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Multiple Radial Solutions for a Class of Elliptic 
with Singular Nonlinearities (*). 

S. CINGOLANI - M. LAZZO - J. F. PADIAL 

Systems 

Summary. - We study radial solutions u = (Ul, u2) in an exterior domain of R N (N >I 3) of the 
elliptic system - A u  + V' (u) = O, where V is a positive and singular potential. We look for 
solutions which satisfy Dirichlet boundary conditions and vanish at infinity. We prove exis- 
tence of infinitely many radial solutions, which can be topologically classified by their wind- 
ing numbers around the singularity of V. Furthermore, we study some qualitative properties 
of such solutions. 

1. - Introduct ion  and s ta tement  o f  the  results.  

In the present paper, we aim to prove the existence of infinitely many radial sol- 
utions u = (Ul, re)  of the following problem: 

(P) 

- A u + V ' ( u ) = 0  in Y2, 

u - 0  on a~2, 

illimoo u(x)  = O, 

where Y2 = R N \B1 (0), N I> 3 and V i s a  C 1 real map defined in an open subset of R 2. By 
V ' =  (V~I, V~2) we denote the gradient of V. 

By some Pohozaev-type arguments (cf. [9, 1]), it is easy to see that  

(1.1) - A u + g ' ( u )  = 0  in R N (N~>3) 
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with g eCl (R  k, R), g i> 0, k I> 1, does not admit nonconstant solutions with finite en- 
ergy (for k = 1, this result is also known as Derrick Theorem). These nonexistence re- 
sults are based on scaling arguments thus, in order to regain solutions for (1.1), it is 
convenient to replace R g by a domain which is not invariant under scalings. On the 
other hand, even if this is the case (1.1) may admit no nontrivial solutions at all if g is a 
smooth function, as can be easily checked. 

In view of such results, we set problem (P) in the exterior domain of a ball, and we 
consider a singular potential, namely we assume 

(V1) there exists ~ = (~1, ~2) ~ (0, 0) such that Ve  C ~ (R 2 \{~}, R);  

(V2) V($) I> V(0) for any ~eR2\{~} .  

As concernes the behaviour of V around the singularity, we assume a Strong Force 
type condition (see [10]): 

(V3) there exist m, ~ > 0 such that V(~) I> m] ~ - ~ 1-2 for any 0 < ]~ - ~ ] < (~. 

Let us introduce some notation. Let @~'2(t2, R 2) be, as usual, the closure of 
Co ~ (t2, R e) under the norm 

]Julia1 = (Ifvul lib + liv  

As we are interested in radial solutions of (P), let us introduce @rl~(t2, R2), the set of 
radial functions in @1, 2(t2, R2). By a radial weak solution of (P) we mean a function 
u e 0~r~[(~9, R ~) such that 

f( VuVqJ+ V'(u) q~)dx=O for any q~cCf(t2, R2). 

It is well known that radial weak solutions of (P) correspond to critical points in 
@ ~ ( t 2 ,  R 2) of the energy functional 

E(u) = i Vu(x)12 dx ( g ( u ( x ) ) -  g (0) )  dx.  

For simplicity, we shall henceforth assume V(0 )=  0. 
By Radial Lemma (cf. [5,14, 4]), any radial weak solution u of (P) is continuous and 

vanishes at infinity. Moreover, as a consequence of assumption (V3), u takes values in 
R 2 \{~}. In other words, u describes a closed curve in the plane which starts and ends 
at the origin without crossing the singularity, thus the winding number of u around 
makes sense (cf. Section 2). The nontrivial topological properties of the target space 
(namely, the fact that the fundamental group of R 2 \{~} is isomorphic to Z) allow en- 
dowing the set of radial weak solutions of (P) with a topological classification. There- 
fore we shall look for radial weak solutions of (P) having prescribed winding number q 
around the singularity of V, for any integer q. 

The multiplicity result we shall prove is the following: 
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THEOREM 1.1. - A s s u m e  (V1-V3). For any q ~Z ,  (P) has at least one weak radial 
solution uq with winding number around ~ equal to q. Furthermore: 

i) uq e C2(~9); 

ii) uq has exponential decay at infinity, together with its derivatives up to sec- 
ond order, namely 

]Dauq(X) l ~ C e  -klxl , x e Q  

for some C, k > 0 and for l al <<. 2, provided the following condition holds: 

V~(~) V~j(~) 
(V4) 0 < lim inf ~< lira sup - -  < + ~ , j = 1, 2 .  

~-~o ~j ~ o  ~j 

REMARK 1.2. - As V' (0) = 0, (P) admits the trivial solution u = 0; our approach does 
not guarantee that the solution found in Theorem 1.1, for q = 0, is not trivial. 

REMARK 1.3. - Condition (V4) is fulfilled, for example, if in a neighbourhood of zero 
V is a positive definite quadratic form. 

REMARK 1.4. - In several differential problems involving a singular potential V sol- 
utions are classified by some topological invariant related to the singularities of V. For 
example, in planar dynamical systems solutions can be naturally classified by the wind- 
ing number, as in our case (see [6, 7,13] and references therein). In some recent pa- 
pers [1-3], a suitable topological invariant (e.g., the topological charge) is introduced in 
order to classify weak solutions of a quasilinear elliptic equation with a singular poten- 
tial. Such an equation arises when looking for static solutions of a model equation, de- 
fined in a four dimensional space-time, which admits soliton-like solutions. 

2. - V a r i a t i o n a l  s e t t i n g .  

For the sake of simplicity, any positive constant depending only on N will be denot- 
ed by CN. 

We shall identify O~rl~(Q, R 2) with the <,weighted, space ~C, defined as the closure 
of Co ~ ((1, + ~),  R 2) under the norm 

i ~ )1/2 Ilull = r N - ' ( l u i ( r )  12 + lu;(r)]2)dr �9 
1 
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Plainly, the energy functional E can be rewrit ten as 

( 1 )  
E(u) -~ f r N- 1 l u '  (r) 12 + V(u(r)) dr, 

1 
U ~ P C .  

In the sequel, we shall need some embeddings properties of PC, which we briefly 
recall. By Radial Lemma, every u e PC is almost everywhere equal to some U e 
eC([1 ,  + oo) ,R2),  such that  

(2.1) [ U(r) [ ~< CN r(2-N)/2 Hull for any r/> 1.  

By identifying u e PC and U, (2.1) plainly implies that  ~ is continuously embedded in 
the set of continuous and bounded functions from [ 1, + oo ) to R 2. I t  is easy to see that  
PC is also continuously embedded in H~((a, b), R2), for any 1 < a < b. Indeed: 

+~o b 

Ilul12 : I r~-~lu' (r)12 dr >i I lu' (r)12 dr ; 
1 a 

on the other hand: 

/ )(N - 2)/N 
Ilull ~ I> CN lu(r)  12N/(N-~> dr 

b 

>1 CN(b - a)-2/N~ lu(r) 12 dr 
Cb 

(we have taken into account the embedding (DI'2(g?,R2) c---~L2N/(N-2)(f2, R2), 
see [12]). As H l((a, b), R 2 ) is compactly embedded in L ~ ((a, b), R 2), if {us } r PC con- 
verges weakly in ~ ,  then it converges pointwise in [ 1, + oo ) and uniformly on any com- 
pact set contained in [ 1, + oo ). Furthermore,  as H l ( (a ,  b), R 2) is continuously embed- 
ded in C~ b), R2), there exists a constant c > 0 ,  depending on a,  b such that 

(2.2) l u(r )  - u(s) l ~ c t r -  siX/21]ull~l(a,b). 

3. - M u l t i p l i c i t y  r e s u l t .  

As the elements of M are continuous functions, it makes sense to consider the open 
subset of ~ defined by A = {u e ~ :  u(r) ~ ~ Vr > 1}, whose boundary is given by 
3A = {u e :)C: B~ > 1 s.t. u(~) = ~}. 

We aim to split A in the disjoint union of infinitely many components and then look 
for minima of the functional E in any of such components. 
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Up to a parametrization, u e A  can be identified with a curve ~:[0 ,  1]--*R2\{~} 

such that  ~(0) = ~(1) = 0. Le t  us define Ind (u) = the winding number of~t around 
(e.g., cfi [11]). For  any q � 9  let 

A q  = { u e A :  Ind (u )  = q}. 

For  any q, A q is not empty; by the properties of the winding number, A q is an open 
connected subset of A and A = U A 

q~Z q" 
We are able to state our multiplicity result. 

THEOREM 3.1. - For any q � 9  there exists UqeAq such that E(uq)=infE. 
Moreover A q 

(3.1) lim E(uq) = +. :r . 

q---~ • ~ 

Let  us first prove some useful lemmas. 

LEMMA 3.2. - E is coercive in the 3C norm and weakly lower semicontinuous in A .  

PROOF. - As V is nonnegative, E is coercive by definition. Le t  u � 9  and {us} c A  
be such that  un weakly converges to u; we aim to prove that  lim inf E(u~) >>. E(u). 

~- - ->  oo 

Let  us assume that  E(u~) is bounded (otherwise the claim is obvious); as a conse- 
quence, Ilu,~ll is bounded, hence tlu~ll~ ~<C. Le t  g e e ( l ,  +oo)  and let us denote 
2d = inf ]u(r) - ~ [ > 0. Since us converges uniformly to u on K,  there exists v �9 N such 

that, for any n/> v and r e K ,  [us(r) - u(r) [ <~ d. Therefore, Mean Value Theorem ap- 
plies and gives 

IlV(u ) - V(u) llL ~ sup I V' I Ilu  -UIIL 
B 

where B = { ~ �9 R 2: dist (~, u(K)) ~< d }. As a consequence, V(u~) converges uniformly 
to V(u) on any compact subset of (1, + ~) ;  in particular, for any R > 0: 

+ ~  R R 

lim_~f f V(u~(r))dr>~ lim_~f f V(u , ( r ) )dr= ~V(u(r))dr .  
1 1 1 

AS R---> + ~ ,  we obtain 

lim_ i n f  f g ( u n ( r ) ) d r ~  f g ( u ( r ) ) d r  
1 1 

whence the claim. �9 

Assumption (V3) permits to control the behaviour of the functional E at the bound- 
ary of A.  

LEMMA 3.3. - Let { U n } C A be such that E(un) is bounded. Then u,~ weakly converges 
to some u �9 A (possibly up to a subsequence). 
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PROOF. - As E(u~) is bounded, u~ is bounded in the ~ norm. As a consequence, it 
weakly converges to some u e ~ ,  up to a subsequence. By contradiction, let us assume 
u e aA, hence there  exists ~ > 1 such that  u(~) = ~. By (2.2), there  exists a constant C > 
> 0 (depending on ~) such that  

lUn(r) - u~(O) I <" CIr  - ~ 11/2 

for any r e [ (~ + 1 ) / 2 ,  2 ~]. Since u~ (~) --) ~, we have 

I n n ( r )  - ~1 <~ lUn ( r )  - Un(~') I -~ I un(~') - ~1 ~ C I r  - ~" 11/2 -~- o(1) ;  

therefore,  there  exists 0 < ~ < (~ + 1 ) /2  such that  ] u~ (r) - ~ ] ~< 5 for I r - ~ I < Q and n 
sufficiently large. By (V3): 

]~'-~1 <Q I r - ~ l < Q  

(C > 0 is a suitable constant) which implies E(un)--+ + ~ as n--+ 
tion. �9 

lUn(r) _ ~ -2 dr >~ 

>~-C ~ ( I r - ~ ' t + o ( 1 ) ) - l d r  

, a contradic- 

PROOF OF THEOREM 3.1.  - Le t  q ~ Z  and let {%} r  q be a minimizing sequence, 
namely E ( v n ) - - ) i n f E  =:Eq as n--+ ~ .  By Lemma 3.3, vn weakly converges to some 

Aq 
uq e A;  we still have to prove uq e A q. We claim that  there  exists d > 0 such that  
m n :-- inf I%(r)  - ~1 >~ d. By contradiction, assume that  m,~--)O as n- - )  cr By Radi- 

(1, + :o) 
al Lemma, there  exist R ,  c > 0 such that  Ivy(r) - ~ I >~ c for any n and for any r > R.  
F o r  n sufficiently large, there  exists 1 < r~ <~ R ,  such that  m~ = I v~ ( rn ) -  ~1" We can 
plainly assume that  ru converges to some ~ <~ R .  As  Vn converges to u ,  uniformly on 
compact sets, lett ing n - +  ~ gives Uq (~) = ~, which contradicts uq e A and proves the 
claim. Now, by Radial Lemma again, it easily follows sup I v~ (r) - Uq (r) I < d for n suffi- 

ciently large; thus Ind (v~)=  Ind (uq) for n large, that  is uq e A q  and 

Eq ~ E(uq) ~ lim_+inf E(vn) = Eq . 

We are left  to prove (3.1). We confine ourselves to positive integers (the proof is the 
same in the other  case). Le t  us notice tha t  the sequence Eq is nondecreasing. Indeed, 
if  Uq~Aq,  then there  exists [ t , , t ~ ] r  such that  uq( t , )=uq( t2 )  and 
Ind (Uql~tl, al) = 1. I f  we set v(r) = Uq(r) for r ~ tl and v(r) = Uq(r - tl + t2) for r > tl, 
then v ~ A q _ l  and /1(1 ) 
Eq_I<~E(v)  = -~lUq(r) 12+V(uq(r) )  r N - l d r +  

+ (r) 12 + V(uq(r)))(r + tl - t2) N -  1 dr <~ E(uq) = Eq . 
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If we assume Eq bounded, then Uq weakly converges in A and uniformly on compact 
sets, by Lemma 3.3. Arguing as in the first part of the proof, it is easy to see that the se- 
quence Ind (Uq) is definitively constant, a contradiction. �9 

4. - R e g u l a r i t y  r e s u l t s .  

In the present section we. adapt to our setting the arguments in [4, Section 4]. 

LEMMA 4.1. - Assume  (V1). A n y  radial weak solution of  (P) is a classical 
solution. 

PROOF. - Let u a radial weak solution of (P). By Radial Lemma, we have u e 
C~ R 2) A L ~ (Y2, R2); by (V1), V' (u) e C~ R 2) A L ~ (Y2, R2). Since u is aweak 

solution of (P), Au e Lllc (Y2, R 2), hence 

du(x )  = V ' ( u ( x ) )  a.e. in Y2. 

The right-hand side being continuous, we get u ~ C2(Y2, R2). �9 

LEMMA 4.2. - Assume (V1), (V2) and (V4). Then any radial solution of  (P) has ex- 
ponential decay at infinity, together with its derivatives up to second order, 
namely 

] D a u ( x ) ] ~ C e  -klxl , w e y 2  

for  some C, k > 0 and for  l al ~ 2. 

PROOF Let u = (ul, u2) be a radial solution of(P). By Lemma 4.1, u e  C2; as a radial 
function, uj ( j  = 1, 2) satisfies 

(4.1) -uj ' N - 1  
- - u  s' + V ~ j ( u ( r ) )  = o .  

Let wj = r N- I U~ ; then 

( V$~(u(r)) ( N -  1 ) ( N -  3) ) 
wf~>2 + wj. 

uj( r ) 4 r 2 

By (V4), since u(r) ---~0 as r--* + oo, there exist to, c > 0 such that wj' >>- c2wj. It is easy 
to see that the function zj = e -C~(wj' + cwj) is nondecreasing in [ro, + oo). If zj(?) > 0 
for some ~ > to, taking into account (2.1) yields 

zj(~) e ~ <~ wj' (r) + cwi(r) <~ C 1 + C2r -~- C3 rN/2 lu f  (r) I 

for any r > ~ (here and in the sequel, cl, c2, ... are positive constants). Thus, for r suffi- 
ciently large: 

r N-1 luj'(r ) ] 2 >I c a r - l e  2cr, 
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a contradiction, since r(N-1)/2uj'(r) is in L2(1, + ~).  As a consequence, zj(r)<.0 in 
[ro, + ~ ) ,  whence (eC~wj)'<~O in [r0, + ~ ) .  Then for some C > 0  luj(r)]<~ 
<~Cr-(N-1)/ee-C~ in [r0, + ~ ) .  Next, by (V4) there exist m e > m 1 > 0  such that 
ml luj(r) l << . IV~j(u(r))] <<-me luj(r)] for r large. Taking into account (4.1), the expo- 
nential decay of uj and arguing exactly as in [4, Section 4], the exponential decay of uj' 
and u]' can be obtained. " 

5. - P r o o f  o f  t h e  m a i n  r e s u l t  a n d  a d d i t i o n a l  r e m a r k s .  

PROOF OF THEOREM 1.1. - By Theorem 3.1, for any q e Z ,  (P) admits a radial weak 
solution Uq eAq  such that E(uq) = in fE .  By Lemma 4.1 and 4.2, respectively, i) and ii) 
in Theorem 1.1 hold. �9 Aq 

REMARK 5.1. - Let  us consider the quasilinear problem 

(5.1) 

- d i v ( I V u [ P - 2 V u ) + V ' ( u ) = O  in t~, 

~ =m 0 on 3f2, 

u(x) = 0 
[ ~ 

where Q = R ~ \B1 (0) and 1 < p < N. As before, we assume that V is a C 1 real map, de- 
fined in R 2 \{~} (~ ~ 0), which has a global minimum at ~ = 0. As concernes the be- 
haviour of V around the singularity, we now assume that V(~)/> m l ~ -  ~1 -p' in a 
neighbourhood of ~, with m > 0 and p '  is the exponent conjugate to p. 

It  is natural to give a variational formulation of (5.1) in O~rl~~ R2), the closure of 

the set of radial functions in Co ~ (~9, R 2) under the norm HVull~. In such a space, Radial 
Lemma holds: any u e 6 ~ 3 ( Q ,  R 2) can be identified with a continuous function and 
I u(x) I <~ C I x 11 -N/p I lVull~p (cf. [8]). One can therefore repeat the arguments in Section 3 
and prove that for any q e Z ,  (5.1) has at least one weak radial solution Uq with winding 
number around ~ equal to q. 
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