LB Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Materials \& Molecular Research Division

MULTIPLE-QUANTUM NMR IN SOLIDS

Yu-Sze Yen
(Ph.D. Thesis)

November 1982

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
MULTIPLE-QUANTUM NMR IN SOLIDS
by
Yu-Sze YenPh.D. Thesis
November 1982
Materials and Molecular Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

This manuscript was printed from originals provided by the author.

MULTIPLE-QUANTUM NMR IN SOLIDS

By
YU-SZE YEN

Abstract

Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynames. In this thesis, applications of $M Q$ NMR are presented and show distinctiy the advantages of this method over the conventional single-quantum NMR.

Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of $M Q$ NMR spectroscopy.

In chapter $2,14 \mathrm{~N}$ double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous doublequantum spectrum and to suppress arge $\mathrm{H}_{2} \mathrm{O}$ solvent signal.

Chapter 3 resolves the main difficulty in observing high $M Q$ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add

constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all 1ines in phase. Op to 22-quantum la absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased.

In chapter 4, atatistical theory of MQ second moments is developed for coupled spins of spin $I=1 / 2$. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quata. The results of this model are checked against computercalculated and experimental second moments, and show good agreement.

A simple scheme is proposed in chapter 5 for sensitivity improvement in a $M Q$ experiment. The scheme involves acquiring all of the signal energy avallable in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamanane, a large increase in sensitivity is observed.

Correlation of motion of two interacting methyl groups is the subject of chapter 6. This system serves as model for the study of hindered internal motion. Because the spin system is small and the motions are well-defined, the calculations involved are tractable. Group theory appropriate for nonrigid
molecules is used to treat the change in the Hamiltonian as the methyl groups transit from correlated to uncorrelated motion. Results show that the four-quantum order alone is sufficient to distinguish between the two motions.

ACRNONLEDGEMENTS

I would like to thank Professor Alex Pines for providing a stimulating environment with which to work 1n. His insights and his approach to problems from a fundamental point of view have inspired much of the work presented in this document. I have benefited from the many excellent graduate students that he has been able to attract. Special mention goes to Dan Weitekamp and Jau-Huei Tang for collaborative efforts, to Jim Murdoch for computer assistance, and to Gary Drobny and Joel Garbow for their hardware expertise. The other members of the group have been helpful with their suggestions and assistance.

I am also grateful to Dr. Melvin P. Klein and his group for their advice and support, and to Melvin Calvin Laboratory for providing access to the VAX computer system.

Friends outside the Pines group deserve warm thanks for making graduate life enjoyable. To Jim Wong, I owe much for his constant support. Finally, my family have my deepest gratitude for all their encouragement and advice. My parents deserve separate mention for impressing their belief in pursuing higher educaton.

IBM has been generous with providing a two-year predoctoral fellowship. This work has been supported
in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SP00098.

TABLE OF CONTENTS

1. INTRODUCTION TO MULTIPLE-QUANTUM NMR 1
1.1 Spin Hamiltonians. 2
1.1.l Zeeman Hamiltonian 2
1.1.2 Rf Hamiltonian 3
1.1.3 Quadrupolar Hamiltonian 4
1.1.4 Dipolar Hamiltonian 5
1.1.5 Chemical Shift Hamiltonian 5
1.1.6 Indirect Spin-Spin Hamiltonian. 6
1.2 Spin Dynamics 7
1.3 Multiple-Quantum Coherence 9
1.4 Spectral Simplification 12
1.5 Fourier Transform Multiple-Quantum Experiment 17
1.6 Even and Odd Selectivity. 23
1.7 Separation of Orders 25
References. 29
2. INDIRECT DETECTION OF SPIN-1 DOUBLE-QUANTUM COHERENCE IN LIQUIDS 30
2.1 Introduction 30
2.2 Theory 31
2.3 Results and Discussion 37
References 43
3. TIME-REVERSAL MULTIPLE-QUANTUM NMR IN SOLIDS 45
3.1 Introduction 45
3.2 Theory 48
3.3 Experimental 52
3.4 Results and Discussion 53
References 58
4. SECOND MOMENTS OF MULTIPLE-QUANTUM NMR SPECTRA. 60
4.1 Introduction 60
4.2 Theory 61
4.2.1 Exact Dynamics 70
4.2.2 Unique Second Moments Value. 71
4.2.3 Statistical Model 72
4.2.3.1 Dipolar Mean and Variance of a
Zeeman Manifold 74
4.2.3.2 Multiple-Quantum Second Moments. 79
4.3 Comparison of Experiment with Computer Simulations and Statistical Model 84
4.4 Conclusions 85
Appendix 4.A 89
Appendix 4.B 91
Appendix 4.C 99
References 111
5. SENSITIVITY ENHANCEMENT BY SPINLOCKING IN THE DETECTIONPERIOD112
5.1 Introduction and Theory 112
5.2 Experimental Results and Discussion. 115
References 121
6. CORRELATION OF MOTION OF TWO METHYL GROUPS 122
6.1 Introduction 122
6.2 Definition of Correlated and Uncorrelated Motion. 123
6.3 Determination of the Spin Hamiltonian 123
6.3.1 Intramethyl Couplings 127
6.3.2 Intermethyl Couplings 127
6.3.2.1 Uncorrelated Motion 128
6.3.2.2 Correlated Motion 128
(1) Equivalent Methyl Groups 130
(i1) H_{0} and the Methyl C_{3} Axes Are Contained in a Plane. 131
(iii) Arbitrary Orientation 131
6.4 NMR Permutation Group of Non-Rigid Molecules 132
6.5 Determination of the Hamiltonian Symmetry Group 138
6.5.1 Uncorrelated Equivalent Methyl Groups 138
6.5.2 Uncorrelated Inequivalent Methyl Groups 140
6.5.3 Correlated Equivalent Methyl Groups 141
6.5.4 Correlated Inequivalent Methyl Groups in a "Planar" Orientation 141
6.5.5 Correlated Inequivalent Methyl Groups at an Arbitrary Orientation 142
6.6 Effect of Spinning or Molecular Reorientation About a Fixed Axis 142
6.7 Energy Level Diagrams 147
6.8 Multiple-Quantum Spectra 154
6.9 Intermediate Region - Exchange Theory 163
6.9.1 Exchange Operators 163
6.9.2 Master Equation With Exchange. 165
6.10 1,8-Dimethylnaphthalene. 168
6.11 Computer Simulation of Exchange Prcoess 171
6.11.1 Secular Determinants for $m= \pm 2$ to $m=\mp 2$
Manifolds 172
6.11.2 Secular Determinant for $m= \pm 1$ to $m=\mp 3$Manifolds.173
6.12 1,8-Dimethylnaphthalene-d 6 in a Nematic Liquid Crystal 177
6.131,8-Dimethylnaphthalene-d 10 183
6.13.1 Single-Quantum Spectrum 186
6.13.2 Impurity Content 190
6.13.3 Conclusion. 196
Appendix 6.A. 197
Appendix 6. ${ }^{\text {B }}$ 201
References 203

CHAP TER 1

IATRODUCTIOR TO HULTIPLE-QUANTUM NMR

Multiple-quantum (MQ) spectroscopy has proven to be a practical tool in the simplication of spectral analysis(1) as well as providing new information in molecular spin dynamics. (2) Diverse in its applications, MQ NMR has been applied to heteronuclear as well as homonuclear coupled spin systems, and to systems with J coupling, dipolar and quadrupolar interactions. Multiple-quantum transitions have been observed in liquids, solids and liquid crystals. Excellent reviews on this widely useful topic have been available in the last couple of years. (3-6)

This chapter presents some of the basic concepts of Fourier transform MQ NMR spectroscopy. The succeeding chapters will extend on paricular aspects relevant to the subject of discussion.

Before we enter into the realm of $M Q N M R$, the matter of spin Hamiltonians and spin dyamics as described in the density operator formalism will be first discussed. Then we will proceed with a definition of $M Q$ coherence, discuss the information content of $M Q$ spectroscopy, describe a fourier transform $M Q$ experiment, and present some properties of MQ coherences.
1.1 SPIN HAMILTONIANS

The interaction of nuclear spins with their surrounding can be divided into two parts:

$$
H=H_{e x t}+H_{i n t}
$$

The external Hamiltonian $\mathrm{H}_{\mathrm{e}} \mathrm{f}$ is an interaction of the spins with applied magnetic fields, whether they be static or oscillating, and is subject to the experimentalist's choice. The internal Hamiltonian $H_{i n t}$ is inherent to the spin system; it is composed of the interaction of nuclear spins with the local surroundings.

In the class of substances that we will be dealing with, the following interactions are of interest:

$$
H=H \quad H_{r f}+H_{Q}+H_{D}+H_{C s}+H_{J}
$$

The Leman term H_{z} and the applied rf term $H_{r f}$ are grouped as external Hamiltonian. The remainder are internal Hamiltonians. These terms will be discussed separately.
1.1.1 Leman Hamiltonian

In typical laboratory magnets, by far the largest term is the Zeman Hamiltonian. Nuclei with dipole

will interact with the large applied static magnetic field \vec{H}_{0}. Expressed in units of f, this interaction is described by

$$
H_{Z}=-\vec{H}_{0} \cdot \sum_{i} \vec{H}_{i} / \pi=-H_{0} \sum_{i} Y_{i} I_{2 i}
$$

where z is chosen to be in the direction of \vec{H}_{0} and the summation runs through all nuclei in the sample.

As a result of this interaction, the spins experience a torque in the direction defined by

$$
\frac{d \vec{\mu}_{i}}{d t}=\gamma_{i} \vec{u}_{i} \times \vec{H}_{0}
$$

and will precess at ate $\gamma_{i} H_{0}$. This constant $\omega_{0, i}=$ $Y_{i} H_{0}$ is referred to as the armor precession frequency.

1.1.2 Rf Hamiltonian

For spin excitation, an oscillating field in the radiofrequency range can be applied. To avoid coupling with the static field, it is applied in the $x y-p l a n e$. Choosing the rf field to be in the x-direction, the rf Hamiltonian is expressed as:

$$
H_{r f}=2 H_{1} \cos (\omega t+\phi) \sum Y_{i} I_{x i}
$$

where H_{l} is the amplitude of the field rotating at a frequency with an initial phase ϕ.

1.1.3 Quadrupolar Hamiltonian

Nuclei with $I>1$ possess an electric quadrupole moment due to the nonspherical distribution of nuclear charge. The nuclear quadrupole moment can interact with the local electric field gradient generated by the spacial anisotropy in the distribution of the valence electrons. The quadrupolar Hamiltonian is given by: (7)

$$
\begin{aligned}
H_{Q} & =\sum_{i} \frac{e Q_{i}}{2 I_{i}\left(2 I_{i}-1\right)} \vec{I}_{i} \cdot \underline{V}_{i} \cdot \vec{I}_{i} \\
& =\sum_{i} \frac{e Q_{i} V_{2 z, i}}{4 I_{i}\left(2 I_{i}-1\right)}\left[3 I_{z i}^{2}-I_{i}\left(I_{i}+1\right)+\frac{1}{2} \pi_{i}\left(I_{+i}^{2}+I_{-i}^{2}\right)\right]
\end{aligned}
$$

where Q_{i} is the quadrupole moment and ${\underset{\sim}{V}}$ is a second rank tensor describing the electric field gradient. The asymmetry parameter n_{i} is defined as:

$$
n_{i}=\frac{\left(v_{x x, i}-v_{y y, i}\right)}{v_{z z, i}},
$$

and $V_{x x, i}, V_{y y, i}$, and $V_{z z, i}$ are the electric field gradient tensor components expressed in the principle axis frame. For axially symmetric gradients, $\quad \eta=0$.

In the presence of a large magnetic field, only the secular part (ie. the part that commutes with H_{Z}) is retained:

$$
H_{Q}=\sum_{i} \frac{e Q_{i} V_{2 z, i}}{4 I_{i}\left(2 I_{i}-1\right)}\left[3 I_{z i}^{2}-I_{i}\left(I_{i}+1\right)\right]
$$

1.1.4 Dipolar Hamiltonian

The direct interaction between magnetic dipoles is given by:

$$
\begin{aligned}
H_{D} & =\sum_{i<j} \vec{I}_{i} \cdot \stackrel{\rightharpoonup}{D}_{i j} \cdot \vec{I}_{j} \\
& =\sum_{i<j} \frac{r_{i} \gamma_{j} h}{r_{i j}^{3}}\left[\frac{3\left(\vec{I}_{i} \cdot \vec{r}_{i j}\right)\left(\vec{I}_{j} \cdot \vec{r}_{i j}\right)}{r_{i j}^{2}}-\vec{I}_{i} \cdot \vec{I}_{j}\right]
\end{aligned}
$$

where ${\underset{\sim}{D}}_{i j}$ is a traceless second rank tensor and $\stackrel{\rightharpoonup}{r}_{i j}$ is the vector connecting nuclei i and j. In high fields, only the secular part of H_{D} is retained:
$H_{D}=\sum_{i<j}^{\stackrel{Y_{i}}{Y_{j}^{H}} r_{i j}^{3}}\left(3 \cos ^{2} \theta_{i j}-1\right)\left[I_{z i} I_{z j}-\frac{1}{4}\left(I_{+i} I_{-j}+I_{-i} I_{+j}\right)\right]$.
This is referred to as the "truncated" dipolar Hamiltonian.

For nuclei of different γ_{i}, γ_{j} and spins I, S the Hamiltonian is further truncated to:

$$
H_{D}=\sum_{i<j} \frac{r_{i} \gamma_{j}^{\hbar}}{r_{i j}^{3}}\left(3 \cos ^{2} \theta_{i j}-1\right) I_{z i} S_{z j} .
$$

1.1.5 Chemical Shift Hamiltonian

The electron cloud surrounding a nucleus is polarized by the applied magnetic field and effectively
shields the nucleus. As a result, nuclei in different chemical surrounding do not experience the same local field. In general, the shielding is expressed in tensor form:

$$
H_{c s}=\sum_{i} \gamma_{i} \vec{I}_{i} \cdot \dot{q}_{i} \cdot H_{0}
$$

where ${\underset{\sim}{i}}_{i}$ is a second rank tensor. In isotropic solution, it is reduced to scalar interaction:

$$
H_{c s}=\quad=_{i} I_{2 i}
$$

where only $\sigma_{i}=\frac{1}{3} \operatorname{Tr}({\underset{\sigma}{i}})$ is retained.
1.1.6 Indirect Spin-Spin Hamiltonian

The interaction between nuclei via electron clouds in general is given by:

$$
H_{J}=\sum_{i<j} \vec{I}_{i} \cdot \sim_{i j} \cdot \vec{I}_{j}
$$

where $J_{i j}$ is a second rank tensor. In high fields, only the secular parts remain:

$$
H_{J}=\sum_{i<j}\left[J J_{i j} \vec{I}_{i} \cdot \vec{I}_{j}+J_{i j}^{a n i s o}\left(3 I_{z i} I_{z j}-\vec{I}_{i} \cdot \vec{I}_{j}\right)\right] \text {. }
$$

Since the anisotropic part of H_{J} has the same form as H_{D}, it is sometimes called the pseudo-dipolar
coupling. In isotropic solution, the anisotropic term is averaged to zero, resulting in a purely scalar coupling:

$$
H_{J}=\sum_{i<j} J_{i j} \stackrel{I}{I}_{i} \cdot \vec{I}_{j} .
$$

As in H_{D}, the interaction between unlike nuclei I and S is truncated to give:

$$
H_{J}=\sum_{i<j} J_{i j} I_{z i} S_{z j}
$$

1.2 SPIN DYNAMICS

The state of a coupled spin system is conveniently described by the density operator ρ. At thermal equilibrium, the state of maximum entropy dictates that the density operator takes the following form:

$$
\rho_{0}=\frac{\exp (-\beta H)}{\operatorname{Tr}\{\exp (-\beta H)\}}
$$

$\therefore \quad=\quad \pi / k_{B} T$ and k_{B} is the Boltzmann constant. At mperatures $B H<1$, the density operator can be expanded in a Taylor's series. Keeping only up to the first order term,

$$
\rho_{0} \simeq z^{-1}(1-B H)
$$

where $z=T r\{\exp (-B A)\}$. Since the first term is proportional to identity and can never have an effect on the spin dynamics, it is usually dropped, yielding what is called the reduced density operator:

$$
\rho=b I_{z}
$$

In all our discussions, the constant $b=-\beta \omega_{o} z^{-1}$ will be suppressed.

The equation of motion for ρ under the influence of an explicitly time-independent Hamiltonian H is given by:

$$
\frac{d \rho}{d t}=-i[H, \rho] .
$$

The formal solution to this first order differential equation is:

$$
p(t)=\exp (-i H t) \rho(0) \exp (i H t)
$$

where $\rho(0)$ is the initial density operator. If the Hamiltonain changes discretely from one timeindependent u ? applications of the above equation yields:
$\rho(t)=\ldots \exp \left(-i H_{2} t_{2}\right) \exp \left(-i H_{1} t_{1}\right) \rho_{0} \exp \left(i H_{1} t_{1}\right) \exp \left(i H_{2} t_{2}\right) \ldots$

The precession at the Larmor frequency is common to all like spins. To remove this uninteresting term, it is common to transform the equation of motion into the rotating frame in which the rf Hamiltonian is stationary:

$$
\frac{d \rho *}{d t}=-i\left[H^{*}, \rho *\right]
$$

In the rotating frame,

$$
\begin{aligned}
& \rho *=\exp \left(-i \omega t I_{z}\right) \rho \exp \left(i \omega t I_{z}\right) \\
& H *=\exp \left(-i \omega t I_{z}\right) \operatorname{Hexp}\left(i \omega t I_{z}\right)
\end{aligned}
$$

are the effective operators. In this representation, the Hamiltonian for like spins is,

$$
H *=-\Delta \omega I_{z}+\omega_{1} I_{x}+H_{Q}^{*}+H_{D}^{*}+H_{c s}^{*}+H_{J}^{*}
$$

where $-\Delta \omega=\left(\omega-\omega_{0}\right)$ is the resonance offset and the internal Hamiltonian retain only the secular parts.

In all our discussions, the rotating frame is the relevant one and the notation *ill be suppressed.
1.3 MO COHERENCE

Formally, $M Q$ coherences are related to the offdiagonal elements of the density matrix ρ, with the $n-$ quantum coherence associated with the elements n off
the diagonal of ρ. A MQ coherence describes the transition between two eigenstates where the well-known selection rule $\Delta m= \pm 1$ is violated. Consider the energy level diagram for N coupled spin-1/2 system of Fig.l.l. An "allowed" transition is one in which the quantum number changes by ± 1. A MQ transition has no such restriction; it can be n-quantum or even zeroquantum. In single-quantum spectroscopy, effectively only one spin flips. In a n-quantum transition multiple spins flip. Tnis multiple flip involves a simultaneous absorption or emission of n photons. The process is coherent one and should be contrasted to a sequential, and hence incoherent, process.

Becaure a MQ coherence is many-body correlation phenomenon, ie requires a Hamiltonian that couples spins. More precisely, the criterion for whether a Hamiltonian term will excite MQ coherences is that it must be a bilinear operator. Such bilinear operators are the dipolar, the J coupling and the quadrupolar Hamiltonians.

In the nonlinear regime where $H_{r f}$ is no longer a weak perturbation, a nonselective excitation of MQ coherences can be accomplished by either a long weak pulse ${ }^{(8)} \quad\left(\left|H_{r f}\right|=\left|H_{i n t}\right|\right)$, or short intense pulses ($\left.\left|H_{r f}\right|>\left|H_{i n t}\right|\right)$ sandwiching time delays in which a bilinear operator is operative. Our focus will be on using short intense pulses to excite $M Q$ coherences. In

Figure 1.1 Generalized energy level diagram of N coupled spin-1/2's. The dashed arrows indicate "forbidden" MQ transitions, the solid arrows are "allowed" single-quantum transitions. The $\Delta m=-1$ dashed arrow indicate a transition forbidden by symmetry.
this limit, $H_{i n t} c a n$ neglected in the duration of the pulses.

1.4 SPECTRAL SIMPLIFICATION

The problem with single-quantum (SQ) spectroscopy is apparent from the $S Q$ spectra of oriented systems shown in fig. 1.2. In Fig. 1.2, the number of coupled protons increases monotonically down the page. one observes that the spectral complexity increases with the number of spins. For a two or three spin system, the spectrum is still fairly simple. But one notices that for, say, a six sin system, already the lines are beginning to overlap. The situation for a sixteen spin system is intractable - one only gets a broad featureless lineshape.

Three methods to reduce spectral complexity are proposed and can be used in combination. The first two methods involve reducing the number of coupled spins. When reduction of system size is no longer feasible, MQ spectroscopy offers a viable alternative.

The first method is to simulate isolated molecular systems, thereby removing intermolecular dipolar couplings.

In solids, extensive dipolar couplings can exist and because of the rigid lattice structure, the full effect of H_{D} is achievable. In order to simulate isolated molecules and maintain the crystal structure,

X BL 7910-123:

Figure 1.2 High resolution proton single-quantum spectra of solutes oriented in liquid crystal solvents.
the desired compound can be diluted into a matrix of the isotopic counterpart. Oftentimes, the nuclei of interest are in low natural abundance, as in the case of ${ }^{13} \mathrm{C}$, and thus the isotopic dilution is already provided.

Solutes dissolved in a liquid crystal solvent are particularly convenient systems for studying intramolecular dipolar couplings. The translational diffusion of the liquid crystal molecules averages to zero the intermolecular couplings. However, because the liquid crystal molecules are restricted in their molecular reorientation, the intramolecular couplings remain but are scaled by order parameters. (9) The same situation occurs for solutes dissolved in a liquid crystal solvent. Thus we have a convenient method for isolating molecules, provided the molecule is soluble in some liquid crystal or is in liquid crystaline form.

Another alternative is to reduce the number of coupled spins per molecule with selective isotopic labeling. This can often be expensive or synthetically difficult, and sometimes infeasible.

To see what spectral simplication can be found from MQ spectroscopy, we refer again to fig. 1.1. We notice that there is only one N-quantum transition, where N is the maximum quantum possible. The number of ($N-1$) quantum is at most N, and so on. One can show
through a combinatorial argument that statistically the number of transitions falls off with the number of quanta in a Gausian manner.(3) In fact, even for a small spin system such as benzene, this statistical argument holds well at least qualitatively (fig. 1.3). Thus, it would be advantageous to observe the higher quantum orders where the density of lines are much lower, provided they contain the same amount of information. This leads us to the problem of determining the information content of $M Q$ orders.

We compare the number of unknown physical constants with the number of measurables, based on a statistical argument. The claim is that it is usually \cdots nh to consider only the $(N-1)$ and ($N-2$) quantum ...ilsitions, provided that all the lines in these orders are resolvable.

In oriented systems, typically one has as unknowns the chemical shifts, J couplings, and dipolar couplings. The number of dipolar couplings is equal to the number of pairs of spins. Likewise for the number of J couplings. The number of chemical shift differences is equal to the number of spins minus one. Thus, the total number of unknowns is $N^{2}-1$.

The ($N-1$) quantum order has $2 N$ lines, and the ($N-2$) quantum order has $N(N-1)$ lines. The accumulative amount of information available thusfar is already $N^{2}-1$. Therefore, indeed the $(N-1)$ and $(N-2)$

XBL 781-6894

Figure 1.3 Integrated intensity versus the number of quanta n. The measured benzene values (solid dots) are compared against a gassian curve based on a statistical counting argument (solid line).
quantum orders offer enough information for a complete determination of the physical constants.

1.5 FOURIER TRANSFORM MQ EXPERIMENT

A multiple-quantum experiment can be separated into four time domains: preparation, evolution, mixing and detection (fig. 1.4). Separation of time domains allows the experimentalist to create the effective Hamiltonian of interest in each time period. This offers great flexibiltiy for the experimentalist on what he chooses to observe, depending on his ingenuity. In the preparation period, the coherences of interests are created, let evolve in ther under Hamiltonian H_{1}. A direct detection of MQ coherences would require multipole detectors. Since our coil is capable of detecting only oscillating dipoles, a mixing period is required to convert the MQ coherences into single quantum coherences, which are detected in time t_{2}. This is repeated for many values of t_{1} until a MQ interferogram in t_{1} is obtained. The MQ evolution in t_{1} is detected as a modulation of the single-quantum amplitude. The signal is given as the trace of the observable $I_{+}=I_{x}+i I_{y}$ with the density matrix at the time of observation:

$$
\begin{aligned}
S\left(\tau, t_{1}, \tau^{\prime}, t_{2}\right)= & \operatorname{Tr}\left\{I_{+}^{\dagger} \rho\left(\tau, t_{1}, \tau^{-}, t_{2}\right)\right\} \\
= & \operatorname{Tr}\left\{I_{-} \exp \left(-i H_{2} t_{2}\right) V^{\dagger}\left(\tau^{-}\right) \exp \left(-i H_{1} t_{1}\right) U^{\dagger}(\tau)\right. \\
& \left.\quad \rho_{o} U(\tau) \exp \left(i H_{1} t_{1}\right) V\left(\tau^{-}\right) \exp \left(i H_{2} t_{2}\right)\right\}
\end{aligned}
$$

	PREPARATION	EVOLUTION	MIXING	DETECTION
PROPAGATOR:	U	$\exp (-i 21, t)$	V	$\exp \left(-12 H_{2} \mathrm{t}_{2}\right)$
TIME VARIABLE:	τ	t		t_{2}

Figure 1.4 A block diagram of $M Q$ pulse sequence, indicating the separation of time domains.

Shown in Fig. 1.5 are two simple $M Q$ pulse sequences. The first two pulses separated by a time delay suffice to prepare MQ coherences.

The amount of coherence prepared depends on the time delay between the pulses. To demonstrate, exact dynamics calculation have been performed on benzene, a 6-spin system. ${ }^{(5)}$ Figure 1.6 shows the dependence of the average integrated intensity of n-quantum coherence on the preparation time. Basically, after an incubation period time on the order of the inverse of the couplings, this dependence is roughly constant for the lower orders. For the 6-quantum transition, since there is no averaging with other transitions, the oscillation is pronounced and continues for all times.

For $\quad-\cdot$ small pumping times τ, the power of the rate of growth of n-quantum integrated intensity varies with n (fig. 1.7). For the two-pulse preparation sequence, the power is $2 n-1$ ($n>1$). (3) This power dependence clearly indicates that it takes more time to build up an n-body correlation. In chapter 4, preliminary experiments in solid adamantane verify that excitation of the higher quantum coherences do require longer preparation times.

Transition phase and intensity depend on the preparation and mixing times for general MQ pulse sequences. The transition phase can be independent of preparation time only if the mixing propagator is the

PREPARATION
EVOLUTION
DETECTION

XBL 804-9059

Fig. 1.5 Two simple three-pulse sequences for exciting and detecting $M Q$ coherences in both channels. If there is no offset, then the upper pulse sequence is even-selective, and the lower sequence is odd-selective.

1:.: : : - ":

Figure 1.6 Exact dynamics calculations of average integrated intensity versus the preparation time for the oriented benzene molecule. Only the 2-, 3-, 6quantum orders are shown. The dependence is roughly constant for all but the six-quantum order.

ORIENTED BENZENE

Figure 1.7 An expansion of the smaller preparation times of the previous figure, showing the rate of growth of coherences varies monotically with n (n>l).
time-reversal of the preparation propagator. This can be important since overlapping lines that are out of phase destructively interfere. To avoid missing lines that happen to have amall intensity at some poorly chosen preparation time, it becomes necessary to do the same experiment with enough different preparation times and take an average.
1.6 EVEN AND ODD SELECTIVITY

Consider the sequence $\frac{\pi}{2} I_{x}-\tau-\frac{\pi}{2} I_{-x}$ for preparation (Fig. 1.5). The "prepared" density operator for this sequence is

$$
\begin{align*}
-\tau)= & \exp \left(i \frac{\pi}{2} I_{x}\right) \exp (-i H \tau) \exp \left(-i \frac{\pi}{2} I_{x}\right) I_{z} \\
& \times \exp \left(i \frac{\pi}{2} I_{x}\right) \exp (i H \tau) \exp \left(-i \frac{\pi}{2} I_{x}\right) . \tag{1}
\end{align*}
$$

A useful concept is to let the rotations operate on H, thereby defining an effective preparation Hamiltonian. We separate the linear terms from the bilinear terms in $H:$

$$
H=-\Delta \omega I_{z}+H_{2 z}
$$

where $H_{z z}$ is bilinear. The effect of the rotation on H is:

$$
\exp \left(i \frac{\pi}{2} I_{x}\right) H \exp \left(-i \frac{\pi}{2} I_{x}\right)=\Delta w I_{y}+H_{y y}
$$

where $H_{y y}=\exp \left(i \frac{\pi}{2} I_{x}\right) H_{z z} \exp \left(-i \frac{\pi}{2} I_{x}\right)$.

> With this, Eq. (1) becomes:
$\rho^{x \bar{x}}(\tau)=\exp \left(-i H_{y y} \tau\right)\left(I_{z} \cos \Delta \omega \tau+I_{x} \sin \Delta \omega \tau\right) \exp \left(i H_{y y} \tau\right)$

$$
\equiv U_{y y}\left[I_{z}\right] \cos \Delta \omega \tau+U_{y y}\left[I_{x}\right] \sin \Delta \omega \tau
$$

where $U_{y y}\left[I_{\alpha}\right] \equiv \exp \left(-i H_{y y} \tau\right) I_{\alpha} \exp \left(i H_{y y}{ }^{\tau}\right)$. The operator $U_{y y}\left[I_{z}\right]$ is composed of even-quantum operators, and $U_{y y}\left[I_{x}\right]$ of od_ quantum operators. In the limit $\Delta \omega=0$,

$$
\rho^{x \bar{x}}(\tau)=U_{y y}\left[I_{z}\right]
$$

is purely even-quantum.
For che sequence $\frac{\pi}{2} I_{y}-\tau-\frac{\pi}{2} I^{\prime}$, the prepared density operator is:

$$
\begin{aligned}
\rho^{y x}(\tau)= & \exp \left(-i \frac{\pi}{2} I_{x}\right) \exp (-i H \tau) \exp \left(i \frac{\pi}{2} I_{y}\right) I_{z} \\
& \quad \exp \left(i \frac{\pi}{2} I_{y}\right) \exp (i H \tau) \exp \left(i \frac{\pi}{2} I_{x}\right) . \\
= & U_{y y}\left[I_{x}\right] \cos \Delta \omega \tau+U_{y y}\left[I_{z}\right] \sin \Delta \omega \tau .
\end{aligned}
$$

In the limit $\Delta \omega=0$,

$$
\rho^{y x}(\tau)=U_{y y}\left[I_{x}\right]
$$

is purely odd-quantum.

By inserting a π pulse in the middle of to remove all resonance offsets, selective preparation sequences can be created. Thus, an even-selective preparation sequence is $\frac{\pi}{2} I_{x}-\frac{\tau}{2}-\pi-\frac{\tau}{2}-\frac{\pi}{2} I_{-x}$ and an odd-selective one is $\frac{\pi}{2} I_{x}-\frac{\tau}{2}-\pi-\frac{\tau}{2}-\frac{\pi}{2} I_{y}$.

1.6 SEPARATION OF ORDERS

A highly useful property is that the offset experienced by $M Q$ coherences scales with n. By going off-resonance by an amount $\Delta \omega$ greater than the largest MQ second moments, the orders can be separated. To see how this comes about, we expand the density operator in the irreducible spherical tensor operator basis: (10)

$$
\rho(t)=\sum_{k, n} a_{k, n}(t) T_{k, n}
$$

where $T_{k, n}$ is the nth-component of $a \operatorname{k-rank}$ tensor ($n<k$). The tensor components $T_{k, n}$ are related to nquantum operators. It is convenient to group the nquantum operators:

$$
\rho(t)=\sum_{\mathbf{n}} \rho_{\mathbf{n}}(t)
$$

where $\rho_{n}(t)=\sum_{k} a_{k, n}(t) T_{k, n}$. As a result of the commutation rule: (10)

$$
\left[I_{z}, T_{k, n}\right]=\pi T_{k, n}
$$

and the following property of exponential operators (10)
$e^{A} e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3}[A,[A,[A, B]]]+\ldots$
the effect of a rotation about I_{z} on p is:

$$
\exp \left(-1 \phi I_{z}\right) \rho_{n}(t) \exp \left(1 \phi I_{z}\right)=\rho_{n}(t) \exp (-1 n \phi) .
$$

This implies that the existence of an off et term in H_{1} will cause n-quantum coherences to oscillate as now:
$\exp \left(1 \Delta \omega t_{1} I_{z}\right) \rho_{n}(\tau) \exp \left(-i \Delta \omega t_{I} I_{z}\right)=\rho_{n}(\tau) \exp \left(1 n \Delta \omega t_{1}\right)$.

If the offset $\Delta \omega$ is greater than the largest $M Q$ second moments, this will result in separation of the orders in the Fourier spectrum.

As a corollary, the inhomogeneity is also scaled by $a_{\text {. For high resolution work, it would be desirable }}$ to remove the inhomogeneity by applying a π pulse in the middle of the evolution period. But by doing so, the centers of orders will coincide.

The method of time proportional phase incrementation (l, 11) (TPPI) allows sorting of orders meanwhile removing inhomogeneous line broadening. It can accomplish separation regardless of whether there is a real resonance offset.

As is evident from its name, the method involves
incrementing the phase of the preparation pulses for each increment in t_{1}, and keeping the mixing pulses at a fixed phase.

Suppose we phase shift the preparation propagator by an amount ϕ :

$$
U_{\phi}(\tau)=\exp \left(-i \phi I_{z}\right) U(\tau) \exp \left(i \phi I_{z}\right)
$$

where $U(\tau)$ is at an arbitrary fixed phase. Applying the propagator on the initial density operator gives:

$$
\begin{aligned}
\rho(\tau) & =U_{\phi}^{\dagger}(\tau) I_{z} U_{\phi}(\tau) \\
& =\exp \left(-i \phi I_{z}\right) U^{\dagger}(\tau) I_{z} U(\tau) \exp \left(i \phi I_{z}\right)
\end{aligned}
$$

Consider incrementing the phase of the preparation pulses by an amount $\Delta \phi$ proportional to t_{1}. We can express the phase as

$$
\phi=\Delta \omega t_{1}
$$

where $\Delta \omega=\frac{\Delta \phi}{\Delta t}{ }_{1}$.
The fictitious offset $\Delta \omega$ is a parameter that can be varied by changing the phase increment $\Delta \phi$. To observe up to a maximum order M, the bandwidth $1 / \Delta t_{1}$ must encompass up to $2 M \Delta \omega / 2 \pi$. That is, the minimum increment in t_{1} must satisfy:

$$
\frac{1}{\Delta t_{1}}>\frac{2 M \Delta \omega}{2 \pi}
$$

The corresponding condition on $\Delta \phi$ given Δt_{1} is:

$$
\Delta \phi<\frac{2 \pi}{2 M} .
$$

Keeping the mixing propagator $V\left(T^{\circ}\right)$ at a fixed phase, the expression for the signal is then:

$$
\begin{aligned}
S\left(\tau, t_{1}, \tau^{0}\right)= & \operatorname{Tr}\left\{V\left(\tau^{0}\right) I_{-} V^{\dagger}\left(\tau^{0}\right) \exp \left(-i H_{1} t_{1}\right)\right. \\
& \left.\times U_{\phi}^{\dagger}(\tau) I_{2} U_{\phi}(\tau) \exp \left(-i H_{1} t_{1}\right)\right\} \\
= & \operatorname{Tr}\left\{V\left(\tau^{-}\right) I_{-} V^{\dagger}\left(\tau^{-}\right) \exp \left(-i H_{1} t_{1}\right) \exp \left(-i \Delta \omega t_{1}\right)\right. \\
& \times \nabla^{\dagger}(\tau) I_{2} U(\tau) \exp (i \Delta \omega t\} \exp \left(i H_{1} t_{1}\right) .
\end{aligned}
$$

Thus the signal experiences an additional, although artificial, offset.

By insertion, π pulse in the middle of t_{1}, the effective H_{1} is free of all real offset terms. With this and TPPI, we can obtain separation of orders without losing high resolution.

In chapter 2 , the scaling of inhomogeneity with n is put to use to obtain separation of MQ spin echoes and to allow selective detection.

CHAPTER 1 REFERENCES

1. G. Drobny, A. Pines, S. Sinton, D.P. Weitekamp, and D. Wemmer, Faraday Symp. Chem. Soc. 13, 49 (1979).
2. A. Wokaun and R.R. Ernst, Molec. Phys. 36, 317 (1978) .
3. W.S. Warren, Ph.D. thesis, University of California, Berkeley, 1980 .
4. G. Bodenhausen, Progr. NMR Spectrosc. 14, 137 (1981).
5. J.B. Murdoch, Ph.D. thesis, University of California, Berkeley, 1982 .
6. D.P. Weitekamp, Advan. Magn. Reson., submitted for publication.
7. A. Abragam, Principles of Nuclear Magnetism, (Oxford, London, 1961).
8. S. Yatsiv, Phys. Rev. 113, 1522 (1959).
9. J.W. Emsley and J.C. Lindon, NMR Spectroscopy Using Liquid Crystal Solvents, (Pergamon Press, New York, 1975).
10. E. Merzbacher, Quantum Mechanics, (John-Wiley \& Sons, New York, 1961), 2nd ed.
11. G. Bodenhausen, R.L. Vold, and R.R. Vold, J. Magn. Reson. 37, 93 (1980).

CHAPTBR 2

INDIRECT DETECTION OF SPIN-1 DOUBLE-QUANTOM COHERERCE

IN LIQUIDS

2.1 INTRODUCTION

Time domain multiple-quantum (MQ) NMR has been demonstrated in a variety of systems (1) to offer higher resolution and more information on relaxation dynamics than single-quantum ($S Q$) methods. Although $S=1$ nuclei in anisotropic systems were among the early applications of time domain double-quantum (DQ) NMR, $(2,3,4)$ it is only recently that the interesting problem has been raised of observing these transitions in isotropic solution where the quadrupole coupling vanishes. Prestegard and Miner ${ }^{(5)}$ recognized that the usual preparation sequence using two $i / 2$ pulses ${ }^{(6,7)}$ on the s spins (${ }^{14} N$) does not excite DQ coherence, even when the spectrum shows resolved J coupling to neighboring heteronuclei. They demonstrated that augmentation of this sequence by spin tickling of bound protons ($I=1 / 2$) did allow S spin $D Q$ coherence to be prepared from and mixed to spin magnetization.

In this work we demonstrate that the S DQ coherence can be excited and detected by using only the I spin magnetization and applying simple hard pulses at both I and S fequencies. This is an example of heteronuclear coherence transfer $(8,9)$ and is an
extension of heteronuclear $M Q$ techniques already demonstrated for $I=S=1 / 2$ in 1 quids (10) and in liquid crystals (11), and for $I=1 / 2, S=1$ in liquid crystals (12) and solids. $(13,14,15)$

This indirect method of observation of $S=1 D Q$ coherence benefits from the signal enhancement (10,12) which comes from using only proton magnetization as the initial and final conditions. In addition, we employ spin echoes and time proportional phase incrementation (PPI) ${ }^{(7,16)}$ to separate orders and a form of coherence transfer echo $(9,17)$ to suppress large zero-quantum interference.

In discussing the various coherences possible in a heteronuclear system, it is useful to label them with a pair of quantum numbers (n, n^{S}) which are conserved under free evolution. For any coherent superposition $|i\rangle\langle j|$ of two eigenstates these are defined by the relations

$$
\begin{align*}
& {\left[I_{z},|i\rangle\langle j|\right]=n_{i}^{I}|i\rangle\langle j|,} \tag{la}\\
& {\left[S_{z},|i\rangle\langle j|\right]=n_{i j}^{S}|i\rangle\langle j| .} \tag{1b}
\end{align*}
$$

These are just the differences in leman quantum numbers for the states connected: $n_{i}^{I}=m_{i}^{I}-m_{j}^{I}, n_{i j}^{S}=$ $m_{i}^{S}-m$.

2.2 THEORY

Shown in Fig. 2.1 are two pulse sequence

xS 518-4950

Fig. 2.l Pulse sequences used for observing heteronuclear $M Q$ coherence. The I spin FID is monitored at $t_{2}=T$. Pulse sequence B has the first two s spin rf pulses phase shifted by $\phi=\Delta \omega t_{1}$ (TPPI). All other rf pulses of a given frequency may be of the same phase. The delays Δ_{1} and Δ_{2} allow suppression of the signal from all but one order of coherence.
variations for observation of various orders of coherence ($n_{i j}^{T}, n_{i j}^{S}$) using only I spin magnetization. Perfect rf pulses of negligible duration are assumed. We consider here the case of a group of equivalent I spins identically coupled to a single $s=1$ spin. The unperturbed rotating frame Hamiltonian is

$$
\begin{equation*}
H=-\Delta \omega_{I} I_{z}-\Delta \omega_{S} S_{z}+J^{-} I_{z} S_{z}, \tag{2}
\end{equation*}
$$

where $J^{-}=2 \pi J$ is the scalar heteronuclear coupling (in rad/sec) and $I_{z}=\sum_{i} I_{z i}$. For the preparation sequence

$$
\begin{align*}
U(\tau) & =\exp \left[i(\pi / 2)\left(I_{x}+S_{x}\right)\right] \exp (-i H \tau / 2) \exp \left[i \pi\left(I_{x}+S_{x}\right)\right] \\
& \times \exp (-i H \tau / 2) \exp \left[i(\pi / 2) I_{x}\right] \\
= & \exp \left(-i \tau J I_{y} S_{y}\right) \exp \left[-i(\pi / 2) s_{x}\right] . \tag{3}
\end{align*}
$$

The simultaneous π pulses remove the dependence on the offset terms in the Hamiltonian of Eq. (2) making the propagator even-quantum selective ${ }^{(4,10,18)}$ and dependent only on the variable $J^{\circ} \tau$.

The density operator at the end of the preparation period is $\rho(\tau)=U(\tau) \rho(0) U^{-1}(\tau)$. Neglecting the term proportional to the identity this is given by

$$
\begin{aligned}
\rho(\tau) & =\exp \left(-i \tau J^{\wedge} I_{y} S_{y}\right)\left(b I_{z}\right) \exp \left(i \tau J^{\prime} I_{y} S_{y}\right) \\
& =b\left[I_{z} \cos \left(J^{-} \tau S_{y}\right)+I_{x} \sin \left(J^{\wedge} \tau S_{y}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
=b\left\{I_{z}[1\right. & \left.+S_{y}^{2}\left(\cos J^{-} \tau-1\right)\right] \\
& \left.+I_{x} S_{y} \sin J^{-} \tau\right\} \tag{4}
\end{align*}
$$

In the last step, the identities

$$
\begin{align*}
& \cos \left(\theta S_{y}\right)=1+s_{y}^{2}(\cos \theta-1), \tag{Sa}\\
& \sin \left(\theta S_{y}\right)=s_{y} \sin \theta \tag{sb}
\end{align*}
$$

appropriate to $S=1$ have been used. The initial equilibrium spin density operator proportional to \boldsymbol{S}_{2} is not included in the expression, since it does not yield $D Q$ coherence nor does it lead to an eventual signal in the proton channel. Equation (4) can be written using the fictitious spin-1/2 operators $(19,20)$ for the S operators:

$$
\begin{align*}
\rho(\tau)=b\left\{I_{z}[1\right. & +\left(2 / 3-s_{x}^{1-3}\right. \\
& \left.-1 / 3\left(s_{z}^{1-2}-s_{z}^{2-3}\right)\right)\left(\cos J^{-\tau-1)]}\right. \\
& \left.+2^{1 / 2} I_{x}\left(s_{y}^{1-2}+s_{y}^{2-3}\right) \operatorname{sinJ} \tau\right\} \tag{6}
\end{align*}
$$

This expansion shows that $S_{y}{ }^{2}$ consists of zero-quantum and $D Q$ operators. The coefficient of the operator $I_{z} S_{y}{ }^{2}$, and thus of the ($n^{I}=0, n^{S}= \pm 2$) coherence $I_{z} S_{x}{ }^{-3}$, is maximized by setting $\tau=1 / 2 \mathrm{~J}$ sec, where J is in hertz.

The prepared coherences evolve during t_{1}. Since only ($n^{I}= \pm 1, n^{s}=0$) coherences can freely evolve
into proton transverse magnetization, the $\pi / 2$ pulses at the end of t_{1} are needed to convert MQ coherence into such $S Q$ coherence. For each increment in t_{1}, only the peak of the MQ spin echo at $t_{2}=\tau$ is sampled in the proton channel. The resulting heteronuclear $M Q$ interferogram as a function of the evolution time t_{1} is the autocorrelation function of $\rho(\tau)=\rho\left(\tau, t_{1}=0\right)$. Neglecting relaxation and with $\Delta_{1}=\Delta_{2}=0$ (Fig. 2.1), this is

$$
\begin{align*}
S\left(t_{1}\right) & =\operatorname{Tr}\left\{\rho(\tau, 0) \rho\left(\tau, t_{1}\right)\right\} \\
& =\operatorname{Tr}\left\{\rho(\tau, 0) \exp \left(-i t_{1} J{ }^{\wedge} I_{z} S_{z}\right) \rho(\tau, 0) \exp \left(i t_{1} J{ }^{\wedge} I_{z} S_{z}\right)\right\} \\
& =\sum_{i, j}|\rho(\tau, 0)|_{i, j}^{2} \exp \left(-i \omega_{i j} t_{l}\right), \tag{7}
\end{align*}
$$

where $\omega_{i j}=\omega_{i}-\omega_{j}$ and $\omega_{i}=\langle i| J^{\prime} I_{z} S_{z}|i\rangle$.
Evaluation of the matrix elements of $I_{z} S_{x}^{1-3}$ [Eq. (6)] for the case of four equivalent $I_{i}=1 / 2$ spins shows that the $D Q$ spectrum is a quintet with line separation of $2 J$ and line amplitude of

$$
\begin{array}{rlrl}
A\left(m^{I}\right) & =(1 / 4)\left(\cos J^{\wedge} \tau-1\right)\left(\cos ^{\wedge} t_{2}-1\right)\left(m^{I}\right)^{2} g\left(m^{I}\right) \\
& =\left(\cos J^{\wedge} \tau-1\right)\left(\cos J^{\wedge} t_{2}-1\right), & m^{I}= \pm 2 \\
& =\left(\cos J^{\wedge} \tau-1\right)\left(\cos J^{\wedge} t_{2}-1\right), & m^{I} \neq \pm 1 \\
& =0, & m^{I}=0 .
\end{array}
$$

Note that the central line of the quintet has zero amplitude. The degeneracies $g\left(m^{I}\right)$ are $1,4,6$ for $m^{I}=$
$\pm 2, \pm 1,0$, respectively.
The fixed time delays Δ_{1} and Δ_{2} are included to selectively echo the desired order for detection. The scheme is similar to pulsed field gradient methods (17), except that here the static field inhomogeneity and a longer time delay are used for the dephasing and selective rephasing. Advantage is taken of the proportionality of the dephasing rate to $n^{I} \gamma_{I}+n^{S} \gamma_{S}$, thereby allowing separation of various $M Q$ echoes. Sampling at the peak of the desired MQ echo results in detection of the selected order and suppression of the other orders. In our experiments, the ${ }^{14} \mathrm{~N}$ DQ coherence dephases at rate proportional to $2 Y_{S}$ in Δ_{1} and rephrases as proton $S Q$ coherence at ate proportional to Y_{I} in Δ_{2}. To observe the ${ }^{14} N$ DQ coherence echo as proton transurge magnetization, Δ_{2} must be set at

$$
\begin{equation*}
\Delta_{2}=\frac{2 \gamma_{S}}{\gamma_{I}} \Delta_{1} \tag{9}
\end{equation*}
$$

This scheme can be viewed as a coherence transfer echo filtering (CTEF) process. The desired DQ signal is a small oscillation on top of a large signal originating from coherence not of $D Q$ nature, the largest being from the $H_{2} O$ solvent. Fluctuations in the large signal resulting from instrumental instability appear in the fourier transform as noise at all values of ω_{1}. Because this t_{1} noise can be
comparable to the $D Q$ signal, it is desirable to eliminate it by "filtering" out the large signal. In addition, the dynamic range requirements of the spectrometer are reduced, since the largest signals never reach the receiver.

Pulse sequence B differs from A only in the way the separation of $M Q$ orders is accomplished. Because of the tensorial properties of $M Q$ operators expressed in Eq. (1), the center of the order (n^{I}, n^{s}) is at $n^{I} \Delta \omega_{I}+{ }_{n}{ }^{s} \Delta \omega_{S}$. Pulse sequence A requires a real resonance offset, whereas pulse sequence breates an artificial offset by TPPI. (7,16) The π pulses in t_{1} remove all real resonance offset terms and thus field inhomogeneity. The phase incrementation of the $S f$ pulses in the preparation period for each incrementation in t_{1} effects an apparent S frequency offset in the observing frame. TPPI yields a spectrum that is free of inhomogeneous broadening and yet retains separation of the $M Q$ orders.

2.3 RESULTS AND DISCUSSION

Spectra were obtained at $27^{\circ} \mathrm{C}$ of an 8 molar $\mathrm{NH}_{4} \mathrm{NO}_{3}$ aqueous solution acidified to pH lo slow down proton exchange with the solvent. The spectrum in fig. 2.2 was obtained using pulse sequence A with the ${ }^{14} N$ carrier frequency offset by 0.85 kHz from $\mathrm{NH}_{4}{ }^{+}$ resonance and the proton carier frequency on resonance

Fig. 2.2 Proton-detected heteronuclear MQ magnitude spectrum of acidified 8 molar $\mathrm{NH}_{4} \mathrm{NO}_{3}$ aqueous solution observed at 185 MHz . The spectrum is obtained using pulse sequence A in Fig. 2.1 with ${ }^{14} N$ carrier frequency offset from $\mathrm{NH}_{4}{ }^{+}$resonance by $\Delta \omega_{S}=0.85 \mathrm{kHz}, \tau=\mathrm{t}_{2}=$ 9.6 mech, t_{1} increment $=200$ sec, $\Delta_{1}=11.327 \mathrm{msec}$, and $\Delta_{2}=1.618 \mathrm{msec}$. The incompletely suppressed onresonance line arises predominantly from longitudinal $H_{2} \mathrm{O}$ magnetization present during t_{1}. The multiplex with the center offset by 1.70 kHz is the ${ }^{14} \mathrm{~N}$ IQ spectrum.
at 185 MHz. The time delays Δ_{1} and Δ_{2} were set according to Eq. (9). The central peak at $\Delta \omega=0$ arises predominantly from imperfect CTEF of the longitudinal proton magetization of the solvent H_{2} O present during evolution. Other contributions are from the zero-quantum portion of $I_{z} S_{y}^{2}$ and from I_{z} of the ammonium protons, both of which are present in $\rho(\tau)$ even when $D Q$ coherence is maximized [Eqs. (4) to (6)]. The multiplet corresponds to the DQ coherence transfer spectrum of ${ }^{14} \mathrm{~N}$. Its center is offset by 1.70 $k H z$, which is twice the carrier frequency offset, the splitting is 2 J , and the linewidth is twice that of ${ }^{14} \mathrm{~N}$ SQ inhomogeneous linewidth - all of which are indicative of ${ }^{14} N$ DQ transitions.

Figure 2.3 shows the improvement in resolution of the multiplet using pulse sequence B with the same parameter settings. The spectrum is a quintet with relative amplitudes of $1: 1: 0: 1: 1$ and splittings of 2 J , in agreement with the calculations [Eq. (8)]. The splitting is $105 \pm 1 \mathrm{~Hz}$; the homogeneous absorption linewidth (full width at half maximum) is $7 \pm 1 \mathrm{~Hz}$ as compared with the inhomogeneous linewidth of 70 to 80 Hz in Fig. 2.2.

Also of importance is the comparison of the homogeneous ${ }^{14} \mathrm{~N}$ DQ and $S Q$ linewidths. Through a conventional ${ }^{14} N$ detected spin echo sequence, with a simultaneous π pulse applied to the protons to preserve

Fig. 2.3 Proton-detected ${ }^{14} \mathrm{~N}$ DQ magnitude spectrum using pulse sequence B in Fig. 2.1 with ${ }^{l} H$ and ${ }^{14} N$ carrier frequencies on resonance. $\tau=t_{2}=10 \mathrm{msec}$; all other parameter settings are the same as in fig. 2.2. The spectrum is a quintet with 1:1:0:1:1 amplitude ratio and 105 Hz peak separation.
the J coupling, the absorption linewidth of ${ }^{14} N \mathrm{NQ}$ and SQ homogeneous linewidths are the same.

In both Figs. 2.2 and 2.3, the magnitude spectra are displayed. The lines of the quintet can in principle be observed in phase [Eq. (7)], but were not because of the use of CTEF. The insertion of the time delay Δ_{1} in t_{1} necessitates that the heteronuclear $M Q$ interferogram is first sampled not at $t_{1}=0$ but at t_{1} $=\Delta_{1}$. During the extra time Δ_{1}, the lines accumulate phase at different rates resulting in a large phase shift linear in ω_{1}.

To demonstrate the sinusoidal dependence of the $I_{z} S_{x}^{1-3}$ operator on preparaton time [Eq. (6)], pulse sequence B was employed with t_{2} held constant for different values of τ. With t_{2} fixed, the line amplitude varies with τ as (cosJ τ - 1)exp $\left(-\tau / T_{2}\right)$, where now T_{2} refers to the $n^{I}=1$ homogeneous decay time. Figure 2.4 shows the integrated line amplitude of the quintet as a function of τ. A least squares analysis gave $T_{2}=80 \pm 11$ msec.

In summary, $D Q$ transitions in ${ }^{14} N$, a quadrupolar n. - $1 s$ of s in $S=1$, is made possible through the J coupling to the protons. Sensitivity is greatly improved by indirectly detecting the quadrupolar nuclei through the protons. Using TPPI and a spin echo in the evolution period, the inherently higher resolution of the $D Q$ spectrum is realized.

XB6 819-4951

Fig. 2.4 Normalized 14 N DQ line amplitude as a function of the preparation time t. The experimental points are compared with the solid theoretical curve of (cosJ $\tau-1$)exp $\left(-\tau / T_{2}\right)$.

CHAPTER 2 REFERENCES

1. G. Bodenhausen, Progr. NMR Spectrosc. 14 , 137 (1981).
2. S. Vega and A. Pines, J. Chem. Phys. 66, 5624 (1977).
3. S. Hsi, H. Zimmerman, and Z. Luz, J. Chem. Phys, 69, 4126 (1978).
4. D.E. Wemmer, Ph.D. thesis, University of California, Berkeley, 1978 .
5. J.H. Prestegard and V.W. Miner, 22 nd Experimental NMR Conference, 1981; V.W. Miner and J.H. Prestegard, J. Am. Chem. Soc. 108, 5979 (1981).
6. W.P. Aue, E. Bartholdi, and R.R. Ernst, J. Chem. Phys. 64, 2229 (1976).
7. G. Drobny, A. Pines, S. Sinton, D.P. Weitekamp, and D. Wemmer, Faraday Symp. Chem. Soc. 13, 49 (1979).
8. A.A. Maudsley and R.R. Ernst, Chem. Phys. Lett. 50, 368 (1977).
9. A.A. Maudsley, A. Wokaun, and R.R. Ernst, Chem. Phys. Lett. 55, 9 (1978).
10. L. Müller, J. Am. Chem. Soc. 101, 4481 (1979).
11. D.P. Weitekamp, J.R. Garbow, and A. Pines, submitted for publcation.
12. A. Minoretti, W.P. Aue, M. Rheinhold, and R.R. Ernst, J. Magn. Reson. 40, 175 (1980).
13. S. Vega, T.W. Shattuck, and A. Pines, Phys. Rev A

22, 638 (1980).
14. P. Brunner, M. Rheinhold, and R.R. Ernst, J. Chem. Phys. 73, 1086 (1980).
15. M. Rheinhold, P. Brunner, and R.R. Ernst, J. Chem. Phys. 74, 184 (1980).
16. G. Bodenhausen, R.L. Vold, and R.R. Vold, J. Magn. Reson. 37, 93 (1980).
17. A. Bax, P.G. de Jong, A.F. Mehlkopf, and J. Smidt, Chem. Phys. Lett. 69, 567 (1980).

1e. W.S. Warren, D.P. Weitekamp, and A. Pines, J. Chem. Phys. 73, 2084 (1980).
19. A. Wokaun and R.R.Ernst, J. Chem. Phys. 67, 1752 (1977).
20. S. Vega, J. Chem. Phys. 68, 5518 (1978).

CHAPTER 3

TIME-REVERSAL MULTIPLE-QUANTUM NMR IN SOLIDS

3.1 INTRODUCTION

Multiple-quantum (MQ) NMR spectroscopy has generally been applied to systems of isolated molecules with a small number of spins. ${ }^{(1,2)}$ The small system size limits the complexity of the spectrum as well as the number of rf quanta that can be absorbed or emitted. One difficulty in studying large spin systems is that the average intensity per transition decreases rapidly with the number of spins. As a result, selective excitation schemes (3) may be necessary to channel intensity into the desired n-quantum order. Thus, comparatively few applications have been performed in solids, $(4,5)$ where extensive dipolar coupling makes the coupled spin system essentially infinite in size.

In this chapter, we present the utilization of time reversal $(3,6)$ to enhance overall signal intensity so that very high quantum absorption can be observed in solids. In fig. 3.1, we show a ${ }^{1} H$ MQ spectrum of solid adamantane $C_{10} H_{16}$ obtained by such a time-reversal excitation-detection scheme, where up to 22-quantum absorption is observed. Adamantane is a plastic crystal; the molecule is nearly spherical and as such can tumble isotropically in the solid phase. At room

Figure 3. ${ }^{1}$ H multiple-quantum NMR spectrum of solid adamantane at room temperature, obtained with timereversal sequence of Fig. 3. $2(\mathrm{~d})$ and excitation time of 480 usec.
temperature, this motion averages to zero all intramolecular couplings but retains the intermolecular terms. Our system is thus not an isolated molecule but rather a network of molecules. Very high quantum transitions might thereby be excited.

One of the main features of solids is the high density of spin states. Due to the continuum of transitions, individual lines within each n-quantum order are unresolved. Since both the intensity and phase of individual $M Q$ coherences depend uniquely on the excitation time, there may occur destructive interference between overlapping lines. The integrated intensity of the $M Q$ spectrum is decreased and the signal-to-noise ratio suffers. This problem becomes more severe as the excitation time is increased, as is observed experimentally. Very quickly, typically within 10^{-4} sec, the signal-to-noise ratio is dominated by instrumental noise. It eventually becomes very difficult to observe high quantum absorption, where long excitation times are required.

What is desired then is the generation of all lines in phase at the point of detection, that is, in some manner to reverse the dephasing that occurred in the excitation period. In solids, the dominant dephasing mechanism is the dipole-dipole interaction, which is homogeneous in nature. If one is able to produce a homogeneous spin echo, (6) the peak of the
 can be accomplished by applying a series of intense rf pulses to the spin system to effect what is in essence time reversal. With the method of time reversal, we were able to regain the intensity lost due to fast homogeneous dephasing of spins in solids.

3.2 THEORY

For the following discussions, it is convenient to introduce the time-domain $M Q$ NMR experiment, described schematically in Fig. 3.2(a). The sequence can be partitioned into four time domains: ${ }^{(7)}$ preparation (τ), evolution (t_{1}), mixing (τ^{\prime}), and detection (t_{2}) periods. As a specific example, consider the simple threepulse sequence in fig. 3.2(b). The first two pulses separated by an excitation delay \quad prepare $M Q$ coherences, which then evolve freely for a time t_{1}. Because $M Q$ coherences do not correspond to magnetization, they are not directly observable with our detection coil. A third pulse is needed to convert them into single-quantum coherences, which are detected in time t_{2}. For our experiments, only the point at t_{2} = Tis sampled. (8) The sequence is repeated for many values of ty until one maps out an interferogram. Fourier transformation with respect to thef of interferogram yields the $M Q$ spectrum.

The equation of motion of coupled spin system is

(a)

(d)

XBL 828-10792
Figure 3.2 Multiple-quantum pulse sequences: (a) Schematic pulse sequence showing relevant periods. (b) Nonselective three -pulse experiment. (c) Even-selective sequence with preparation pulses phase shifted by an amount $\phi=\Delta \omega t_{1}$ (TPPI) to separate n-quantum orders. (d) Time -reversed preparation and mixing periods with the preparation $\pi / 2$ pulses phase shifted by an amount ϕ (TPPI). The preparation and mixing periods are composed of cycles of the 8 -pulse ($H_{x x}$-ry $_{y}$) sequence shown below. A delay of 1.6 msec separates the mixing period from the final detecting pulse to allow
transients to decay away. 30 usec is allowed for receiver deadtime before sampling is taken at the dotted line.
conveniently described in the density matrix formalism. In this formalism, neglecting relaxation, the signal in the time domain is given by the trace of the product of the observable and the reduced density matrix:

$$
\begin{align*}
S\left(\tau, t_{1}, \tau^{\sim}\right) & =\operatorname{Tr}\left\{I_{z} \rho\left(\tau, t_{1}, \tau^{\sim}\right)\right\} \\
& =\operatorname{Tr}\left\{V I_{z} V^{\dagger} \exp \left(-i H_{1} t_{1}\right) U^{\dagger} I_{z} \operatorname{Uexp}\left(i H_{1} t_{1}\right)\right\} \\
& =\operatorname{Tr}\left\{Q\left(\tau^{0}\right) \exp \left(-i H_{1} t_{1}\right) P(\tau) \exp \left(i H_{1} t_{1}\right)\right\} \\
& =\sum_{j, k} P_{j k}(\tau) Q_{k j}\left(\tau^{\prime}\right) \exp \left(-i \omega_{j k} t_{1}\right) . \tag{1}
\end{align*}
$$

Here $U=\exp (i H \tau)$ is the preparation propagator, $V=$ exp(iH ${ }^{\circ} \tau^{\circ}$) is the mixing propagator, $P=U^{\dagger} I_{z} U$ is the preparation density operator, $Q=V I_{z} V^{\dagger}$ is the mixing density operator, $|j\rangle s$ are eigenstates of the Hamiltonian H_{1}, and $\omega_{j k}=\omega_{j}-\omega_{k}$ is the transition frequency. In the above equation, the invariance of the trace to cyclic permutation is used. The spin system is assumed to be initially at equilibrium. For notational convenience, a virtual $\pi / 2$ pulse is applied at end of τ^{\prime} so that I_{z} rather than $I_{+}=I_{x}+i I_{y}$ is our observable.

To see how phase terms can arise in a MQ NMR experiment, let us consider the situation $V=U$, which is the case for the commonly-used pulse sequences in Figs. 3.2(b) and 3.2(c). The transition between states $|j\rangle$ and $|k\rangle$ is then described by a complex vector
$\left(P_{j k}\right)^{2}$, where the intensity is given by $\left|P_{j k}\right|^{2}$ and the phase is complicated function of the preparation period:

$$
\begin{equation*}
\theta_{j k}(\tau)=\tan ^{-1}\left\{\frac{\operatorname{Im}\left[P_{j k}{ }^{2}(\tau)\right]}{\operatorname{Re}\left[P_{j k}{ }^{2}(\tau)\right]}\right\} . \tag{2}
\end{equation*}
$$

The preparation density operator p and hence the phase of a transition vary with the excitation time τ. ${ }^{(9)}$

If we now look at the case $V=U^{\dagger}$, then $Q=P=$ P^{\dagger}, and the signal can be written as an autocorrelation function of th. a-oparation density operator $P(\tau)$:

$$
\begin{align*}
S\left(\tau, \tau_{1}\right) & \left.=\tau-i P^{\dagger}(\tau) \exp \left(-i H_{1} t_{1}\right) P(\tau) \exp \left(i H_{1} \tau_{1}\right)\right\} \\
& =\sum_{j, k}\left|P_{j k}(\tau)\right|^{2} \exp \left(-i \omega_{j k} t_{1}\right) . \tag{3}
\end{align*}
$$

Note that here the signal contains no phase factor for all lines. Suppose further that V differs from U^{\dagger} only in phase by an amount x, ie.,

$$
\begin{equation*}
V=\exp \left(-i \times I_{z}\right) U^{\dagger} \exp \left(i \times I_{z}\right) \tag{4}
\end{equation*}
$$

Then $Q=\exp \left(-i \times I_{z}\right) P \exp \left(i x I_{z}\right)$, and the signal is given by :

$$
\begin{equation*}
S\left(\tau, t_{1}\right)=\sum_{n} \sum_{j, k}\left|p_{j k}\right|^{2} \exp (i n x) \exp \left(-i \omega_{j k} t_{1}\right) . \tag{5}
\end{equation*}
$$

This states that all lines within order $n=m_{j}-m_{k}$, where the m's are Zeeman magnetic quantum numbers, have the same phase, and lines between neighboring
orders differ in phase by $\pm x$. Thus, if orders are well-separated, the condition in Eq. (4) is sufficient to ensure no phase cancellation. In practice, Hermitian conjugation of U or V is achieved by negating the Hamiltonian, which has the same effect as reversing time, hence the term time reversal.

3.3 EXPERIMENTAL

The actual pulse sequence used to generate the time-reversed spectra is shown in Fig. 3.2(d). The eight-pulse cycle preparation sequence creates an average Hamiltonian (10) (H_{xx} - H_{yy}) , which is a pure double-quantum operator ${ }^{(3)}$ and can excite only evenquantum transitions. The excitation time is increased by adding more cycles. To account for finite rf pulsewidths, $2 \Delta+t_{p}$ is used in place of 2Δ, where t_{p} is the pulse duration. The experiment was performed on resonance, causing all MQ orders to overlap. To create the large artificial offset required for separation of orders, the method of time proportional phase incrementation (TPPI)(11) is used. For each incrementation in t_{1}, the phase of the preparation pulses is incremented by the amount:

$$
\begin{equation*}
\Delta \phi=\frac{2 \pi}{2 M} \tag{6}
\end{equation*}
$$

where M is the maximum $M Q$ order to be observed.
In principle, detection can be made immediately after the mixing pulses with a final detecting pulse.

In practice, however, due to pulse imperfections and relaxation, a delay of 1.6 msec is introduced after the mixing pulses, allowing transients to decay before applying a detecting pulse. These transients should decay on the order of T_{2}, the spin-spin relaxation time, (12) which is typically $10^{-4} \mathrm{sec}$ for solids. The desired signal, after mixing, is in the form of populations. It decays as T_{1}, the spin-lattice relaxation time, (12) which is on the order of seconds, and should essentially be preserved during the 1.6 msec delay. The final $\pi / 2$ pulse rotates it into the transerse plane for detection. The detecting pulse can be of arbitrary phase, as long as it remains fixed from point to point in t_{1}. A delay of 30 usec is inserted before sampling to allow for receiver deadtime.

3.4 RESULTS AND DISCUSSION

To demonstrate the severity of intensity loss due to phase cancellation in the normal nontime-reversal approach to MQ NMR, in Fig. 3.3 we compare ${ }^{1} H \quad M Q$ magnitude spectra of adamantane obtained with and without time reversal, using pulse sequences of figs. 3.2(d) and 3.2(c), respectively. The π pulses in Fig. 3.2(c) remove all resonance-offset terms, rendering this sequence even-selective, (13) as is the sequence of Fig. 3.2(d). Both spectra were obtained at $35^{\circ} \mathrm{C}$ with a

Figure 3.3 Comparison of adamantine lh multiplequantum NMR spectra obtained with 144 used excitation time and using (a) time -reversal pulse sequence of Fig. 3.2(d) with $\Delta=0.8$ user and $t_{p}=3.2$ sec, and (b) nontime-reversal pulse sequence of Fig. 3.2(c).
preparation time of 144 usec. Without time reversal, phase cancellation results in a significant reduction of absolute integrated intensity. This difference in intensity becomes more pronounced as the excitation time increases. We emphasize here that without time reversal, we were not able to increase the excitation time long enough to observe high quantum absorption. Comparison of lineshapes, in particular second moments, with and without incorporation of time reversal will be discussed elsewhere.

An interesting result of these experiments is the initial time dependence of $M Q$ intensities on n, the number of quanta. The short time behavior can be obtained from a power expansion in τ of the preparation density operator:

$$
\begin{align*}
P(\tau) & =\exp (-i H \tau) P(0) \exp (i H \tau) \\
& =P(0)-i \tau[H, P(0)]-\frac{\tau^{2}}{2}[H,[H, P(0)]]+\ldots \tag{7}
\end{align*}
$$

For the (H_{xx} - H_{yy}) pulse sequence in Fig. 3.2(d) assuming perfect δ-function pulses, evaluation of the commutators for $P(0)=I_{z}$ reveals that the integrated intensity of a given order ($n=0,4,6,8, \ldots)$ grows in as:

$$
\begin{equation*}
\sum_{j, k}\left|p_{j k}\right|^{2} \propto \tau^{n+4} \tag{8}
\end{equation*}
$$

where the summation runs through all j, k such that mj-
$m_{k}=n$. The intensity of the double-quantum order grows in as τ^{2}. Thus, in the short T limit, the $h i g h e r$ quantum operators appear at ater exitation time than the lower quantum operators. This behavior is illustrated in experimental results for adamantane in Fig. 3.4. We observe that indeed the coherences "diffuse" outward toward higher n as the excitation time is increased. A physical interpretation for this behavior can be obtained by realizing that MQ coherence is a many-spin correlation phenomenon - at least n spins are interacting concertedly to absorb n photons. The higher the number of quanta, the more spins involved, and hence the longer it takes for correlations to occur. A random walk picture connecting spin diffusion with evolution of multiple spin correlations and $M Q$ coherences is appealing.

In sumary, the difficulty in applying normal $M Q$ NMR methods to solids can be attributed to the fast homogeneous dephasing of spins. The incorporation of time reveral enables all transition lines to be phased with respect to each other, thereby enhancing the signal-to-noise ratio. Using time-reversal pulse sequences, we were able to obtain very high quantum absorption spectra of solid adamantane. From a timedependence study, we observed an increase in spin correlations as the excitation time increased.

Figure 3.4 Normalized integrated intensity of nquantum order for various excitation times extracted from adamantine time -reversal spectra, showing how the spin correlations "diffuse" out ti higher n. These intensities are normalized so that the total integrated intensity for each excitation time is unity. The corresponding excitation times on the singlequantum free induction decay are indicated in the insert.

CHAPTER 3 REFERENCES

1. W.S. Warren, Ph.D. thesis, University of Califoraia, Berkeley, 1980 .
2. G. Bodenhausen, Progr. NMR Spectrosc. 14, 137 (1981) and references therein.
3. W.S. Warren, D.P. Weitekamp, and A. Pines, J. Chem. Phys. 73, 2084 (1980).
4. S. Emid, A. Bax, J. Konijnendijk, J. Smidt, and A. Pines, Physica 96B, 333 (1979).
5. S. Emid, J. Smidt, and A. Pines, Chem. Phys. Lett. 73, 496 (1980).
6. W.-R. Rhim, A. Pines, and J.S. Waugh, Phys. Rev. B 3 , 684 (1971).
7. W.P. Aue, E. Bartholdi, and R.R.Ernst, J. Chem. Phys. 64, 2229 (1976).
8. a) J.B. Murdoch, W.S. Warren, D.P. Weitekamp, and A. Pines, submitted to J. Magn. Reson.;
b) D.P. Weitekamp, Adv. Magn. Resonance, submitted for publication.
9. With one exception: when $\tau=\tau$, transitions between spin inversion states produce lines in phase, as described in detail in reference 8 .
10. U. Haeberlen, High Resolution NMR in Solids, Selective Averaging, (Academic, New York, 1976).
11.

a) G. Drobny, A. Pines, S. Sinton, D.P. Weitekamp, and D. Wemmer, Faraday Symp. Chem. Soc. 13, 49 (1979);
b) G. Bodenhausen, R.L. Vold, and R.R. Vold, J. Magn. Reson. 37, 93 (1980).
12. A. Abragam, Principles of Nuclear Magnetism, (Oxford, London, 1961).
13. D. Wemmer, Ph.D. thesis, University of California, Berkeley, 1978 .
14. Y.S. Yen, J.B. Murdoch, J. Tang, and A. Pines, in preparation.

CHAPTER 4

SECOND HOMENTS OF MULTIPLE-QUANTUA HMR SPECTRA

4.1 INTRODUCTION

Recent years have shown much experimental and theoretical progress on multiple-quantum (MQ) NMR studies of dipolar systems. (1,2,3) Most of these studies depend on the high resolution available in the spin systems for dynamical and structural information. In studies where resolution is poor, particularly in solids, lineshape analysis provides the only practical means of extracting information. Thus, it would be of interest to explore the behavior of $M Q$ lineshapes as a function of the number of $f f$ quanta absorbed or emitted.

For a system containing nuclei of $\operatorname{spin} I=1 / 2$, the second moments (M_{2}) of the dipolar structure of $M Q$ spectra can be rigorously calculated by assuming a statistical model. With this assumption, only sums and products of the dipolar coupling constants are needed to determine the second moments. No diagonalization of the $\operatorname{Hamiltonian~is~necessary.~Results~reveal~that~the~}$ ratio r of the average dipolar coupling constant to the rms value:

$$
r=\frac{\bar{d}}{\bar{d}^{2}{ }^{1 / 2}}
$$

determines to a large extent the second moments behavior. The two extreme cases:
(1) r=1, all the couplings are the same,
(2) $r=0$, couplings of both signs occur in such a way that the average coupling is zero,
show distinctively different behavior.
One may inquire here whether a statistical model contains enough information to describe lineshape behavior as a function of n. A statistical assumption implies no symmetry in the spin system. What are the implications of neglecting symmetry, or conversely, what role does spin symetry play in M_{2} behavior? Also, how large does the system have to be in order for the statistical assumption to hold? These are the questions that we explore in our experiments.

In section 4.2 , we will proceed first with a brief description of a fourier transform $M Q$ experiment and some terminologies. A formulation for the MQ signal and its moments is given, the need for an unique M_{2} definition is recognized, and the statistical model for MQ moments is introduced. In section 4.3, a comparison of experiment with theory is made.
4.2 THEORY

In a Fourier transform $M Q$ experiment (Fig. 4.1), $M Q$ coherences are created by applying a series of intense rf pulses to the spin system. The preparation

相 8112-1304?

Figure 4.1 Schematic pulse sequence showing the relevant periods in a fourier transform multiplequantum NMR experiment.
sequence may be described by a preparation propagator $U(\tau)$. The density operator at the end of the preparation pulse sequence is given by $U^{\dagger} \rho_{0} U$, where ρ_{0} is the initial density operator, and contains $M Q$ coherences. The system evolves in t_{1} under the effect of the lamiltonian H_{1}. To detect $M Q$ coherences, a mixing period described by the operator $\nabla\left(\tau^{-}\right)$is required to convert $M Q$ coherences into detectable single-quantum coherenc: Typically, one point at $t_{2}=0$ is sampled for each incrementation in t_{1}, keeping (τ, τ°) fixed. The resultant MQ interferogram in t_{1} is given by: ${ }^{(3)}$

$$
\begin{align*}
S\left(t_{1}\right) & =\left\langle I_{+}\left(t_{1}\right)\right\rangle \tag{1}\\
& =\operatorname{Tr}\left\{Q\left(-\tau^{-}\right) \exp \left(-i H_{1} t_{1}\right) P(\tau) \exp \left(1 H_{1} t_{1}\right)\right\}
\end{align*}
$$

where

$$
\begin{aligned}
& Q\left(-\tau^{-}\right)=\nabla\left(\tau^{-}\right) I_{-} V^{\dagger}\left(\tau^{-}\right) \\
& P(\tau)=U^{\dagger}(\tau) p_{0} U(\tau)
\end{aligned}
$$

Fourier transforming Eq. (1) with respect to t_{1} yields the conjugate frequency spectrum in ω_{1}, the frequency spectrum of interest (as opposed to ω_{2}, the conjugate of t_{2}, if the entire free induction decay in t_{2} is sampled). Henceforth, the subscript 1 will be dropped. If the signal $S(t)$ is separable into components of order n, labeled $S_{n}(t)$, such as by selective excitation or detection schemes, $(1,3)$ the n-quantum moments can be
obtained from the time-domain signal $S(t)$ with the following well-known relation: (4)

$$
M_{k}(n)=\left.\frac{(-1)^{k}}{S_{n}(0)} \frac{d^{k} S_{n}(t)}{d t^{k}}\right|_{t=0}
$$

By differentiating Eq. (1), the analogous n-quantum $k^{t h}$-moment expression to Van Vleck's single-quantum moments formula (6) is:

$$
M_{k}(n)=\frac{\operatorname{Tr}\left\{Q_{n}\left(-\tau^{0}\right)\left[\ldots \ldots\left[日,\left[B, P_{n}(\tau)\right]\right] \ldots \ldots\right]\right.}{\operatorname{Tr}\left\{Q_{n}\left(-\tau^{n}\right) P_{n}(\tau)\right\}} .
$$

Specifically, the second moments M_{2} expression is: ${ }^{7}$)

$$
M_{2}(n)=\frac{\operatorname{Tr}\left\{\left[B, Q_{n}\left(-\tau^{0}\right)\right]\left\{B, P_{n}(\tau)\right]\right\}}{\operatorname{Tr}\left\{Q_{n}\left(-\tau^{0}\right) P_{n}(\tau)\right\}} .
$$

Finding expressions for P_{n} and Q_{n}, which depend on the pulse sequence used, and performing the commutations are nontrivial tasks. Instead of evaluating the commutators directly, an alternative is to examine the density of states distributed by the dipolar Gamileonian and see what information can be inferred.

A schematic energy level diagram of an N spin-1/2 system with random coupling constants is depicted in Fig. 4.2. The spin states are most strongly split by the Zeeman interaction of spin dipoles with the large external static magnetic field. Each Zeeman manifold

$$
M=-\frac{N}{2}
$$

$$
-\frac{N}{2}+1 \equiv-j
$$

$$
-\frac{N}{2}+2 \Longrightarrow
$$

XBL 7710-10022

Figure 4.2 Schematic energy level diagram for an arbitrary spin system of N spin-1/2's. The states, split by the $2 e m a n$ interaction, are grouped according to their Zeeman quantum numbers. Within each Zeeman manifold, the states are further split by the dipolar Hamiltonian.
of magnetic quantum number m is further split by dipole-dipole interactions among spins to form a distribution of states. An n-quantum order is composed of the sets of transitions between states of m_{1} and m_{2} that satisfy the condition $n=m_{1}-m_{2}$. There may be more than one pair (mi, mi) that satisfies this condition.

Each leman manifold can be labeled by either m, the magnetic quantum number, or p, the number of spins aligned parallel to the static external magnetic field. The relationship between mend p is:

$$
p=\frac{N}{2}-m,
$$

where N is the total number of spins in the system. We find the label more convenient for the following discussions.

Let $G_{1}(\omega)$ and $G_{2}(\omega)$ be the distribution functions for the density of states of manifolds labeled by p_{1} and p_{2}. The statistical lineshape of the set of transitions between two manifolds is described by the cross-corielation of the two distribution functions:

$$
\begin{equation*}
I\left(\omega, p_{1}, p_{2}\right)=G_{1}(\omega) * G_{2}(\omega) \tag{2}
\end{equation*}
$$

where * denotes a cross-correlation integral (Fig. 4.3). Explicitly, this is: (8)

$x \& 210-6719$

Figure 4.3 Each Zeeman manifold can be described by a characteristic distribution of states with a mean dipolar energy shift and a dipolar width. The statistical lineshape function for a set of transitions between two Zeeman manifolds is a cross-correlation between the two distributions.

$$
\begin{equation*}
G_{1}(\omega) * G_{2}(\omega)=\int G_{1}(u) G_{2}(u-\omega) d u \tag{3}
\end{equation*}
$$

The n-quantum spectrum is the superposition of all cross -correlations between manifolds that satisfy the condition $n=p_{2}-p_{1}$:

$$
\begin{equation*}
I(\omega, n)=\sum_{p_{1}=0}^{N-q} I\left(\omega, p_{1}, p_{2}=p_{1}+a\right) \tag{4}
\end{equation*}
$$

The $k^{\text {th }}$-moment of the lineshape function $I(\omega, n)$ is:

$$
\begin{equation*}
M_{k}(n)=\frac{\int \omega^{k} I(\omega, n) d \omega}{\int I(\omega, n) d \omega} \tag{5}
\end{equation*}
$$

We shall show that the $M Q$ moments can be related to the moments of the distributions $G_{i}(\omega)$. To do so, we list the following properties of cross-correlation integrals.

Let $G_{1}(\omega)$ and $G_{2}(\omega)$ be two distribution functions with normalization constants N_{1} and N_{2}, centroids at Δ_{1} and Δ_{2}, and variances $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$, fine. :

$$
\begin{gathered}
\int G_{1}(\omega) d \omega=N_{1} \\
\frac{\int \omega G_{1}(\omega) d \omega}{\int G_{1}(\omega) d \omega}=\Delta_{i} \\
\frac{\int\left(\omega-\Delta_{1}\right)^{2} G_{i}(\omega) d \omega}{\int G_{1}(\omega) d \omega}=\sigma_{i}^{2}
\end{gathered}
$$

Let $h=G_{1} *_{2}$ be the cross-correlation of G_{1} with G_{2}. The corresponding properties of h are:

$$
\begin{gathered}
N \equiv \delta h(\omega) d \omega=-N_{1} N_{2}, \\
\Delta \equiv \frac{\rho \omega h(\omega) d \omega}{\rho h(\omega) d \omega}=\Delta_{1}-\Delta_{2}, \\
\sigma^{2} \equiv \frac{\rho(\omega-\Delta)^{2} h(\omega) d \omega}{\rho h(\omega) d \omega}=\sigma_{1}^{2}+\sigma_{2}^{2} .
\end{gathered}
$$

We distinguish the definition of second moment from variance (which is measured from the centroid):

$$
\begin{align*}
M_{2} & \equiv \frac{\int \omega^{2} h(\omega) \mathrm{d} \omega}{\int h(\omega) d \omega}=\sigma^{2}+\Delta^{2} \\
& =\sigma_{1}^{2}+\sigma_{2}^{2}+\left(\Delta_{1}-\Delta_{2}\right)^{2} \tag{6}
\end{align*}
$$

Generalizing, it is evident from the binomial formula that the $k^{\text {th }}$-moment as measured from the centroid is:

$$
\mu_{k}[h] \equiv \frac{\int(\omega-\Delta)^{k} h(\omega) d \omega}{\int h(\omega) d \omega}=\sum_{r=0}^{k}\binom{k}{r} \mu_{r}\left[G_{1}\right] \mu_{k-r}\left[G_{2}\right]
$$

where the moments of the distribution functions are similarly defined:

$$
\mu_{s}\left[G_{i}\right] \equiv \frac{\int\left(\omega-\Delta_{i}\right)^{s} G_{i}(\omega) d \omega}{\int G_{i}(\omega) d \omega} .
$$

The $k^{t h}$ moment in terms of the moments of the distributions G_{1} and G_{2} is given by:

$$
\begin{align*}
M_{k} & =\frac{\int \omega^{k} h(\omega) d \omega}{\int h(\omega) d \omega}=\sum_{r=0}^{k}\binom{k}{r} \Delta^{k-r} \mu_{r}[h] \\
& =\sum_{r=0}^{k}\binom{k}{r} \Delta^{k-r} \sum_{s=0}^{r}\binom{r}{g} \mu_{s}\left[G_{1}\right] \mu_{r-s}\left[G_{2}\right] . \tag{7}
\end{align*}
$$

The above expressions are valid for any functions describing the distribution of states. The functional form enters only in the quantitative values of the moments.

4.2.1 Exact Dynamics

Consider the schematic $M Q$ pulse sequence of Fig. 4.1. The expression for the signal intensity of such a pulse sequence is given by Eq. (1). Expressed in the eigenstates of the Hamiltonian \quad, this becomes:

$$
S(\varepsilon)=\sum_{j, k} P_{j k}(\tau) Q_{k j}(-\tau-) \exp \left(-i \omega_{j k} t\right),
$$

where $\omega_{j k}=\omega_{j}-\omega_{k}$, and $\mathrm{H}|j\rangle=\omega_{j}|j\rangle$. Upon Fourier transforming with respect to te obtain the frequency spectrum:

$$
\begin{equation*}
S(\omega)=\sum_{j, k} P_{j k}(\tau) Q_{k j}\left(-\tau^{-}\right) \delta\left(\omega-\omega_{j k}\right) . \tag{8}
\end{equation*}
$$

By going off-resonance by the amount $\Delta \omega$ or creating an
artificial offset by time proportional phase incrementation, (5) the $M Q$ spectrum is separable into components of order n :

$$
S(\omega)=\sum_{n=0}^{N} S_{n}(\omega) \delta(\omega-n \Delta \omega),
$$

assuming w on the right hand side of the equation contains no offset component. The second moments of the n-quantum order is then:

$$
M_{2}(n)=\frac{\sum_{j, k} \omega_{j k}^{2}\left(P_{n}\right)_{j k}\left(Q_{n}\right)_{k j} \delta\left(\omega-\omega_{j}\right)}{\sum_{j, k}\left(P_{n}\right)_{j k}\left(Q_{n}\right)_{k j} \delta\left(\omega-\omega_{j k}\right)}
$$

Evaluation of the Fourier coefficients $\left(P_{n}\right)_{j k}\left(Q_{n}\right)_{k j}$ in the eigenbasis of the Hamiltonian yields a numerical value for $M_{2}(n)$.

4.2.2 Unique Second Moments Value

A feature not present in conventional singlequantum spectra is the dependence of phase on preparation as result of the nature of $M Q$ pulse experiments. The Fourier coefficient $\mathrm{P}_{\mathrm{jk}} \mathrm{Q}_{\mathrm{kj}}$ [Eq. (8)] is complex and thus contains a phase term. Moreover, the operators P and Q are functions of τ and T°, and thus so are the transition amplitude and phase. Consequently, there is a M_{2} value associated with each (τ, τ^{\prime}) value.

We would like to define an unique M_{2} value for
discrete transition lines as well as for a continuum of transition lines. A convenient choice is one in which all lines appear in phase and the transition amplitudes show their time-averaged value. (9)

Averaging $P_{j k} Q_{k j}$ over $\tau=\tau$ in Eq. (8) and assuming magnitude spectra yield an "ultimate t average"(9) for each transition amplitude. Upon t averaging, the inherent transition amplitude is realized; thus ultimate t average spectra should be used to determine the unique M_{2} value.

Experimental τ averages are done by superimposiag spectra of many randomly chosen preparation times. The phasing of each spectrum can be accomplished by converting it into a magnitude spectrum if lines are resolvable, or incorporating time reversal in the MQ pulse sequence. (10)

The statistical model to be described in the next section implicitly assumes no phase factors.
4.2.3 Statistical Model

Por large spin systems, a complete diagonalization of the Hamiltonian for exact dynamics calculations is prohibitively cumbersome. Por this reason, we turn to approximation with a statistical model for a qualitative description.

The statistical model assumes a spin system of no apparent symmetry so that all transitions are allowed
and are assigned equal intensity. The assumption of all transitions being allowed is embodied in the construction of one distribution function describing the density of states for each Zeeman manifold, regardless of their classification according to the irreducible representations of the symmetry group. The equality of transition intensity appears in the resulting lineshape of the set of transitions between two manifolds. By taking the cross-correlation between two density of states functions, each transition is assigned unit intensity; that is, the cross-correlation function counts the number of transitions per frequency bandwidth. Any further intensity specification would require exact dynamics treatment.

Our focus will be on the broadening of resonance lines by the dipolar Hamiltonian. Derivation of $M Q$ second moments involves first evaluating the dipolar mean and variance of each Zeeman manifold. Given these two items, a repres fe distribution of states is constructed for each .: man manifold. For a complete description of the distribution of states, higher moments should be included. However, for the second moments of n-quantum orders, only the second moments of the distribution of states are necessary lcf. Eq. (6)]. The second moment of each $M Q$ order is then found by taking the sum of cross-corielations between appropriate Zeeman manifolds.
4.2.3.1 Dipolar Mean and Variance of a Zeeman manifold The dipolar mean and variance of a p-manifold is given by the following expectation values:

$$
\begin{align*}
& \left\langle H_{D}\right\rangle_{p}=T r_{p}\left\{\rho H_{D}\right\} \tag{9}\\
& \left\langle H_{D}^{2}\right\rangle_{P}-\left\langle H_{D}\right\rangle_{P}^{2}=\operatorname{Tr}_{p}\left\{\rho H_{D}^{2}\right\}-\operatorname{Tr}_{p}^{2}\left\{\rho H_{D}\right\} \tag{10}
\end{align*}
$$

The bracket < \rangle_{p} denotes the ensemble average over the p-manifold, $T_{p}\{ \}$ is the trace over the states in the p-manifold, ρ here is the weighting function of these states, and E_{D} is the secular part of the dipole-dipole Hamiltonian expressed in units of h : (4)

$$
\begin{equation*}
E_{D}=\sum_{i<j} d_{i j}\left\{I_{21} I_{z j}-\frac{1}{4}\left(I_{+1} I_{+j}+I_{-1} I_{-j}\right)\right\} \tag{11}
\end{equation*}
$$

The $d_{i j}{ }^{\prime} s(r a d / s e c)$ are the dipolar coupling constants between $\operatorname{spin} i$ and spin j :

$$
d_{i j}=\frac{r^{2} h}{r_{i j}^{3}}\left(1-3 \cos \theta_{i j}^{2}\right)
$$

The spin operators I_{21}, I_{+1}, and I_{-1} are the eth component, the raising operator, and the lowering operator of spin 1.

Giving equal weight to each state, as is proper, o must be the reciprocal of the number of states. The number of states in the p-manifold is given by $\binom{N}{p}$, the
combinatorial of N with p. With this, Eq. (9) and (10) become:

$$
\begin{align*}
& \left\langle H_{D}\right\rangle_{p}=\binom{N}{P}^{-1} \operatorname{Tr}\left\{H_{D}\right\}, \tag{12}\\
& \left\langle H_{D}^{2}\right\rangle_{P}-\left\langle H_{D}\right\rangle_{P}^{2}=\binom{N}{P}^{-1} T_{r_{P}}\left\{H_{D}^{2}\right\}-\left(\begin{array}{l}
N
\end{array}\right)^{-2} T r_{P}^{2}\left\{H_{D}\right\} \tag{13}
\end{align*}
$$

The evaluation of $T_{r_{p}}\left\{H_{D}\right\}$ and $T_{r_{p}}\left\{H_{D}{ }^{2}\right\}$ involves combinatorial arguments. In evaluating these traces, it is convenient to define a quantity $f(p)$ to be the probability that a spin pair will be antiparallel for a given state in the p-manifold. The number of antiparallel spin pairs out of N spins is $p(N-p)$. Thus, $f(p)$ is just this number divided by the number of pairs:

$$
\begin{equation*}
f(p)=\frac{p(N-p)}{\binom{N}{2}} \tag{14}
\end{equation*}
$$

From the form of Eq. (14), $f(p)$ is also the probability that a state in the p-manifold will have a given spin pair ($1, f$) antiparallel with respect to each other. The explicit evaluations of $\operatorname{Tr}_{\mathrm{p}}\left\{\mathrm{H}_{\mathrm{D}}\right\}$ and $\mathrm{Tr}_{\mathrm{p}}\left\{\mathrm{H}_{\mathrm{D}}{ }^{2}\right\}$ are left to appendices 4.A and 4.B. The results are quoted here:

$$
\begin{align*}
& \operatorname{Tr}_{P}\left\{H_{D}\right\}=\binom{N}{p}(1-2 f) \sum_{1<j} \frac{1}{4} d_{i j}, \tag{15}\\
& \operatorname{Tr}_{p}\left\{H_{D}^{2}\right\}=\binom{N}{p}\{(1+f) a+(1-2 f) b+(1-4 f g) c\}, \tag{16}
\end{align*}
$$

where

$$
\begin{aligned}
& a=\frac{1}{16} \sum_{i<j} d_{i j}^{2}, \\
& b=\frac{1}{16} \sum_{i<j} \sum_{k \neq 1, j} d_{i j}\left(d_{i k}+d_{k j}\right), \\
& c=\frac{1}{16} \sum_{i<j 1-\sum_{i j} d_{i j} d_{i} j_{j},} \quad\left(i \neq i^{\prime}, j \neq j-\right) \\
& g=\frac{(N-p-1)(N-p-2)+(p-1)(p-2)}{(N-2)(N-3)},
\end{aligned}
$$

and f is defined in Eq. (14). We mention here that the number of terms in the summations a, b and c are $\binom{N}{2}$, $2(N-2)\binom{N}{2}$ and $\binom{N-2}{2}\binom{N}{2}$, respectively, and that the total number of terms in a, b and e is $\binom{N}{2}^{2}$.

Combining Eqs. (12) and (13) with (15) and (16) fields for the p-manifold:

$$
\begin{align*}
& h(p)=(1-2 f) \sum_{i<j} \frac{1}{4} d j \tag{17}\\
& \sigma^{2}(p)=f(5-4 f) a+2 f(1-2 f) b+4 f(1-f-g) c . \tag{18}
\end{align*}
$$

For brevity of notation, we have defined

$$
\begin{aligned}
& h(p)=\left\langle H_{D}\right\rangle_{P} \\
& \sigma^{2}(p)=\left\langle H_{D}^{2}\right\rangle_{P}-\left\langle H_{D}\right\rangle_{P}^{2} .
\end{aligned}
$$

Written in this form, it is apparent that the dipolar shift $h(p)$ [Eq. (17)] is directly proportional to the
average dipolar coupling.
For the special case of $r=1$, ie. all couplings are the same, these quantities reduce to:

$$
\begin{aligned}
& h(p)=\left(\frac{d}{4}\right)\left[\binom{N}{2}-2 p(N-p)\right] \\
& \sigma^{2}(p)=\left(\frac{d}{4}\right)^{2} p(N-p)
\end{aligned}
$$

where d is the unique coupling constant. That is, in this limit, the width of a Zeeman manifold is proportional to the square root of the number of antiparallel spins.

The features of the dipolar structure of the energy level diagram can be examined. By differentiating $\sigma^{2}(p)$ with respect to p, the extrema of $\sigma^{2}(p)$ can be found. Equation (18) can be factored as $f(p)$, where $F(p)$ is quadratic in p. One extremum is found from $d f / d p=0$, which yields a root at $p=N / 2$ (or the moO manifold for N even). The other two roots can be obtained from solving $d F / d p=0$. These roots, which can be either real or complex, occur in pairs since $F(p)$ is symmetric about $p=N / 2$.

The behavior of $h(p)$ and $\sigma(p)$ versus p for ten randomly -generated sets of couplings between 30 spins of $I=1 / 2$ is illustrated in Fig. $4.4(a)$ for $r \simeq 1$ and in Fig. 4.4(b) for rat. These plots were generated with the computer programs listed in appendix 4.C. They show that the extreme states are shifted by the largest
(a) Posifive couplings

(b) Negative and positive couplings

Figure 4.4 The dependence on p of the mean dipolar shift $h(p)$ and the standard deviation $\sigma(p)$ for ten randomly generated $30-8 p i n$ systems in the limit of (a) ral, with couplings in the range $0.0-1.0 \mathrm{kHz}$; (b) $r=0$, with couplings in the range - $1.0-1.0 \mathrm{kHz}$ 。 In (a), the top of the scale is 5.7 kHz , and in (b) is 3.8 kHz.
amount, and the $p=N / 2$ manifold is shifted slightiy in the opposite direction. They also show that the width of the distributions is the largest at $p=N / 2$.

One observes that the two cases have distinctiy different features. For $\quad=1$, the width of the distribution is much smaller than the dipolar shift. For $\quad=0$, ideally there is no dipolar shift. Also, given the same upper limit on the magnitude of the couplings, the width is generally larger for ral than for \quad =0. These features dictate the behavior of MQ second moments.
4.2.3.2 Multiple-Quantum Second Moments

For each Zeeman manifold, a distribution function is constructed from $h(p)$ and $\sigma^{2}(p):$

$$
\begin{equation*}
G_{1}(\omega)=\binom{N}{p_{1}} g_{1}(\omega) \tag{19}
\end{equation*}
$$

The normalized function $g_{i}(\omega)$ is defined to have the following properties:

$$
\begin{aligned}
& \int G_{1}(\omega) d \omega=\binom{N}{p_{i}} \int g(\omega) d \omega=\binom{N}{p_{1}} \\
& \int \omega g_{1}(\omega) d \omega=\Delta_{1}, \\
& \int\left(\omega-\Delta_{1}\right)^{2} g_{1}(\omega) d \omega=\sigma^{2}\left(p_{1}\right) .
\end{aligned}
$$

Evaluating the cross-correlation integral of Eq. (2) using Eq. (19), and summing over the manifolds

Fields the final expression of the n-quantum second moments:
$M_{2}(n)=z^{-1} \sum_{p_{1}}^{N-n}\binom{N}{P_{1}}\binom{N}{p_{2}}\left\{\sigma^{2}\left(p_{1}\right)+\sigma^{2}\left(p_{2}\right)+\left[h\left(p_{1}\right)-h\left(p_{2}\right)\right]^{2}\right\}$
where $h(p)$ and $\sigma^{2}(p)$ are given in Eqs. (17) and (18). Since each transition is given unit intensity, the normalization constant 2 is just the total number of $n-$ quantum transitions: (11)

$$
\begin{align*}
z=\int I(\omega, a) d \omega & =\sum_{p_{1}=0}^{N-n}\binom{N}{p_{1}}\binom{N}{p_{2}} \\
& = \begin{cases}\binom{2 N}{N-n}, & 1<n<N \\
\frac{1}{2}\left[\left(\sum_{N}^{2 N}\right)-2^{N}\right], & n=0\end{cases} \tag{21}
\end{align*}
$$

Higher moments are readily generalized using Eq. (7) and evaluating $\mathrm{Ir}_{\mathrm{p}}\left\{\mathrm{E}_{\mathrm{D}}{ }^{\mathrm{r}}\right\}$, for $\mathrm{r}=0,1,2, \ldots \mathrm{k}$.

Shown in Fig. 4.5 are the M_{2} values for the same set of ten random spin systems as in fig. 4.4. Figure 4.6 shows the decomposition into the two contributing terms. As is evident, the M_{2} behavior depends almost exclusively on one term or the other. For rel [fig. 4.6(a)], the dominant contribution is from the mean displacements $\Delta^{2}=\left[h\left(p_{1}\right)-h\left(p_{2}\right)\right]^{2}$. For roo [Fig. 4.6(b)], it is the widths of the lineshape functions σ^{2} - $\sigma^{2}\left(p_{1}\right)+\sigma^{2}\left(p_{2}\right)$ that is dominant. From the dipolar

Figure 4.5 Second moments versus the number of quanta n for the same ten systems in the limit (a) rat, and (b) $r=0$. The top of the scale is $240 \mathrm{kHz}{ }^{2}$ in (a) and $29 \mathrm{kHz}^{2} \mathrm{in}$ (b).
(a) Positive couplings

(b) Negative and positive couplings

Figure 4.6 Contributions to the second moments. The quantity Δ^{2} is the square of the mean shift difference $\left(\left[h\left(p_{1}\right)-h\left(p_{2}\right)\right]^{2}\right)$ contribution, and σ^{2} is the width $\left(\sigma^{2}\left(p_{1}\right)+\sigma^{2}\left(P_{2}\right)\right)$ contribution. Note how different contributions dominate in the two cases.
structure of the energy level diagram, as constructed from Figs. $4.4(a)$ and $4.4(b)$, these behaviors are obvious.

Por $\quad=1$, the mean displacement of an m-manifold is much greater than its width and thus is the dominant contributor. From this and the fact that the higher quantum orders probe only the more extreme states (which differ little in mean dipolar shift), we expect the M_{2} of high quantum orders to be small. For the lower quantum orders, the sampling is between adjacent manifolds (which again do nct differ much in mean dipolar shift). Thus, we expect the M, of low quantum orders to also be small For the orders that connect $p=N / 2$ to $p=0$ manifolds, the difference in mean dipolar shift is at its largest, and we expect these orders $(n \sim N / 2)$ to have the largest M_{2}.

For $\quad=0$, the opposite is true. Since the dipolar shift is ideally zero for all manifolds, only the variances can contribute. The variances are roughly the same except for the more extreme states. This suggests that M_{2} should remain roughly constant for the lower quantum orders and then drop to zero at $n=N$.

Figure $4.5(a)$ shows that for $r \simeq 1$ the maximum M_{2} occurs off center toward higher n. This is due to a third competing factor: the normalization constant. Since the number of transitions decreases with n, the maximum M_{2} is driven toward higher n.

To summarize, the three competing factors in determining the features of M_{2} are:
(1) the difference in mean displacements between transition manifolds.
(2) the distribution widths of transition manifolds.
(3) the normalization constant.

The first term never contributes to the zero-quantum order and drives maximum M_{2} toward $n=N / 2$. The second term, which is directly proportional to $\mathbf{d}^{\mathbf{2}}$, drives maximum M_{2} towards $n=0$. The smaller the average coupling \bar{d} is, the smaller M_{2} is. Finally, the third term favors higher n.

The plots in figs. 4.5 and 4.6 were generated with the same programs listed in appendix 4.C.

4.3 COMPARISON OF EXPERIMENT WITE COMPUTER SIMULATIONS

AND STATISTICAL MODEL
We show examples of systems exhibiting both behaviors predicted by the statistical model. Experimental results can be compared against exact dyamics calculations of ultimate τ averaged spectra(12) and the statistical model using the experimental coupling constants.

The $r=0$ behavior is exhibited by $n-h e x a n e-d_{6}$, with the methyl positions deuterated, oriented in a nematic liquid crystal. It is an 8-spin system: only
intramolecular couplings are nonzero since rapid translational diffusion of solutes in a liquid crystal averages to zero intermolecular couplings. The ratio of the average ${ }^{1} H$ dipolar coupling to the rms value is measured to be $r=0.12$. Shown in $F i g$. 4.7 are the M_{2} values of a t-averaged $M Q$ magnitude spectrum of this system. (13) The t values range from 9.0-11.5 msec, in increments of 0.5 mec. A nonselective three-pulse ser . ee was used. The largest second moments occur near \quad - 0 , in agreement with the statistical model.

The other extreme is illustrated in the experimental second moments versus n of polycrystalline adamantane, shown in Fig. 4.8. The t values range from $244.8-448.8$ usec, in increments of 40.8 Hsec. The transition lines are overlapping, and thus a timereversal (even-selective) pulse sequence was used to obtain these spectra. (10) Since the sample is a powder, it is hard to assign a single ralue to the spin system. Furthermore, there are an Avogadro's number of coupled spins so the system size is essentially infinite. These experiments show that M_{2} increases with n up to 16 -quantum, indicating that r>0 and the number of spins involved is indeed very large.

4.4 CONCLUSION

Van Vleck's moments formula for single-quantum spectra can be easily extended for MQ spectra. In the

X8L8211-6799

Pigure 4.7 Results of n-hexane-d 6 oriented in a nematic liquid crystal: experimental values (solid dots), exact dynamics calculated ultimate taverage M_{2} values (solid line), and statistical M_{2} values versus n (dashed line). The experimental $M Q$ spectrum used is the average of six magnitude spectra with values ranging from 9.0-11.5 msec.

XBL 8210-6726

Figure 4.8 The $M Q M_{2}$ values of solid adamantane powder. The spectrum used is the average of 5 spectra with preparation times ranging from 244.8-448.8 usec.
process of generalization, we find the dependence of M_{2} on the number of quanta. One useful consequence of this is that one can choose to observe the broader orders that are more sensitive to molecular dynamics than the conventional single-quantum order.

Using a statistical assumption, the second moments of $M Q$ orders are rigorously evaluated. The statistical model reveals that two distinct behaviors can occur in M_{2} values as function of n. Both behaviors have been shown to exist experimentally. The experimental results are in accord with statistical model predictions and with exact dynamics calculations. The agreement of the n-hexane-d 6 mQ specta with the statistical model demonstrates that even for a small 8spin system with symmetry $\left(C_{2}\right)$, the statistical model predicts the correct general M_{2} behavior. This indicates that the manifolds of states grouped according to the ifreducible representations must have distributions similar to those of a random spin system. In combination, the two systems demonstrate that a statistical second moments treatment is appropriate for small spin systems as well as for large spin systems.

APPENDIX 4.A
Evaluation of $\operatorname{Tr}_{\mathrm{p}}\left\{\mathrm{H}_{\mathrm{D}}\right\}$ for the p -manifold

Since the trace is independent of the choice of representation, the simple product basis set will be used. Henceforth all states will be referred to in this basis set. Only the operator $I_{z i} I_{z j}$ of H_{D} is diagonal and contributes to the trace. Thus,

$$
\begin{align*}
\operatorname{Tr}_{p}\left\{H_{D}\right\} & =\sum_{k=1}^{\binom{N}{p}}\langle k| H_{D}|k\rangle \\
& =\sum_{k=1}^{p} \sum_{i\langle j}^{N} d_{i j}\langle k| I_{z i} I_{z j}|k\rangle . \tag{AB}
\end{align*}
$$

Exchanging the order of the two summations; which are done independently, we sum over the states first. Using the relation:
$\langle k| I_{z i} I_{z j}|k\rangle=\left\{\begin{array}{r}\frac{1}{4},(i, j) \text { are : allelin }|k\rangle \\ -\frac{1}{4},(i, j) \text { are antiparallel in }|k\rangle\end{array}\right.$
the summation over the states k produces:

$$
\begin{equation*}
\sum_{k}\langle k| I_{z 1} I_{z j}|k\rangle=\frac{1}{4}[S(N, p)-O(N, p)], \tag{A.3}
\end{equation*}
$$

where $S(N, p)$ is defined as the number of states in the p-manifold that has spin pair (if) parallel, and $0(N, P)$ is the number of states that has (i, j)
antiparallel. These two quantities are determined by combinatorial arguments and are given by:

$$
\begin{align*}
& S(N, p)=\binom{N-2}{p}+\binom{N-2}{p-2}, \tag{A.4}\\
& O(N, p)=\binom{N}{p} \frac{p(N-p)}{\binom{N}{2}}
\end{align*}
$$

Conservation of states requifes:

$$
S(N, p)+O(N, p)=\binom{N}{p} .
$$

Substituting Eqs. (A.3) - (A.5) in Eq. (A.1) Fields

$$
\operatorname{Tr}_{p}\left\{B_{D}\right\}=\binom{N}{p}\left[\binom{N}{2}-2 p(N-p)\right] \frac{1}{4} d
$$

where $\vec{d}=\binom{N}{2}^{-1} \sum_{i<j}^{N} d_{i j}$ is the average dipolar coupling.

APPENDIX 4.B

Evaluation of $\operatorname{Tr}_{\mathrm{p}}\left\{\mathrm{H}_{\mathrm{D}}{ }^{2}\right\}$ for the p -manifold

As in appendix A, we use the simple product basis set in evaluating $\operatorname{Tr}_{\mathrm{p}}\left\{\mathrm{H}_{\mathrm{D}}{ }^{2}\right\}$. Written in the form of summation over states, $\operatorname{Tr}_{\mathrm{p}}\left\{\mathrm{H}_{\mathrm{D}}{ }^{2}\right\}$ can be separated into diagonal and off-diagonal elements of H_{D} :
$\operatorname{Tr}\left\{H_{D}{ }^{2}\right\}=\sum_{k}\langle k| H_{D}|k\rangle\langle k| H_{D}|k\rangle+\sum_{k, 1}^{-}\langle k| H_{D}|1\rangle\langle 1| H_{D}|k\rangle,(B, 1)$
where the prime on the second summation indicates that the $1=k$ term is excluded. The first term is the sum of squares of the diagonal elements of H_{D}, and the second term is the corresponding sum for off-diagonal elements. From the form of H_{D}, we recognize that the operator $I_{z i} I_{z j}$ is purely diagonal and the fifp-flop operator $\left(I_{+1} I_{-j}+I_{-i} I_{+j}\right)$ is purely off-diagonal. This implies that only $I_{z i} I_{z j}$ contributes to the first summation, and only $\left(I_{+1} I_{-j}+I_{-i} I_{+j}\right)$ contributes to the second summation in Eq. (B.1):

$$
\begin{align*}
& \operatorname{Tr}_{p}\left\{H_{D}{ }^{2}\right\}=\sum_{k}^{\left(\begin{array}{l}
N
\end{array}\right)} \sum_{i\langle j}^{N} \sum_{i}^{N}, d_{i j} d_{i-j},\langle k| I_{z i} I_{z j}|k\rangle\langle k| I_{z i}-I_{z j}-|k\rangle \\
& +\sum_{k, 1} \sum_{i<j} \sum_{i<j}-\frac{1}{16} d_{i j} d_{i}{ }_{j},\langle k| I_{+i} I_{-j}+I_{-i} I_{+j}|1\rangle \\
& x\langle 1| I_{+1}-I_{-j}+I_{-i}-I_{+j}-|k\rangle . \tag{B.2}
\end{align*}
$$

1. Consider for now the first summation of Eq. (B.2). This term is more easily evaluated by exchanging the order of summations over states and spins, ie.
$\left.\sum_{k}^{\binom{N}{p}}{ }_{k}\left|B_{D}\right| k\right\rangle\langle k| B_{D}|k\rangle=\sum_{i<j}^{N} \sum_{i-j j}^{N}-\frac{1}{16} d_{1 j} d_{i}-j-Q(N, P)$
where

$$
\begin{equation*}
Q(N, p)=16 \sum_{k}^{\binom{N}{p}}\langle k| I_{2 i} I_{z j}|k\rangle\langle k| I_{2 i}-I_{2 j}-|k\rangle \tag{By}
\end{equation*}
$$

The sum $Q(N, p)$ has both positive and negative contributions. The summand in $Q(N, P)$ is positive when $\langle k| I_{2 i} I_{2 j}|k\rangle$ and $\langle k| I_{z i}-I_{2 j}-|k\rangle$ are both either positive ($+1 / 4$) or negative ($-1 / 4$) [see Eq. (A.2)] and is negative when $\langle k| I_{z i} I_{z j}|k\rangle$ and $\langle k| I_{z i}-I_{z j}|k\rangle$ are opposite in sign. Performing the summation over states k of Eq. (B.3) yields:

$$
\begin{equation*}
Q(N, P)=A-B . \tag{B.4}
\end{equation*}
$$

Here A is defined to be the number of states within the p-manifold that, given two spin pairs (if) and (i^{\prime}, f^{\prime}), have both pairs parallel in spin or both pairs antiparallel in spin. B is defined to be the number of states within the p -manifold that have one spin pair parallel in spin and the other antiparallel in spin.

Conservation of states requires:

$$
A+B=\binom{N}{p},
$$

implying that Eq. (B.4) becomes:

$$
\begin{equation*}
Q(N, p)=\binom{N}{p}-2 B . \tag{By}
\end{equation*}
$$

Thus it is only necessary to evaluate B. Three cases can be distinguished:
(a) $(i, j)=\left(1^{\prime}, f^{\prime}\right)$,
(b) ($1, j$) and (i^{\prime}, j^{\prime}) share one common spin,
(c) (i, j) and ($\left.i^{\prime}, j^{\prime}\right)$ share no common spin.

We will treat each case separately.
Case (a): $B=0$, by definition.
Case (b): Suppose $1, j, k$ are the spins of interest, where $k=i^{\prime}$ or j^{\prime}. We divide the N spin system into two parts:
(1) a 3-spin system consisting of spins i,j,k, and
(2) a (N-3)-spin system consisting of the rest of the spins.

Division of the system facilitates the counting argument. We designate the number of spins that are parallel to the magnetic field in the first spin subsystem by p_{r}, and likewise the same for p_{s} in the second spin subsystem. Note that conservation of spins requires $p_{r}+p_{s}=p$. We also let B_{r} and B_{s} have
analogous meanings in the subsystems as B does in the total system [Eq. (B.4)].

For the 3-spin system,

$$
\begin{equation*}
B_{I}=\left\{_{2,}^{0,} \quad p_{I}=0,3\right. \tag{By}
\end{equation*}
$$

To treat the ($N-3$)-spin system, we utilize the facts that $P_{s}=P-P_{r}$ and that it is the product of B_{r} and B_{s} that is important, foe.:

$$
B=\sum_{P_{F}} B_{F} B_{S^{\circ}}
$$

For $P_{r}=0,3, B_{r}=0$ and the contribution $t 0$ is zero regardless of B_{s}. We thus will not evaluate \boldsymbol{B}_{s} for $P_{s}=P, p-3$. For $P_{g}=p-1, p-2$, the contribution is nonzero, and

$$
B_{s}= \begin{cases}\binom{N-3}{p-1}, & p_{s}=p-1 \\ \binom{N-3}{p-2}, & p_{s}=p-2\end{cases}
$$

Therefore,

$$
\begin{aligned}
B & =2\binom{N-3}{p-1}+2\binom{N-3}{p-2} \\
& =f\binom{N}{p}
\end{aligned}
$$

Case (c): Evaluation of B here involves the same concept as in case (b). Since (i, j) and ($i^{\prime}, j^{\prime \prime}$) are four distinct spins, we divide the N spin system into a

4-spin system and $a(N-4)$ spin system. The results are:

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{r}}=\left\{\begin{array}{ll}
0, & p_{r}=0,2,4 \\
\binom{4}{1}=\binom{4}{3}, & p_{r}=1,3
\end{array},\right. \\
& \mathbf{B}_{\mathbf{s}}= \begin{cases}\binom{N-4}{p-1}, & p_{s}=p-1 \\
\binom{N-4}{p-3}, & p_{s}=p-3\end{cases}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
B & =\binom{4}{1}\binom{N-4}{p-1}+\binom{4}{3}\binom{N-4}{p-3} \\
& =2 f g\binom{N}{p},
\end{aligned}
$$

where

$$
\begin{equation*}
g=\frac{(N-p-1)(N-p-2)+(p-1)(p-2)}{(N-2)(N-3)} \tag{By}
\end{equation*}
$$

In tabulated form, we have for expressions of B :

	B case (a) case (b)
case (c)	0
f $\binom{N}{p}$	
	$2 f g\binom{N}{p}$

The sum $Q(N, P)$ for each of these cases can be found with Eq. (B.5).

The final form of the first summation term is:

$$
\begin{aligned}
& a=\frac{1}{16} \sum_{i<j}^{N} d_{i j}^{2}, \\
& b=\frac{1}{16} \sum_{i<j}^{N} \sum_{k \neq i, j}^{N} d_{i j}\left(d_{i k}+d_{k j}\right), \\
& c=\frac{1}{16} \sum_{i<j i}^{N} \sum_{i j}^{N} d_{i j} d_{i, j}, \quad\left(i \neq i^{\prime}, j \neq j^{\prime}\right)
\end{aligned}
$$

are merely constants, and and g are defined in Eq s. (14) and (B.7).
2. To evaluate the second summation in Eq. (B. 2), we realize that for given pair of states |k> and |li, at most one of the terms $I_{+1} I_{-j}$ and $I_{-1} I_{+j}$ will give a nonzero matrix element. Also, if one spin pair fileflop term takes $|1\rangle$ into $|k\rangle$, then a different spin pair flip-flop term cannot take the same state |li into $|k\rangle$. That is,

$$
\begin{equation*}
\langle k| I_{+1} I_{-j}+I_{-1} I_{+j}|1\rangle\langle I| I_{+1}-I_{-j}+I_{-1}, I_{+j}-|k\rangle=\delta_{1 j, 1-j} \cdots \tag{BC}
\end{equation*}
$$

Furthermore, for a given state $|k\rangle$, Eq. (B.9) is satisfied for only one state $|1\rangle$. Thus summation over 1 of $\left.\left|\langle k| I_{+1} I_{-j}+I_{-1} I_{+j}\right| 1\right\rangle\left.\right|^{2}$ gives:

Performing the summation over k of Eq. (B. 10) produces:

$$
\begin{equation*}
\left.\sum_{k} \sum_{1}\left|\langle k| I_{+1} I_{-j}+I_{-1} I_{+j}\right| 1\right\rangle\left.\right|^{2}=0(N, p), \tag{B.11}
\end{equation*}
$$

where $O(N, p)$ is defined in appendix $A, E q$. (A.5). Making use of Eq. (B.9) and (B.11) and the freedom of exchanging the order of summations, the second summation term is:

$$
\begin{align*}
\sum_{k} \sum_{1}-\langle k| A_{D}|1\rangle\langle 1| B_{D}|k\rangle & \left.=\sum_{i\langle j}^{N} \frac{1}{16} d_{i j}^{2} \sum_{k, 1}^{\binom{N}{p}}\left|\langle k| I_{+i} I_{-j}+I_{-i} I_{+j}\right| I\right\rangle\left.\right|^{2} \\
& =\sum_{i<j}^{N} \frac{1}{16} d_{i j}^{2} O(N, p) \\
& =\binom{N}{p} f a . \tag{B.12}
\end{align*}
$$

Combining the two summations [Eqs. (B.8) and (B.12)], we have as our final expression:

$$
\begin{equation*}
\operatorname{Tr}_{p}\left\{H_{D}^{2}\right\}=\binom{N}{p}\{(1+f) a+(1-2 f) b+(1-4 f g) c\} \tag{B.13}
\end{equation*}
$$

where a, b, c, f and g are as defined in Eq. (B. 8).

APPENDIX 4.C
Computer listings of programs MOMENTS, PLOT1, and
PLOT2

These programs were written for use on the VAX/VMS computer system.

MOMENTS calculates the statistical dipolar second moments of each multiple-quantum order. It requires as inputs the u umber of spins and the dipolar coupling constants. An option is provided for generating random couplings, given a range of couplings and the number of spins. The program also has the capability of running consecutively up to seven different systems having the same number of spins.

The second moments for the multiple-quantum orders are gathered in the datafile PLOTI.DA. If the mean dipolar shifts and standard deviations for the Zeeman manifolds are also desired as outputs, the datafile PLOT2.DA is created.
:unning PLOTl and PLOT2 will allow the ploting of the data arrays PLOTI.DA and PLOT2.DA, respectively, on the Tektronix 4014 and 4662 plotters.

The plotting routines were supplied by Jim Murdc:...

Tois groeram calcilates tre rultiple－quantum second romeats iJr a sfinsystem containiag up
 a statisilcal mojel．wicb ilsregards syrmetzy．
 1ヵteger g．pz real mort（1＜1），moni（16i），mom2（191）．nom

rana $(j)=c . \dot{z}^{2} 5 a n(j)-i . R$
open（unitzzi，namex＂ploti．da＂，typez＂nea＂）

type ER1
format（／／．enter tce zumter of spins：＊，s）
accept＊．
$n=\mathbf{n}=\mathbf{n}$
$a 1=n+1$
 accept＊．DSEts
tうご こと
foritat（／．stouid tae wita and tae mean contribution be plotiei／／

accept ． 1 sef
mi＝nl
$a \mathrm{a}=2 * 1$

－rite（i，72i）nsets．tm
जrite（2．7も1）asets．an
CO \＆Ge isetzi，osets
if（asets．at．1）type EI4，a，iset

Ejpe Ezz

accept＊．1ccolce
If（1cyoice．E日．1）KC 50 30
c
をjpe 玉xz
format（／／．enter tae dipolar couplick constants in bz．．．．．．。／）
10 ＜ $1=1,0-1$
do $20 j=1+1, a$
$k=1 *(1-1)-1 *(1+1) / 2+j$
cjpe छと4．1．j．

accept＊。d（x）
contiaue
80 20 52
c
6ype $\dot{\text { b }} \mathrm{B}$
$〔$
$\vdots 65$
シ®5
format（／／．＇єロter a mayirum ragnitude for couflings in bz：。今） accept ${ }^{\text {F．t．}}$ daz
tjpe Ebe
ミ26

accept *.1Fos
type $\begin{gathered}\text { ty }\end{gathered}$

```
Ek% Germat(' Eater a randoriziag ioteger: '.j)
    acceot #.js
    jfe=jr
C
46
C
Eyje シ<E., acoup
```



```
    ace=pも*.ipriat
c
    10 =0 1=1, a-1
    jo 4* j=1+1,0
    A=0*(1-1)-1*(1+1)/2 + J
    c(a)=\mar-ranj(jf)
    If(ipos .ey. 1) d(a)=ats(d(x))
    cogtlaue
    scoup=comb(a,c)
    a =0.2
    t=0.0
    t=0.2
    50<23 1=1,2-1
    do 228 j=1+1,0
    fo c<k <=1,n-1
    1c 288 l=a+1,a
    <1=3*ij-1)-1+(1-1)/2 + J
    <<<=a*(x-1) - x*(c-1)/z + 1
```



```
    g=b * d(sb)*g(x\overline{z})
    <0 20 zid
    t=t + (< < | )
    d=a + j(Aj)wdixí)
    costiaue
    t=t/L
    a*a/1も
    a=t/1=
c
    20 452 r=0.0
    \pi:= =m:1
    cerryute tee cormailzatloa fcetor .....
    0\pi=4-\pi
```



```
    lf(\pi.aE. c) aorm=comc(az,am)
    complite coe variance and tae mean of tee ieemaa manifolis .....
    10 SとKf=&.a
    p1=p+1
    var(pi)={(F)* ((E-&*f(f))*a* (2-4*f(p))*0* 4*(f(p)*
    (s*a-E/-c*(a-1))/((a-z)*(a-z))=(c*t-a-b))
    a(pl)=(1-c*i(p))*"
    coatlaue
ccr:pute tez secog= romeat ......
\piom(\pi1)=3.d
momi (m1)=6.0
\pi0\pi2(\pi1)=0.t
$0 42d p=d,E\pi
F1=p+1
```

```
        p2*p1+m
        \pi0mi(\pi1)=mom1(m1) + comb(n,p)*comb(n,m+p)*(var(pl)+var(p2))/norm
        mom2(m1)=m0mcicm1) + comu(n,p)*comt(n,m+p)*(n(F2)-k(p1))**2/norm
C
4=k
C
c
EZ1
E๕2
4E\dot{\chi}
    * criat(=x: ranmit of rasdomly-cicosen coupliaz: ,fG.2,
    L2
    _&10t ED&.jF0
```



```
C
=6
ジ3
475
c
c
&cr priat öt
ニR7
    1
    fcr\piati/////,73x,',11ta',10x,'rean'/' m',3x,'secozd moments',
```



```
    10 z=0 r=2,0
    \pi. 2=r+1
    ratmOm=rom(m1)/acm(z)
    prin: Є&E, n,mom(ml),ratmom,romi(ml),mori2(mi)
```



```
    cog:1aue
    3r1at 011
```



```
    \0 477 F=0,0
    pl=p+1
    sqvar(pl)=sqri(var(pl)
    ratvar=squar(pl)/sqr: =: 2))
    priat jlic.p,sqvar(pi, ratvar,a(pl)
    f=r.\piar(i4,7x,\ini3.6,Ex,ei3.6,2Ex,el3.6)
    conijaue
    Create jata arrays for plotting .....
    vFite(1,70i) (mom(i),i=1, [i)
    if(isep.eq.1) write(1,7iz) (mom1(1),1=1,01),(\piom2(1),1=1,01)
    vrite(z̈,7ez) (sqvar(1),1=1,41)
    vrite(c,roz) (a(i),1=1,11)
```

```
400 contigue
c type suj
```



```
accept #,ispla
    1f(1spla .eqq. 1) ©0 to 12
c
cim fcrmat(lal)
c
7el gormat(if)
7w< fgrmat(elご.e)
c
4*9 close(tait=1)
ciose(uatt=2)
en:
c
c
c
c
c
c
c
c
fugction comb(a,r.)
gomputes the otaomial coefflciect for a "talags" taxea
T af a ture
corre=1
If(m.le. <) fetura
ig(\pi .&E. a) jefura
m\pi=m
if(r .z&. a/c) mm=a-m
Ccmb=E
if(rm .eq. 1) feturg
Tr! =ma-1
q|=rm
10 22 1=1,mm1
comt=corrct(z-i)
q&=qd*(r\pim-1)
If(moa(1,1d) .3e. J) go to 20
comb=corb/ld
qa=1.2
cearlaue
comb=comt/qJ
retura
90d
```

```
    prcresim plotr
    ERz format(/, bod r.agy data ENSEMELES ? !.j)
        accept #,nems
        accept*.1un
22 call srstr:(4214,2)
    cail jaszpr(2)
    call =11p
    cajl lacmes
c
```

```
    3 frocram for plottigg equallj-spaced data poirts on the
    Textroniz &tl4 and 4062
    dimension daf(10,1021),drax(10),1pos(10),1geg(10),xy(4).
    1
    cosr(4)
    ctaracter** word(3)
    -OFd(1)= "snsemtle"
    -0ra(2)="\epsilonzseritle"
    wori(z)="data set"
    type 521
    format(/, eater plotter used: g= 4014, 1= 4352 ,.5)
    accept *,ipl
    Jp=0
    1f(1pl .ne. Z) JF=2
    qje دez
    for\piat(/, " in velci "plot" file ls the data ? "$)
    accept *,ifl
    call leifle('Elot',jfl,1)
```



```
    type EqE
    icrmai(/: waica units io you prefer - 1gches (a) or cm..
c
    corr(1)=と.こe4\epsilonE
    corr(c)=0.5\niミヶ2
    corf(z)=0.E2\overline{ZEE}
    corr(4)=0. =3&ลう
    Iy(i)=E. 3z
    xy(c)=E.żE
    zy(3)=1z.0
    xy(4)=E.S
c
    if(1un .eq. <) 20 to ck
    do iz 1=1.4
    xy(i)=xy(1)*2.ミ4
    10 4&2 len=1,gers
    \imathjpe j0e, lem
    &ormat(//,' iata ensemble ,12,* .....')
    read(1,E22) asets,np
    read(1, ©0, ) ((dat(i,j), j=1, np), 1=1, nsets)
    type 505, nsets
```

```
c
21
E12
    1
    z Ex,'2 = separate pafes but consistent scailing../.
    z Ex:'3 = separate paces and independent scaligg*" .j)
    accept F.ips
    1f(1ps .1t. z) artps=1
    if(lps.Eq. :) crejs=asets
    #0 SZ& 15Ej=1,areps
    1f(arepg.zt. 1) type jil, irep
    Corrat(/.3又.'data set '.11,'.....')
    t fpe 512. 口р.
    format(/:4I, corizoatal scallar for jour'.15.' data polats'.
    1 !....'
    Tjpe El2
    format(/.Ex, ezter lo& agd tleb polat llmits to,be`./.
    1 =x,jlsplujed : (for ald points. enter z,0) ,>)
    aceept -210,0al
    If(alo .\inq. &) Slo=1
    If(anl . EO. < ) Eaj=af
    If(口Gi . \E. 口lo) oo 50 23
    zFj=301 - alo
    gype j14, Iy(Jp+1)
    fcrrac(/,Ex, Eater tae jesired plot gidth la your preferred'.
```



```
    accept =.2II
    Lf(ica .eq. 1) 25x=122/E.E&
    12エ=228/ corf(J上-1)
    amacsansets
    if(lps .Eq. I) a&acx=1rep
    10 EE 15=1fep,anack
    1pos(15)=4
    1#ea(15)=0
    1rar(1s)=と.e
    j%0s=0
    j0eд=\ell
    3.7as=6.2
c
26
C7
ze
2
\varepsilon
    do 30 1s=1f\inp,ahdcr
    10 <t 1F=alo,asi
    If(1at(js,ff).1E.. .201) <0 E0 26
    1FOs(1s)=1
    jpos=1
    If(daf(15,1p) .se. -. 221) 80 60 27
    1 Dea(1s)=1
    jaek=1
    coatiaue
    smax=arami(Imax(1s),5\piax)
    contlaue
    type 三1E
```

```
EiE forma:(//.ix,'veritcal scaling .....')
    1f(ifs .eq. z) go to &5
    prax=sாax
    4pOS=jpOS
    G0EF=j|EG
    go to =R
    pram={T,ay(1rEF)
    cpos=1pos(1rep)
    iceq=\a\ing(iref}
#
E:5
    l Ex, "oant tae nepailve Ealf-plane stppressei ? (8=no,1zyes).
    accept #.1top
```



```
    type s1%
E17 format(/,Ex,'your data points are all gegative. do you'./,
    l Ex, adat lae fositive balf-plane slopressed i (expo,i=yes)'.
    ३)
    accejt*.100t
Er type Ele, pmax
E18 format(/.Ex, the beefitest data polzt has abs. value = '.f14.ô)
    !%0e 515
E1% foriat(/, ミx,'for "autoratic" full-value scalize, emter 2.o;',
```



```
    z Gx.'maximum magaitude on tae plot: (.$)
        accept *,fy
        1f(fv .Gq. 0.0) ymax=jraz
    if(fv.get. i.&) y,max=fv
c
Ezo fosrat(/,Ex. Enter the deslred plot beight in your preferred'.
    1 /.0x,'ualrs: (',{j.1,' maximum( ',s)
accept *.yyz
    1f(1un . E4. 1) y%j=yyz / 2.54
    jjy=yyy / corr(jf+E
    ytop=jyy - .1ze
c
E2
E%
    1 cx,'2=yes, out ooly on tbe flrst page)',s)
        a=cept *.1ax
c
#c5
```



```
        accept *,j: Jice
        if(1choice.eq. R) so to 3<0
        lf(1ctolce.lt. &) EO to 430
C
78 2pacies=1
    if(ips.eq. 2) afages=nsets
C
```

c

call drsend
cortiaue
18:
$\stackrel{c}{c}$
53
c
$i=8$
328
420
$\stackrel{c}{c}$
4ジ cald arstop
close(ualz=el)
c
522
623
c
c
1f(ips. .39. 玉) sioz07z
type 52e, jotze
acespt *iéo

call jewpag
$110=10$
x E! =nnt

call vafort(2,8,5xz,2.180,jtop)

1f((1ax.eq. 2).anj. (1paze.st. 1)) Ro to 75
jaxt = ymaz \# (1 - 100i)
yazb=-yாaz * (1-1:0ヶ)
call move(xlo.jaxt)
call trao(810.10 c 0)
call Tove(x10.0.7)
caid irae(sai,coí)
alines=1
if(ips.eq. 1) alines=esets
do 188 111ae=1.alines

call move(z10,jat(if, 玉lo))
Eze :ype $=32$

acceps \#,100
1f(100.eq. Z) 20 2073
18(100.eq. E) © 5021
1ः(10』.eq. E) goto 428
1f(100.9G. 4) e0 to 4=d
cont1aus
contiote
contigue
$\operatorname{cormat}(1 \in)$
fortat(elo.3)
do 158 1paete=1, apeses
1f(itop.ey. ficot) call -1210y(210, Ihi, frax,ymax)
end


```
        accept *.1ua
c
c
c
    ii zy(i zy(i) * 2.E4
c
    15
c
c
c
CR
C
jk8 fype EgE, nsEtSS.12, data SETS per ensemble/')
c
jrozfan plote
```

```
corr(1)=2. डe<05
```

corr(1)=2. डe<05
corg(2)=0. 三SE4z
corg(2)=0. 三SE4z
corr(3)=u.jićcef
corr(3)=u.jićcef
corr(4)=0., vSKEE
corr(4)=0., vSKEE

 11(1un.E4. 0) 60t0 1F
 do 12 1=1.4
 call, =s:rt(4214,2)
 call dasgp:(a)
 call cllp
 call lasues
 do 20 m=1,aens
 read(1,G02) nsers,ap
 read(i,\forall^u) ((dat(i,j,x), j=1,ap), l=1,nsets)
 contlaue
 d procram for plotifng equally-spaced data points on the
 uf to seven aifferent data ensembles or tne sare graph.
 I1mension dat(12,be1,7),dmax(10),1pos(10),1nez(10), yy(4).
 1 corg(4)
 coaracter**edord(3)
    ```

```

 *ord(1)='aAF icIE'
 *ord (z)='\overline{r}OFSIAND'.
 worj(3)="data set'
 type =01
 format(/.' eater fiotter used: }0=4214, I=4662 ',5
 accept *,1pl
 j!=0

 tyoe saz
 for.: " in daich "plot" flle is the lata % "%)
 acc::- *...l
 call jefilev'=108*.111,1)
 tjpe 503
 forrat(/." ho& ramy data ENSEMBLES ? '.i)
 accept *,0&as
    ```

```

 IFS=1
 &ype E12
 fcrrat(/.gx, 'eater tae jesired plotilaz sigle",f
 1 Ex, ! = all jata sats ce toe same page',l
 z Ex: 't = stPasate pates tut consistent sceifogo.%.
 & Ex,'z m separate pages and independent scailos o,$)
 sccép: itps
 1:(1ps .1t. 3) artes=1
 if(ips .eq. 3) areps=asets
 d0 300 lrep=1, पFEFS
 if(areps ;-6t: 1) tjpe jil, irep
 cornat(/,3x, aasa sat .{i,0.....')
 sormat(/ata
 1 !....',
 { formath,in, enter lod acd high point limits to, be, (for ald points. enter d, 3)
 accept ,ajo,aaj
 if(Elo.eq. í) Elo=1
 1f(ahi . Sq. d) 0a1=0p
 1f(asi .le. nlo) &o to 23
 aFP=EE1 - 010
 zype =14, xy(jf+1)
 forTar!/,Em! Eater tae desired plot didth la your preferred*.
    ```

```

 accep: .82z
    ```

```

 x22=212/ cors(jf+1)
 gbaca=nsets
 1f(1ps .eq. こ) 新ci=&rep
 10 <5 1s=1rep,0tack
 1FOS(1s)=\
 1Ese(15)=0
 d\piaz(1s)=R.Z
 JFOS=0
 j092=E
 5\piax=z.2
 10 30 1s=1rep,anack
 $0 2- x=1.aens
 d0 2E 1F=E:0,0E1
 1f(tat(15.4..s!.1e. . 221) 20 to 25
 1Fos(1s)=1
 jros=1
 1f(13:(15.17.x) .RE.-.421) E0 10 27
 12eg(1s)=1
 jaeg=1
 imaz(1s)=araxi(drax(is),dts(dat(is,lp,is)))
 coatlace
 coz:10ce
 smax=amaxi(drmax(1s).smax)
 continue
 E1s format(//.41,'veritcal scallag')

```

```

 1f(1Hs .tG. 2) EO to 72
    ```


        accept *. 1 ب०
        if ( 160 -eq. 6 ) 60801 R
\({ }^{6} 72\)
    call gevpag
        10=10
        比=ati



        cadi vofort(2.z.212,2.j20.jtop)
        1f(1as.eq. 2) 60 t0 75

        yaxt= ymas \(=(1-100 t)\)
        yax \(0=-\mathrm{ymaz}=(1-1 \mathrm{tap})\)
        call rove(z10.yaz \(\%\) )
        call trav( \(120, y a x t\) )
        call rove( \(210, Z, \bar{z})\)
        call drau(zLb, d. 2 )
7 7
c
        allaes=1
        1f(1ps -eq. 1) aliaesarsers
c
        do 1tid 111日e=1.al1aes

\(c\)
        \(10=\Sigma 4=1,0905\)
        call move(s10,dat(1,T, \(210, x))\)
        30 \(=0 \quad j=1, \mathrm{aj} \mathrm{F}\)
Ex \(\operatorname{calj}\) dra-(xio+jodat \((1 \pi, 010+j, x))\)
う三 contliue
-
    call arsend
1zE contiaue
e
c

        accept =.100
        1f(101. E4. Z) 208073

        1f(100.Eq. 3) 6060428
\({ }_{j=2}^{c}\) costiaue
ExR contlaue
e
420 call ersiop
        case(ualc=と1)
e
EvE scriat(16)
ĘS facmat(ejé.E)
C
    end

\section*{CHAPTER 4 REFERENCES}
1. W.S. Warren, Ph.D. thesis, University of California, Berkeley, 1980 .
2. G. Bodenhausen, Prog. NMR Spectrosc. 14, 137 (1981).
3. D.P. Weitekamp, submitted to Adv. Magn. Resonance.
4. A. Abragam, Principles of Nuclear Magnetism, (Oxford, London, 1961).
5. G. Drobny, A. Pines, S. Sinton, D.P. Weitekamp, and D. Wemmer, Faraday Symp. Chem. Soc. 13, 49 (1979); G. Bodenhausen, R.L. Vold, and R.R. Vold, J. Magn. Reson. 37, 93 (1980).
6. J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
7. J. Tang, Ph.D. thesis, University of California, Berkeley, 1981.
8. R. Bracewell, The Fourier Transform and Its Applications, (McGraw-Hill, New York, 1965).
9. J.B. Murdoch, W.S. Warren, D.P. Weitekamp, and A. Pines, submitted to J. Magn. Reson.
10. Y.S. Yen and A. Pines, J. Chem. Phys., accepted for publication.
11. A. Wokaun and R.R. Ernst, Molec. Phys. 36, 317 (1978).
12. Computer simulation performed by J.B. Murdoch, University of California, Berkeley.
13. MQ spectrum supplied by Gary Drobny, University of Washington.

\section*{CHAPTRR 5}

SEMSITIVITI ENEAHCEMENI BY SPINLOCEING IN THE
DETEGTIOA PERIOD

\subsection*{5.1. INTRODUCTION AND TEEORI}
\(A\) experiment is a two-dimensional experiment.(1) That is, one of the dimensions is scanned in real time, and the other is scanned by successive incrementation from shot to shot. Every two-dimensional experiment suffers from two sources of noise: the real time noise, and the successive shot to shot noise. The first type of noise, the \(\boldsymbol{t}_{2}\) noise, is predominantly thermal noise in the electronics, and is also common to single-dimension experiments. The second type of noise, which has been termed the \(t_{1}\) noise, (2) is due to the ifreproducibility of the experiment and is inherent in any two-dimensional experiment.

A simple schere is proposed to improve \(S / N\) by minimiziag the \(t_{2}\) noise. The idea is to acquire more signal energy \({ }^{(3)}\) in the detection period.

The pulse sequence used is shown in Fig. 5.1. It is a typical MQ sequence but with a train of pulses in the detection period. The first three pulses allow even-quantum selection and are phase-shifted by \(\Delta \phi=\frac{2 \pi}{2 M}\), where \(M\) is the maximum order desired, for each incrementation in to tofect separation of

x

Figure 5.l Even-selective multiple-quantum pulse sequence with spinlocking pulses in the detection period. The preparation pulses are incremented by an amount \(\Delta \phi\) for each incrementation in \(t_{1}\) (TPPI).
orders (TPPI \({ }^{(4)}\) ). The \(\pi\) pulse in \(t_{1}\) removes offset terms in the \(\omega_{1}\) spectrum. The next two rf pulses mix the \(M Q\) coherence into single-quantum (SQ) coherences. Detecting the amplitude modulation of the \(S Q\) coherence as a function of \(t_{1}\) maps out the MQ evolution.

Because the evolution in \(t_{2}\) is uninteresting for our purposes, it is unnecessary to acquire the entire F.I.D. in \(t_{2}\). In fact, typically only one point in \(t_{2}\) is sampled for each incrementation in \(t_{1}\). Only the amplitude modulation of the \(S Q\) coherences in \(t_{2}\) is desired. Therefore, instead of subjecting the \(S Q\) coherences to decay under the full Hamiltonian, which may contain rapidly dephasing terms, one can increase the signal energy available for detection by removing the rapidly decaying terms. The main source in solids is the dipolar Hamiltonian. One solution is to apply WAHUHA \({ }^{(5)}\) in \(t_{2}\) to remove this term. Best yet is to remove all such terms by pulsed spinlocking. \((6,7)\) Under perfect spinlocking conditions, the only decay that will occur will be due to the spin-lattice relaxation in the rotating frame.

The multiple pulses in \(t_{2}\) (Fig. 5.1) are applied for just that effect. Rhimet al (7) have shown that optimal spin locking is achieved with a series of \(\pi / 4\) pulses at repetition rate \(\Omega\) satisfying
\[
\Omega>\bar{\omega}_{1}, \gamma H_{l o c}
\]
where \(\bar{\omega}_{1}=\overline{Y H}_{1}\) is proportional to the average rf irradiation strength and \(H_{l o c}\) is the local field strength.

By spinlocking the \(S Q\) coherences in \(t_{2}\), we are in essence preserving the signal amplitude as modulated by the evolution in \(t_{1}\). By sampling in the pulse windows and averaging over all the signal that is available in the detection period, we have performed an integration of the signal in \(t_{2}\). The integral is proportional to the signal amplitude at \(t_{2}=0\) averaged over the \(t_{2}\) noise.

\subsection*{5.2 EXPERIMENTAL RESULTS AND DISCUSSION}

The sample is polycrystalline adamantine, \(\mathrm{C}_{10} \mathrm{H}_{16}\). Experiments were performed at a regulated temperature of \(25^{\circ} \mathrm{C}\).

The following observations on the effective relaxation rates were made. The \(S Q\) transverse decay time under free evolution was measured to be =100 sec. A series of \(\pi / 4\) pulses was applied at various repetition rates to the \(S Q\) coherences. The observed decay times in the rotating frame were
\[
\begin{aligned}
& \Omega^{-1}=15.9 \text { usec, } T_{1 e} \geqslant 1.2 \mathrm{sec} \\
& \Omega^{-1}=25.9 \text { usec, } T_{1 e}=1.0 \mathrm{sec} \\
& \Omega^{-1}=35.9 \text { sec, } T_{1 e}=0.2 \mathrm{sec} \\
& \Omega^{-1} \geqslant 90 \text { usec, saw no spinlocking effect. } .
\end{aligned}
\]

With \(\pi / 2\) spialocking rf pulses at repetition time of \(\Omega^{-1}=54.8\) used, \(T_{1 e}=2.2 \mathrm{msec}\).

For our MQ experiments, the repetition rate was \(\Omega\) \(=(39 \mu \mathrm{ec})^{-1}=25.6 \mathrm{kHz}\) and the pulse duration for a pulse was 8.0 sec. Thus the average irradiation strength was \(\bar{\omega}_{1} / 2 \pi=3.2 \mathrm{kHz}\). From second moments measurements, \(\quad \mathrm{YH}_{\text {oc }} / 2 \pi\) is roughly 15 kHz for adamantine. Thus the condition for spinlocking was modesty satisfied, and for our purposes sufficient.

The preparation time was \(\tau=60\) sec in all our MQ experiments.

The first sampled point occurs at \(t_{2}=0\), the normal sampling point. This is to be compared with the integrated spinlocked signal. Integration was simulated by taking the average of 1000 points sampled in the spin locking windows. These points were taken after the first \(25 \pi / 4\) pulses, or at a delay of \(25 \Omega^{-1}\) = 1.00 msec after the mixing period. This delay moves the sampling far away from any transients that were not spialocked.

Shown in Fig. 5.2 is a comparison of MQ spectra obtained with one point sampled at \(t_{2}=0\) and the average of 1000 points sampled between spinlocking pulses. There is an improvement in \(S / N\) of roughly \(\times 2\) by sampling more points, indicating that the signal was large enough so that \(t_{1}\) noise dominates.

To effect \(t_{2}\) limitation in noise, the signal was


Figure 5. 2 MQ spectrum obtained with pulse sequence of Fig. 5.l using (a) the first sampled point, yielding the normal spectrum, (b) an average of 1000 points sampled between the spin locking pulses, yielding the spinlocked spectrum. The comparison shows lit: improvement by \(t_{2}\) spin locking, indicating that \(t_{1}\) ac e dominates.
attenuated by \(30 d B\) and the receiver amplifier gain was increased appropriately to achieve its full dynamic range. Figure 5.3 shows the large improvement in \(S / N\) by spinlocking. The \(S / N\) is increased by 20 - 30 times, which is near the maximum improvement possible. That is, for \(t_{2}\) limited sensitivity, the spinlocking spectrum is equivalent to an accumulation of rus roughly equal to the number of points sampled in \(t_{2}\).

In both instances, Figs. 5.2 and 5.3, we observe the intensity in the odd-quantum order relative to the even-quantum order is less in the spinlocking spectrum. The odd-quantum coherences appear as a resule of imperfect even-selection, and must be a result of imperfect offset cancellation in the preparation and mixing periods. If even-selection is perfect, the signal should appear as \(\left\langle I_{x}\right\rangle\) for the pulse sequence shown in Fig. 5.1. A small offset termeauses signal to appear in the orthogonal channel. It also creates a small amount of odd-quantum in both channels in addition to even-quantum coherences, but in different amounts. The difference in the spinlocked spectrum and the normal spectrum reflects this difference in the preparation of even and odd quantum coherences in the two channels: the spinlocked signal pertains to only one of che channels. Based on this argument, we should expect to see a difference in spectra obtained with \(t_{2}\) spinlocking if selectivity is


Figure 5. 3 MQ spectra obtained in the same way as Fig. 5.2 but with attenuated signal input to receiver. The comparison shows large improvement by \(t_{2}\) spinlocking when the \(S / N\) in the spectrum is limited by \(t_{2}\) noise.
imperfect.
For nonselective sequences, signal in the other channel can be obtained by repeating the experiment a second time with the spinlocking pulses changed in phase by \(90^{\circ}\). Another strategy is to phase the spinlocking pulses at \(45^{\circ}\) with respect to the mixing pulses, thereby spinlocking both channels simultaneously and with equal weighting.

In conclusion, the experiments show that the proposed scheme can improve sensitivity of detection. The \(t_{1}\) noise is proportional to the magnetization and cannot be minimized by increasing sample size. In contrast, the \(\boldsymbol{r}_{2}\) noise can be made insignificant by doing so. However, given the situation that the \(t_{2}\) noise is an important limitation, these preliminary experiments show that pulsed spin locking in the detection period and with integration of signal in the windows is successful in enlarging \(S / N\).

\section*{CHAPTER 5 REFERENCES}
1. A. Wokaun and R.R.Ernst, J. Chem. Phys. 67, 1752 (1977).
2. K. Nagayama, P. Bachmann, K. Wuthrich, and R.R. Ernst, J. Magn. Reson. 31, 133 (1978); D.P. Weitekamp, Advan. Magn. Reson., submitted for publication.
3. W.P. Aue, P. Bachmann, A. Wokaun, and R.R. Ernst, J. Magn. Reson. 29, 523 (1978).
4. G. Drobny, A. Pines, S. Sinton, D.P. Weitekamp, and D. Wemmer, Fraadav Symp. Chem. Soc. 13, 49 (1979); G. Bodenhausen, R.L. Vold, and R.f.. Vold, J. Magn. Reson. 37, 93 (1980).
5. M. Mehring, High Res... 1 ion NMR Spectroscopy in Solids, (Springer-Verlag, New York, 1976).
6. E.D. Ostroff and J.S. Waugh, Phys. Rev. Lett. 16 , 1097 (1966).
7. W.-K. Rhim, D.P. Burum, and D.D. Elleman, Phys. Rev. Lett. 37, 1764 (1976).

\subsection*{6.1 INTRODUCTION}

Two interacting methyl groups serve as a model system for studying hindered internal rotation. Because it involves only six nuclear spins, the calculations involved are tractable. Definitions of coryelated and uncorrelated motion are well defined and thus exact treatment is possible.

We wish to utilize the fact that molecular motion modifies the observed couplings between nuclear spins. In oriented systems, such as solids or solutes dissolved in a liquid crystal, the dipolar interaction is typically two or three orders of magnitude larger than the \(J\) couplings. Our studies will be in such systems; thus we will concentrate on motional averaging of the dipolar couplings and neglect the \(J\) couplings.

The definitions of correlated and uncorrelated motion of two methyl groups are first stated. The form of the Hamiltonians is thus defined and is different for the two motions, ensuring that \(N M R\) is sensitive to correlation of motion. The \(N M R\) spectrum for each of these cases can be calculated as a function of the dipolar coupling constants. Group theory for nonrigid molecules is used to simplify the calculations in these
two extremes and in the intermediate region. The transition from correlated to uncorrelated motion can be likened to an exchange process and hence is amenable to treatment with exchange theory. Multiple-quantum NMR enters as a simplification tool in the extraction of coupling constants. A computer simulation of the 4quantum spectra for the molecule \(1,8-\mathrm{dimethyl}\) naphthalene -d. undergoing exchange processes at a particular crystal orientation is presented. Experiments on the same molecule dissolved in a nematic liquid crystal reveals that at room temperature this system has uncorrelated equivalent methyl groups. Finally, we present the analysis of a simple two -spin
 the limit of correlated and uncorrelated motion.

\subsection*{6.2 DEFINITION OF CORREIATED AND UNCORRELATED MOTION}

In both limits, the methyl groups are undergoing rapid torsional motions about their \(C_{3}\) axes. The distinction we would like to make here is in the relative motion of the methyl groups. We define the motions as follows. If the methyl groups are correlated, the motion of one methyl group completely determines the motion of the other group. If the methyl groups are uncorrelated, the relative orientation of the methyl groups is completely random in time.

The above definition of correlated motion is independent of how the motion is executed. The methyl groups can either be correlated in an "eclipsed" or "staggered" configuration, as shown in Fig. 6.1, or in an intermediate configuration. The motionally averaged values of the dipolar couplings are modified by the type of correlated motion the spin system undergoes, but the number of coupling constant remains the same. Experimental determination of the dipolar coupling constant, assuming a certain fixed distance between the two \(C_{3}\) axes, can lead to information on how the methyl groups move in correlated manner. The \(C_{3}\) axes distance can be determined by other means, such as X-ray diffraction or neutron scatering methods.

The symmety group of the spin Hamiltonian is also independent of how the correlated motion is executed, and can be found based on the above definition.

Correlation of two methyl groups can be viewed as two wheels in gear, however the methyl groups are positioned. In the transition to becoming uncorrelated, there is an occasional slipping of gears. The rate of slippage depends on the potential barrier determined by the environment and on the cmperature of observation.

\subsection*{6.3 DETERMINATION OF THE SPIN HAMILTONIAN}

We will assume a system of isolated molecules


XBL 8210-2925

Figure 6.l When the correlated motion of two methyl groups occur in an "eclipsed" manner, the methyl groups are mirror images. In a "staggered" configuration, they act as gears in a cogwheel mesh.
oriented in matrix．The relevant \(\begin{aligned} & \text { mamiltonian is the }\end{aligned}\) one that is averaged over the nuclear motion．The Hamiltonian also has to be consistent with the spacial symmetry of the molecule．

At room temperature，the correlation time of rotation \(\tau_{c}\) is typically \(10^{-9}-10^{-11}\) sec for methyl groups．（2）To observe the effect on dipolar spectrum the inherent time scale is roughly \(10^{-3}-10^{-4} \mathrm{sec}\) for typical dipolar couplings．Thus，on the NMR time scale，at room temperature the methyl groups are motionally averaged．

To determine the \(⿴ 囗 十\) one must know the number of spins involved，the number of unique dipolar couplings according to the molecular motion，and the molecular orientation with respect to the external magretic field．Specification of the molecular orientation is essential since the magnitude of the coupling depends on the polar angle \(\theta\) that the internuclear vector makes with the external magnetic field \(\vec{H}_{0}\) ：
\[
d_{i j}=\frac{1}{r_{i j}^{3}}\left(3 \cos ^{2} \theta_{i j}-1\right)
\]

We will first treat a hyothetical case of rigid latice structure with one molecule per unit cell．The influence on the spin hamiltonian by molular reorientation，such as happens in a liquid crystal，
will be treated in section 6.6. The determination of the number of motionally averaged dipolar coupling constants is discussed separately for the intramethyl and intermethyl parts of the dipolar Hamiltonian.

\subsection*{6.3.1 Intramethyl Couplings}

Due to the fast \(C_{3}\) reorientation of the methyl groups, the dipolar couplings within each methyl group is averaged to the same value. If the orientation of the crystal is such that the two \(C_{3}\) axes make the same angle with respect to \(\vec{H}_{0}\), then the methyl groups are equivalent and there is only one unique intramethyl coupling constant. Otherwise, the methyl groups are inequivalent and there are two distinct intramethyl coupling constants. The above statements are true regardless of whether the methyl groups are correlated or not. Thus, intramethyl couplings do not lead to information on correlation.

\subsection*{6.3.2 Intermethyl couplings}

The determination of the number of intermethyl couplings is more complicated as a result of two factors: the relative motion of the methyl groups and the direction of the \(C_{3}\) axes with respect to \(\vec{H}_{0}\). We will assume for simplicity that each methyl group can hop between three equivalent equilibrium positions.
6.3.2.1 Uncorrelated Motion

If the methyl groups are uncorrelated [Fig. 6.2(a)], a proton on one group senses the same coupling to all three protons on the other group. But all the protons on methyl group are equivalent as a result of the rapid methyl reorientation. Averaging the couplings over this motion yields one unique intermethyl coupling constant. Any type of molecular reorientation will not alter this uniqueness.
6.3.2.2 Correlated Motion

This case is che most difficult one to contend with. Determination of the couplings depends on the factors mentioned at the beginning of section 6.3.2. In Fig. 6.2(b), for the sake of discussion, we have assumed a particular relative positioning of the methyl groups. However, the results remain unaltered by the relative positioning or by whether the methyl reorientation is discrete or continuous. According to Fig. 6.2(b), there are three configurations that are possible.

When the motion is correlated, the number of unique intermethyl couplings depends on the orientation of the molecule, and thus the symmetry group of the Hamiltonian will vary with the orientation. (Take note that this fact does not hold when the motion is uncorrelated.) Three situations can occur.

\section*{(a) Uncorrelated Motion}

(b) Correlated Motion







XBL 8210-2926

Figure 6.2 (a) In uncorrelated motion, the methyl groups have a random relationship with respect to each other. (b) Assuming the methyl rotor can hop only between equilibrium positions, there are only three possible configurations fur correlated motion.

\section*{(i) Equivalent Methyl Groups}

When the two methyl \(C_{3}\) axes make the same polar angle with respect to \(H_{0}\), they are NMR equivalent. Averaging the dipolar couplings over the three possible configurations results in:
\[
\begin{aligned}
& d_{14}=d_{25}=d_{36} \\
& d_{15}=d_{16}=d_{24}=d_{26}=d_{34}=d_{35},
\end{aligned}
\]
where the subscripts are consistent with the labeling scheme of fig. 6.2(b). Thus there are two unique intermethyl coupling constants when the methyl groups are equivalent. The net result is that the dipolar Hamiltonian is of the form:
\[
H_{D}=u \sum_{i, j} U_{i j}+v \sum_{k, l} V_{k l}+w \sum_{m, n} W_{m n},
\]
where \(u\) is the unique intramethyl coupling constant, \(v\) and \(w\) are the two unique intermethyl coupling constants. The spin operators \(U, V\), and \(W\) are of the same form:
\[
U_{i j}=I_{z i} I_{z j}-\frac{1}{4}\left(I_{+i} I_{-j}+I_{-i} I_{+j}\right),
\]
and the indices run through the following labels:
\[
\begin{aligned}
& (i, j)=\{(1,2),(2,3),(1,3),(4,5),(5,6),(4,6)\} \\
& (k, 1)=\{(1,4),(2,5),(3,6)\} \\
& (m, n)=\{(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)\}
\end{aligned}
\]
\(\vec{H}_{-}^{\vec{H} \text { and the Methyl }} \mathrm{C}_{3}\) Axes are Contained in a Plane

The two methyl \(C_{3}\) axes define a plane in the Cartesian space. The orientation of interest here is the one where this plane contains also the direction of \(\vec{H}_{0}\). We distinguish here the case where the methyl groups are inequivalent. In this orientation, assuming the same proton labeling scheme as before, one finds that the equivalency of the intermethyl couplings are the same as in case (i). Thus, the dipolar Hamiltonian is of the form:
\[
H_{D}=u_{1} \sum_{i, j} U_{i j}^{(1)}+u_{2} \sum_{i, j} U_{i}^{(2)}+v_{j}^{(2)} \sum_{k, 1} V_{k i}+w \sum_{m, n} W_{m n} .
\]
and the indices run through the following sets:
\[
\begin{aligned}
& (i, j)=\{(1,2),(2,3),(1,3)\} \\
& \left(i, j^{-}\right)=\{(4,5),(5,6),(4,6)\}
\end{aligned}
\]
and ( \(k, l\) ) and ( \(m, n\) ) run through the same sets as before.

\section*{(iii) Arbitrary Orientation}

Excluding the particular orientations listed in the above two cases (i) and (ii), all other orientations fall in this class. The averaging of the intermethyl couplings is different and yields:
\[
d_{14}=d_{25}=d_{36}
\]
\[
\begin{aligned}
& d_{15}=d_{26}=d_{34} \\
& d_{16}=d_{24}=d_{35}
\end{aligned}
\]

Thus for an arbitrary orientation, the number of unique intermethyl couplings is three. The dipolar Hamiltonian is then of the form:
\[
\begin{aligned}
H_{D}=u_{1} \sum_{i, j} U_{i j}^{(1)} & +u_{2} \sum_{i, j} U_{i}^{(2)} \int_{j}+v \sum_{k, 1} V_{k l}+w_{1} \sum_{m, n} W_{m n}^{(1)} \\
& +w_{2} \sum_{m, n} \sum_{m} W_{m}^{(2)} \cdots
\end{aligned}
\]

The indices run through the following sets:
\[
\begin{aligned}
& (i, j)=\{(1,2),(2,3),(1,3)\} \\
& \left(i^{-}, j^{-}\right)=\{(4,5),(5,6),(4,6)\} \\
& (k, 1)=\{(1,4),(2,5),(3,6)\} \\
& (m, n)=\{(1,5),(2,6),(3,4)\} \\
& \left(m^{-}, n^{\prime}\right)=\{(1,6),(2,4),(3,5)\}
\end{aligned}
\]

The number of unique intramethyl and intermethyl couplings are displayed in Table 6.1.
6.4 NMR PERMUTATION GROUP OF NON-RIGID MOLECULES

The computability of \(I_{z}\) and \(R\) implies that the Hamiltonian in the eigenbasis of \(I_{z}\) is already in block diagonal form according to the leman quantum number m. By finding the symmetry group of the spin system, each zeeman block can be further block diagonalized according to the irreducible representations of the symmetry group. This reduces substantially the amount

Table 6.1
Number of unique dipolar couplings
intramethyl intermethyl
uncorrelated: \(\left(S_{3} \times S_{3}\right) S_{2} \quad 1\)
\(S_{3} \times S_{3} \quad 2\)
1
correlated: \(\quad \mathrm{D}_{3 \mathrm{~h}} \quad 1 \quad 2\)
\begin{tabular}{lll}
\(\mathrm{S}_{3}\) & 2 & 2
\end{tabular}
\begin{tabular}{lll}
\(C_{3}\) & 2 & 3
\end{tabular}
of time and effort in diagonalizing the Hamiltonian to solve for eigenenergies, and even more so when solving for the equation of motion of the density matrix.

The objective is to find all operations that leave the spin Hamiltonian invariant. This defines the symmetry group of the hamiltonian. The following procedure for group determination applies also to rigid systems:
1. Find equalities among dipolar couplings. This contains the symmety of the dipolar familtonian, including the motionally averaged symmetry as well as the spacial symmetry of the molecule. Form sets of equal dipolar couplings \(\Omega_{k}=\left\{(i, j): d_{i j}=d_{k}\right\}\), where \(d_{k}\) represents the unique coupling constant for the set \(\Omega_{k}\).
2. Find all permutations of labels such that the dipolar couplings remain in the same set. These permutations are the elements of the symmetry group of the dipolar Hamiltonian:
\[
G=\left\{P_{T}: P_{T} \Omega_{k}=\Omega_{k}\right\},
\]
where
\[
P_{r} \Omega_{k} \equiv\left\{P_{r} d_{i j}=d_{m n}: d_{i j} \text { and } d_{m n} \text { are both in } \Omega_{k}\right\} .
\]

One must be careful to locate all symmetry operations. It is more likely the case that a symmetry operation is missed, and more transition lines are predicted than is really the case.
3. Given the identity of the group, the goal is to ultimately determine the energy level diagram according to the irreducible representations of the group. This can be accomplished by calculating the coefficients of generating functions of wreath products, \((3,4)\) or by obtaining the character table of the group and decomposing constructed reducible representations of the Zeman manifolds into the group's irreducible representations.

Often it is difficult to identify the group even when the elements of the group are known. One may use elementary group theory, i.e. construct a multiplication table of the elements, extract the classes and subgroups from this table, etc., and eventually construct the character table. This is usually a difficult problem. Sometimes through recognition one may find an isomorphism (5) with a known group and the obtainment of the group's character table is automatic, since isomorphic groups have identical character tables. Fortunately, there is a systematic approach to group determination of nonrigid molecules that involves decomposing a larger group into products of smaller groups, which are easier to handle.

Two types of products are relevant, the direct product and the semidirect product. The conditions in which they are applicable are discussed below.

A direct product can be formed between two groups
only if they commute. An obvious case to recognize is the following. Physically, if two subgroups involve permutations of labels only between disjoint parts of the molecule, and no other operations in the group will connect the two subgroups, then these parts of the molecules can be considered as separate entities. The operations on separate entities commute, and a direct product can be formed.

Semidirect products is used when one of the subgroups is the set of all operations that permute entire identical molecular parts, but that do not involve any permutations within the molecular parts. \((7,8)\) Note that the frame subgroup does not commute with the internal subgroups.

It is useful to realize that all NMR semidirect product groups of sin systems undergoing uncorrelated internal motion can be categorized as generalized wreath products. Wreath products are a subset of semidirect products. In general for nonrigid systems, the molecular symmery group can be decomposed into a semidirect product of internal corsional subgroups and a skeletal frame subgroup. When a frame subgroup which permutes a set of identical rotors can be defined, it can be decomposed into a wreath product. (5) When more than one set of rotors are to be permuted, the generalized wreath product should be used. (6)

When the molecule is undergoing correlated
internal motion, the group is isomorphic to a point group. More specifically, the subgroup for the parts of the molecule that move in a relative manner are isomorphic to point groups.

As an example, consider the para-disubstituted biphenyl molecule \(\quad \mathrm{X}_{-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Y}\). \({ }^{(9)}\) At room temperature rapid torsional motion occurs about the phenyl-phenyl bond. We will analyze the composition of its symmetry group based on the above concepts. Each phenyl ring has \(C_{2 v}\) symmetry. Juxtaposed to another phenyl ring, its symmetry is reduced to \(C_{2}\). If the para-substituents \(X\) and \(Y\) distort the phenyl structures inequivalently, then the group of the whole molecule is just the direct product \(C_{2} \times C_{2}\), which is isomorphic to \(D_{2}\). If the para-substituents distort the phenyl structure equivalently, then an additional subgroup, that contains the permutation of the two phenyl rings, must be included. This group \(C_{2}\) does not commute with either re the phenyl \(C_{2}{ }^{\prime}\) s nor with their direct product. The group for the symetrically disubstituted biphenyl molecule is \(\left(C_{2} \times C_{2}\right)^{\wedge} C_{2}\), which can be shown to be isomorphic to \(D_{4}\). Here the symbol x represents a direct product, and represents a semidirect product.

Finally, we consider the importance of separation of motional time scales. To cite an example, consider the n-hexane molecule, \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\). Suppose the hexane molecule is undergoing slow conformational
changes but rapid torsional motions about the \(C-C\) bonds. A different symmetry group may exist for each conformation. Each conformation must be considered as a separate motionally averaged nonrigid specie, each contributing individually to the \(N M R\) spectrum. If the hexane molecule is also undergoing rapid conformational changes, then the molecule is considered as one specie which is averaged over the conformations as well as the torsional motions.

\subsection*{6.5 DETERMINATION OF THE HAMILTONIAN SYMMETRY GROUP}

Molecules undergoing rapid internal motion must be treated with group theory appropriate for nonrigid systems, as discussed in the previous section. As the environment of the spin system changes, so may the symmetry group of the lamiltonian. Specifically, if one is dealing with a single crystal, as the orientation changes, the familtonian changes and the symmetry of the Hamiltonian may change. In the case of two coupled methyl groups, there are five symmetry groups to consider. We demonstrate the determination of the Hamiltonian group on the different motional cases.
6.5.1 uncorrelated Equivalent Mechyl Groups

The group for the case of an equivalent pair of methyl groups undergoing uncorrelated motion is \(G=\)
\(\left(S_{3} \times S_{3}{ }^{\circ}\right.\) ) \(S_{2}\). The prime on the second subgroup allows differentiation between the two methyl groups. The notation \(S_{n}\) represents the group of permutation of n identical objects (nuclei). In wreath notation, \(G=\) \(S_{2}\left[S_{3}\right]\). The elements of \(S_{3}, S_{3}{ }^{\circ}\), and \(S_{2}\) are listed below:
\begin{tabular}{l}
\(\frac{S_{3}}{(1)(2)(3)}\) \\
\(\{(12),(23),(13)\}\) \\
\(\{(123),(132)\}\) \\
\((4)(5)(6)\) \\
\(\{(45),(56),(46)\}\) \\
\(\{(456),(465)\}\) \\
\hline\((1)(2)(3)(4)(5)(6)\) \\
\((14)(25)(36)\)
\end{tabular}
(14)(25)(36)

The notation ( \(a_{1} a_{2} \quad . . \quad a_{p}\) ) represents a cyclic permutation of \(p\) objects, ice. \(a_{1}\) becomes \(a_{2}\), \(a_{2}\) becomes \(a_{3}\),... and \(a_{p}\) becomes \(a_{1}\). The above permutations can be related to point group operations. As examples, the permutation (123) has \(C_{3}\) character and (12) has \(C_{2}\) character on an individual
methyl group.
There are a total of ( \(6 \times 6\) ) \(\times 2=72\) elements in the group \(\left(S_{3} \times S_{3}{ }^{\circ}\right) A_{2}\). The construction of the group \(G\) in terms of products of smaller groups can be formulated in the following manner. \(\quad S_{3}\) and \(S_{3}\) are obvious subgroups; they represent the rapid reorientations of individual methyl groups. All the elements of the \(\mathbf{S}_{3}\) commute with all the elements of \(S_{3}{ }^{\circ}\) since they permute disjoint sets of nuclear labels. One can then form a direct product \(S_{3} \times S_{3}{ }^{\circ}\), which is also a subgroup of \(G\). The product of \(S_{3} \times S_{3}\) with \(S_{2}\) is a semidirect product since \(S_{2}\) does not commute with either \(S_{3}\) and \(S_{3}{ }^{*}\).

The character table of \(\left(S_{3} \times S_{3}\right) S_{2}\) can be obtained from the subgroups \(S_{3}\) and \(S_{2}\), as prescribed in many references. \((7,8)\) However, we will utilize the identity of a pair of coupled methyl groups to gaseous ethane, of which the character table has already been derived. (10) Given the character table, projection operators are used to obtain the energy level diagram according to the irreducible representations of \(G\), up to the number of states for each Zeeman manifold.
6.5.2 Uncorrelated Inequivalent Methyl Groups

When the methyl groups are inequivalent and uncorrelated in motion, the \(S_{2}\) subgroup present in the previous group that characterizes the symmetry of two identical rotors is removed. The appropriate group is
then \(S_{3} \times S_{3}\). The elements of the group can obtained from a direct product of \(S_{3}\) with \(S_{3}{ }^{\circ}\).

\subsection*{6.5.3 Correlated Equivalent Methyl Groups}

If the methyl groups are correlated and equivalent, the operations on this spin system are isomorphic to those that are performed on cyclopropane. That is, the protons in both cases are restricted to move in a relative manner. The group for this case is \(D_{3 h}\). The elements of this group are:
(1)(2)(3)(4)(5)(6)
\(\{(123)(456),(132)(465)\}\)
\(\{(12)(45),(23)(56),(13)(46)\}\)
(14)(25)(36)
\(\{(153426),(162435)\}\)
\(\{(15)(24)(36),(14)(26)(35),(16)(25)(34)\}\)
6.5.4 Correlated Inequivalent Methyl Groups in a "Planar" Orientation

If the methyl groups are inequivalent and in an orientation such that the methyl \(C_{3}\) axes and \(\vec{H}_{0}\) lie in a plane, then the appropriate group is \(S_{3}\). That is, since the methyl groups are constrained to move together but are not interchangeable, this system acts isomorphically as a single methyl group, and thus its symmetry group must be the same as that of a methyl group. The elements of the \(S_{3}\) group are:
```

(1)(2)(3)(4)(5)(6)
{(123)(456),(132)(465)}
{(23)(56),(13)(46),(12)(45)}

```
6.5.5 Correlated Inequivalent Methyl Groups at an Arbitrary Orientation

For an arbitrary orientation of the methyl \(C_{3}\) axes but with correlated motion, the group is \(C_{3}\). This group has the lowest symmetry of all the cases. It is easy to show that the elements of the \(C_{3}\) group are:
(1)(2)(3)(4)(5)(6)
(123)(456)
(132)(465)

The list of groups for all five cases are tabulated in Table 6.2.
6.6 EFFECT OF SPINNING OR MOLECULAR REORIENTATION ABOUT A FIXED AXIS

Molecular reorientation is of particular concern in a liquid crystalline environment where solutes have rotational freedom, although usually it is axially restricted. Molecular reorientation can also occur in a solid matrix if spacial symmetry allows it.

To treat this matter, we first determine the effect of spinning on an internuclear vector \(\vec{r}\). Figure 6.3 shows the vector \(\vec{r}\) being spun about an axis \(\vec{w}_{s}\) with
Table 6.2
Symmetry groups of two interacting methyl groups
equivalent \(\left(S_{3} \times S_{3}\right) A_{2}\)
\(D_{3 h}\) ..... \(S_{3}\)
C 3


X BL 8210-6728

Figure 6.3 \(A\) vector diagram showing the relevant angles when an internuclear vector \(\vec{r}\) is being spun about an axis at ate \(\omega_{s}\). The spinning axis has a fixed angle \(\theta_{s}\) relative to the external magnetic field \(\vec{H}_{0}\), and the vector \(\vec{r}^{\text {has }}\) fixed angle \(B\) relative to the spinning axis. As a result of spinning, the angle \(\theta\) that \(\vec{r}\) makes with \(\vec{H}_{0}\) is time-dependent.
an angle \(\theta\) with respect to \(\vec{H}_{0}\) and an angle \(B\) with respect to \(\vec{\omega}_{s}\). Assuming the rate of spinning \(\omega_{s}\) is much faster than the inverse of the coupling, the timeaverage value of \(\cos ^{2} \theta(t)\) is given by: (11)
\[
\overline{\cos ^{2} \theta(t)}=\cos ^{2} B\left(\cos ^{2} \theta_{s}-\frac{1}{2} \sin ^{2} \theta_{s}\right)+\frac{1}{2} \sin ^{2} \theta_{s} .
\]

If two internuclear vectors \(\vec{r}_{i j}\) and \(\vec{r}_{k i}\) of equal magnitude in this spinning system have angles \(B_{i j}\) and \(\beta_{k l}\) such that
\[
\begin{gather*}
\cos ^{2} \beta_{i j}=\cos ^{2} \beta_{k 1}, \\
\text { or } \quad \beta_{i j}= \pm \beta_{k 1}+p \pi \quad(p=0, \pm 1, \pm 2, \ldots) \tag{1}
\end{gather*}
\]
then the two coupling constants \(\bar{d}_{i j}\) and \(\bar{d}_{k l}\) are made equal.

The case of two methyl groups has three axes of rotation the two \(C_{3}\) axes and the spinning axes. To treat the combined motions, it is convenient to relate the spinning axis with respect to a "molecular" coordinate system defined by the two \(C_{3}\) axes.

Figure 6.4 depicts the methyl groups as planar rotors with their \(C_{3}\) axes at some orientation with respect to \(\vec{H}_{0}\). The a-axis is defined to have the highest symmetry; it bisects the two \(C_{3}\) axes and is contained in the same plane. The b-axis lies perpendicular to the a-axis in this plane, and the c-


XBL 8210 -6729

Figure 6.4 Definition of the molecular frame (abc), shown here with the laboratory frame (xyz). The plane defined by the two \(C_{3}\) axes will be labeled the abplane, with the a-axis (the axis of highest symmetry) bisecting the two \(C_{3}\) axes. The c-axis is perpendicular to this plane.
axis is perpendicular to this plane.
Using Eq. (1) and some elementary geometry arguments, the following conclusions are drawn and are applicable regardless of the direction of the \(C_{3}\) axes with respect to \(\overrightarrow{\mathrm{H}}_{0}\) :
(1) If the spinning axis is contained in the acplane or bc-plane, then the two methyl groups are made equivalent. Any other spinning axis will make the methyl groups inequivalent. The groups that can arise from spinning at this axis are \(\left(S_{3} \times S_{3}\right){ }^{\wedge} S_{2}\) if uncorrelated and \(D_{3}\) if correlated.
(2) If the methyl groups are uncorrelated, spinning about an axis anywhere but in the ac- or bcplane will leave the methyl groups inequivalent. The group that results is \(S_{3} \times S_{3}\).
(3) Consider correlated methyl groups. Suppose the \(C_{3}\) axes are parallel and the two methyl groups are mirror images. Spinning about an axis in the ab-plane, but excluding the a- and b-axis, will result in the group \(S_{3}\). If there is any deviation from this ideal geometry, the \(S_{3}\) group will never occur and the \(C_{3}\) group is the appropriate one. Tie \(C_{3}\) grup also t \(n=0\) mpasses any \(s\) inning axis not contained in the ab-, ac-, or bc-planes.

\subsection*{6.7 ENERGY LEVEL DIAGRAMS}

The corresponding energy level diagrams are in

Figs. 6.5 - 6.9. Group theory allows the determination of the energy level diagram up to the number of levels in each irreducible representation of aiven zeman quantum number. It requires no quantitative values of the couplings, only the equivalence in the couplings, and thus cannot lead to information on the eigenenergies. Further determination of the energy level diagram requires diagonalization of the Hamiltonian within each subblock, or interpretation of the experimental dipolar spectrum, depending on one's objective.

Correlated systems have a lower symmetry than uncorrelated systems. The uncorrelated representations must be reducible in correlated representations. By decomposing the uncorrelated representations into correlated irreducible representations, one can find how uncorrelated states transform under the correlated group. This decomposition shows how the levels split under a small perturbation. The method of decomposition is called subduction of a higher symmetry group into lower symetry group. The reverse is called an induction. To perform a subduction, one first finds the correspondence between classes of the two symmetry groups and thereby obtain the character of the higher symmetry group's representations for each of the classes of the lower symmetry group. With the great orthogonality theorem, one can decompose the


Figure 6.5 Energy level diagram for ( \(\left.S_{3} \times S_{3}\right)^{\wedge} S_{2}\) : uncorrelated equivalent methyl groups.


Figure 6.6 Energy level diagram for \(S_{3} \times S_{3}\) : uncorrelated inequivalent methyl groups.


Figure 6.7 Energy level diagram for \(D_{3 h}\) : correlated equivalent methyl groups.


Figure 6. 8 Energy level diagram for \(S_{3}\) : correlated, inequivalent methyl groups with the two \(C_{3}\) axes and \(\vec{H}_{0}\) contained in the same plane.


Figure 6.9 Energy level diagram for \(C_{3}\) : correlated inequivalent methyl groups at an arbitrary orientation.
representations into linear combination of the irreducible representations of the lower group.
"Coalescence diagrams" describing the convergence and separation of representations in the transition region are shown in Figs. 6.10-6.12. Note that it is not possible to subduce or induce energy level diagrams between equivalent and inequivalent methyl groups. This is because equivalent methyl groups, whether uncorrelated or correlated, contain a \(C_{2}\) type operation that is not present in inequivalent methyl groups, and complete correspondence between classes can never be achieved.

Coalescence diagrams can also be found between correlated methyl groups, and between uncorrelated methyl groups. Such diagrams show the change in the symmety of the familtonian with changes in the crystal orientation. These diagrams are in Figs. 6.13-6.16.

\subsection*{6.8 MQ SPECTRA}

From the energy level diagram, one can count the number of transitions that occur for a given quantum order, excluding accidental degeneracy due to poor spectral resolution. Table 6.3 lists the number of transition lines for each quantum order and for each of the limiting cases. The \(N Q(6 Q)\) order always contains one central line with no dipolar information (tofirst order) and is excluded from the table. The 5-quantum
\(\begin{array}{cccccc}\left(S_{3} \times S_{3}\right) \wedge S_{2} & A_{1 g} & A_{1 u} & G_{1} & G_{2 g} & G_{2 u} \\ m=3 & & & & & \end{array}\)


XBL 8210-2975

Figure 6.10 Coalescence diagram from uncorrelated, equivalent methyl groups \(\left[\left(S_{3} \times S_{3}\right)^{\wedge} S_{2}\right]\) to correlated equivalent methyl groups ( \(D_{3 h}\) ).


Figure 6.11 Coalescence diagram from uncorrelated inequivalent methyl groups ( \(S_{3} \times S_{3}\) ) to correlated inequivalent methyl groups ( \(S_{3}\) ).


Figure 6.12 Coalescence diagram from uncorrelated inequivalent methyl groups ( \(S_{3} \times S_{3}\) ) to correlated inequivalent methyl groups ( \(C_{3}\) ).


Figure 6.13 Coalescence diagram from equivalent uncorrelated methyl groups \(\left[\left(S_{3} \times S_{3}\right){ }^{\prime} S_{2}\right]\) to inequivalent uncorrelated methyl groups ( \(S_{3} \times S_{3}\) ).


Figure 6.14 Coalescence diagram from equivalent correlated methyl groups ( \(D_{3 h}\) ) to inequivalent correlated methyl groups ( \(S_{3}\) ).


Figure 6.15 Coalescence diagram from equivalent correlated methyl groups ( \(\mathrm{D}_{3}\) ) to inequivalent correlated methyl groups ( \(C_{3}\) ).


Figure. 6.16 Coalescence diagram between the groups \(S_{3}\) and \(C_{3}\), both of which correspond to correlated, inequivalent methyl groups but at different crystal orientation.

Table 6.3
Number of transitions in the MQ spectrum for each of the symmetry groups

* The entry corresponds to the number of doublets. The \(4 Q\) and \(2 Q\) orders have in addition strong central line. Note that the \(n Q(n \neq 0)\) orders are symmetric about the order center.
\(\dagger\) The entry corresponds to the number of lines. The \(O Q\) order is not symmetric about the order center.
order offers no differentiation between correlated and uncorrelated motion. (It does tell however whether the methyl groups are equivalent.) The 4-quantum spectrum is sensitive to two-body correlations, and is able to distinguish the motions.

\subsection*{6.9 INTERMEDIATE REGION - EXCHANGE THEORY}

Suppose we begin with a pair of correlated methyl groups at very low temperature. The methyl protons are undergoing fast torsional motions but always at a fixed relationship with one another. As the temperature increases, an occasional slippage of gears can occur, and the methyl groups change configurations. This slippage of gears can occur in either sense; i.e. one of the methyl gears can slip in the clockwise or counterclockwise direction (fig. 6.17). This occasional slipppage in either sense can be envisioned . a hopping between three equivalent sites (configurations). Tnus we can apply exchange theory to this process.
6.9.1 Exchange Operators

Let \(p\) represent a slippage of gears in one sense. Then its inverse \(P^{-1}\) must be the slippage in the opposite sense. Properties of the permutation operators \(P\) and \(P^{-1}\) are:
(1) \(P^{3}=P^{-3}=1\),


XBL \(8211-6800\)

Figure 6.17 In becoming uncorrelated, one of the methyl groups can slip in a clockwise direction or in a counterclockwise direction.
(2) \(P^{2}=P^{-1}\),
(3) \(P, P^{-1}\) are real, nonsymmetric (non-Hermitian) and non-unitary,
(4) \(\left(P+P^{-1}\right)\) is real, symmetric (Hermitian) and non-unitary.

\subsection*{6.9.2 Master Equation with Exchange}

Let \(\rho\) be the initial density operator. The form of the density operator after exchange \(P\) can be determined in the following manner. Let \(\psi\) be the wave function describing the initial state of the spin system. The density matrix \(\rho\) is defined as \(\psi \psi^{\dagger}\), where here \(\psi\) is written as column vector. The wavefunction after exchange by definition is \(P \psi\). This implies that the density operator after exchange is \((P \psi)(P \psi)^{\dagger}=\) \(P \psi \psi^{\dagger} P^{\dagger}=P \rho P^{\dagger}\). The change in the density matrix as a result of exchange is then \(P \rho P^{\dagger}-\rho\).

We assume that both senses of slippage are random independent processes with the same rate of occurrence characterized by \(\tau^{-1}\). (12) Because the exchanges are between equivalent sites, the Hamiltonian before and after exchange are the same. Neglecting all other relaxation effects, the master equation governing the evolution of the density matrix is:
\[
\frac{d \rho}{d t}=i[\rho, H]+\frac{P \rho P^{\dagger}-\rho}{\tau_{e}}+\frac{P^{-1} \rho P^{-1 \dagger}-\rho}{\tau_{e}}
\]

In superoperator representation, this is written as:
\[
\frac{d}{d t}\left[\begin{array}{c}
\rho_{11} \\
\rho_{12} \\
\vdots \\
\rho_{k k}
\end{array}\right]=\left[\begin{array}{cccc}
A_{11,11} & A_{11,12} & \cdots \cdots A_{11, k k} \\
A_{12,11} & A_{12,12} & \cdots \cdots A_{12, k k} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
A_{k k, 11} & A_{k k, 12} & \cdots A_{k k, k k}
\end{array}\right]\left[\begin{array}{c}
\rho_{11} \\
\rho_{12} \\
\vdots \\
\rho_{k k}
\end{array}\right]
\]
where here \(k=2^{N} \times 2^{N}\). Compactly written, this is
\[
\begin{equation*}
\frac{d}{d t} \vec{\rho}=\hat{A} \vec{\rho} . \tag{2}
\end{equation*}
\]

The superoperator \(\hat{A}\) is composed of the Liouville operator \(\hat{H}\) and an exchange superoperator \(\hat{X}\) :
\[
\begin{equation*}
\hat{A}=i \hat{R}+\hat{X} \tag{3}
\end{equation*}
\]

Equation (2) represents a set of \(2^{N} \times 2^{N}\) simultaneous linear differential equations:
\[
\begin{aligned}
\frac{d}{d t} \rho_{\alpha B}=\sum_{\gamma, \delta}\left[i\left(H_{\delta B} \delta_{\gamma Q}-H_{\alpha Y} \delta_{\delta B}\right)\right. & \left.+\frac{1}{\tau} e\left(P_{\alpha Y} P_{\delta B}^{\dagger}+P_{\alpha Y}^{-1} P_{\delta B}^{-1 \dagger}\right)\right] \rho_{\gamma \delta} \\
& -\frac{2}{\tau} \rho_{\alpha B} \rho_{\alpha B}
\end{aligned}
\]
where \((a, B)=((1,1),(1,2), \ldots,(2,1),(2,2), \ldots\), ( \(k, k\) ) \}. The matrix elements of the superoperators can be related to those of the Heisenberg operators:
\[
\hat{H}_{\alpha \beta, \gamma \delta}=H_{\delta \beta} \delta_{\gamma \alpha}-H_{\alpha \gamma} \delta_{\delta B},
\]
\[
\hat{X}_{\alpha B, \gamma \delta}=\frac{1}{\tau_{e}}\left[P_{\alpha \gamma} P_{\delta B}^{\dagger}+P_{\alpha \gamma}^{-1} P_{\delta B}^{-1 \dagger}-2 \delta_{\alpha \beta, \gamma \delta}\right] .
\]

When solving for eigenvalues of the matrix \(A\), properties of the superoperators to recognize are:
(1) \(\hat{H}\) is Hermitian,
(2) \(\hat{X}\) is real non-symmetric,
(3) Thus \(\hat{A}\) is complex non-Hermitian.

A simplification results from the commutation of \(I_{z}\) with the exchange operators:
\[
\left[P, I_{z}\right]=\left[P^{-1}, I_{z}\right]=0
\]

This means that the zeman quantum number m is conserved under permutations (exchanges) \(P\) and \(P^{-1}\). Alternatively stated, \(P\) and \(P^{-1}\) do not mix blocks of different m. Thus, each Zeeman manifold can be treated separately.

The exchange operators \(P\) and \(P^{-1}\) in general do mix states belonging to different irreducible representations. As evident from the coalescence diagrams of Figs. 6.10-6.12, this is to be expected since the states rearange in the transition between the two energy level diagrams. However, some simplification do result and the symetry-adapted-linear-combination (6) (SALC) basis will be adopted.

The solutions to the master equation are found by diagonalizing \(A\). The eigenvalues that result are
complex. Because the equations are linear, the solutions yield Lorentzian lineshapes with characteristic frequencies and linewidths. The imaginary part of the eigenvalue gives the frequency of transition, and the real part yields the exchange
 phase of a transition is determined by the initial conditions, ie. the phase factors of the prepared density matrix \(\rho(t=0)\), where refers to the evolution time.

Before performing a computer simulation, numerical values for the coupling constants are required. This takes us to the next section.

\subsection*{6.10 1,8-DIMETHYLNAPHTHALENE}

The reasons for choosing l, 8-dimethylnaphthalene ( \(1,8-\mathrm{DMN}\) ) for our studies are: (1) the methyl groups are sterically hindered, and (2) its crystallographic structure is known. (13) Presented below are some of the relevant structural information of this molecule in the single crystal form. Complete information is available from the structure parameters given in reference [13].

The crystal structure is monoclinic with four molecules per unit cell and lattice constants a=9.835A, \(b=7.012 A\), and \(c=16.114 \AA\). The angles that \(a, b\) and \(c\) axes make with respect to one another are \(\alpha=90^{\circ}\),
\(\beta=124.35^{\circ}\) and \(\gamma=90^{\circ}\). The crystallographic data presented in reference [13] are in fractional coordinates \(x, y, z\) as referred in this coordinate system. In order to determine an internuclear distance \(r_{i j}\), the following formula should be used:
\[
\begin{aligned}
r_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2} a^{2} & +\left(y_{i}-y_{j}\right)^{2} b^{2}+\left(z_{i}-z_{j}\right)^{2} c^{2} \\
& +2\left(x_{i}-x_{j}\right)\left(z_{i}-z_{j}\right) a b \cos B .
\end{aligned}
\]
in Fig. 6.18 is the labeling scheme for \(1,8-\) DMN molecule, consistent with reference [13]. In the minimum strain-energy configuration, the carbon skeleton of the \(1,8-D M N\) molecule is planar. The methyl groups are in an eclipsed configuration where the outer methyl \(C-H\) bonds [C(11)-H(11C) and C(12)-H(12C)] lie roughly in the same plane as the aromatic frame. The amount of tilt of the outer \(C-H\) bonds out of the aromatic plane is \(5^{\circ}\) for the \(C(11)-H(11 C)\) bond and \(-10.8^{\circ}\) for the \(C(12)-H(12 C)\) bond. Thus the two methyl groups are not quite mirror images.

The methyl \(C_{3}\) axes are also slightly tilted out of this plane: the methyl(11) \(C_{3}\) axis [ \(C(1)-C(11)\) bond] deviates by \(0.2^{\circ}\), and the methyl(12) \(C_{3}\) axis \([C(8)-(12)\) bond deviates by \(-0.2^{\circ}\), which are negligible.

The methyl \(C_{3}\) axes are nol parallel; they are splayed outward to accomodate both methyl groups in such close proximity. Taking the \(C(9)-C(10)\) bond to be


XBL 8210-2978

Figure 6.18 Molecular structure and the labeling scheme of \(1,8-\) dimethylnaphthalene.
the axis of highest symmetry, the methyl(11) \(C_{3}\) axis deviates by \(-7.4^{\circ}\), and the methyl(12) \(C_{3}\) axis deviates by \(+7.4^{\circ}\).

In the equilibrium configuration, assuming the covalent radius of proton is \(0.32 A\), the clearance between the outer radii of the closest intermethyl protons is 1.32 A. The separation of the methyl \(C_{3}\) axes are determined from the \(C(1)-C(8) d i s t a n c e(2.543 A)\) and the \(c(11)-C(12)\) distance (2.932A). The effective activation barrier to methyl rotation for this molecule has been measured to be 3 kcal/mole. (14)

From Fig. 6.18, one observes that the aromatic protons \(H(2)\) and \(H(7)\) are significantly close to the methyl protons. The average distance of \(\mathrm{H}(2)\) and \(\mathrm{H}(7)\) with the methyl protons is 3.00A. Another useful distance to know is the closest intermolecular protonproton distance, which is 6.79A. Both of these distances will be useful when estimating the rf power required for heteronuclear decoupling.

\subsection*{6.11 COMPUTER SIMULATION OF EXCHANGE PROCESS}

We will choose one particular crystal orientation for discussion. The orientation chosen is where the methyl \(C_{3}\) axes and \(H_{0}\) lie in the same plane and the polar angles of the \(C_{3}\) axes with \(H_{0}\) are \(78^{\circ}\) and \(92^{\circ}\). The methyl groups are inequivalent and the appropriate groups are \(S_{3} \times S_{3}\) if uncorrelated, and \(S_{3}\) if
correlated. The dipolar coupling constants for this crystal orientation are:
uncorrelated:
\[
\begin{align*}
& u_{1}=10.858 \mathrm{kHz}  \tag{4}\\
& u_{2}=14.645 \mathrm{kHz} \\
& v=8.327 \mathrm{kHz} \\
&\left\{\begin{aligned}
v & =17.001 \mathrm{kHz} \\
v & =3.990 \mathrm{kHz} .
\end{aligned}\right.
\end{align*}
\]
correlated:

The s-quantum lines are unaffected by exchange. We will concern ourselves with the 4-quantum spectrum in the exchange process. The transitions of interest are between the \(m= \pm 2\) to \(m=\mp 2\) Zeeman manifolds, and m=さ1 to m= \(\ddagger\) manifolds. We start with the correlated limit since it is easier to envision slippage of gears as an exchange process than the reverse situation.

The secular determinant can be constructed given the matrix elements of the \(H\) amiltonian and the exchange operators in the SALC basis of the correlated symmetry group.

For simplicity we dictate that all coherences, or the elements of the prepared density matrix, as sume the same initial phase and intensity. In the rotating frame and on resonance, only the dipolar Hamilyonian needs to be considered in the equation of motion [Eq. (2)].
6.11.1 Secular Determinant for \(m= \pm 2\) to \(m=\mp 2\) Manifolds

The \(A_{1}(m= \pm 2)\) manifolds are unaffected by
exchange. These n=4 transitions remain sharp with no frequency shift.

The \(E\) manifold is affected by exchange. The secular determinant is \(16 \times 16\) and will not be shown here. The actual construction was done trivially within a computer program, listed in appendix 6.A. The solutions to the secular determinant were derived from running a package computer program EIGCC from the IMSL library. EIGCC is an iterative routine for diagonalizing a general complex matrix.

\subsection*{6.11.2 Secular Determinant for \(m= \pm 1\) to m=F3 Manifolds} Only the \(A_{1}\) manifold is involved. In general, the manifolds corresponding to different irreducible representations are mixed by \(P\) and \(P^{-1}\). Note that although the \(A_{2}(m= \pm 1)\) is mixed with the \(A_{1}(m= \pm 1)\) states, the secular determinant is not. This exception occurs when transitions involve the extreme states \(A_{1}\) (m= \(\pm 3\) ). The origin of this exception arises from the invariance of the extreme states to exchange. Thus the secular determinant for the 4-quantum order is also block diagonal with respect to the irreducible representations of the group. For the \(A_{1}\) transitions, it is:
\(\left|\begin{array}{cccc}a-\lambda & 0 & e & f \\ 0 & b-\lambda & e & f \\ e & e & c-\lambda & g \\ f & f & g & d-\lambda\end{array}\right|=0\)
where
\[
\begin{aligned}
& a=-i\left(\frac{3}{2} u_{1}+v+2 w\right) \\
& b=-i\left(\frac{3}{4} u_{2}+v+2 w\right) \\
& c=-i\left(u_{1}+u_{2}+2 w\right)-\frac{2}{\tau} \\
& d=-i\left[\frac{5}{4}\left(u_{1}+u_{2}\right)+v+w\right]-\frac{1}{\tau} \\
& e=-i \frac{1}{2} w \\
& f=-i \frac{\sqrt{2}}{4}(v+w) \\
& g=-i \frac{\sqrt{2}}{4}\left(u_{1}+u_{2}\right)+\frac{\sqrt{2}}{\tau} .
\end{aligned}
\]

With the insertion of the coupling constants listed in Eq. (4) jato the program EXCH 2 listed in appendix 6.A for the manifold and EXCHI in appendix 6. for the \(_{1}\) manifold, the results are shown in Table 6.4. The sharp transition \(A_{1}(m= \pm 2)\) to \(A_{1}(m=\mp 2)\) at 13.722 kHz is excluded from this table. Since the \(4 Q\) spectrum is symmetric, only half of it is tabulated. The frequencies are measured from the center of the \(4 Q\) order. The lines that are broadened near the center (at 0 kHz ) are also excluded from the table.

The data in Table 6.4 and including the \(A_{1}(m= \pm 2)\) transitions are illustrated in Fig. 6.19. At telic the lines are fairly sharp and correspond to correlated motion. The most action occurs in the 0.1 - aec range. As the rate of exchange increases, the E transition at 7 kHz mixes with the central E transitions, broadens and is shifted in frequency

Table 6.4
The frequencies ( \(V\) ) and exchange broadenings ( \(\Gamma\) ) for the 4-quantum order : \(E(m= \pm 2)\) to \(E(m=\mp 2)\) and \(A_{1}(m= \pm 2)\) to \(A_{1}(m=\mp 2)\) transitions.
\begin{tabular}{|c|c|c|c|}
\hline t(sec) & \(v(\mathrm{kHz})\) & & \(\Gamma(\mathrm{kHz})\) \\
\hline \multirow[t]{3}{*}{\(1 \times 10^{-7}\)} & 60.235 & ( \(A_{1}\) ) & 0.003 \\
\hline & 44.758 & ( \(A_{1}\) ) & 0.0001 \\
\hline & 36.805 & ( \(A_{1}\) ) & 0.0002 \\
\hline \multirow[t]{3}{*}{\(1 \times 10^{-4}\)} & 61.545 & ( \(\mathrm{A}_{1}\) ) & 1.157 \\
\hline & 44.780 & ( \(A_{1}\) ) & 0.032 \\
\hline & 36.814 & ( \(A_{1}{ }^{1}\) ) & 0.025 \\
\hline \multirow[t]{5}{*}{\(2 \times 10^{-4}\)} & 62.171 & ( \(A_{1}\) ) & 0.825 \\
\hline & 44.802 & ( \(A_{1}\) ) & 0.032 \\
\hline & 36.831 & ( \(A_{1}\) ) & 0.034 \\
\hline & 26.777 & ( \(A_{1}\) ) & 14.109 \\
\hline & 5.626 & (E) & 14.33 \\
\hline \multirow[t]{5}{*}{\(1 \times 10^{-3}\)} & 62.485 & ( \(A_{1}\) ) & 0.188 \\
\hline & 44.825 & ( \(A_{1}\) ) & 0.009 \\
\hline & 36.871 & ( \(A_{1}\) ) & 0.017 \\
\hline & 26.401 & ( \(A_{1}\) ) & 2.785 \\
\hline & 6.91 & (E) & 2.08 \\
\hline \multirow[t]{5}{*}{\(2 \times 10^{-3}\)} & 62.496 & ( \(A_{1}\) ) & 0.095 \\
\hline & 44.825 & ( \(A_{1}\) ) & 0.005 \\
\hline & 36.875 & ( \(A_{1}\) ) & 0.009 \\
\hline & 26.386 & ( \(\mathrm{A}_{1}\) ) & 1.392 \\
\hline & 7.05 & (E) & 1.03 \\
\hline \multirow[t]{5}{*}{1} & 62.500 & & 0.0002 \\
\hline & 44.825 & ( \(A_{1}{ }_{1}\) ) & 0.0 \\
\hline & 36.876 & ( \(A_{1}\) ) & 0.0 \\
\hline & 26.381 & ( \(\mathrm{A}_{1}\) ) & 0.003 \\
\hline & 7.099 & (E) & 0.002 \\
\hline
\end{tabular}

\section*{4-Quantum Order}


Figure 6.19 Computer simulation of one half of the 4quantum region showing the broadening and merging of lines as correlation sets in.
toward the order center as it disappears. The outer four \(A_{1}\) transitions are mixed and shifted in frequency toward each other as the transition line at 26 kHz broadens and disappears. At \(\tau^{=10^{-7}}\) sec, fast exchange is occuring and the spectrum corresponds to uncorrelated motion.
6.12 1,8-DIMETHYLNAPHTHALENE-D \(D_{6}\) IN A NEMATIC LIQUID CRYSTAL

A convenient method for molecular isolaton is the dissolution of the desired molecules in a nematic liquid crystal solvent. Its applicability is restricted to the narrow temperature range of the nematic phase. In the nematic phase, the long axis of the iquid crystal molecules have a defined direction when placed in a magnetic field. The translational freedom averages intermolecular couplings to zero and retains only intramolecular couplings. Molecular reorientation of the solute in the liquid crystal matrix does occur s.d scales down the intramolecular dipolar couplings. This scaling of coupling constants by restricted molecular reorientation is described by order parameters, the number of them depending on the structural symmetry of the solute molecule.

The \(M Q\) spectrum for \(1,8-\) dimethylnaphthalene \(^{-d_{6}}\)
 at room temperature is shown in Fig. 6. 20. From this


Figure 6. 20 MQ spectrum of 1,8 -dimethylnaphthalene-d 6 dissolved in a nematic liquid crystal at \(25^{\circ} \mathrm{C}\).
spectrum, we wish to determine whether the methyl groups are correlated in motion. It is not obvious a priori whether the methyl groups are equivalent. Their equivalency relies on the molecular reorientation that occurs in the liquid crystalline matrix. [See section 6.6.]

Figure 6.20 shows two doublets in the 4-quantum region. Referring to Table 6.3, we see immediately that this corresponds to the group \(\left(S_{3} \times S_{3}\right)^{\wedge} S_{2}\), implying equivalent and uncorrelated methyl groups.

Often the object is to obtain molecular structural information by iterating on the couplings and the order parameters. However in our case we know the molecular structure beforehand. We can use this extra piece of information to solve directly for the order parameters which informs us of the type of molecular reorientation occuring in the liquid crystal matrix.

To extract coupling constants from the 4- and 5quantum orders, an iteration routine MQITER (9) is used. This routine requires as inputs the experimental transition frequencies and an initial guess of the coupling constants. The later input requires specification of the type of motion that the methyl groups are experiencing. The resulting couplings from iterating on the 4 - and 5 -quantum orders are used to generate the 3-quantum order, which is then compared with the experimental 3-quantum spectrum. The best fit
for these orders corresponds to equivalent and uncorrelated methyl groups (as expected) with dipolar couplings (Fig. 6.21):
\[
\begin{align*}
u & =1.196 \mathrm{kHz}  \tag{5}\\
v & =-1.223 \mathrm{kHz} .
\end{align*}
\]

Here \(u\) and \(v\) are scaled by the order parameters.
For \(1,8-\mathrm{DMN}^{-d_{6}}\), the molecular point group is \(C_{2 v}\) For \(C_{2 v}\) molecules, there are two order parameters: (15) \(S_{a}\) and \(S_{b b}{ }^{-S} c c\), where \(a, b\), and \(c\) are the axes of the molecular frame. The a-axis is taken to be the one of highest symmetry, the b-axis is defined here to lie also in the aromatic plane, and the c-axis is perpendicular to the aromatic plane (fig. 6.18).

The notionally averaged dipolar Hamiltonian can be expressed as:
\[
H_{D}=\sum_{i<j}\left\langle D_{i j}\right\rangle\left[I_{z i} I_{z j}-\frac{1}{4}\left(I_{+i} I_{-j}+I_{-i} I_{+j}\right)\right]
\]
where \(z\) refers to the direction of the external magnetic field. For molecules having more than one configuration, in the limit of fast conformational changes all configurations contribute to the observed coupling constants:
\[
\begin{equation*}
\left\langle D_{i j}\right\rangle=\frac{1}{n_{a}} \sum_{\alpha} D_{i j z z}^{(\alpha)} \tag{6}
\end{equation*}
\]

xBL \(8 C 2-\varepsilon 338\)

Figure 6.21 MQ spectrum of the 3- to 6-quantum region presented with the theoretical stick spectrum for uncorrelated equivalent methyl groups.
where \(n_{\alpha}\) is the number of configurations. In general, each configuration may differ in symmetry and thus may have a different set of order parameters. In our case, the methyl reorientation about the \(C_{3}\) axes does not affect the order parameters since they hop about equivalent positions. Hence each configuration must have the same order parameters, which can then be factored out of the sumution. The spacial part of \(H_{D}\) is then: (15)
\[
\begin{align*}
\left\langle D_{i j}\right\rangle= & R\left[S_{a a} \sum_{\alpha} \frac{\left(3 \cos ^{2} \theta_{i j a}^{(\alpha)}-1\right)}{r_{i j}^{3}}\right. \\
& \left.+\left(s_{b b}-s_{c c}\right) \sum_{a} \frac{\left(\cos ^{2} \theta_{i j b}^{(\alpha)}-\cos ^{2} \theta_{i j c}^{(\alpha)}\right)}{r_{i j}^{3}}\right] \tag{7}
\end{align*}
\]

For the intramethyl coupling \(u\) there are six configurations to be averaged, and for the intermethyl coupling \(v\) there are aine. Inserting Eq. (7) into (6) given the observed coupling constants 〈 \(\left.D_{i j}\right\rangle\) in Eq. (5), and calculating \(\theta_{i j}{ }^{\prime} s\) from the crystallographic data result in an unique solution for the order parameters:
\[
\begin{aligned}
& s_{a a}=0.037 \\
& s_{b b}-s_{c c}=-0.291 .
\end{aligned}
\]

The relation \(s_{a a}<s_{b b}-S_{c c}\) implies that the molecular reorientation in the liquid crystal solvent
is predominantly about an axis in the bc-plane. We deduce however that since \(1,8-D M N\) is planar, the open volume required for a rotation about the c-axis is less than for about the b-axis (or about the a-axis). Thus we assert that the reorientation is predominantly about the c-axis. Also, this reorientation equalizes both methyl groups, which is consistent with the obtained \(M Q\) spectrum.

To summarize, the number of lines in the 4 -quantum order allows us to determine that the methyl groups on 1,8-DMN at room temperature are uncorrelated and equivalent in the nematic liquid crystalline environment. Since \(1,8-D M N\) is planar, to minimize steric hindrance between solute and solvent we can expect the aromatic plane te lie along the direction of the long axis of the liquid c-ystal. Considering the amount of free volume required, it can be argued that the molecular reorientation is predominantly about an axis perpendicular to the aromatic plane. The above affirmations are in agreement with the measured order parameters.

\section*{\(6.131,8\)-DIMETHYLNAPHTHALENE-D 10}

The practical advantages and disadvantages of \(M Q\) spectroscopy on the molecule \(1,8-D M N-d_{6}\) can be compared with those of single-quantum (SQ) spectroscopy on \(1,8-\) DMN-d10. In both cases, an isolated molecular system
is simulated by diluting the desired guest molecule in a perdeuterated host which preserves the molecular and crystal structure. The power required for protondeuteron decoupling is roughly the same for both cases. The advantages and disadvantages of \(M Q N M R\) on 1,8-DMN-d 6 is first discussed. The SQ spectroscopy of \(1,8-D M N-d_{10}\) is analyzed and the significance of impurity concentration is examined.

For the MQ experiment, the wise choice for the guest molecule is \(1,8-\mathrm{DMN-d} \mathrm{~d}_{6}\) where the uninteresting aromatic positions are deuterated. The advantages are: (1) it requires a lower deuteration level, and (2) it has the capability of separating the desired signal Erom impurity signal. The previous sections have shown that the \(4 Q\) order is sensitive to correlation of motion. It is highly improbable that the perdeuterated host impurities will contribute to the \(4 Q\) spectrum the probability of four or more impurity protons on the same molecule is extremely small. Thus the purity requirement of the host is not stringent. The impurities of the guest molecule will contribute to the 4Q region, but if the purity is reasonably high (>90\%) the purity level again is not critical.

The disadvantage of a MQ experiment is that it is a two-dimensional experiment. Hence for a given data
 experiment, with noise in \(t_{1}\) as well as in \(t_{2}\) (16) To
get the same amount of sensitivity as in an onedimensional \(S Q\) experiment, perfect selective excitation of the desired quantum order and a full two-dimensional data acquisition are required.

For \(S Q\) spectroscopy to be feasible, a two-proton system with one proton on each methyl group (and the rest of the positions deuterated) is the most convenient choice. Single-quantum spectroscopy on this system can give information on the correlation of motion.

The advantage of \(S Q\) NMR is that it is a simple one-dimensional experiment, provided the magnet inhomogeneity is small compared to the dipolar broadening. The pulse sequence involves one pulse, or at best a two-pulse solid echo sequence. (17) (The solid echo experiment is preferred to minimize linear phase distortion and since most solids have a decay time comparable to the receiver deadtime.)

The major problem of \(S Q\) NMR is that the desired \(S Q\) signal will overlap with impurity signal. If the dilution level is high (which is desirable for better isolation of guest molecules), the impurities of the host contribute a signifisant amount of signal. The details of this matter will be discussed separately in section 6.13.2.

We make the case for preferring a powder sample to a single crystal.(18) The experimental problems
associated with a single crystal are: (1) a crystal may undergo crystal structural phase transitions as temperature is lowered, and (2) cracking of crystal may result if the cooling or heating of the sample occurs too quickly. In using a powder, it becomes unnecessary to know the crystal orientation, nor to know the number of molecules in the unit cell and their relative orientation in the unit cell. Though the \(S / N\) is lower for a powder per frequency bandwidth, the singularities (that occur at \(\theta=90^{\circ}\) ) in the powder spectrum should be sharp and the peak \(S / N\) should be substantial, excluding dominant impurity signal contributions.
5.13.1 Single-Quantum Spectrum

If the system is uncorrelated, we expect on the average one unique dipolar coupling constant. The nine configurations possible are shown in Fig. 6. 22 , where it is assumed that the methyl group can only hop between equilibrium orientations. The dipolar Hamiltonian for this case is just:
\[
\begin{aligned}
H_{D} & =v\left[I_{21} I_{22}-\frac{1}{4}\left(I_{+1} I_{-2}+I_{-1} I_{+2}\right)\right] \\
& \equiv v V_{12} .
\end{aligned}
\]

The extreme eigenstates \(|++\rangle\) and \(\mid-\infty\) are shifted by \(\frac{1}{4} v\), the symmetric eigenstate \(\frac{1}{\sqrt{2}}(|+-\rangle+|-+\rangle)\) by \(-\frac{1}{\sqrt{2}} v\), and the antisymmetric state \(\frac{1}{\sqrt{2}}\left(\left.\right|_{+->}-|-+\rangle\right)\)is

\section*{Uncorrelated Motion}















Correlated Motion
(a)




(b)











XBL 8210-2935

Figure 6.22 Assuming random hopping only between equilibrium positions, far uncorrelated motion the methyl groups have andom relationship. For correlated motion there are only three possible initial conditions, and three possible configurations each. Note that configurations \(b\) and \(c\) are indistinguishable by NMR.
unshifted.
Assuming the methyl geometry is unaltered by deuteration, the coupling constant can be calculated. The coupling for \(\theta=0^{\circ}\), which is the maximum inherent value possible, is:
\[
v_{0}=5.784 \mathrm{kHz} .
\]

The \(S Q\) spectrum for this molecule is then a doublet with a separation of \(\left(\sqrt{2}+\frac{1}{2}\right) v\), or 11.072 kHz for \(\theta=0^{\circ}\) [Fig. 6.23(a)].

If the system is correlated in motion, on the average there are two unique dipolar coupling constants. The two constants arise from the fact that there are two initial configurations possible [fig. 6.22(b)]. (Actually there are three; however, two of them are \(N M R\) equivalent but are enantiomers.) The superimposed Hamiltonian is:
\[
H_{D}=\frac{1}{3} v \nabla_{12}+\frac{2}{3} w v_{12} .
\]

The coupling constants for \(\theta=0^{\circ}\) are:
\[
\begin{aligned}
& v_{0}=10.535 \mathrm{kHz} \\
& w_{0}=3.408 \mathrm{kHz}
\end{aligned}
\]

The \(S Q\) spectrum is a superposition of two doublets with separations \(\left(\sqrt{2}+\frac{1}{2}\right) v\) and \(\left(\sqrt{2}+\frac{1}{2}\right) w\), or 20.167 and

(b) Correlated Motion


Figure 6.23 The single-quantum spectrum for 1,8-dimethylnapthalene-d 10 molecule at orientation \(=90^{\circ}\) undergoing (a) uncorrelated motion, resulting in a doublet, and (b) correlated motion, showing two doublets with one doublet having twice the intensity of the other.
6.524 kHz for \(\theta=0^{\circ}\) [Fig. 6.23(b)].

The dispersion function of a powder pattern is given by: (19)
\[
\begin{array}{rlrl}
f(v) & =\left(-\frac{2 v}{d_{0}}+1\right)^{-1 / 2}, & & -d_{0}<v<-\frac{1}{2} d_{0} \\
& =\left(\frac{2 v}{d_{0}}+1\right)^{1 / 2}+\left(\frac{2 v}{d_{0}}+1\right)^{1 / 2}, & & -\frac{1}{2} d_{0}<v<\frac{1}{2} d_{0} \\
& =\left(\frac{2 v}{d_{0}}+1\right)^{-1 / 2}, & \frac{1}{2} d_{0}<v<d_{0}
\end{array}
\]
where do corresponds to the appropriate coupling constant at \(\theta=0^{\circ}\). The singularities occur at \(\pm d_{0} / 2\), which corresponds to de \(\theta=90^{\circ}\). Calculated dipolar powder patterns for uncorrelated and correlated motion OE 1, 8-DMN-d 10 are shown in Fig. 6.24. Measurement of the splittings between singularities of a powder pattern yields the coupling constant \(\theta=0^{\circ}\).

\subsection*{6.13.2 Impurity Content}

The motivation for including this section stemmed
 signal comparable to or larger than the desired signal, even at a high host purity level of \(99.0 \%\) and at a \(5 \%\) dilution. This came rather as a surprise at first. The arguments to be discussed below will clearly show why \(S Q\) spectroscopy requires high purity samples.

The level of sample purity can be estimated
(a) Uncorrelated Motion

(b) Correlated Motion


Figure 6. 24 The single-quantum powder spectrum for 1, 8-dimethylnaphthalene-d 10 undergoing (a) uncurrelated motion, and (b) correlated motion, showing a superposition of two powder patterns.
assuming a statistical distribution of proton attachments. Generalizing, suppose there are \(N\) molecules with m sites each, totaling a number of min sites. The question is: what is the probability that each molecule with m sites will have \(k\) impurities?

This can be abstracted to the following problem. Suppose there are a total of mN objects, where \(x\) of them are of one kind and \(y\) of them of another kind. What is the probability of picking mobjects such that \(k\) of them are of the \(y\) type, assuming \(k \leqslant\) and (m-k) \(x\) ? Through combinatorial arguments, this probability is found to be:
\[
P(m, k)=\frac{\binom{y}{k}\binom{x}{m-k}}{\binom{x+y}{m}}
\]

Listed ia Table 6.5 are the probabilities for cypical impurity levels. The percentage refers to the number of sites occupied by an impurity and not molar percent. The notation \(P(m, k)\) is interpreted as the probability of \(1,8-\) DM having \(k\) impurity protons. For 1,8-DMN, the number of sites is mal2. The tabulated values assume \(N=100\) molecules, which is large enough to yleld values close to those of \(N \rightarrow \infty\).

Note that a portion of \(P(12,2)\) has protons in the desifed location. This amount is \(\binom{12}{2}^{-1}\) or \(1 / 66\), implying \(P(12,2)\) should be multiplied by \(65 / 66\) to give the correct impurity content.

Table 6.5
Probability \(P(m, k)\) of \(m\) ites being occupied by \(k\) impurities
impurity content \(\quad P(12,1) \quad P(12,2) \quad P(12,3)\)
\begin{tabular}{rlll}
\hline \(10 \%\) & 0.38 & 0.23 & 0.17 \\
\(1 \%\) & 0.11 & 0.006 & \(2 \times 10^{-4}\) \\
\(0.5 \%\) & 0.06 & 0.001 & \(1 \times 10^{-5}\)
\end{tabular}

The calculation of impurity content of the starting guest material is more complicated. It depends on the selectivity of the deuteration procedure. Thus the proton attachment is no longer a statistical problem. Fortunately, the purity requirement is less stringent since the guest molecule will be in low abundance. For example, if the net effect of the selectivity and extraction procedure is 907 effective, then roughly \(210 \%\) of the sites are occupied by mislocated protons and the desired signal \(1 s\) s90\% of the expected value. (Compare this to a random deuteration composing of 38\% single-proton impurity, \(23 \%\) two-proton impurity and \(17 \%\) three-proton impurity.) For the rough estimate that we want to make this modification can be neglected. Note that part of this reduction is counteracted by the perdeuterated host having the desired proton attachment.

Given Table 6.5, the comparison of the size of impurity signal from the host versus the desired guest signal can be made for a given guest dilution.

A 5\% molar dilution is a reasonable amount for effecting isolation of guest molecules. (Considering cubic-closest-packing structure, \(2 \%\) dilution is optimal. But if the nearest intermolecular distance is greater than the intramolecular distances, \(5 \%\) dilution is colerable.) When the dilution is high, the impurity of the guest compound can be neglected.

The total \({ }^{\text {B }}\) signal size is proportional to the number of proton occupied sites. At 5\% dilution, 95\% of the molecules are hosts. Assuming a host impurity level of \(1 \%\), the number of sites corresponding to single-proton host moleucles is (0.11)95\% \(=10 \%\), to two-proton hosts is \(2(0.06) 95 \%=1 \%\) and to threeproton hosts is \(3(0.016) 95 \%=0.05 \%\). Compare this to the number of guest proton sites, which is at best (2) \(5 \%\) = \(10 \%\). The rest of the sites contribute to deuterium signal. Thus even at \(5 \%\) molar dilution and with a \(99 \%\) host purity level, the impurity signal is comparable to the desired signal.

To improve the above situation, one may either increase the amount of guest molecules (which may result in intermolecular broadening) or decrease the impurity content of the host. Let us consider the latter.

Suppose the host impurity level is ultra-low at 0.5\%. At 5\% dilution, the number of host impurity sites is \(5 \%\) single-proton, \(0.2 \%\) two-proton and negligible threeproton. The desired signal again derives from \(10 \%\) of the sites. Thus at \(0.5 \%\) host impurity level, the desired signal is twice as large as the impurity signal, which is tolerable.

It is worth mentioning that it is very difficult to get higher than \(99.5 \%\) purity since most commercial starting materials \(\left(\mathrm{D}_{2} \mathrm{O}\right)\) are graded at \(99.5 \%\).
6.13.3 Conclusion

Provided the sample purity is high enough, it is feasible to perform \(S Q\) NMR spectroscopy on the selectively deuterated \(\quad 1,8-D M N-d_{10}\) diluted in a perdeuterated matrix. The observation of correlation of motion of two methyl groups is then an onepulse experiment with heteronuclear decoupling. A powder sample of \(1,8-D M N-d_{10}\) is preferable to a single crystal for experimental ease and to remove the need to know the unit cell structure. In contrast to the single crystal spectrum, the powder spectrum is also unaffected by the fact that in the slow motional limit, the methyl groups can no longer be treated as an averaged specie.

A preliminary measurement on a powder sample of \(5 \%\)
 out of the powder pattern by impurity signal. A simple calculation assuming statistical proton attachments reveals the importance of high purity requirement of the host compound.

\section*{APPENDIX 6.A Computer listings of programs EXCH2 and HARDMAT}
EXCH2 diagonalizes the superoperator \(A\) for thefour-quantum transitions in the \(E\) manifold. The NMRpermutation group \(S_{3}\) and the dipolar couplings for theorientation specified in section 6.11 are assumed. Itrequires as inputs only the exchange times ("tau").HARDMAT is called within EXCH2 to create a "hardcopy" of the constructed \(16 \times 16\) superoperator A. Thissubroutine was supplied by Jim Murdoch.




\section*{APPENDIX 6.B \\ Computer listing for program EXCHI}

EXCH diagonalizes the superoperator A for the four-quantum transitions involving the \(A_{1} m= \pm 1\) and \(m= \pm 3\) manifolds. The NMR permutation group \(S_{3}\) is assumed. The programs asks for the matrix elements of the Liouville operator \(H\) and the exchange times as inputs.


\section*{CHAPTER 6 REFERENCES}
1. J couplings have been used to observe restricted rotations of methyl derivatives: M. Nakamura, M. Oki, H. Nakanishi, and O. Yamato, Bull. Chem. Soc. Japan 47, 2415 (1974); U. Berg and C. Roussel, J. Am. Chem. Soc. 102, 7848 (1980).
2. W.J. Orville-Thomas, Internal Rotations in Molecules, (John-Wiley \& Sons, New York, 1974).
3. K. Balasubramanian, J. Chem. Phys. 74, 6824 (1981).
4. K. Balasubramanian, J. Chem. Phys. 72, 665 (1980).
5. An isomorphism is an one-to-one mapping of elements of one group to another such that the group operation is preserved. Alternatively stated, isomorphic groups are algebraically identical.
6. M. Tinkham, Group Theory and Quantum Mechanics, (McGraw-Hill, New York, 1971).
7. C.M. Woodman, Molec. Phys. 19, 753 (1970).
8. J. Serre, Int. J. Quant. Chem. I S, 713 (1967).
9. S.W.Sinton, Ph.D. thesis, University of California, Berkeley, 1981 .
10. J. Serre, Int. J. Quant. Chem. II S, 107 (1968).
11. E.R. Andrews and R.A. Newing, Proc. Phys. Soc., London 72, 959 (1958).
12. When rotational polarization exists, it is
possible for the two rate of occurrences to differ.
13. D. Bright, I.E. Maxwell, and J. de Boer, J. Chem. Soc. Perkins II, 2101 (1973).
14. A. Saika, A. Kawamori, and R. Takagi, J. Magn. Reson. 그, 324 (1974).
15. J.W. Emsley and J.C. Lindon, NMR Spectroscopy Using Liquid Crystal Solvents, (Pergamon Press, New York, 1975).
16. D.P. Weitekamp, Advan. Magn. Reson., submitted for publication.
17. I. Solomon, Phys. Rev. 110 , 61 (1958).
18. J. Tang, private communication, 1980 .
19. A. Abragam, Principles of Nuclear Magnetism, (Oxford Press, London, 1961).```

