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Some recently proposed extensions to relational database systems, as well as to deductive database 

systems, require support for multiple-query processing. For example, in a database system enhanced 

with inference capabilities, a simple query involving a rule with multiple definitions may expand to 

more than one actual query that has to be run over the database. It is an interesting problem then to 

come up with algorithms that process these queries together instead of one query at a time. The main 

motivation for performing such an interquery optimization lies in the fact that queries may share 

common data. We examine the problem of multiple-query optimization in this paper. The first major 

contribution of the paper is a systematic look at the problem, along with the presentation and analysis 

of algorithms that can be used for multiple-query optimization. The second contribution lies in the 

presentation of experimental results. Our results show that using multiple-query processing algorithms 

may reduce execution cost considerably. 
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1. INTRODUCTION 

In the past few years, several attempts have been made to extend the benefits of 
the database approach in business to other areas, such as artificial intelligence 
and engineering design automation. As a result, various extensions to database 
query languages have been suggested, including QUEL* [ 181, designed to support 
artificial intelligence applications; GEM [31], to support a semantic data model; 
and the proposal of [ 111, for support of VLSI design databases. A significant part 
of extended database languages is support for multiple command processing. In 
[26] we proposed a set of transformations and tactics for optimizing collections 
of commands in the presence of updates. Here, we will concentrate on the 
problem of optimizing the execution of a set of retrieve-only commands (queries). 
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There are many applications where more than one query is presented to the 
system in order to be processed. First, consider a database system enhanced with 
inference capabilities (deductiue database system) [8]. A single query given to 
such a system may result in multiple queries that will have to be run over the 
database. As an example, consider the following relation for employees 
EMP(name, salary, experience, dept-name). Assume also the existence of a set of 
rules that define when an employee is well paid. We express these rules in terms 
of retrieve commands in QUEL [28]. 

/* An employee is well paid if he(she) makes more than 40K */ 
Rule 1. retrieve (EMP.all) where EMP.salary > 40 

/* An employee is well paid if he (she) makes more than 35K provided 
he(she) has no more than 5 years of experience */ 

Rule 2. retrieve (EMP.all) where EMP.salary > 35 and EMP.experience 5 5 

/* An employee is well paid if he(&) makes more than 30K provided 
he(she) has no more than 3 years of experience */ 

Rule 3: retrieve (EMP.all) where EMP.salary > 30 and EMP.experience 5 3 

Then, given a query that asks 

Is Mike well paid? 

the system will have to evaluate all three rules in order to come up with the 
answer. Because of the similarities that Prolog [6] clauses have with the above 
type of rules, our discussion on multiple-query processing applies to the optimi- 
zation of Prolog programs as well, assuming that secondary storage is used to 
hold a Prolog database of facts. As a second example, consider cases where queries 
are given to the system from various users. Then batching all users’ requests is a 
possible processing strategy. In particular, queries given within the same time 
interval T may be considered for batched processing. However, a major problem 
with this approach is the effect on response time. It is unacceptable to delay a 
user’s request due to other more expensive queries. Although it is a very inter- 
esting problem to find criteria for batching multiple requests, we will gear the 
discussion toward a system like the rule-based system mentioned above, where a 
single user request is expanded to many actual queries. Finally, some proposals 
on processing recursion in database systems [14, 201 suggest that a recursive 
Horn clause should be transformed to a set of other, simpler Horn clauses 
(recursive and nonrecursive). Therefore, the problem of multiple-query process- 
ing arises in that environment as well, yet in a more complicated form due to the 
presence of recursion. 

Current query processors cannot optimize the execution of more than one 
query. If given a set of queries, the common practice is to process each query 
separately. However, there may be some common tasks that are found in more 
than one of these queries. Examples of such tasks may be performing the same 
restriction on a relation or performing the same join between two relations. 
Taking advantage of these common tasks, mainly by avoiding redundant page 
accesses, may prove to have a considerable effect on execution time. This problem 
of processing multiple queries and especially the optimization of their execution, 
will be the focus of this paper. Section 2 presents an overview of previous work 
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in the area. Section 3 first defines the query model that will be used throughout 
this paper and then presents a formulation of the multiple-query optimization 
problem. Section 4 presents our approach to the problem and introduces, through 
the use of some examples, algorithms that can be used to solve the multiple- 
query optimization problem. Then, Sections 5 and 6 present these algorithms in 
more detail. Section 5 suggests an algorithm that allows the executions of the 
queries to interleave, thus improving the performance compared to a serial 
execution, and Section 6 discusses a more general heuristic algorithm. Finally, in 
Section 7 we present some experimental results, and the last section concludes 
the presentation of the multiple-query processing problem by summarizing our 
results and suggesting some ideas for future research. 

2. RELATED WORK 

Problems similar to the multiple-query processing problem have been examined 
in the past in various contexts. Hall [12, 131, for example, uses heuristics to 
identify common subexpressions, especially within a single query. He uses oper- 
ator trees to represent the queries and a bottom-up traversal procedure to identify 
common parts. In [9] and [lo], Grant and Minker describe the optimization of 
sets of queries in the context of deductive databases and propose a two-stage 
optimization procedure. During the first stage (“Preprocessor”), the system 
obtains at compile time information on the access structures that can be used in 
order to evaluate the queries. Then, at the second stage, the “Optimizer” groups 
queries and executes them in groups instead of one at a time. During that stage 
common tasks are identified and sharing the results of such tasks is used to 
reduce processing time. Roussopoulos, in [24] and [25], provides a framework for 
interquery analysis based on query graphs [30], in an attempt to find fast access 
paths for view processing (“view indexing”). The objective of his analysis is to 
identify all possible ways to produce the result of a view, given other view 
definitions and base relations. Indexes are then built as data structures to support 
fast processing of views. 

Other researchers have also recently examined the problem of multiple-query 
optimization. Chakravarthy and Minker [3, 41 propose an algorithm based on 
the construction of integrated query graphs. These graphs are extensions of the 
query graphs introduced by Wong and Youssefi in [30]. Using integrated query 
graphs, Chakravarthy and Minker suggest a generalization of the query decom- 
position algorithm of [30]; however, this algorithm does not guarantee that the 
access plan constructed is the cheapest one possible. Kim, in [17], also suggests 
a two-stage optimization procedure similar to the one in [lo]. The unit of sharing 
among queries in Kim’s proposal is the relation that is not always the best thing 
to assume, except in cases of single relation queries. 

The work of [7] and [19] on the problem of deriving query results based on the 
results of other previously executed queries is also related to the problem 
of multiple-query optimization. Finally, Jarke discusses in [16] the problem of 
common subexpression isolation. He presents several different formulations 
of the problem under various query language frameworks such as relational 
algebra, tuple calculus, and relational calculus. In the same paper, he also 
describes how common expressions can be detected and used according to their 
type (e.g., single relation restrictions, joins, etc). 
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Global Access Plan 

Fig. 1. Multiple-query processing systems architecture. 

What distinguishes our approach to multiple-query processing is the decision 
to use existing query optimizers as much as possible. However, since not all 
relational database systems have been designed on the basis of the same query 
processing concepts, we will differentiate between two alternative architectures 
that can be used for a system with multiple-query processing capability. Figure 
1 illustrates the two approaches. Architecture 1 can be used with minimal changes 
to existing optimizers. A conventional Local Optimizer generates one (“locally”) 
optimal access plan per query. The Plan Merger is a component that examines 
all access plans and generates a larger plan, the “global” access plan, which is in 
turn processed by the Run-Time System. This architecture is particularly inter- 
esting for systems that compile queries and save results in the form of access 
plans (e.g., System-R [l], POSTGRES [27]). 

On the other hand, there are systems that do not store access plans for future 
reuse (e.g., INGRES [28]). To make our framework general enough to capture 
these systems as well, we introduce Architecture 2. The set of queries is processed 
by a more sophisticated component, the Global Optimizer, which in turn passes 
the derived global access plan to the Run-Time System for processing. Hence, 
Architecture 2 is not restricted to solely using locally optimal plans already stored 
in the system. Notice also that this architecture can be used for the development 
of a multiple-query optimization module from scratch (for example, the optimizer 
for a deductive database system [lo]). 

The purpose of the following sections is to exhibit optimization algorithms 
that can be used for multiple-query optimization either as Plan Mergers or as 
Global Optimizers. The algorithms to be presented differ in the complexity of 
the Plan Merger and on whether Architecture 1 or 2 is used. The tradeoffs 
between the complexity of the algorithms and the optimality of the global plan 
produced are also discussed. 
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3. FORMULATION OF THE PROBLEM 

We assume that a database D is given as a set of relations (RI, Rz, . . . , R,), each 
relation defined on a set of attributes. A simple model for queries is now described. 
A selection predicate is a predicate of the form R.A op cons, where R is a rela- 
tion, A an attribute of R, op E (=, #, <, 5, >, ~1, and cons some constant. 
A join predicate is a predicate of the form R, .A = R2.B where RI and Rz are 
relations, and A and B are attributes of RI and Rz, respectively (equijoin). 
For simplicity we will assume that the given queries are conjunctions of selection 
and join predicates and all attributes are returned as the result of the query (i.e., 
we assume no projection on specific attributes). Clearly, the above model excludes 
aggregate computations or functions as well as predicates of the form R1.A op 
R,.B = R,.C. Extending a system to support such predicates is possible but would 
require significant increase to its complexity. The restriction on conjunctive 
queries only is not a severe limitation since the result of a disjunctive query can 
be considered as the union of the results of the disjuncts, i.e., each disjunct can 
be thought of as a different query. Equijoins are chosen as the only join operator; 
this seems quite natural considering the most common types of queries. Finally, 
not allowing projections enables us to concentrate on the problem of sharing 
common results rather than the problem of detecting if the result of a query can 
be used to compute the result of another query. However, had we assumed 
projection lists as well, the complexity of the algorithms that detect results which 
can be shared among queries would be higher (see [7] and [19] for such algo- 
rithms). 

A task is an expression relname + expr. relname is the name of a temporary 
relation used to store an intermediate result or the keyword RESULT, indicating 
that this task provides the result of the query. expr is either a conjunction of 
selection predicates over the same relation or a conjunction of joins between the 
same two, possibly restricted, relations. For example, the following are valid task 
expressions: 

El: R,.A=lOandR,.Cs30 

E2: R, .A = &.B and R, .C = R,.D 

E3: (R, .A = lO).C = (R2.B < 3O).D 

The cases of joins like those in E3 cover queries that are processed in a 
“pipelining” way, not by performing the selections first followed by a join. For 
example, one way to process E3 is by scannning the relation RI and having each 
tuple with qualifying A value be checked against R2 tuples. There is no need to 
store intermediate results for either RI or R2. Our model is general enough to 
include this kind of processing as well. In the remaining discussion, tasks will be 
referred to as if they were simply the expr part, unless otherwise explicitly stated. 
We next define a partial order on tasks. 

Definition 1. A task ti implies task tj (ti + tj) iff ti is a conjunction of selection 
predicates on attributes AI, AZ, . . . , Ak of some relation R, and tj is a conjunction 
of selection predicates on the same relation R and on attributes A,, AZ, . . . , Ar 
with 1~ k, and it is the case that for any instance of the relation R the result of 
evaluating ti is a subset of the result of evaluating tj. 

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988. 



28 l Timos K. Sellis 

Definition 2. A task ti is identical to task tj(ti E tj) iff 

(a) Selections: ti + tj and tj 4 ti 

(b) Joins: ti is a conjunction of join predicates E1.A1 = E2.B1, E1.AP = E2.Bz, 

. . . , E1.Ah = EP.Bk and tj is a conjunction of join predicates E; .A1 = E6.B1, 

E;.Az = E;.Bz, . . . , EI .A& = E: . Bk where each of El, EP, E: and Ei is a 

conjunction of selections on a single relation and E, is identical to EI and 

E, is identical to E6 (“identical” under the above definition of identical 
selections). 

Based on the above definitions, we will use the phrase “common subexpres- 
sions” to describe pairs of tasks tl and tz where either one implies the other or 
they are identical. Next, we define the notion of an access plan. 

Definition 3. An access plan for a query Q is a sequence of tasks that produces 
the answer to Q. Formally, an access plan is an acyclic directed graph P = 
(V, A, L) (V, A, and L being the sets of vertices, arcs, and vertex labels, 
respectively) defined as follows: 

-For every task ti of the plan introduce a vertex Vi. 

-If the result of a task ti is used in task tj, introduce an arc Ui + Vj between the 

vertices vi and uj that correspond to ti and tjp respectively. 

-The label L(ui) of vertex vi is the processing done by the corresponding task ti 
(i.e., relname t expr). 

Example 1. Consider the following query on the relations EMP(name, age, 
dept-name) and DEPT(dept-name, num-of-emps) (with obvious meanings for the 
various fields) 

retrieve (EMP.all, DEPT.all) 
where EMP.age 5 40 
and DEPT.num-of-emps 5 20 
and EMP.dept-name = DEPT.dept-name 

One way to process this query is 

TEMPl c EMP.age I 40 
TEMPP c DEPT.num-of-emps 5 20 

RESULT c TEMPl .dept-name = TEMP2.dept-name 

The graph of Figure 2 shows the corresponding access plan. Notice that, in 
general, there may exist many possible plans that can be used to process a query. 

Next we define a cost function cost: V + Z (Z is the set of integers) on nodes 
of the access plan graph. In general this cost depends on both the CPU time and 
the number of disk page accesses needed to process the given task. However, to 
simplify the analysis, we will consider only I/O costs; including CPU costs would 
only make the formulas more complex. Therefore, 

cost(ui) = the number of page accesses (reads or writes) needed to process task ti 

The cost Cost(P) of an access plan P is defined as 

COSt(P) = C COSt(Ui) 
“;E v 

(1) 
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TEiUP I - 

Ehw.a~gc < 40 - 

7 

TEMP2 - 

DEPT.nunl-of-emps 5 20 

Fig. 2. Example of an access plan. 

Assume now that a set of queries d = ]Q1, QZ, . . . , Q,,] is given. We will refer 
to the minimal cost plans for processing each query Qi individually, as locally 
optimul plans. Similarly, we use the term globally optimal plan to refer to an 
access plan that provides a way to compute the results of all n queries with 
minimal cost. Due to common subexpressions, the union of the locally optimal 
plans is, in general, different from the globally optimal plan. Finally, let Bestcost 
be a function that given a query Qi gives the cost of the (locally) optimal 

plan PT. Hence, B&cost (Qi) = Cost(PT) = minpi~9~[Co.st(Pi)], where 9i is the 
set of all possible plans that can be used to evaluate Qi. 

Consider now a system that is given a set & of queries and is required to 
execute them with minimal cost. According to the above definitions, a global 
access plan is simply a directed labeled graph that provides a way to compute 
the results of all n queries. Based on this formulation, the problem of multiple- 
query optimization becomes 

Given n sets of access plank 91, 92, . . . , Y,,, with 9i = (PiI 9 Pi29 . . . , P+j being 
the set of possible plans for processing Qi, 1 5 i 5 n, 

Find a global access plan GP by “merging” n local access plans .(one out of each 
set pi) such that Cost(GP) is minimal. 

The Plan Merger or the Global Optimizer of Figure 1 performs the “merging” 
operation mentioned above. It is the purpose of the following sections to define 
this operation and derive algorithms that find GP. 

4. MOTIVATION FOR ALGORITHMS 

The major issue in multiple-query processing is the redundancy due to accessing 
the same data multiple times in different queries. Recognizing all possible cases 
where the same data is accessed multiple times requires, in general, a procedure 
equivalent to theorem proving, including the retrieval of data from the database. 
Our intention here is to detect common subexpressions looking only at the logical 
expressions used to describe queries, that is, by simply isolating pairs of expres- 
sions el and e2-where el + e2. For example, el may be EMP.age 5 30 and e2 may 
be EMP.age 5 40. Then e, + e2. However, we do not consider cases where 
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e2 may be EMP.dept-name = “shoe”, and it happens in the specific instance of 
the database that all employees under 40 years old work in the shoe department. 

Unless such a rule is explicitly known to the system in the form of an integrity 
constraint or functional dependency, it is not possible to detect that e1 + e2 
without looking at the actual data stored [2, 5, 151. Because several algorithms 
have been published in the past on the problem of common subexpression 
isolation [7, 19, 231, we will not attempt here to present a similar algorithm. It 
is assumed that a procedure that decides, given two expressions el and e2, if 
el + e2 or e2 + el, is available. 

A global access plan that is derived based on the idea of temporary result 
sharing should be less expensive compared to a serial execution of queries. 
However, this cannot be true for any database state. For. example, sharing 
temporary results may prove to be a bad decision when indexes on relations are 
defined. The cost of processing a selection through an index or through an 
existing temporary result clearly depends on the size of these two structures. The 
experimental results of Section 7 give some interesting results regarding that 
issue. In general, a multiple-query optimization strategy should be compared to 
a conventional one, where no sharing is assumed, and the cheapest one should 
be selected (Finkelstein makes a similar argument in [7]). The conventional 
strategy will be computed one way or the other since, as mentioned above, locally 
optimal plans for the queries are always available. 

In this paper we will examine two types of algorithms that agree with the two 
types of architectures shown in Figure 1. The first two algorithms consider only 
access plans that are locally optimal. Algorithm AS (Arbitrary Serial Execution) 
simply executes these plans in an arbitrary order (conventional approach). This 
corresponds to Architecture 1 of Figure 1 with the Plan Merger absent, that is, 
no optimization is performed. We include AS in our discussion to be used solely 
as a reference for the rest of the algorithms. Algorithm IE (Interleaved Execution) 
allows queries to be decomposed into smaller subqueries that now become the 
unit of execution. Therefore, a query is not processed as a whole but rather in 
small pieces, the results of which are assembled at various points to produce the 
answer to the original query. 

Example 2. To illustrate algorithm IE, consider the following database, 

EMP(name, age, salary, job, dept-name) 
DEPT(dept-name, num-of-emps) 
JOB(job, project) 

with the obvious meanings for EMP, DEPT, and JOB. We also assume that there 
are no fast access paths for any of the relations, and that the following queries 

(Q1) retrieve (EMP.all, DEPT.all) 
where EMP.age 5 40 
and DEPT.num-of-emps 5 20 
and EMP.dept-name = DEPT.dept-name 

(Qz) retrieve (EMP.all, DEPT.all) 
where EMP.age 5 50 
and DEPT.num-of-emps 5 10 
and EMP.dept-name = DEPT.dept-name 
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are given. Finally, suppose that both Q1 and QZ have optimal plans that construct 
temporary results based on the constraints on age and num-of-emps. If we run 
either Q1. or QZ first, we will be unable to use the intermediate results from the 
restrictions on EMP.age and DEPT.num-of-emps effectively. However, the follow- 
ing global access plan is more efficient (for clarity, hereafter, unless otherwise 
stated, we show the plans in terms of QUEL queries instead of directed graphs) 

retrieve into tempEMP (EMP.all) 
where EMP.age 5 50 

retrieve into tempDEPT (DEPT.all) 
where DEPT.num-of-emps 5 20 

retrieve (tempEMP.all, tempDEPT.all) 
where tempEMP.age 5 40 
and tempEMP.dept-name = tempDEPT.dept-name 

retrieve (tempEMP.all, tempDEPT.all) 
where tempDEPT.num-of-emps 5 10 
and tempEMP.dept-name = tempDEPT.dept-name 

because it avoids accessing the EMP and DEPT relations more than once. 
Algorithm IE can generate very efficient global access plans especially in cases 

where restrictions reduce the sizes of the original relations significantly. The 
function of the Plan Merger, in the case of algorithm IE, is to “glue” the plans 
together in a way that provides better utilization of common temporary (inter- 
mediate) results. 

The second algorithm we present, algorithm HA (Heuristic Algorithm), is 
based on searching among local (not necessarily optimal) query plans and building 
a global access plan by choosing one local plan per query. Architecture 2 of 
Figure 1 applies to this case. The effectiveness of algorithm HA is illustrated 
with the following example. 

Example 3. Suppose we are given the queries 

(Q3) retrieve (JOB.all, EMP.all, DEPT.all) 
where EMP.dept-name = DEPT.dept-name 
and JOBjob = EMP.job 

(Q,) retrieve (EMP.all, DEPT.all) 
where EMP.dept-name = DEPT.dept-name 

to be processed over the database of Example 2. Assume also that Q3 and Q4 have 
optimal local plans 

(PSI) retrieve into TEMPI (JOB.all, EMP.all) 
where JOB.job = EMP.job 

retrieve (TEMPl .all, DEPT.all) 
where TEMPl .dept-name = DEPT.dept-name 

(Pdl) retrieve (EMP.all, DEPT.all) 
where EMP.dept-name = DEPT.dept-name 

respectively. Notice that PSI and Pdl do not share the common subexpression 
EMP.dept-name=DEPT.dept-name. Algorithm HA considers, in addition to PSI, 
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the following plan for query Q3 

(Ps2) retrieve into TEMPl (EMP.all, DEPT.all) 
where EMP.dept-name = DEPT.dept-name 

retrieve (JOB.all, TEMPI .all) 
where JOB.job = TEMPl .job 

Clearly, this allows the multiple-query optimization algorithm to consider more 
useful permutations of the plans. 

In addition, HA uses some heuristics to reduce the number of permutations of 
plans it has to examine in order to find the optimal global plan. 

We emphasize again the fact that algorithm IE works only on locally optimal 
plans and tries to achieve sharing based on these plans. Although that may not 
be the optimal strategy, we argue that given these plans, the algorithm suggested 
will make the best use of existing temporary results. If not many temporary 
results are created (e.g., in the “pipeline” way of processing a join), simply no 
sharing will be possible. Algorithms IE and HA are examined in more detail in 
the following two sections. 

5. INTERLEAVED EXECUTION ALGORITHM 

Since the sequence in which the queries are run is chosen arbitrarily in algo- 
rithm AS, the global plan GP that is produced is simply the concatenation in an 
arbitrary way of the locally optimal plans. Therefore, for any order of processing 

(execution) E = (PcP$ . e e Pt), with ik E (1,2, . . . , n) and all ik distinct, the cost 
of the global access plan will be 

Cost(GP) = i Bestcost 
i=l 

(2) 

As mentioned in the previous section, the basic idea behind algorithm IE is to 
allow the execution of various access plans to interleave. This is achieved by 
decomposing the given queries into smaller subqueries and running them in some 
order, depending on the various relationships among the queries. Then, the 
results of subqueries are assembled to generate the answers to the original queries. 
The only restriction imposed is that the partial order defined on the execution 
of tasks in a local access plan must be preserved in the global access plan as well. 

Algorithm IE proceeds as follows. First, the queries that possibly overlap on 
some selections or joins are identified by checking the base relations that are 
used. For any query Qi E & that overlaps with some other query, we consider the 

corresponding local access plan P* (Vi, Ai, Li) and define a directed labeled graph 
GP(Globa1 Access Plan) that represents the “union” of all such local plans. 
Formally, the graph GP(GV, GA, GL) is defined as follows: 

-GV= Ur’, Vi 

-GA = Ur=, Ai 

-For every Ui E Vi, GL(Ui) = Li(Ui). 

We will also assume that the result node of query Qi contains the keyword 
RESULTi to indicate that this specific node provides the answer to that query. 
Based on this graph, the algorithm performs some simple steps that introduce 
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Fig. 3. Basic merge operation. 

the effects of sharing among various tasks. Figure 3 illustrates the basic trans- 
formation. The temporary relation TEMPl created by subquery SQi can be further 
restricted to give the result of subquery SQP (SQz + SQ1). Therefore, TEMPl can 
be used as the input to that last subquery, instead of EMP. This is accomplished 
by adding a new arc from the node representing SQ1 to the corresponding node 
for SQ2. Also the relation name in SQP is changed to TEMPl . 

After building the graph GP, the following transformations are performed in 
the order they are presented 

IEl. (Proper Implications) For a task Vi, let Uj be the nodes such that 
GL(ui) + GL(Uj) and GL(Uj) + GL(ui). We denote by uj* the strongest condition 
that can be performed on some of ui)s input relation(s) so that the result of uj* 
can still be used to answer Vi. By “strongest” we mean that uy’s result is the 
smallest in terms of pages, among all such Uj’s. Once the Uj* nodes have been 
found, we apply the merge operation of Figure 3 on ui to substitute input relations 
with the result of Uj 

IE2. (Identical Nodes) In the case where there is a set C of nodes such that 
all its members produce identical temporary relations, we choose the one belong- 

ing to the plan P,? with the least index j as the representative node uj* of C. 
Then, as in step IEl we apply the merge operation of Figure 3 on all nodes 
ui E C - (uj*) to substitute input relations with the result of Vi*. 

IE3. (Recursive Elimination) Because steps IEl and IE2 may have intro- 
duced new nodes that are now identical, step IE2 is repeatedly applied until it 
fails to produce any further reduction to the graph GP. An example of such a 
case is a join performed on two relations that are restricted with identical selection 
clauses. Step IE2 will merge each pair of identical selections to a single one (by 
substituting temporary relation names); then, in the next iteration, the two join 
nodes will also be merged into a single node. 

The result of the above transformation is a directed graph GP’, which is 

guaranteed to be acyclic if the initial graphs P? are acyclic. This is due to the 
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TEMPl- 

Eh4P.age 2 40 

TEMPZ + 

DEPT.nemps 5 20 

RESULT + 

TEMPl.dept = TEMPZ.dept 

TEh4Pl+ 

EMPage 5 50 

\ 
TEMPZ + 

DEPT.oemps < 10 \ 

/ :::d; = TEMPZ.dept ( 

Fig. 4. Initial global access plan. 

TEMPI c 

EMP.agr 5 50 

TEMPll + 
TEMP:! + 

TEMPl.age 5 40 

TEh.lPOl - DEPT.nemps 2 20 

TEhlPP.nemp, 2 10 

RESULT - 
TEMPl.depl = TEhlPOl.drpl 

RESULT - 

TEMPl l.dept = TEMP’Z.dept 

Fig. 5. Global access plan after transformation IE 1. 

fact that any transformation performed on the graph in all cases adds new arcs 
that go always from less to more restrictive tasks. Therefore, a cycle is not 
possible, for it would introduce a chain of proper implications of the form u1 + 
u2 * *a* =a Ul. Finally, using the directed arcs of GP’ a partial order on the 
execution of the various tasks can be imposed. That is the global access plan that 
algorithm IE suggests. 

Example 4. Consider again queries Q1 and Q2 of Example 2. Figures 4,5, and 
6 show the initial access plan graphs, the graph GP after transformation IEl, 
and the final global access plan graph (as a sequence of QUEL operations), 
respectively. (In Figures 4 and 5 we use nemps for num-of-emps and dept for 
dept-name). 

Notice how in this case the algorithm makes use of the common subexpressions 
DEPT.num-of-emps % 20 and EMP.age 5 50. 

Estimating the cost of the global plan imposed by the graph GP’, we have 

Cost(GP’) = i Bestcost - .zs SCZU~~~~(S) (3) 
i=l 

where CS is the set of all (maximal) common subexpressions found in the local 
access plans and savings(s) is the cost that is saved if the temporary result of a 
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retrieve into TEMPl (EMP.all) 
where EMP.age < 50 

retrieve into TEMP2 (DEPT.all) 
where DEPT.num-of-emps S 20 

retrieve into TEMPll (TEMPl.all) 
where TEMPl.age < 40 

retrieve into TEMPPl (TEMP2.all) 
where TEMP2.num-of-emps 2 10 

retrieve (TEMPll.all.TEMP2.all) 
where TEMPll.dept-name = TEMP2.dept-name 

retrieve (TEMPl.all.TEMP2l.all) 
where TEMPl.dept-name = TEMP2l.dept-name 

Fig.6. Finalglobalaccess plan. 

common subexpression s instead of base relations is used. In this example 
CS = (EMP.ageSO,DEPT.num-of-empsS20). The function savings is defined 
as follows: 

Let R be a relation and s1 and s2 be two subexpressions defined on R such that 
s2 can be processed using the result of s1 instead of R. Let also CR be the cost 
of accessing R to evaluate s1 and C,, be the cost of accessing the result of s1 to 
evaluate s2. We assume that the results of s1 and s2 are stored for later use 
(temporary results). Then, without sharing any common results, the cost of 
processing s1 is CR(to read the data) + C,,(to write the result). The cost is 
similar for s2. With sharing, the savings that can be achieved is 

savings(s2) = 
{ 

cl2 - c.9, if s2 * s1 
cR + c,, if s2 = s1 

In the first case instead of accessing R we access the result of sl, hence the 
savings of CR - C,,. In the second case more savings are achieved because not 
only does R not need to be accessed (since the result of s2 is identical to that 
of sl), but the temporary result of s1 can also be used as is as the result of s2. 
Therefore, there is no need to write the result of s2 in a separate temporary 
relation. 

Concerning the complexity of the algorithm, it can be observed that steps IEl 
and IE2 of the above algorithm require time in the order of II:=, 1 Vi I, where k 
is the number of queries represented by their representative plans in graph GP 
and Vi is the set of vertices for plans Pi*, 1 5 i 5 k. The number of times N 
step IE2 is executed as a result of the recursive elimination of common subgraphs 
generally depends on the size of common subexpressions and, in the worst case, 
is the depth of the longest query plan. The total time required by the algorithm 
is therefore in the order of N e II:=, 1 Vi I. 

We now move on to discuss a more general algorithm that can be used to 
process multiple queries. As mentioned in the beginning of this section, the 
heuristic algorithm to be described also captures more general transformations 
than the ones allowed here (simple relation name change). 
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6. HEURISTIC ALGORITHM 

As it was illustrated through Example 3, merging locally optimal plans to produce 
the global access plan is not always the optimal strategy. The main reason is that 
there is more than one possible plan to process a query, yet algorithm IE 
considers only one of them, i.e., the locally optimal plan. Using suboptimal plans 
may prove to be better. Grant and Minker in [9] present a Branch and Bound 
algorithm [21] that uses more than locally optimal plans. One assumption they 
make is that queries involve only equijoins while all selections are of the form 
R.A = colts. In this section, we propose a general framework for the design of a 
heuristic multiple-query optimization algorithm. Then, we show how the algo- 
rithm of Grant and Minker can be mapped onto our more general algorithm, and 
we suggest some further improvement that aims to better performance. To 
simplify the presentation of the algorithm we will also make here the assumption 
that all queries have equality predicates. At the end of the section extensions 
that can be made to include more general query predicates are discussed. 

As shown in Figure 1, the Global Optimizer receives as input a set of queries 

B = 141, 42, . . . , Qn). Then for each query Qi, a set of possible plans S$ = 

(Pi19 Pi29 * * . , Piki) that can be used to process that query is derived. The algorithm 
HA considers optimizing a set of queries instead of a set of plans, which was the 
case with algorithm IE. Considering more than one candidate plan per query has 
the desirable effect of detecting and using effectively all common subexpressions 
found among the queries. 

We will model the optimization problem as a state space search problem and 
propose the use of an A* algorithm [21]. In order to present an A* algorithm, 
one needs to define a state space, the way transitions are done between states 
and the costs of those transitions. 

Definition 4. A state s is an n-tuple (Plj,, Pzj,, . . . , Pnj, ), where Pij, E 
(NULL] U gi. If Piji = NULL it is assumed that state s suggests no plan for 
evaluating query Qi. We denote 9 to be the set of all possible states. 

Definition 5. Given a state s = (Pv,, P2jz, . . . , Pnj,), we define a function 
next: 9 + Z (i2 is the set of integers) as follows 

next(s) = 
min(i ] Piji = NULL] if (i ] Pij, = NULL) # 0 
n + 1 otherwise 

Let ~1 = (Plj,, Pzj,, . . . , Pnj,,) and ~2 = (Plk,, Pzk,, , . . , P,,k,) be two states such 
that s1 has at least one NULL entry. Also let m = next(sl ). A transition T(s,, sp) 
from state ~1 to state s2 exists iff Pik; = Pij;, for 1 5 i < m, P,,,k, E P,,, and 
P+ = NULL, for m < i I n. 

Definition 6. The cost tcost(t) of a transition t = T(sl, s2) is defined as the 
additional cost needed to process the new plan P,, introduced at t (according 
to Definition 5), given the (intermediate or final) results of processing the 
plans of sl. 

From the way transitions are defined, it is evident that the first NULL entry of 
a state vector, say at position i, will always be replaced by a plan for the 
corresponding query Qi. Finally, we define the initial and final states for the 
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Plan 

Table I. Costs for Tasks in Each Plan 

Task cost Task cost Task cost Total 

PE.1 t:1 40 tL 30 t& 5 75 

SZ tk* 35 t& 20 55 

PI31 th 40 th 10 tb 5 55 

PI32 t& 10 t& 30 t& 10 50 

PE3 t& 30 tb 20 50 

algorithm. The state so = (NULL, NULL, . . . , NULL) is the initial state of the 
algorithm and the states SF = (Pij,, Pzj,, . . . , Pnj,) with Piji # NULL, for all i, 
are the final states. 

The A* algorithm starts from the initial state so and finds a final state SF such 
that the cost of getting from so to SF is minimal among all paths leading from so 
to any final state. The cost of such a path is the total cost required for processing 
all n queries. Given a state s, we will denote by scost(s) the cost of getting from 
the initial state so to s. 

In order for an A* algorithm to have fast convergence, a lower bound 
function h is introduced on states. This function is used to prune down the 
size of the search space that will be explored. If the algorithm of Grant and 
Minker [9] is modeled under the framework we just proposed, that is as an 
A* algorithm over the specific state space, the function h : ~7 + Z applied on a 
given state s = (Plkl, Pzk,, . . -, Pnk,) will be 

eSt-COSt ( Piki ) i min [eSt-COSt(Pij,)] - SCOSt(S) (5) 
i=nert(s) ii 

The function est-cost is defined on tasks as follows 

cost(t) 
est-cost(t) = - 

nq 
(6) 

where n, is the number of queries the task t occurs in and cost is the cost function 
on tasks that was introduced in Section 3. The idea behind defining such a 
function is that the cost of a task is amortized among the various queries that 
will probabily make use of it. For a plan Pii,, it is assumed that 

&-COSt(Piji) = C est-cost(t) 
EPU. 

(7) 

It is easy to see that est-cost(Pij,) 5 Cost(Piji), the cost of plan Pij, as defined in 
equation (l), and therefore the A* algorithm is guaranteed to converge to an 
optimal solution [21]. Let us give an example, also drawn from [9], which will 
motivate the dicussion that follows. 

Example 5. Suppose two queries Q5 and Q6, are given along with their 
plans: PSI, Psz, PG,, Psz, Pe3. We will use tfj to indicate the kth task of 
plan Pij. Table I gives the costs for the tasks involved in each plan, and the 
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identical tasks are 

tj, = t&; t& = t&; 2-2 
t52 = ts3; 

Given the actual task costs and the sets of identical tasks, the estimated costs 
(e&-cost) for these tasks are: 

Table II. Estimated Cost for the Tasks 

Task tk t61 th tA* tt* t:, t:, t:* t& G-3 

Estimated cost 20 15 5 35 10 10 5 10 10 30 

and the estimated costs for the plans are: 

Table III. Estimated Cost for the Plans 

Plan PE.1 P62 &I Pm Pa3 

Estimated cost 40 45 35 35 40 

Based on the above numbers and the construction procedure outlined, Figure 7 
shows the search space 9 along with the costs of transitions between states 
and estimated costs of going from intermediate to final states. Tracing the 
A* algorithm we get 

so = (NULL, NULL) /* expand state so */ 
sl = (& , NULL) /* expand state s1 */ 
s2 = (&, NULL) /* expand state s2 */ 

SF = (P52, 83) /* the final solution */ 

yielding (P52, P63) as the best solution. Notice that with this set of estimators 
the algorithm exhaustively searches all possible paths in the state space. 

It is exactly this bad behavior of the algorithm that we will try to improve by 
examining more closely the relationships among various tasks. For example, in 
the case presented above, it is clear right from the beginning that plan PSI will 
not be able to share both of its tasks til and t& with plans P,, and Ps2, respectively, 
since only one of these two latter plans will be in the final solution (final state). 
Therefore, the value est-cost(P51) is less than what could be predicted after 
looking more carefully at the query plans. It is a known theorem, in the case of 
A* algorithms, that with a higher estimator the algorithm will take (at most) as 
many steps as with a lower one (see [21], Result 6, p. 81). Hence, estimating the 
cost function better will enable the algorithm to converge faster to the final 
solution. 

We have developed an algorithm that, given a set of queries, their plans, and 
the set of identical tasks, computes a “good” estimator function. Using a graph 
model, we identify which plans are impossible to coexist in the final state reached 
by the A* algorithm. Then, the lower bound function h is defined in a way 
that will assign high cost to such plans: hence making them unlikely to be con- 
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<NULL, 

75 

/ 
NULI, :, 

\ < &?,P63> 

Fig. 7. Example search space for A* algorithm (numbers in paren- 

theses show lower bound function values). 

sidered during the search. Due to lack of space, this algorithm is presented in 
Appendix 1. We show here how the result of the preprocessing phase improves 
the performance of the algorithm. 

Example 6. Suppose the two queries, Q5 and Qs, of Example 5 are given. The 
new estimators of plan costs will be derived based on the preprocessing algorithm. 
Given the costs as in Example 5, the algorithm of Appendix 1 computes the 
following (estimate) costs for the plans: 

Table IV. Computation of (Estimated) 
Costa for the Plans from the Algorithm 

in Appendix 1 

Plan PSI pm pm Pa, Pea 

Estimated cost 55 45 35 35 40 

Notice that the cost of plan PSI was underestimated by the Grant and Minker 
formula. Tracing the A* algorithm, we see that it explores the following states 

s,, = (NULL, NULL) /* expand state so */ 
sl = (Phz, NULL) /* expand state s1 */ 

SF = (Pm R33) /* the final solution */ 
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yielding again (Ps2, Ps3) as the optimal solution with cost 85. Notice that if 
the commands were executed sequentially it would have cost Cost(P,,) + 
Cost(P,,) = 105. Therefore, a total savings of 19% was achieved using the 
global optimization algorithm. Moreover, compared to the trace of the previous 
subsection, it can be seen that exhaustive search is avoided because of the high 
cost estimates for some paths. 

We can summarize algorithm HA as follows: First, for all queries that do not 
share any task results with other queries, we find the originally cheapest plan 
and put it in the final processing sequence E. For the rest of the queries, the HA 
algorithm is used to construct the global access plan: 

HAl. (Estimate Plan Costs) Apply the preprocessing algorithm (described in 
Appendix 1) to obtain a good lower bound function h. 

HA2. (Run A* Algorithm) Run the A* algorithm described above to obtain 

the execution plans. 

HA3. (Find Global Access Plan) Let 9 be the set of all plans derived from 
the previous step. Integrate these plans to obtain the final global access plan. 

The integrating process in step HA3 is very similar to the one described for the 
interleaved execution algorithm where local plan graphs are merged together. 
Examining the estimated cost of the global access plan, we have 

Cost(GP) = 2 Cost(P) - 1 savings(s) 63) 
PE.9 SECS 

where CS represents the total number of subexpressions found among the n plans 
in the final state SF (not necessarily locally optimal) and savings(s) is the cost 
savings function defined by eq. (4). Regarding the complexity of the algorithm 
HA, we must notice that it is very hard to analyze the behavior of an A* al- 
gorithm and give a very good estimate on the time required. In the worst case, 
of course, it may require time exponential on the number of queries, but on the 
average the complexity depends on how close the lower-bound function esti- 
mates the actual cost. However, the A* algorithm with the new estimator func- 
tion we proposed will not take more steps than the originally suggested 
A* algorithm. This is based on the fact that for any plan P it is true that the 
estimator function est-cost(P), computed by the algorithm of Appendix 1, is 
greater than or equal to the one suggested in eq. (7). Given the definition of h(s) 
in eq. (5), this means that the lower-bound function is also better. Therefore, as 
mentioned above, with the help of a known theorem from [21] our algorithm will 
give a solution in at most the same number of steps as the Grant and Minker 
algorithm. 

Finally, note that the algorithm described is correct only in the cases where 
queries use solely equijoins and equality selection clauses. If arbitrary selection 
clauses are used, the A* algorithm presented above will not find the optimal 
solution. This is true because the imposed order in which the state vectors are 
filled (i.e., in ascending query index) may not result in the best utilization of 
common subexpression results. As an example, consider two queries, Q1 and Q2, 
such that Q1 has a more restrictive selection than Qz. Then clearly it would be 
better to consider executing Q2 first since, in that case, the result of Q2 can be 
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used to answer Q1, the opposite being impossible. This problem with the heuristic 
algorithm can be easily fixed by changing the transitions to fill not the next 

available NULL slot in a state s, as it was done before through the use of next(s) 
(see Definition 6), but rather any available (NULL) position of s. This results in 
larger fanout for each state and clearly more processing for the A* algorithm. 
The cost function est-cost is defined similarly with the difference that, in addition 
to identical tasks, pairs of tasks ti and tj such that ti + tj and tj + ti must be 
considered as well. However, the general algorithm we suggested can still be used, 
it is only the transitions between states and cost functions that need be adapted. 

7. SOME EXPERIMENTAL RESULTS 

We expect that for a large number of applications and query environments 
multiple-query optimization will offer substantial improvement to the perform- 
ance of the system. In a series of experiments, we have simulated these algorithms 
using EQUEL/C [22] and the version of INGRES that is commercially available. 
The experiments were run over a slightly modified version of the set of queries 
that Finkelstein used in [7]. The reason such a set was chosen was primarily 
because Finkelstein’s example was realistic and secondly because it can be used 
to expose all interesting parameters of the problem (see the discussion that 
follows). The database schema used was modeling a world of employees, corpo- 
rations, and schools that the employees have attended, the relations being 
Employees, Corporations, and Schools, respectively. All eight queries, along with 
a brief description of the data they return, are shown in Appendix 2. Seven 
different sets of queries QSETl-QSET7 were formed by randomly choosing 
queries out of the original set, shown in Appendix 2. The queries within each of 
these sets were processed 

(a) as independent queries; 

(b) as the Interleaved Execution algorithm suggests; and, finally, 

(c) as the Heuristic algorithm suggests. 

Table V describes some characteristics of the sets QSETl to QSET7. The second 
column indicates the number of queries used in each set, and the third column 
shows which queries from Appendix 2 were specifically used. 

The above sets of queries were tested in various settings. First, unstructured 
relations were used with their sizes varied according to Table VI. Second, the 
same experiments were performed with structured relations. Specifically, the 
following structures were used 

isam secondary index on Employees(experience) 
isam primary structure on Corporations(earnings) 
hash primary structure on Schools(sname) 

The above choices were made in order to make locally optimal plans as cheap as 
possible. Finally, in another series of experiments the given queries were slightly 
modified by changing the constants used in one-variable selection clauses. The 
goal was to introduce higher sharing among the queries. Higher sharing is 
achieved when more queries can take advantage of the same temporary result. 
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Table V. Query Sets Used in Experiments 

Query set 

QSETl 
QSETP 
QSET3 
QSET4 
WETS 
QSETG 
QSET7 

Number 

of queries 

2 

2 
4 

2 

4 

I 

2 

Queries 

t1,7\ 

lL6) 
IL 2,671 

1% 71 

(2, 3,4,61 

11, 2, 3,4,5,6, 71 
17. St 

Table VI. Sizes of Relations 

Relation Number of tuples 

Employees 100-200-500-1000-10000 

Corporations 10-20-50-100-500 

Schools 20 (fixed) 

Recall that the formula that provides an estimate on the cost savings using a 
global optimization algorithm is (for n queries Q1, . . . , Qn) 

i Bestcost - .J& sahgs(s) 
i=l 

where CS is the set of common temporary results. Therefore, higher cost reduction 
is achieved if more queries can use the same temporary result. By changing the 
constants in the qualification of the queries it was possible to check how the size 
of CS (i.e., the number of common subexpressions) affected the cost of processing 
the global access plans. 

The measure used in this performance study was 

pERcI = Cost1 U/O) - CO%? U/O) 
Cost1 (I/O) 

- 100% (9) 

where Cost,(I/O) is the number of I/OS required to process all queries assuming 
no global optimization is performed. This is the cost of locally optimal plans 
generated by the optimizer and assuming that temporary results are always built. 
Cost,(I/O) is the corresponding figure in the case where a global access plan is 
constructed according to some of the presented optimization algorithms. PERCI 
stands for PERCentage of Improvement. The analogous CPU measure was also 
recorded, however, the numbers were almost the same and will not be shown. In 
the following, the results of the experiments are described in detail. 

7.1 Unstructured Relations 

Because of the similarity of the results we will group the diagrams according to 
the differences observed among the outcomes of the algorithms used for optimi- 
zation. Two diagrams are presented: one for query sets QSETl-QSETG and 
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307 

Query Sets l-6 

PERCI 

lo- 

01 * 
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Size of Employees Size of Employees 

64 (b) 

Fig. 8. Improvements for unstructured relations: Query sets l-6 and 7. 

another for QSET7. For query sets in the first group both IE and HA algorithms 
gave exactly the same results (in the sense that the global access plan was the 
same). The second group gave different results for the IE and HA algorithms. 
Figures 8(a) and 8(b) illustrate how PERCI varies for the two above-mentioned 
groups according to the size of the database in the case of unstructured relations. 
The size of the database is represented by the size of the Employees relation. 
The reasons for choosing that relation was first that all queries were using 
Employees (compared to Corporations or Schools) and second the fact that the 
diagrams are similar for the Corporations relation as well. 

Some comments can be made here for these diagrams. First, there is always a 
gain in performance by doing multiple-query optimization, i.e., PERCI 1 0, in 
all the experiments run, due to the overlap among the queries. Second, after some 
size of the relations, PERCI starts to decrease. This was due to the specific type 
of queries used. In particular, because of queries involving joins, the denominator 
of formula (9) grows faster than the numerator. In the given queries, the selection 
clauses were responsible for the savings in the numerator. That savings increases 
with rate proportional to the factor by which a relation is reduced as a result of 
performing a restriction on it (i.e., 1 - S, where S is the selectivity of the selection 
clause). On the other hand, if joins are included in the queries, Cost,(I/O) 
increases with a rate that depends on the cost of the join operation. It turns out 
that for small sizes of the relations the latter factor is less than the former, while 
after some size this relationship is reversed. Hence, the slight increase followed 
by a decrease in the values of PERCI indicated in the above diagrams. 

Finally, for the last query set QSET7, the plan generated by HA was signifi- 
cantly better than the one generated by IE. By allowing the result of the join 
e.employer = c.cname to be shared by both queries 7 and 8, significantly better 
performance was achieved. 
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Fig. 9. Improvement for structured relations: Query sets l-6 and 7. 

7.2 Structured Relations 

The same set of experiments was run over a structured database. Relations were 
indexed as mentioned in the beginning of this section. The reason for doing these 
experiments was to check if the overhead of accessing a relation through a 
secondary structure might be higher than the overhead of accessing an unstruc- 
tured intermediate result. For example, suppose that retrieving the part of a 
relation that satisfies a simple one-variable restriction requires 10 page accesses. 
That includes the cost of searching first the index table and then accessing the 
data pages. Suppose now that there is an intermediate result, produced by some 
other query, that can be used to answer the same restriction clause. If the size of 
that intermediate result is less than 10 pages, then it will be more efficient to 
process the restriction by scanning the unstructured temporary result than going 
through the index table. 

Figures 9(a) and 9(b) illustrate how PERUvaries for the two above-mentioned 
groups according to the size of the database in the case of structured relations. 
Comparing the values of PERCI with the corresponding ones of the previous 
subsection, we can observe some decrease of lo-20% for IE and HA depending 
on the size of the involved relations. This was expected since using indexes 
reduces Cost,(I/O). However, after some size of the Employee relation, PERCI 
starts increasing instead of decreasing, which was the case in the experiments of 
the previous subsection. This behavior is due to the fact we mentioned above 
(i.e., the overhead involved in using an index to access a relation). Moreover, the 
above effect is more obvious in cases where the involved relations are large. Then 
the size of the secondary indexes is in many cases significantly larger than the 
sizes of temporary results. Notice also that for small sizes of the Employee 
relation, PERCI is decreasing. That was expected because for small relations 
temporary results grow faster in size than the index tables. Finally, we notice 
that the relative performance of the three algorithms is not affected by the 
existence of indexes (i.e., HA still performs better than IE). 
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Fig. 10. Performance improvement for higher 

sharing. 

7.3 Higher Sharing 

In this last experiment, the given query sets were run over the same database 
with a modification in the queries so that higher degree of sharing is possible. 
That effect was introduced by changing the restrictions experience > 20 found 
in queries 2,4,5, and 7 to experience I 10. This way, the same temporary result 
could be used in the evaluation of more queries, compared to the ones in the 
experiments of the previous two subsections. Figure 10 illustrates how PERCI 
varied with the size of the database in the case of unstructured relations and for 
the first group of query sets (i.e., QSETl-QSETG). Query set 7 was not affected 
by this modification in the selection clauses in the sense that no increase in 
sharing was possible. Notice that the curve is similar to the one of Figure 8. 
However, because of the higher degree of sharing among queries, an increase of 
about 10% in the performance improvement was observed. 

8. SUMMARY 

The first major contribution of this paper lies in the presentation of a set of 
algorithms that can be used for multiple-query processing. Although some rele- 
vant work has been done in the past, we provide the first systematic way of 
designing multiple-query processing algorithms. The main motivation for per- 
forming interquery analysis is the fact that common intermediate results may be 
shared among various queries. We showed that various algorithms can be used 
for multiple-query optimization. More sophisticated algorithms (like HA) can be 
used to give better access plans at the expense of increased complexity of the 
algorithm itself. 

Some of the algorithms proposed were based simply on the idea of reusing 
temporary results from the execution of queries, where the processing of each 
individual query is based on a locally optimal plan. Using plans instead of queries 
enabled us to concentrate on the problem of using efficiently common results 
rather than isolating common subexpressions. The heuristic search algorithm 
provides a general framework for the design of optimization algorithms. As an 
example, we have shown how the algorithm by Grant and Minker can be modeled 
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under this framework. In addition, we have suggested a preprocessing phase that 
derives a better cost estimator function to be used by the A* algorithm. 

In general, the result of a global optimization algorithm should always be 
compared to what a conventional optimizer can do and the cheapest processing 
schedule should be processed. We expect that for a large number of applications 
and query environments multiple-query optimization will offer substantial im- 
provement to the performance of the system. The experimental results described 
in Section 7 are the second major contribution of our work. They constitute the 
first empirical results in the area. In a series of experiments, we have simulated 
these algorithms and checked the performance of the resulting global access 
plans under various database sizes and physical designs. This enabled us to check 
the usefulness of these algorithms even in the presence of fast access paths for 
relations. The results were very encouraging and showed a decrease of 20-50% 
in both I/O and CPU time. 

As interesting future research directions in the area of multiple-query optimi- 
zation we view the development of efficient algorithms for common subexpression 
identification and the extension of the algorithms presented to cover more general 
predicates. In addition, we currently focus on developing an analytical model for 
a multiple-query processing environment. The experimental results of Section 7 
agree with our preliminary analytical results but there is more work that need be 
done in this direction. Using a good analytical m,odel will allow us to simulate 
various environments with different query mixes. 

In a different direction, we view the application of our method in rule-based 
systems as a very interesting problem for investigation. For example, Prolog and 
database systems based on logic [29] can easily be extended to perform multiple- 
query optimization. Finally, some of the techniques that we developed here can 
be applied in processing recursion in database environments [ 141. This is mainly 
due to the fact that in evaluating recursive queries one usually processes itera- 
tively similar operations. These operations often access the same data, for the 
relations accessed are always the same. Investigating how our algorithms can be 
used in this recursive query processing environment seems to be a very interesting 
problem for future research. 

APPENDIX 1 

The goal of this appendix is to describe a preprocessing step that computes a 
better lower bound function for the A* algorithm of Section 6. Suppose that n 
sets of plans gl, pg, . . . , g,, are given, with gi = {Pi,, Pi29 . . . , Pa) (for simplicity, 
instead of Pi+ we use Pik to denote plans). Let also tb denote the kth task of 
plan Pijs We also assume that the pairs of identical tasks are given. We then 
define a directed graph G( V, A) in the following way: 

-For each plan Pij that has a task t$ identical to task(s) used for evaluating 
other than the ith query, introduce a vertex vii. 

-For each pair t; E Pij, t; E PM of such identical tasks there is an arc connecting 
the two vertices (vii + vu) if there is no other plan Pkm with a task tl, such 
that for some u, t&, = tl;. 
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Fig. 11. Graph G for queries Q6 and Q6. 

Given the above definition, a unique graph can be built based on a set of plans 
and a set of identities among tasks. Notice that not all plans are needed to build 
the graph. Only those having identical tasks among them are considered. Also, 
there may be more than one directed edge (Vii + vkl) going from vii to VH if there 
are more than one pair of identical tasks involved in plans Pij and PH. In order 

to reduce the size of the graph, only one edge Uij --* vkl is recorded for any two 
vertices vii and VM that have at least one edge between them. No information is 
lost that way. The number of identical tasks found between the two plans is of 
no importance. 

The goal of the preprocessing phase is to find plans that are most probably 
not sharing their tasks with other plans. The algorithm used is a slightly modified 
Depth-First-Search (DFS) algorithm. The difference is that in the course of 
backing up to the vertex Uij from which another vertex vkl was reached using the 
edge Uij + r&l, the identification (subscript) kl is stored in some set associated 
with vertex vii. Call that set the Need set of .vertex vii. Then, at the end of the 
algorithm, delete from G all vertices that have two or more members k’l’ and kl 
in their Need sets, such that k ’ = k. Along with the vertex, its edges (both 
out- and in-going) are also marked as OUT. This deletion process is continued 
by deleting vertices that have at least one out-going edge marked OUT. The edge 
and vertex elimination process stops when no more deletions are possible. Call 
the final graph G’( V’, A ‘) and let 9’ be the set of plans Pij that have a 
corresponding vertex vii in G’. 

What is achieved through that preprocessing phase is the considerable reduc- 
tion of the size of the search space explored by the A* algorithm. Only plans 
in 9’ are considered in order to derive the est-cost values. To give an example 
of the preprocessing phase, we apply the above procedure on Example 5 of 
Section 6. 

Example 7. We are given again the same two queries Q5 and Qs and five plans: 
PSI, Pb2, PSI, Psz, Ps3. The graph of Figure 11 gives the graph G for the set of 
plans given. 

Suppose that the depth-first-search procedure starts from v51 and us2 for the 
left and right part of the graph of Figure 11, respectively. After the DFS has 
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Fig. 12. Final graph G’. 

been performed, the Need sets for the various vertices will be as shown in 
Table VII below: 

Table VII. Need Set After DFS Has Been 

Performed 

Vertex Need 

V61 (51, 61, 62) 

V62 152,63 t 
V6l 151,611 
US2 (51,621 
U63 15% 631 

From the above table it can be seen that vertex u51 must be eliminated since it 
can reach both u61 and u62 through directed paths. After that, the edges (us1 + 

usI), (us1 + Use), (Use + uG2), and (uG2 --, u51) are marked as OUT. This causes 
vertices US1 and u62 to be deleted also. No more vertices can be deleted. The 
remaining graph is shown in Figure 12. 

Finally, 9 = jp52, pG3). 

Using the result of the preprocessing phase, we next compute the new estimated 
costs for tasks and plans. First, based on the cost function cost defined for tasks, 
the following function coalesced-cost on tasks t [9] is defined (coalesced-cost is 
identical to the est-cost function of Section 6): 

cost(t) 
coalesced-cost (t ) = - 

nq 

where nq is the number of queries task t occurs in, and for plans 

coalesced-cost(Pij) = 1 coalesced-co&(t) 
t-t, 

(11) 

Now, given a plan Pij and a specific task t$, let @ij be the set of queries Ql, 1# i, 
that have a plan that has a common task with Pij. Also, let nij be the number of 
plans Pl, that correspond to query Ql in @ij. Then, est-cost is defined as follows 

(a) If the plan Pij is not in 9” and nij > 1 for at least one query QL, then 

est-cost(Pij) = Cost(Pij) - J$ max[coalesced-cost($)] 
QtE@<j 

(12) 

where .$ = ts,, for some r and s. 

(b) If the plan is in 9 or it is not in Pa’ but the above condition on nij does not 
hold, then 

est-cost(P,) = coalesced-cost(Pij) 
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If we consider the queries of example 7, the above preprocessing algorithm 
provides the following estimated costs (see Section 6): 

Table VIII. Estimated Cost 

Plan p.51 Pm PSI ps2 PC33 

Estimated cost 55 45 35 35 40 

Notice that the new values are greater than or equal to the ones derived by Grant 
and Minker, thus guaranteeing (a) on the average, less and (b) in the worst case, 
the same number of steps for the A* algorithm. 

APPENDIX 2 

The experiments described in Section 7 were run over the database 

Employees (name, employer, age, experience, salary, education) 

Corporations (cname, location, earnings, president, business) 

Schools (sname, level) 

The set of queries used, expressed in QUEL, is shown next. Assuming, 

range of e is Employees 

range of c is Corporations 

range of s is Schools 

&I. Get all employees with 10 years of experience or more 
retrieve (e.all) where e.experience 2 10 

Q2. Get all employees 65 years old or less with 20 years of experience or more 
retrieve (e.all) where e.experience 2 20 and e.age zz 65 

Q3. Get all pairs (employee, corporation), where the employee has 10 years of 
experience or more, and works in a corporation with earnings more than 
500K and located anywhere but in Kansas. 
retrieve (e.all, c.all) 

where e.experience 2 10 and e.employer = c.cname 
and c.location # “KANSAS” and c.eamings > 500 

Q4. Get all pairs (employee, corporation), where the employee has 20 years of 
experience or more, and works in a corporation with earnings more than 
300K and located anywhere but in Kansas 
retrieve (e.all, c.all) 

where e.experience 2 20 and e.employer = c.cname 
and c.location # “KANSAS” and c.earnings > 300 

Q5. Get all pairs (president, corporation), where the president is 65 years old 
or younger, with 20 years of experience or more, and the corporation is 
located in NEW YORK and has earnings more than 500K 
retrieve (e.all, c.all) 

where e.experlence 2 20 and e.age 5 65 
and e.employer = c.cname and e.name = c.president 
and c.location = “NEW YORK” and c.earnings > 500 
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Q6. Get all pairs (president, corporation), where the president is 60 years old 
OF younger, with 30 years of experience or more, and the corporation is 
located in NEW YORK and has earnings more than 300K 
retrieve (e.all, c.all) 

where e.experience 2 30 and e.age 5 60 
and e.employer = ccname and e.name = c.president 
and c.location = “NEW YORK” and c.earnings > 300 

Q7. Get all triples (employee, corporation, school) where the employee is 65 
years old or younger, has 20 years of experience or more and holds a 
university degree working for a corporation located in NEW YORK and 
with earnings more than 500K 
retrieve (e.all, c.all, sall) 

where e.experience 2 20 and e.age 5 65 
and e.employer = c.cname 
and c.location = “NEW YORK” and c.earnings > 500 
and e.education = s.sname and s.level = “univ” 

QS. Get all pairs (employee, corporation), where the employee is 65 years old or 
younger, with 20 years of experience or more and the corporation is located 
in NEW YORK and has earnings more than 300K 
retrieve (e.all, c.all) 

where e.experience 2 20 and e.age I 65 
and e.employer = c.cname 
and c.location = “NEW YORK” and c.earnings > 300 
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