
MULTIPLE-RANK MODIFICATIONS OF A SPARSE CHOLESKY
FACTORIZATION∗

TIMOTHY A. DAVIS† AND WILLIAM W. HAGER‡

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 997–1013

Abstract. Given a sparse symmetric positive definite matrix AAT and an associated sparse
Cholesky factorization LDLT or LLT, we develop sparse techniques for updating the factorization
after either adding a collection of columns to A or deleting a collection of columns from A. Our
techniques are based on an analysis and manipulation of the underlying graph structure, using the
framework developed in an earlier paper on rank-1 modifications [T. A. Davis and W. W. Hager,
SIAM J. Matrix Anal. Appl., 20 (1999), pp. 606–627]. Computationally, the multiple-rank update
has better memory traffic and executes much faster than an equivalent series of rank-1 updates since
the multiple-rank update makes one pass through L computing the new entries, while a series of
rank-1 updates requires multiple passes through L.

Key words. numerical linear algebra, direct methods, Cholesky factorization, sparse matrices,
mathematical software, matrix updates

AMS subject classifications. 65F05, 65F50, 65-04

PII. S0895479899357346

1. Introduction. This paper presents a method for evaluating a multiple-rank
update or downdate of the sparse Cholesky factorization LDLT or LLT of the matrix
AAT, where A is m× n. More precisely, given an m× r matrix W, we evaluate the
Cholesky factorization of AAT + σWWT where either σ is +1 (corresponding to an
update) and W is arbitrary, or σ is −1 (corresponding to a downdate) and W consists
of columns of A. Both AAT and AAT +σWWT must be positive definite. It follows
that n ≥ m in the case of an update, and n− r ≥ m in the case of a downdate.

One approach to the multiple-rank update is to express it as a series of rank-1
updates and use the theory developed in [10] for updating a sparse factorization after
a rank-1 change. This approach, however, requires multiple passes through L as it is
updated after each rank-1 change. In this paper, we develop a sparse factorization
algorithm that makes only one pass through L.

For a dense Cholesky factorization, a one-pass algorithm to update a factorization
is obtained from Method C1 in [18] by making all the changes associated with one
column of L before moving to the next column, as is done in the following algorithm
that overwrites L and D with the new factors of AAT + σWWT. Algorithm 1
performs 2rm2 + 4rm floating-point operations.

Algorithm 1 (dense rank-r update/downdate).
for i = 1 to r do

αi = 1
end for
for j = 1 to m do

for i = 1 to r do

∗Received by the editors June 17, 1999; accepted for publication (in revised form) by S. Vavasis
August 16, 2000; published electronically January 31, 2001. This work was supported by the National
Science Foundation.

http://www.siam.org/journals/simax/22-4/35734.html
†Department of Computer and Information Science and Engineering, University of Florida,

P.O. Box 116120, Gainesville, FL 32611-6120 (davis@cise.ufl.edu, http://www.cise.ufl.edu/̃ davis).
‡Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, FL 32611-8105

(hager@math.ufl.edu, http://www.math.ufl.edu/̃ hager).

997

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

998 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

α = αi + σw2
ji/dj (σ = +1 for update or −1 for downdate)

dj = djα
γi = wji/dj
dj = dj/αi

αi = α
end for
for p = j + 1 to m do

for i = 1 to r do
wpi = wpi − wjilpj
lpj = lpj + σγiwpi

end for
end for

end for

We develop a sparse version of this algorithm that only accesses and modifies those
entries in L and D which can change. For r = 1, the theory in our rank-1 paper [10]
shows that those columns which can change correspond to the nodes in an elimination
tree on a path starting from the node k associated with the first nonzero element wk1

in W. For r > 1 we show that the columns of L which can change correspond
to the nodes in a subtree of the elimination tree, and we express this subtree as a
modification of the elimination tree of AAT. Also, we show that with a reordering of
the columns of W, it can be arranged so that in the inner loop where elements in row
p of W are updated, the elements that change are adjacent to each other. The sparse
techniques that we develop lead to sequential access of matrix elements and to efficient
computer memory traffic. These techniques to modify a sparse factorization have
many applications, including the linear program dual active set algorithm (LPDASA)
[20], least-squares problems in statistics, the analysis of electrical circuits and power
systems, structural mechanics, sensitivity analysis in linear programming, boundary
condition changes in partial differential equations, domain decomposition methods,
and boundary element methods (see [19]).

Section 2 describes our notation. In section 3, we present an algorithm for comput-
ing the symbolic factorization of AAT using multisets, which determines the location
of nonzero entries in L. Sections 4 and 5 describe our multiple-rank symbolic update
and downdate algorithms for finding the nonzero pattern of the new factors. Section 6
describes our algorithm for computing the new numerical values of L and D, for either
an update or downdate. Our experimental results are presented in section 7.

2. Notation and background. Given the location of the nonzero elements of
AAT, we can perform a symbolic factorization (this terminology is introduced by
George and Liu in [15]) of the matrix to predict the location of the nonzero elements
of the Cholesky factor L. In actuality, some of these predicted nonzeros may be
zero due to numerical cancellation during the factorization process. The statement
“lij �= 0” will mean that lij is symbolically nonzero. The main diagonals of L and
D are always nonzero since the matrices that we factor are positive definite (see [26,
p. 253]). The nonzero pattern of column j of L is denoted Lj ,

Lj = {i : lij �= 0},

while L denotes the collection of patterns

L = {L1,L2, . . . ,Lm}.

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MULTIPLE-RANK MODIFICATIONS 999

Similarly, Aj denotes the nonzero pattern of column j of A,

Aj = {i : aij �= 0},
while A is the collection of patterns

A = {A1,A2, . . . ,An}.
The elimination tree can be defined in terms of a parent map π (see [22]). For any

node j, π(j) is the row index of the first nonzero element in column j of L beneath
the diagonal element

π(j) = min Lj \ {j},
where “min X” denotes the smallest element of X :

min X = min
i∈X

i.

Our convention is that the min of the empty set is zero. Note that j < π(j) except
in the case where the diagonal element in column j is the only nonzero element. The
children of node j is the set of nodes whose parent is j:

{c : j = π(c)}.
The ancestors of a node j, denoted P(j), is the set of successive parents:

P(j) = {j, π(j), π(π(j)), . . .}.
Since π(j) > j for each j, the ancestor sequence is finite. The sequence of nodes
j, π(j), π(π(j)), . . . , forming P(j), is called the path from j to the associated tree
root, the final node on the path. The collection of paths leading to a root form an
elimination tree. The set of all trees is the elimination forest. Typically, there is a
single tree whose root is m; however, if column j of L has only one nonzero element,
the diagonal element, then j will be the root of a separate tree.

The number of elements (or size) of a set X is denoted |X |, while |A| or |L| denote
the sum of the sizes of the sets they contain.

3. Symbolic factorization. For a matrix of the form AAT, the pattern Lj of
column j is the union of the patterns of each column of L whose parent is j and each
column of A whose smallest row index of its nonzero entries is j (see [16, 22]):

Lj = {j} ∪

 ⋃

{c:j=π(c)}
Lc \ {c}

 ∪

 ⋃

min Ak=j

Ak

 .(3.1)

To modify (3.1) during an update or downdate, without recomputing it from
scratch, we need to keep track of how each entry i entered into Lj [10]. For example,
if π(c) changes, we may need to remove a term Lc \ {c}. We cannot simply perform
a set subtraction, since we may remove entries that appear in other terms. To keep
track of how entries enter and leave the set Lj , we maintain a multiset associated
with column j. It has the form

L	
j = {(i,m(i, j)) : i ∈ Lj},

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1000 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

where the multiplicity m(i, j) is the number of children of j that contain row index i
in their pattern plus the number of columns of A whose smallest entry is j and that
contain row index i. Equivalently, for i �= j,

m(i, j) = |{c : j = π(c) and i ∈ Lc}|+ |{k : min Ak = j and i ∈ Ak}| .

For i = j, we increment the above equation by one to ensure that the diagonal entries
never disappear during a downdate. The set Lj is obtained from L	

j by removing the
multiplicities.

We define the addition of a multiset X 	 and a set Y in the following way:

X 	 + Y = {(i,m′(i)) : i ∈ X or i ∈ Y},

where

m′(i) =

1 if i /∈ X and i ∈ Y,
m(i) if i ∈ X and i /∈ Y,
m(i) + 1 if i ∈ X and i ∈ Y.

Similarly, the subtraction of a set Y from a multiset X 	 is defined by

X 	 − Y = {(i,m′(i)) : i ∈ X and m′(i) > 0},

where

m′(i) =

{
m(i) if i /∈ Y,
m(i)− 1 if i ∈ Y.

The multiset subtraction of Y from X 	 undoes a prior addition. That is, for any
multiset X 	 and any set Y, we have

((X 	 + Y)− Y) = X 	.

In contrast ((X ∪ Y) \ Y) is equal to X if and only if X and Y are disjoint sets.
Using multiset addition instead of set union, (3.1) leads to the following algorithm

for computing the symbolic factorization of AAT.
Algorithm 2 (symbolic factorization of AAT, using multisets).
for j = 1 to m do

L	
j = {(j, 1)}

for each c such that j = π(c) do

L	
j = L	

j + (Lc \ {c})
end for
for each k where min Ak = j do

L	
j = L	

j +Ak

end for
π(j) = min Lj \ {j}

end for

4. Multiple-rank symbolic update. We consider how the pattern L changes
when AAT is replaced by AAT + WWT. Since

AAT + WWT = [A|W][A|W]T,

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MULTIPLE-RANK MODIFICATIONS 1001

we can in essence augment A by W in order to evaluate the new pattern of column
j in L. According to (3.1), the new pattern Lj of column j of L after the update is

Lj = {j} ∪

 ⋃

{c:j=π(c)}
Lc \ {c}

 ∪

 ⋃

min Ak=j

Ak

 ∪

 ⋃

min Wi=j

Wi

 ,(4.1)

where Wi is the pattern of column i in W. Throughout, we put a bar over a matrix
or a set to denote its new value after the update or downdate.

In the following theorem, we consider a column j of the matrix L and how its

pattern is modified by the sets Wi. Let L	

j denote the multiset for column j after the
rank-r update or downdate has been applied.

Theorem 4.1. To compute the new multiset L	

j, initialize L	

j = L	
j and perform

the following modifications.
• Case A: For each i such that j = minWi, add Wi to the pattern for column j,

L	

j = L	

j +Wi.

• Case B: For each c such that j = π(c) = π(c), compute

L	

j = L	

j + (Lc \ Lc)

(c is a child of j in both the old and new elimination tree).
• Case C: For each c such that j = π(c) �= π(c), compute

L	

j = L	

j + (Lc \ {c})
(c is a child of j in the new tree, but not the old one).

• Case D: For each c such that j = π(c) �= π(c), compute

L	

j = L	

j − (Lc \ {c})
(c is a child of j in the old tree, but not the new one).

Proof. Cases A–D account for all the adjustments we need to make in Lj in order
to obtain Lj . These adjustments are deduced from a comparison of (3.1) with (4.1).
In case A, we simply add in the Wi multisets of (4.1) that do not appear in (3.1). In
case B, node c is a child of node j both before and after the update. In this case, we
must adjust for the deviation between Lc and Lc. By [10, Prop. 3.2], after a rank-1
update, Lc ⊆ Lc. If wi denotes the ith column of W, then

WWT = w1w
T
1 + w2w

T
2 + · · ·+ wrw

T
r .

Hence, updating AAT by WWT is equivalent to r successive rank-1 updates of AAT.
By repeated application of [10, Prop. 3.2], Lc ⊆ Lc after a rank-r update of AAT. It
follows that Lc and Lc deviate from each other by the set Lc \ Lc. Consequently, in
case B we simply add in Lc \ Lc.

In case C, node c is a child of j in the new elimination tree, but not in the old
tree. In this case we need to add in the entire set Lc \ {c} since the corresponding
term does not appear in (3.1). Similarly, in case D, node c is a child of j in the old
elimination tree, but not in the new tree. In this case, the entire set Lc \{c} should be
deleted. The case where c is not a child of j in either the old or the new elimination

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1002 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

tree does not result in any adjustment since the corresponding Lc term is absent from
both (3.1) and (4.1).

An algorithm for updating a Cholesky factorization that is based only on this
theorem would have to visit all nodes j from 1 to m, and consider all possible children
c < j. On the other hand, not all nodes j from 1 to m need to be considered since not
all columns of L change when AAT is modified. In [10, Thm. 4.1] we show that for
r = 1, the nodes whose patterns can change are contained in P(k1), where we define
ki = minWi. For a rank-r update, let P(i) be the ancestor map associated with the
elimination tree for the Cholesky factorization of the matrix

AAT +

i∑
j=1

wjw
T
j .(4.2)

Again, by [10, Thm. 4.1], the nodes whose patterns can change during the rank-r
update are contained in the union of the patterns P(i)(ki), 1 ≤ i ≤ r. Although we
could evaluate P(i)(ki) for each i, it is difficult to do this efficiently since we need to
perform a series of rank-1 updates and evaluate the ancestor map after each of these.
On the other hand, by [10, Prop. 3.1] and [10, Prop. 3.2], P(i)(j) ⊆ P(i+1)(j) for each
i and j, from which it follows that P(i)(ki) ⊆ P(ki) for each i. Consequently, the
nodes whose patterns change during a rank-r update are contained in the set

T =
⋃

1≤i≤r

P(ki).

Theorem 4.2, below, shows that any node in T is also contained in one or more
of the sets P(i)(ki). From this it follows that the nodes in T are precisely those nodes
for which entries in the associated columns of L can change during a rank-r update.
Before presenting the theorem, we illustrate this with a simple example shown in
Figure 4.1. The left of Figure 4.1 shows the sparsity pattern of original matrix AAT,
its Cholesky factor L, and the corresponding elimination tree. The nonzero pattern
of the first column of W is W1 = {1, 2}. If performed as a single rank-1 update, this
causes a modification of columns 1, 2, 6, and 8 of L. The corresponding nodes in the
original tree are encircled; these nodes form the path P(1)(1) = {1, 2, 6, 8} from node
1 to the root (node 8) in the second tree. The middle of Figure 4.1 shows the matrix
after this rank-1 update, and its factor and elimination tree. The entries in the second
matrix AAT + w1w

T
1 that differ from the original matrix AAT are shown as small

pluses. The second column of W has the nonzero pattern W2 = {3, 4, 7}. As a rank-1
update, this affects columns P(2)(3) = P(3) = {3, 4, 5, 6, 7, 8} of L. These columns
form a single path in the final elimination tree shown in the right of the figure.

For the first rank-1 update, the set of columns that actually change are P(1)(1) =
{1, 2, 6, 8}. This is a subset of the path P(1) = {1, 2, 6, 7, 8} in the final tree. If we
use P(1) to guide the work associated with column 1 of W, we visit all the columns
that need to be modified, plus column 7. Node 7 is in the set of nodes P(3) affected
by the second rank-1 update, however, as shown in the following theorem.

Theorem 4.2. Each of the paths P(i)(ki) is contained in T and conversely, if
j ∈ T , then j is contained in P(i)(ki) for some i.

Proof. Before the theorem, we observe that each of the paths P(i)(ki) is contained
in T . Now suppose that some node j lies in the tree T . We need to prove that it is
contained in P(i)(ki) for some i. Let s be the largest integer such that P(ks) contains
j, and let c be any child of j in T . If c lies on the path P(ki) for some i, then j lies

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MULTIPLE-RANK MODIFICATIONS 1003

after second updateafter first updateelimination tree
Elimination tree

After first update

Elimination tree

Original factor L Factor after second updateFactor after first update

Original matrix

+ w w1 1 + w w2 2

After second update

11+ w wATA T

5

6

2

7

8

41

3

TTA TA

3

5

6 7

8

1 2 4 3

6 7

8

2

41

5

AT

Original

A

Fig. 4.1. Example rank-2 update.

on the path P(ki) since j is the parent of c. Since j does not lie on the path P(ki)
for any i > s, it follows that c does not lie on the path P(ki) for any i > s. Applying
this same argument recursively, we conclude that none of the nodes on the subtree
of T rooted at j lie on the path P(ki) for any i > s. Let Tj denote the subtree of T
rooted at j. Since P(i)(ki) is contained in P(ki) for each i, none of the nodes of Tj
lie on any of the paths P(i)(ki) for i > s. By [10, Thm. 4.1], the patterns of all nodes

outside the path P(i)(ki) are unchanged for each i. Let L(i)
c be the pattern of column

c in the Cholesky factorization of (4.2). Since any node c contained in Tj does not lie

on any of the paths P(i)(ki) for i > s, L(i)
c = L(l)

c for all i, l ≥ s. Since ks is a node
of Tj , the path P(s)(ks) must include j.

Figure 4.2 depicts a subtree T for an example rank-8 update. The subtree consists
of all those nodes and edges in one or more of the paths P(k1),P(k2), . . . ,P(k8). These
paths form a subtree, and not a general graph, since they are all paths from an initial
node to the root of the elimination tree of the matrix L. The subtree T might actually
be a forest, if L has an elimination forest rather than an elimination tree. The first
nonzero positions in w1 through w8 correspond to nodes k1 through k8. For this

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1004 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

(d,c)P

P (k5,d)

P (k2,c)

P (k3,d)

(c,e)P

(e,f)P

(b,e)P

P (k4,b)

P (k7,a) P (k6,a)

P (a,b) P (k8,c)

e

f

b
c

da

k4

k7

k3k6

k8

k5

k1

k2

P (k1,k4)

Fig. 4.2. Example rank-8 symbolic update and subtree T .

example, node k4 happens to lie on the path P(1)(k1). Nodes at which paths first
intersect are shown as smaller circles and are labeled a through f . Other nodes along
the paths are not shown. Each curved arrow denotes a single subpath. For example,
the arrow from nodes b to e denotes the subpath from b to e in P(b). This subpath is
denoted as P(b, e) in Figure 4.2.

The following algorithm computes the rank-r symbolic update. It keeps track of
an array of m “path-queues,” one for each column of L. Each queue contains a set
of path-markers in the range 1 to r, which denote which of the paths P(k1) through
P(kr) will modify column j next. If two paths have merged, only one of the paths
needs to be considered. (We arbitrarily select the higher-numbered path to represent
the merged paths.) This set of path-queues requires O(m + r) space. Removing and
inserting a path-marker in a path-queue takes O(1) time. The only outputs of the

algorithm are the new pattern of L and its elimination tree, namely, L	

j and π(j) for

all j ∈ [1,m]. Not all columns are affected by the rank-r update. We define L	

j = L	
j

and π(j) = π(j) for any node j not in T .
Case C will occur for c and j prior to visiting column π(c), since j = π(c) < π(c).

Thus we place c in the lost-child-queue of column π(c) when encountering case C
for nodes c and j. When the algorithm visits node π(c), its lost-child-queue will
contain all those nodes for which case D holds. This set of lost-child-queues is not
the same as the set of path-queues (although there is exactly one lost-child-queue and
one path-queue for each column j of L).

Algorithm 3 (symbolic rank-r update; add new matrix W).
Find the starting nodes of each path
for i = 1 to r do

Wi = {k : wki �= 0}
ki = min Wi

place path-marker i in path-queue of column ki

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MULTIPLE-RANK MODIFICATIONS 1005

end for
Consider all columns corresponding to nodes in the paths P(k1) through P(kr)
for j = mini∈[1,r] ki to m do

if path-queue of column j is nonempty do

L	

j = L	
j

for each path-marker i on path-queue of column j do
Path P(ki) includes column j
Let c be the prior column on this path (if any), where π(c) = j
if j = ki do

Case A: j is the first node on the path P(ki), no prior c

L	

j = L	

j +Wi

else if j = π(c) then
Case B: c is an old child of j, possibly changed

L	

j = L	

j + (Lc \ Lc)
else

Case C: c is a new child of j and a lost child of π(c)

L	

j = L	

j + (Lc \ {c})
place c in lost-child-queue of column π(c)

end if
end for
Case D: consider each lost child of j
for each c in lost-child-queue of column j do

L	

j = L	

j − (Lc \ {c})
end for
Move up one step in the path(s)
π(j) = min Lj \ {j}
if Lj \ {j} �= ∅ then

Let i be the largest path-marker in path-queue of column j
Place path-marker i in path-queue of column π(j)

end if
end if path-queue of column j nonempty

end for
The optimal time for a general rank-r update is

O

∑

j∈T
|Lj |

 .

The actual time taken by Algorithm 3 is only slightly higher, namely,

O

m+

∑
j∈T

|Lj |

 ,

because of the O(m) bookkeeping required for the path-queues. In most practical
cases, the O(m) term will not be the dominant term in the run time.

Algorithm 3 can be used to compute an entire symbolic factorization. We start
by factorizing the identity matrix I = IIT into LDLT = III. In this case, we have
L	
j = {(j, 1)} for all j. The initial elimination tree is a forest of m nodes and no

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1006 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

edges. We can now determine the symbolic factorization of I+AAT using the rank-r
symbolic update algorithm above, with r = m. This matrix has identical symbolic
factors as AAT. Case A will apply for each column in A, corresponding to the

⋃
min Ak=j

Ak

term in (3.1). Since π(c) = 0 for each c, cases B and D will not apply. At column j,
case C will apply for all children in the elimination tree, corresponding to the

⋃
{c:j=π(c)}

Lc \ {c}

term in (3.1). Since duplicate paths are discarded when they merge, we modify
each column j once, for each child c in the elimination tree. This is the same work
performed by the symbolic factorization algorithm, Algorithm 2, which is O(|L|).
Hence, Algorithm 3 is equivalent to Algorithm 2 when we apply it to the update
I + AAT. Its run time is optimal in this case.

5. Multiple-rank symbolic downdate. The downdate algorithm is analo-
gous. The downdated matrix is AAT − WWT, where W is a subset of the columns
of A. In a downdate, P(k) ⊆ P(k), and thus rather than following the paths P(ki),
we follow the paths P(ki). Entries are dropped during a downdate, and thus Lj ⊆ Lj

and π(j) ≤ π(j). We start with L	

j = L	
j and make the following changes.

• Case A: If j = minWi for some i, then the pattern Wi is removed from
column j,

L	

j = L	

j −Wi.

• Case B: If j = π(c) = π(c) for some node c, then c is a child of j in both the

old and new tree. We need to remove from L	

j entries in the old pattern Lc

but not in the new pattern Lc,

L	

j = L	

j − (Lc \ Lc).

• Case C: If j = π(c) �= π(c) for some node c, then c is a child of j in the old
elimination tree, but not the new tree. We compute

L	

j = L	

j − (Lc \ {c}).

• Case D: If j = π(c) �= π(c) for some node c, then c is a child of j in the new
tree, but not the old one. We compute

L	

j = L	

j + (Lc \ {c}).

Case C will occur for c and j prior to visiting column π(c), since j = π(c) < π(c).
Thus we place c in the new-child-queue of π(c) when encountering case C for nodes c
and j. When the algorithm visits node π(c), its new-child-queue will contain all those
nodes for which case D holds.

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MULTIPLE-RANK MODIFICATIONS 1007

Algorithm 4 (symbolic rank-r downdate; remove matrix W).
Find the starting nodes of each path
for i = 1 to r do

Wi = {k : wki �= 0}
ki = min Wi

place path-marker i in path-queue of column ki
end for
Consider all columns corresponding to nodes in the paths P(k1) through P(kr)
for j = mini∈[1,r] ki to m do

if path-queue of column j is nonempty do

L	

j = L	
j

for each path-marker i on path-queue of column j do
Path P(ki) includes column j
Let c be the prior column on this path (if any), where π(c) = j
if j = ki do

Case A: j is the first node on the path P(ki), no prior c

L	

j = L	

j −Wi

else if j = π(c) then
Case B: c is an old child of j, possibly changed

L	

j = L	

j − (Lc \ Lc)
else

Case C: c is a lost child of j and a new child of π(c)

L	

j = L	

j − (Lc \ {c})
place c in new-child-queue of column π(c)

end if
end for
Case D: consider each new child of j
for each c in new-child-queue of j do

L	

j = L	

j + (Lc \ {c})
end for
Move up one step in the path(s)
π(j) = min Lj \ {j}
if Lj \ {j} �= ∅ then

Let i be the largest path-marker in path-queue of column j
Place path-marker i in path-queue of column π(j)

end if
end if path-queue of column j nonempty

end for
The time taken by Algorithm 4 is

O

m+

∑
j∈T

|Lj |

 ,

which is slightly higher than the optimal time,

O

∑

j∈T
|Lj |

 .

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1008 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

e

f

b
c

da

k

k3

k7k4

k6

k8

1

k52

k

13th

2nd

1st

6th

3rd 4th

7th

8th

9th
10th

11th

12th1-4

5

3-4

3 4

6
7-8

7
8

1

5th

1-2

5-8

1-8

Fig. 6.1. Example rank-8 update after depth-first-search reordering.

In most practical cases, the O(m) term in the asymptotic run time for Algorithm 4
will not be the dominant term.

6. Multiple-rank numerical update and downdate. The following numer-
ical rank-r update/downdate algorithm, Algorithm 5, overwrites L and D with the
updated or downdated factors. The algorithm is based on Algorithm 1, the one-pass
version of Method C1 in [18] presented in section 1. The algorithm is used after
the symbolic update algorithm (Algorithm 3) has found the subtree T corresponding
to the nodes whose patterns can change, or after the symbolic downdate algorithm
(Algorithm 4) has found T . Since the columns of the matrix W can be reordered
without affecting the product WWT, we reorder the columns of W using a depth-
first search [6] of T (or T) so that as we march through the tree, consecutive columns
of W are utilized in the computations. This reordering improves the numerical up-
date/downdate algorithm by placing all columns of W that affect any given subpath
next to each other, eliminating an indexing operation. Reordering the columns of
a sparse matrix prior to Cholesky factorization is very common [3, 22, 23, 25]. It
improves data locality and simplifies the algorithm, just as it does for reordering W
in a multiple-rank update/downdate. The depth-first ordering of the tree changes as
the elimination tree changes, so columns of W must be ordered for each update or
downdate.

To illustrate this reordering, consider the subtree T in Figure 4.2 for a rank-8
update. If the depth-first-search algorithm visits child subtrees from left to right, the
resulting reordering is as shown in Figure 6.1. Each subpath in Figure 6.1 is labeled
with the range of columns of W that affect that subpath, and with the order in which
the subpath is processed by Algorithm 5. Consider the path from node c to e. In
Figure 4.2, the columns of L corresponding to nodes on this subpath are updated by
columns 2, 8, 3, and 5 of W, in that order. In the reordered subtree (Figure 6.1), the
columns on this subpath are updated by columns 5 through 8 of the reordered W.

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MULTIPLE-RANK MODIFICATIONS 1009

Algorithm 5 (sparse numeric rank-r modification; add σWWT).
The columns of W have been reordered.
for i = 1 to r do

αi = 1
end for
for each subpath in depth-first-search order in T (σ = 1) or T (σ = −1) do

Let c1 through c2 be the columns of W that affect this subpath
for each column j in the subpath do

for i = c1 to c2 do
α = αi + σw2

ji/dj
dj = djα
γi = wji/dj
dj = dj/αi

αi = α
end for
for all p ∈ Lj \ {j} (σ = 1) or p ∈ Lj \ {j} (σ = −1) do

for i = c1 to c2 do
wpi = wpi − wjilpj
lpj = lpj + σγiwpi

end for
end for

end for
end for

The time taken by r rank-1 updates [10] is

O

 r∑

i=1

∑
j∈P(i)(ki)

|L(i)
j |

 ,(6.1)

where L(i)
j is the pattern of column j after the ith rank-1 update. This time is asymp-

totically optimal. A single rank-r update cannot determine the paths P(i)(ki), but
uses P(ki) instead. Thus, the time taken by Algorithm 5 for a rank-r update is

O

 r∑

i=1

∑
j∈P(ki)

|Lj |

 .

This is slightly higher than (6.1), because P(i)(ki) ⊆ P(ki) and L(i)
j ⊆ Lj . Since

P(i)(ki) ⊆ P(ki), the ith column of W does not necessarily affect all of the columns
in the path P(ki). If wi does not affect column j, then wji and γi will both be zero in
the inner loop in Algorithm 5. An example of this occurs in Figure 4.1, where column
1 of W does not affect column 7 of L. We could check this condition, and reduce the
asymptotic run time to

O

 r∑

i=1

∑
j∈P(i)(ki)

|Lj |

 .

In practice, however, we found that the paths P(i)(ki) and P(ki) did not differ much.
Including this test did not improve the overall performance of our algorithm. The

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1010 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

time taken by Algorithm 5 for a rank-r downdate is similar, namely,

O

 r∑

i=1

∑
j∈P(ki)

|Lj |

 .

The numerical algorithm for updating and downdating LLT is essentially the
same as that for LDLT [4, 24]; the only difference is a diagonal scaling. For either
LLT or LDLT, the symbolic algorithms are identical.

7. Experimental results. To test our methods, we selected the same experi-
ment as in our earlier paper on the single-rank update and downdate [10], which mim-
ics the behavior of the LPDASA [20]. The first matrix is 10−6I + A0A0

T, where A0

consists of 5446 columns from a larger 6071-by-12,230 matrix B with 35,632 nonzeros
arising in an airline scheduling problem (DFL001) [13]. The 5446 columns correspond
to the optimal solution of the linear programming problem. Starting with an initial
LDLT factorization of the matrix 10−6I + A0A0

T, we added columns from B (cor-
responding to an update) until we obtained the factors of 10−6I + BBT. We then
removed columns in a first-in-first-out order (corresponding to a downdate) until we
obtained the original factors. The LPDASA algorithm would not perform this much
work (6784 updates and 6784 downdates) to solve this linear programming problem.

Our experiment took place on a Sun Ultra Enterprise running the Solaris 2.6
operating system, with eight 248 MHz UltraSparc-II processors (only one processor
was used) and 2 GB of main memory. The dense matrix performance in millions of
floating-point operations per second (Mflops) of the BLAS [12] is shown in Table 7.1.
All results presented below are for our own codes (except for colmmd, spooles, and the
BLAS) written in the C programming language and using double precision floating-
point arithmetic.

Table 7.1
Dense matrix performance for 64-by-64 matrices and 64-by-1 vectors.

BLAS operation Mflops
DGEMM (matrix-matrix multiply) 171.6
DGEMV (matrix-vector multiply) 130.0
DTRSV (solve Lx = b) 81.5
DAXPY (the vector computation y = αx+ y) 78.5
DDOT (the dot product α = xTy) 68.7

We first permuted the rows of B to preserve sparsity in the Cholesky factors of
BBT. This can be done efficiently with colamd [7, 8, 9, 21], which is based on an
approximate minimum degree ordering algorithm [1]. However, to keep our results
consistent with our prior rank-1 update/downdate paper [10], we used the same per-
mutation as in those experiments (from colmmd [17]). Both colamd and MATLAB’s
colmmd compute the ordering without forming BBT explicitly. A symbolic factoriza-
tion of BBT finds the nonzero counts of each column of the factors. This step takes
an amount of space that is proportional to the number of nonzero entries in B. It
gives us the size of a static data structure to hold the factors during the updating
and downdating process. The numerical factorization of BBT is not required. A
second symbolic factorization finds the first nonzero pattern L. An initial numerical
factorization computes the first factors L and D. We used our own nonsupernodal
factorization code (similar to SPARSPAK [5, 15]), since the update/downdate algo-
rithms do not use supernodes. A supernodal factorization code such as spooles [3] or

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MULTIPLE-RANK MODIFICATIONS 1011

Table 7.2
Average update and downdate performance results.

rank rank-r time / r Mflops
r in seconds

Update Downdate Update Downdate
1 0.0840 0.0880 30.3 29.6
2 0.0656 0.0668 38.9 39.0
3 0.0589 0.0597 43.3 43.6
4 0.0513 0.0549 49.7 47.5
5 0.0500 0.0519 51.0 50.2
6 0.0469 0.0487 54.4 53.5
7 0.0451 0.0468 56.6 55.7
8 0.0434 0.0448 58.8 58.2
9 0.0431 0.0458 59.1 57.0
10 0.0426 0.0447 60.0 58.3
11 0.0415 0.0437 61.5 59.6
12 0.0413 0.0432 61.8 60.3
13 0.0403 0.0424 63.2 61.4
14 0.0402 0.0420 63.6 62.1
15 0.0395 0.0413 64.6 63.1
16 0.0392 0.0408 65.1 63.9

Table 7.3
Dense matrix performance for 64-by-64 matrices and 64-by-1 vectors.

Operation Time (sec) Mflops Notes
colamd ordering 0.45 -

Symbolic factorization (of BBT) 0.07 - 1.49 million nonzeros
Symbolic factorization for first L 0.46 - 831 thousand nonzeros
Numeric factorization for first L (our code) 20.07 24.0
Numeric factorization for first L (spooles) 18.10 26.6

Numeric factorization of BBT (our code) 61.04 18.5 not required

Numeric factorization of BBT (spooles) 17.80 63.3 not required
Average rank-16 update 0.63 65.1 compare with rank-1
Average rank-5 update 0.25 51.0 compare with solve step
Average rank-1 update 0.084 30.3

Average solve LDLTx = b 0.27 18.2

a multifrontal method [2, 14] can get better performance. The factorization method
used has no impact on the performance of the update and downdate algorithms.

We ran 16 different experiments, each one using a different rank-r update and
downdate, where r varied from 1 to 16. After each rank-r update, we solved the
sparse linear system LDLTx = b using a dense right-hand side b. To compare the
performance of a rank-1 update with a rank-r update (r > 1), we divided the run time
of the rank-r update by r. This gives us a normalized time for a single rank-1 update.
The average time and Mflops rate for a normalized rank-1 update and downdate for
the entire experiment is shown in Table 7.2. The time for the update, downdate, or
solve increases as the factors become denser, but the performance in terms of Mflops
is fairly constant for all three operations. The first rank-16 update when the factor
L is sparsest takes 0.47 seconds (0.0294 seconds normalized) and runs at 65.5 Mflops
compared to 65.1 Mflops in Table 7.2 for the average speed of all the rank-16 updates.

The performance of each step is summarized in Table 7.3. A rank-5 update takes
about the same time as using the updated factors to solve the sparse linear system
LDLTx = b, even though the rank-5 update performs 2.6 times the work.

The work, in terms of floating-point operations, varies only slightly as r changes.

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1012 TIMOTHY A. DAVIS AND WILLIAM W. HAGER

With rank-1 updates, the total work for all the updates is 17.293 billion floating-point
operations, or 2.55 million per rank-1 update. With rank-16 updates (the worst case),
the total work increases to 17.318 billion floating-point operations. The rank-1 down-
dates take a total of 17.679 billion floating-point operations (2.61 million per rank-1
downdate), while the rank-16 downdates take a total of 17.691 billion operations. This
confirms the near-optimal operation count of the multiple-rank update/downdate, as
compared to the optimal rank-1 update/downdate.

Solving Lx = b when L is sparse and b is dense, and computing the sparse LDLT

factorization using a nonsupernodal method, both give a rather poor computation-
to-memory-reference ratio of only 2/3. We tried the same loop unrolling technique
used in our update/downdate code for our sparse solve and sparse LDLT factorization
codes, but this resulted in no improvement in performance.

A sparse rank-r update or downdate can be implemented in a one-pass algorithm
that has much better memory traffic than that of a series of r rank-1 modifications. In
our numerical experimentation with the DFL001 linear programming test problem, the
rank-r modification was more than twice as fast as r rank-1 modifications for r ≥ 11.
The superior performance of the multiple-rank algorithm can be explained using the
computation-to-memory-reference ratio. If c1 = c2 in Algorithm 5 (a subpath affected
by only one column of W), it can be shown that this ratio is about 4/5 when Lj is
large. The ratio when c2 = c1 + 15 (a subpath affected by 16 columns of W) is
about 64/35 when Lj is large. Hence, going from a rank-1 to a rank-16 update
improves the computation-to-memory-reference ratio by a factor of about 2.3 when
column j of L has many nonzeros. By comparison, the level-1 BLAS routines for
dense matrix computations (vector computations such as DAXPY and DDOT) [11]
have computation-to-memory-reference ratios between 2/3 and 1. The level-2 BLAS
(DGEMV and DTRSV, for example) have a ratio of 2.

8. Summary. Because of improved memory locality, our multiple-rank sparse
update/downdate method is over twice as fast as our prior rank-1 update/downdate
method. The performance of our new method (65.1 Mflops for a sparse rank-16
update) compares favorably with both the dense matrix performance (81.5 Mflops to
solve the dense system Lx = b) and the sparse matrix performance (18.0 Mflops to
solve the sparse system Lx = b and an observed peak numerical factorization of 63.3
Mflops in spooles) on the computer used in our experiments. Although not strictly
optimal, the multiple-rank update/downdate method has nearly the same operation
count as the rank-1 update/downdate method, which has an optimal operation count.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] P. R. Amestoy and I. S. Duff, Vectorization of a multiprocessor multifrontal code, Inter-
nat. J. Supercomputer Appl., 3 (1989), pp. 41–59.

[3] C. Ashcraft and R. G. Grimes, SPOOLES: An object-oriented sparse matrix library, in
Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing,
San Antonio, TX, 1999, CD-ROM, SIAM, Philadelphia, 1999.

[4] C. H. Bischof, C.-T. Pan, and P. T. P. Tang, A Cholesky up- and downdating algorithm for
systolic and SIMD architectures, SIAM J. Sci. Comput., 14 (1993), pp. 670–676.

[5] E. Chu, A. George, J. W. H. Liu, and E. Ng, SPARSPAK: Waterloo Sparse Matrix Pack-
age, User’s Guide for SPARSPAK-A, Technical report, Department of Computer Science,
University of Waterloo, Waterloo, ON, Canada, 1984.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, and McGraw–Hill, New York, 1990.

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

MULTIPLE-RANK MODIFICATIONS 1013

[7] T. A. Davis, J. R. Gilbert, S. I. Larimore, E. Ng, and B. Peyton, A column approximate
minimum degree ordering algorithm, in Proceedings of the Sixth SIAM Conference on
Applied Linear Algebra, Snowbird, UT, 1997, p. 29.

[8] T. A. Davis, J. R. Gilbert, E. Ng, and B. Peyton, A column approximate minimum de-
gree ordering algorithm, in Abstracts of the Second SIAM Conference on Sparse Matrices,
Snowbird, UT, 1996.

[9] T. A. Davis, J. R. Gilbert, E. Ng, and B. Peyton, A column approximate minimum degree
ordering algorithm, presented at the 13th Householder Symposium on Numerical Linear
Algebra, Pontresina, Switzerland, 1996.

[10] T. A. Davis and W. W. Hager, Modifying a sparse Cholesky factorization, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 606–627.

[11] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide,
SIAM, Philadelphia, 1979.

[12] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of level-3 basic linear
algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

[13] J. J. Dongarra and E. Grosse, Distribution of mathematical software via electronic mail,
Comm. ACM, 30 (1987), pp. 403–407.

[14] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[15] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[16] A. George, J. Liu, and E. Ng, A data structure for sparse QR and LU factorizations, SIAM
J. Sci. Statist. Comput., 9 (1988), pp. 100–121.

[17] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB: Design and
implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356.

[18] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix
factorizations, Math. Comp., 28 (1974), pp. 505–535.

[19] W. W. Hager, Updating the inverse of a matrix, SIAM Rev., 31 (1989), pp. 221–239.
[20] W. W. Hager, The LP dual active set algorithm, in High Performance Algorithms and Software

in Nonlinear Optimization, R. D. Leone, A. Murli, P. M. Pardalos, and G. Toraldo, eds.,
Kluwer, Dordrecht, The Netherlands, 1998, pp. 243–254.

[21] S. I. Larimore, An Approximate Minimum Degree Column Ordering Algorithm, Technical
Report TR-98-016, University of Florida, Gainesville, FL, 1998; also available online at
http://www.cise.ufl.edu/tech-reports/.

[22] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl.,
11 (1990), pp. 134–172.

[23] E. G. Ng and B. W. Peyton, A supernodal Cholesky factorization algorithm for shared-
memory multiprocessors, SIAM J. Sci. Comput., 14 (1993), pp. 761–769.

[24] C.-T. Pan, A modification to the LINPACK downdating algorithm, BIT, 30 (1990), pp. 707–
722.

[25] E. Rothberg, A. Gupta, E. G. Ng, and B. W. Peyton, Parallel sparse Cholesky factorization
algorithms for shared-memory multiprocessor systems, in Advances in Computer Methods
for Partial Differential Equations - VII, R. Vichnevetsky, D. Knight, and G. Richter, eds.,
IMACS, 1992, pp. 622–628.

[26] G. Strang, Linear Algebra and Its Applications, Academic Press, New York, 1980.

D
ow

nl
oa

de
d

08
/2

8/
12

 to
 1

28
.2

27
.3

5.
31

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

