)

. (4)

This equation describes the change in the field under its
pass through the lumped saturating absorber, where snl is
the losses for a weak field and p is the parameter of a
saturation. We have studied the formation of bound states
of interacting solitons and obtained analogical results as for
the case of nonlinear losses due to the nonlinear polarization
rotation technique. Figure 14 shows the distances between
two interacting solitons in stable steady states. One can see
an alternation of odd and even states as in Figures 11 and 12
in the case of nonlinear losses due to the polarization rotation
technique. Here, powerful soliton wings are also realized.
These powerful wings result in large bound energies of
interacting pulses. For both cases of a realization of nonlinear

π π

δτ
20 40 60 80 1000

0 0 π π0 0

Figure 14: Steady-state distances between two solitons interacting
through a lumped saturable absorber. The white circle corresponds
to the first soliton. The black squares and grey circles do to the
steady-state second soliton with the phase differences π and 0,
respectively. a = 0.5, Dr = 0.01, Di = 0.1, q = 1.5, p = 1, snl = 1.

losses, we have used sufficiently close nonlinear-dispersion
parameters of the investigated laser systems.

5. About Mechanism of Formation of Powerful
Soliton Wings

Large bounding energies of interacting solitons are due to
their powerful wings. In this section, we analyze reasons
resulting in such wings. Figure 10(b) demonstrates the
additional structure on the bell-shaped spectral profile of
a single soliton which has the spectrum sideband form.
Sideband generation in soliton spectrum is a well-known
phenomenon. The sidebands result from an interference
between the soliton and dispersive waves. Such dispersive
waves are emitted by a soliton when it circulates in a laser
resonator and periodically experiences perturbations caused
by the lumped intracavity components. The interference of
such wave during several circulations forms the powerful
long-distance wings of solitons. This mechanism does not
work in the case of a continuously distributed intracavity
nonlinear-dispersion medium. In this section, we check the
hypothesis about a formation of powerful soliton wings at
the expense of dispersive waves.

5.1. Model of a Continuously Distributed Intracavity Non-
linear-Dispersion Medium. In the case of a continuously
distributed intracavity nonlinear-dispersion medium the
evolution of radiation in a laser cavity is described by the
following equation [42]:

∂E

∂ζ
= (Dr + iDi)

∂2E

∂τ2
+

(

G− σ − σnl
1 + p|E|2

+ iq|E|2
)

E,

(5)

where σ is linear losses, G is a saturable amplification (see
(3)), and the term σnl/(1 + p|E|2) describes the continuously
distributed variant of nonlinear losses (4). In the case of
Di = 0, q = 0, this equation transforms into the nonlinear
diffusion equation [43] which describes passive mode-
locking of lasers when any phase-modulation effects may
be ignored. Equation (5) was obtained as the generalization
of this nonlinear diffusion equation with a purpose of an
analysis of effects of phase modulation of ultrashort pulses in
passive mode-locked lasers. In the frame of (5), the multiple-
pulse operation and the multihysteresis phenomena (see
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Figure 3) were investigated in the papers [44, 45]. In the case
pI ≪ 1, (5) has the form

∂E

∂ζ
= (Dr + iDi)

∂2E

∂τ2
+
(

G− σ0 +
(

r + iq
)

|E|2
)

E, (6)

where σ0 = σ + σnl is the total linear losses, r = pσnl. It is the
simplest equation taking into account a frequency dispersion
of gain-losses and a refractive index, a nonlinearity of
losses and a refractive index, and also a saturation of an
amplification. Equation (6) describes the two lasing regimes:
an operation with radiation filling totally laser resonator
and a regime with single ultrashort pulse in laser cavity.
The amplitude of this single pulse in the case of stationary
generation is described by the expression

E = E0
exp(iΩτ − iδkζ)

cosh1+iαβτ
, (7)

where the peak amplitude of a pulse E0, its reverse duration
β, its frequency chirp α, parameters Ω and δk are determined
from a system of algebraic equations [42]. The spectral
profile of the ultrashort pulse (7) is determined by the
following analytical expression [42, 46]:

Iν =
π2|E0|2

β2

sinhπα

α
(

coshπα + cosh
(

πν/β
)) , (8)

where ν is a frequency detuning from the center frequency
of soliton radiation. With increasing chirp α, the spectral
profile is changed from a bell-shaped form to a rectangle
one (see Figure 15(a)). Figure 15(b) shows the change in the
frequency chirp α on the plate of the nonlinear-dispersion
parameters ξ = q/r, θ = Di/Dr . Equation (6) has also a
solution with indefinitely increasing amplitude E → ∞ (that
is J → ∞) which is not correct because of breakdown of the
condition pI ≪ 1.

Equation (6) is close to the following equation:

∂Ψ

∂t
= (dr + idi)

∂2Ψ

∂z2
+
[

g + (c1 + ic2)|Ψ|2
]

Ψ, (9)

where dr , di, g, c1, c2 are constant parameters. This equa-
tion is used in a description of hydrodynamical phenomena
[47, 48] (see also [49, 50]). It has also the solution in the
form (7) [48, 49, 51]. However, there exists the principle dis-
tinction between these equations: equation (6) has the stabile
solution in the form of a single stationary soliton described
by (7), but in the case of (9), such stationary solution is
always unstable. In the case of (6), the stabilization of the
single-pulse solution is realized through a saturation of the
amplification G. If the parameter of the gain saturation is
equal to zero b = 0 (see (3)), then (6) is transformed into
(9). The stabilization of a single pulse can be achieved at
the expense of nonlinear losses described by additional high-
order nonlinearities [32, 52]. However, in this case, the exact
elegant analytical solutions (7) and (8) for an amplitude and
a spectrum of a single stationary pulse do not hold.

5.2. Model with Combination of Lumped and Continuously
Distributed Nonlinear Losses. We study passive mode-locked
laser with the combination of the continuously distributed
saturable absorber included in (5) and the lumped saturable
absorber described by (4). To follow the change of properties
of soliton wings due to dispersive waves and correspondingly
of properties of steady states of a pair of interacting solitons,
we decrease the magnitude of the lumped saturable absorber
snl up to zero. Simultaneously we increase the value of the
distributed nonlinear losses σnl thus that the total losses for
a weak signal for one pass of a field through the resonator
remain constant. If our hypothesis is true, then dispersive
waves should weaken up to zero and the amplitude of soliton
wings should decrease that will result in the change of
properties of bound steady states.

Figure 16 shows the spectral change in a single soliton
with varying lumped part of nonlinear losses snl. One can see
the decrease and disappearance of sidebands in the soliton
spectrum with decreasing snl. Figure 17 shows the decrease of
a bounding energy for the first excited steady state of a pair
of bounding solitons with decreasing values snl. Figure 18
shows the decrease of the soliton wing with decreasing
lumped part of nonlinear losses. These results demonstrate
the role of dispersive waves in a formation of powerful soliton
wings which determine properties of bound steady state of
interacting solitons.

6. Discussion

We have developed a theoretical model to describe several
behaviors which are usually observed in passively mode-
locked fiber lasers. The model is based on a fiber exhibiting
optical Kerr nonlinearity, gain and group velocity disper-
sions, and saturable gain. For our analysis, we use typical
parameters for ytterbium- and erbium-doped fiber lasers
operating in the normal and anomalous dispersion regimes.
Two mechanisms of nonlinear losses have been analyzed.
One of them is related with the nonlinear polarization rota-
tion technique. The other is due to a saturable absorber. For
both mechanisms, the analogical results have been obtained.
In our study, we have chosen such laser parameters for which
the researched phenomena are manifested most clearly. With
other parameters, we have observed various modifications
of investigated regimes. For example, we have observed the
temporal oscillations of soliton amplitudes in bound states.
For some parameters, the lower states were unstable. As a
result of this instability, a soliton pair transits into a higher
steady state. With other parameters, this instability results in
a merge of solitons. With certain parameters, the investigated
phenomena are masked by period-doubling effects.

The multiple-pulse passive mode-locking has been care-
fully investigated. It is determined by a coexistence and a
competition of pulses amplified in a common gain medium.
The multiple-pulse operation is realized through the effect
of a quantization of intracavity radiation into identical
dissipative solitons. A number of identical pulses in a laser
cavity as a function of pumping are determined by multihys-
teresis dependence. These results are in good agreement with
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Figure 15: Spectra of ultrashort pulse described by (8). (a) Spectral profiles of established solitons with different chirps: (1) α = 0, (2) α = 1,
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changing value of a lumped part of a saturable absorber snl.

0 30 60 90
0

0.04

0.08 1

2

3

τ

I

Figure 18: Change in the intensity of single-soliton wing with the
change in a value of lumped part of saturable absorber snl: (1) snl =
1, (2) snl = 0.75, (3) snl = 0. The total value of nonlinear losses
including lumped and distributed parts remains the same.

experimental data reported in the literature (see e.g., [17]). It
is shown that the multihysteresis dependence of a number
of pulses on pumping results in analogical multihysteresis
dependences for an intracavity energy and a peak intensity
of intracavity solitons.

It is found that a competition and a coexistence of
solitons in a laser cavity is determined by the dependence of
the nonlinear-dispersion part of an amplification on a peak
intensity of solitons Λ = Λ(I0) (see Figures 7 and 9). For
achievement of a single-pulse generation, it is necessary to
increase the parameter Icr2 that the condition I0 < Icr2 is
satisfied for all intracavity pulses. In this case, the multiple-
pulse generation is suppressed and, as result, the single pulse
operation is realized. In such a way, it is possible to expect
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a generation of pulses with extremely high energy. This
problem demands detailed studying.

Usually at a multiple-pulse generation, all pulses have
identical parameters. It is realized when a hard regime of
an annihilation and an excitation of new pulses is realized.
However, as it is shown in the given paper, the soft regime of
an annihilation and an excitation is also possible. In this case,
one of pulses has smaller amplitude than other pulses having
identical parameters.

An interaction of pulses through an interference of their
wings in fast intracavity nonlinear medium is more fine
effect than the realization of a multiple-pulse generation. The
dependence of the nonlinear-dispersion part of an amplifi-
cation on a peak intensity of solitons Λ = Λ(I0) dictates the
phase difference of interacting solitons: it is close to π, π/2, 0.
However, various stationary states have distinguished degrees
of stability. The degree of stability essentially depends on
type of nonlinearity and from values of nonlinear-dispersion
parameters. This fact is well known from the papers [32,
52]. If master equation is close to nonlinear Schrödinger
equation (dissipative terms are small), then all steady states
are unstable, but steady states with π/2 phase difference
have extremely weak instability, that is, they are practically
stable [52]. If dissipative terms are not small, then π/2 steady
states are merely stable [32] (authors of both the papers
used model with complex quadratic dispersion and complex
cubic-quintic nonlinearity).

Thanks to powerful wings, large binding energies of
interacting solitons can be obtained. In our numerical exper-
iment, we have realized high-stable noise-proof multisoliton
molecules. We have shown that sets of various types of
bonds between neighboring pulses in such molecule can
be obtained. Accordingly, the coding of the information
in these soliton sequences can be realized through various
distributions of types of bonds between neighboring pulses
along a soliton chain. Dense packing of pulses in the
bound soliton sequence provides high speed of transfer of
an information in fiber communications line working in
nonlinear bound-soliton-based regime. Such systems can be
also useful for storage and processing of an information. The
problem of such coding of a data stream into a bound soliton
chain (and also of decoding) demands a detailed study.

In the case of a realization of the same type of a bond
between all neighboring solitons in a structure with a very
large number of pulses, we obtain an analog of a crystal of
finite extent. This fully ordered state was named a soliton
crystal by analogy with the results of Mitschke and his
coauthors on pulse reshaping in a passive synchronously
pumped fiber-ring resonator [53, 54]. If such soliton crystal
with a single type of a bond fills completely the total ring laser
cavity, then harmonic passive mode-locking is realized. This
regime is interesting for a creation of generators of ultrashort
pulses with superhigh rate of a repetition of pulses in output
radiation. Generators of pair of ultrashort pulses with the
certain fixed distance between pulses also can find numerous
applications.

We have investigated a mechanism of a formation of
powerful soliton wings connected with a lumped saturable
absorber. In case of the nonlinear polarization rotation

technique, the nonlinear losses are realized in the polarizer
and they are lumped. In the case of a saturable absorber,
the nonlinear losses can be lumped and continuously dis-
tributed. We have analyzed a laser model with a combination
of lumped and continuously distributed parts of the total sat-
urable absorber. Keeping the total nonlinear losses constant,
we have varied their lumped part and studied properties of
bound steady states of interacting solitons. We have found
that the dispersive waves emitted by solitons because of
lumped intracavity elements form powerful soliton wings
resulting in great bounding energy of interacting solitons in
steady states. The role of dispersive waves in a realization
of a mechanism of a repulse between solitons and, as a
result, realization of harmonic passive mode-locking calls for
further investigation.

7. Conclusion

On basis of numerical simulation, we have studied the
basic features in a realization of multiple-pulse operation of
passive mode-locked fiber lasers. It is found that in the case
of the hard regime of an annihilation and an excitation of
new solitons with changing pump, all intracavity solitons
have identical parameters (a peak intensity, a duration, a
chirp, and so on). However, in the case of the soft regime
of an annihilation and an excitation, one of pulses has a peak
intensity smaller than other identical intracavity solitons. It
is found that the multihysteresis dependence of a number
of pulses on pump results in an analogical multihysteresis
dependence for the intracavity radiation energy and for the
peak intensity of identical solitons. An interaction of pulses
through an interference of their wings in fast intracavity
nonlinear medium has been investigated. Bound steady
states of a two soliton molecule are determined. We have
demonstrated the possibility to form information soliton
sequences with any desirable distribution of the types of
bonds between neighboring pulses along soliton trains.
Thanks to large values of binding energies, such sequences
have a high level of stability against perturbations. It is
found that dispersive waves emitted by solitons because
of lumped nonlinear losses form powerful soliton wings
resulting in great bounding energy of interacting solitons in
steady states.
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