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Abstract— This paper presents a new method to design
low-density parity-check codes for a variety of different rates
that all share the same fundamental decoder architecture.
Combining rows of the parity-check matrix for the low-
est rate code produces the parity-check matrices for higher
rates. An important advantage of this approach is that all
effective code rates have the same blocklength. These LDPC
codes also share the same variable degree distribution. The
proposed design method maintains good graphical proper-
ties and hence low error floors for all rates. Furthermore,
an imposed matrix structure facilitates a low complexity en-
coding and decoding of the codes.

I. Introduction

PRACTICAL communication systems often need to op-
erate at several different rates. To keep the imple-

mentation as simple as possible, the same basic hardware
architecture should be able to decode the encoded data at
all possible rates. One way to achieve this with low-density
parity-check (LDPC) codes is to generate higher-rate codes
by puncturing lower-rate codes as proposed in [1] and [2].
However, puncturing reduces the code blocklength, which
degrades performance. For the highest rate codes where
the puncturing is most severe, the performance degrada-
tion is significant when compared to an LDPC code with
the original blocklength.

Another way to achieve this is to generate lower-rate
codes by shortening higher-rate codes, as described in [2].
As with puncturing, shortening reduces the code block-
length, which degrades performance. For the lowest-rate
codes where the shortening is most severe, the performance
degradation is significant when compared to an LDPC code
with the original blocklength.

This paper introduces the concept of Constant Block-
length Multiple Rate (CBMR) codes which are LDPC
codes that share the same fundamental structure while hav-
ing an identical code blocklength and different code rates.
The basic idea is to generate higher rate codes (called “ef-
fective” codes in this paper) from a low-rate code (called
the “mother” code in this paper) by reducing the number
of rows in its parity check matrix. From an implementation
point of view, rows in the parity check matrix correspond
to check nodes. Reducing the number of rows by linearly
combining rows is equivalent to replacing a group of check
nodes with a single check node that sums all the edges
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Fig. 1. Graph of a rate-3/4 LDPC code obtained from a rate 1/2
LDPC code via row-combining

coming into each of the original check nodes as seen in Fig.
1.

Section II describes in detail the row combining approach
used to generate CBMR codes. Section III explains how
to apply graph conditioning techniques in the design of
CBMR codes. Section IV describes how to lower the com-
plexity of the encoder and decoder of CBMR codes. Section
V explains how information nulling combined with row-
combining can help to generate different blocklength codes
and how this can be applied to the problem of bit padding.
Section VI compares the performance of CBMR codes with
the performance of single rate codes. Section VII delivers
the conclusions.

II. Constant Blocklength Multiple Rate
(CBMR) Codes

Consider the example “mother” LDPC matrix shown in
(1),

H 1
2

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

This is a rate-1/2 “mother” LDPC matrix with block-
length 12 whose graph representation can be seen in Fig.
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1. This is by no means a good LDPC code but the reader
should see it as an example to explain row-combining.
Fig. 1 also shows that replacing each pair of nodes with a
new single node transforms this rate-1/2 code into a rate-
3/4 code. This is equivalent to summing the rows of the
“mother” LDPC matrix that correspond to the check nodes
that were combined if the check nodes do not have any com-
mon neighbors. This means that the “mother” matrix has
to be designed so that the rows that will be combined don’t
have ones in the same column.

The following is the “effective” rate-3/4 LDPC matrix
that resulted from the row-combining described in Fig. 1,
where the resulting row 1 comes from combining rows 1
and 3 of the “mother” matrix, row 2 comes from combining
rows 2 and 4 and row three results from the combination
of rows 3 and 6,

H 3
4

=

⎛
⎝ 1 1 1 0 0 0 1 1 1 0 0 0

1 0 0 1 1 0 0 0 1 1 1 0
0 0 1 0 1 1 1 0 0 0 1 1

⎞
⎠ . (2)

It is easy to see that many different rates can be obtained
from the same “mother” code by changing the way rows are
combined. For example using the “mother” code described
in (1), three rows at a time can be combined to generate
the rate-5/6 LDPC matrix shown in (3). In this rate-5/6
matrix the first row results from combining the odd rows
of the “mother” matrix and the second row results from
combining the even rows of the “mother” matrix,

H 5
6

=
(

1 1 1 0 1 1 1 0 1 1 1 0
1 0 1 1 1 0 1 1 1 0 1 1

)
. (3)

In the previous examples all the rows of the “mother”
LDPC code have been combined in order to generate the
new codes. However more rates can be achieved by com-
bining just a fraction of the rows. For example to produce
an “effective” code of rate 2/3 from the “mother” code de-
scribed in (1), connect two thirds of the check nodes two
at a time and leave the remaining check nodes alone. A
possible rate-2/3 LDPC matrix that can result from the
previously described row-combining is shown in (4),

H 2
3

=

⎛
⎜⎜⎝

0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0
1 0 0 1 1 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎠ . (4)

This method changes the rate without changing the
blocklength or the basic architecture of the decoder. Fur-
thermore, the variable degree distribution remains the
same as the rate changes and although in principle differ-
ent rates may require different variable-node degree distri-
butions for theoretical optimality, as stated in [3], a single
variable node degree distribution can be found in practice
that works well for the “mother” code and all the ”effec-
tive” codes.

A concentrated degree distribution is a degree distribu-
tion in which every node has the same degree. In principle,
concentrated check node degree distributions are desirable

for theoretical optimality [3]. If the check node degree dis-
tribution of the “mother” code is concentrated, then the
check node degree distribution for the higher-rate “effec-
tive” code will also be concentrated if all the rows in the
“effective” LDPC matrix result from combining the same
number of rows of the “mother” LDPC matrix. In the
previous examples, the “effective” codes of rate 3/4 and
rate 5/6 have a concentrated degree distribution. How-
ever, for many rates it may not be possible to maintain a
concentrated check-node degree distribution. For example,
the rate-2/3 code described previously does not maintain
a concentrated check node degree distribution.

III. Graph Conditioning

The performance of the LDPC codes is limited by the
fact that their graphs contain cycles which compromise the
optimality of the belief propagation decoding. These cycles
generate error floors in the performance of LDPC codes in
the high SNR regions. However, the negative effect of the
cycles can be reduced using graph conditioning techniques
as those described in [4], [5] and [6]. This section will ex-
plain a couple of graph conditioning techniques and show
how they can be used in CBMR codes.

As explained in [4] not all cycles degrade the performance
of the code in the same way. Among the most dangerous
structures that can be found in LDPC bi-partite graphs are
stopping sets. A stopping set is a variable node set where
all its neighbors are connected to the set at least twice.
This implies that if all the variable nodes that belong to a
stopping set are unreliable, the decoding will fail.

Small stopping sets must be avoided. This is a very
complex problem to attack directly. To indirectly increase
the size of stoping sets, [4] proposes the ACE algorithm
which is based on maximizing the ACE metric of small
cycles. The ACE metric of a cycle is the sum of the number
of neighbors of each of the variable nodes in the cycle minus
two times the number of variable nodes in the cycle.

According to this algorithm, the LDPC matrix is con-
structed by generating a single column randomly until one
is found where all the cycles of length less than or equal to
a previously specified threshold (denoted as 2dACE) that
contain its corresponding variable node have an ACE met-
ric higher than or equal to another previously specified
threshold (denoted as ηACE). This process is done with
all the columns starting from the one with the lowest de-
gree.

The constraints specified in [5] also help to avoid small
stopping sets in the graph, particularly if applied to the
high-degree columns. In [5] two new metrics are defined
called βc and βp and they are the number singly-connected
check nodes to a cycle or a path respectively. In the same
manner as the ACE algorithm, random columns are gen-
erated and they must satisfy some constraints based on
previously specified thresholds which are denoted here as
dSS , γc and γp. Specifically, a randomly generated col-
umn is valid if all the cycles of length less than or equal
to 2dSS that contain its corresponding variable node have
a βc metric of value higher than or equal to γc and if all
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the paths of length less than or equal to dSS that contain
its corresponding variable node have a βp metric of value
higher than or equal to γp.

CBMR codes can be generated so that all the effective
codes have good graph properties by naturally extending
the previously described graph conditioning algorithms.
Graph conditioning must be applied simultaneously to all
the codes. This implies that once the blocklength, rates
and degree distribution have been chosen, the “mother”
matrix rows to be combined in order to generate the “ef-
fective” matrices must be selected. Section IV will explain
some important criteria to be taken into account when se-
lecting these rows in order to maintain the structure of the
code.

The generation of the “mother” and “effective” matrices
is done using simultaneous graph conditioning. This means
that the previously described column by column generation
is still used and every column generated must satisfy the
graph constraints specified for the “mother” code and all
the “effective” codes. Different graph constraints can be
used for different matrices which is necessary because the
achievable values of such constraints change with the rate
as shown in [7].

IV. Low Complexity Encoding and Decoding

A. Block Structure for Parallel Decoding

In order to have parallel processing to decrease decoder
complexity, LDPC codes can be designed to have an in-
herent structure based on the ideas presented by Mansour
and Shanbag in [8]. In [8] the LDPC matrices have a block
structure so that it consists of a plurality of square sub-
matrices of size p. Each said square sub-matrix is either a
zero sub-matrix or a structured sub-matrix. This overall
block structure facilitates parallel processing.

An example that illustrates the structured sub-matrices
proposed in [8] is shown in (5). The sub-matrix labelled as
S2, is a cyclic shift of the columns of the identity matrix.
Each sub-matrix Si is produced by cyclically shifting the
columns of an identity matrix to the right i places,

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

This structured LDPC allows the decoder to use at least
p processors in parallel. It also diminishes the amount of
memory needed to store the code since the only informa-
tion necessary will be the size of the sub-matrices (p), the
position of the Si sub-matrices and the value of their cyclic
shift (i).

B. Linear Encoding Using Back Substitution

The parity check matrix should also allow a simple en-
coder implementation. In [9] and [10] a linear encoder for
LDPC codes is found if its matrix is composed by two ma-
trices H0 = [H1|H2] where H2 has a particular structure.
In [9] H2 is a double diagonal matrix so the encoding pro-
cess is simply done by multiplying the input vector by HT

1

and then processed by an accumulator.
Unfortunately it is difficult or impossible to maintain a

bi-diagonal structure for the H2 portion of the “mother”
LDPC matrix and all of the “effective” LDPC matrices
in the context of row combining. The solution found to
this problem was to use a model presented in [10] where
H2 is a lower triangular matrix. This will allow a linear
encoder based on back-substitution as explained in [10].
Back substitution consists on solving a sequence of linear
equations in order to obtain the parity bits. This structure
can be maintained for all the rates, as will be shown in the
following subsection.

C. Structured CBMR Codes

The challenge presented when trying to design a struc-
tured CBMR code is that the “mother” code and all the
“effective” codes must have both the sub-matrix and the
lower triangular structures. There is an easy way to main-
tain the sub-matrix structure for all the “effective” codes.
Instead of combining individual rows, rows of sub-matrices
will be combined so that if sub-matrix A and sub-matrix
B are combined it implies that row i of A and row i of B
will be combined for i = {1...p}. The resulting sub-matrix
will be equivalent to the superposition of sub-matrix A and
sub-matrix B.

If the exact sub-matrix structure of [8] is to be main-
tained for all the “effective” codes, the “mother” matrix has
to be designed so that among the combined sub-matrices
at most only one of them has the Si structure and the rest
of them are zero sub-matrices. However, the sub-matrix
that results from the superposition of two or more Si sub-
matrices also has good parallel properties so this design
criteria can be relaxed to include such superpositions.

Now with a careful selection of the rows to be combined
a block lower triangular structure can be maintained on all
the “effective” codes. The following is a possible way to
select the rows to combine in order to preserve the block
lower triangular structure of H2 through all the rates, al-
though the dimensions are changing with each rate. In this
example the “mother” matrix is a rate-1/2 LDPC matrix
and the “effective” LDPC codes will have rates 2/3, 3/4
and 5/6.

Row i of the parity check matrix of the rate 3/4 code
will be generated by summing row i of the parity check
matrix of the rate 1/2 code plus the row with index i+M/2
where M is the total number of check equations in the rate
1/2 code. The rate 2/3 matrix is generated by doing the
previously described sum only for the rows where i < M/3
and leaving the rest of the rows intact. Likewise row i of the
parity check matrix of the rate 5/6 code will be generated
by summing row i of the parity check matrix of the rate
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Fig. 2. Structured LDPC matrix

1/2 code plus the row with index i+M/3 plus the row with
index i + 2 ∗ M/3.

The overall sub-matrix structure with a block lower tri-
angular H2 is shown in Fig. 2 where the sub-matrices along
the diagonal of H2 will have the Si structure except for the
bottom right matrix which will have a staircase structure
described in (6). The staircase structure is necessary in
order to maintain the back substitution encoding without
having p degree one nodes,

Ss =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Fig. 3 shows the BER and FER of a structured CBMR
code generated using the simultaneous graph conditioning
algorithm described in section III. The “mother” code has
rate 1/2 while the three “effective” codes have rates 2/3,
3/4 and 5/6. The blocklength of the codes is 1944 bits,
the size of the sub-matrices is 27 and a maximum of 200
iterations were used in the simulation. These are hard-
ware simulation results obtained using the JPL Universal
Decoder for Sparse Codes. The codes show a good per-
formance specially in the error floor region which remains
consistently low in all the rates. Table I shows the gap
from capacity of the previously described CBMR codes.

V. Information Nulling

Deleting one or more columns in a LDPC matrix gener-
ates a lower rate code with less blocklength. This approach
is known as information nulling or shortening and is well
documented in [2]. The code generated will satisfy the
graph conditioning constraints of the “mother” code and
its girth will be higher than or equal to the girth of the
“mother” code. The decoding hardware can remain the
same by assuming that a zero was received with infinite
reliability in the bits that were shortened.

0 1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o

B
E

R
/F

E
R

1/2
2/3
3/4
5/6
BER
FER

Fig. 3. Performance of a blocklength 1944 CBMR code on an AWGN
channel

TABLE I

Gaps in SNR from Shannon capacity and excess mutual

information of a blocklength 1944 CBMR code

Rate FER=10−4 BER=10−6

SNR[dB] EMI[bits] SNR[dB] EMI[bits]
1/2 2.1 .39 2.2 .41
2/3 1 .22 1.1 .23
3/4 .58 .13 .61 .13
5/6 .59 .14 .59 .14

This implies that wide variety of codes with different
blocklengths and rates can be generated from the same
“mother” matrix by using the row-combining approach and
the information nulling technique. A careful selection of
the variable nodes to cancel will generate codes with good
graph properties and good degree distributions. It is im-
portant to notice that all the codes generated using row-
combining and information nulling share the same decoding
hardware.

Shortened codes can maintain the good structural prop-
erties of the “mother” code. In order to maintain the sub-
matrix structure columns should be deleted in groups of
p so that whole sub-matrices are deleted. Also H2 must
remain block lower triangular so none of its columns can
be deleted

An important application of information nulling is bit
padding. In communication systems, sometimes there are
fewer bits to send than the number of information bits of
the code, for example in the last frame of a data packet. A
solution to this problem for LDPC codes is to shorten the
remaining information bits. During the decoding this last
frame the code has a lower information rate, which implies
that fewer iterations can be used and still obtain the same
performance at the same SNR. Fig. 4 shows the perfor-
mance on a AWGN channel of the rate-5/6 CBMR code
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Fig. 4. Performance comparison of a CBMR rate-5/6 code and the
rate-5/7 code generated by shortening half the information bits

previously generated. It can also be seen that by shorten-
ing half the information bits the resulting code with rate
5/7 and blocklength 1134 can obtain the same performance
using half the iterations.

VI. Performance Comparison

This section presents a comparison in the performance on
an AWGN channel of structured CBMR codes with respect
to the performance of unstructured single rate (SR) LDPC
codes. Fig. 5 shows the performance of the previously de-
signed structured CBMR code and the performance of four
unstructured single rate codes with rates corresponding to
those of the “mother” and all the “effective” codes of the
CBMR code. These single rate codes have the same block-
length of the CBMR code and were generated using graph
conditioning. A maximum of 15 iterations was used in the
simulation of the codes.

As observed in Fig. 5 the CBMR codes perform very well
at this blocklength. It is also noticeable that the CBMR
code at rate-2/3 does not perform as well as the CBMR
codes for the other rates. This is probably due to the fact
that in order to generate the “effective” rate-2/3 LDPC
matrix, 2/3 of the check nodes are combined and 1/3 of
the nodes are left intact thus half the rate-2/3 check nodes
will have a degree twice as big as the other half. This
goes against density evolution results which state that the
check node degree distribution should be as concentrated
as possible.

VII. Conclusions

Multiple-rate LDPC codes can be generated using a row-
combining approach. The advantage of the approach is
that the codes have the same blocklength thus maintain a
good performance at all the rates. Furthermore, structures
that reduce complexity of both encoder and decoder can
be applied and maintained through all the rates. Finally,
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Fig. 5. Performance of CBMR and SR codes with blocklength 1944
on an AWGN channel

graph conditioning algorithms can be applied to the design
of the codes to produce good error floor performance at all
the rates.

VIII. Acknowledgments

The authors would like to thank Dr. Christopher R.
Jones of JPL for providing the hardware simulation of the
CBMR codes, and thank Massimiliano Siti, Stefano Valle
and Nicola Moschini of ST Microelectronics for all their
help and encouragement.

References

[1] J.Ha and S.W. McLaughlin. Rate-Compatible Puncturing of
Low-Density Parity-Check Codes. In IEEE Trans. on Info. Th.,
volume 50, pages 2824–2836, November 2004.

[2] T. Tian, C. Jones, and J. Villasenor. Rate-Compatible Low-
Density Parity-Check Codes. In ISIT 2004, Chicago, July 2004.

[3] T. Richardson, A. Shokrollahi, and R. Urbanke. Design of
capacity-approaching irregular low-density parity-check codes.
In IEEE Trans. Inform. Theory, volume 47, pages 619–637,
February 2001.

[4] T. Tian, C. Jones, J. Villasenor, and R. Wesel. Avoidance of
Cycles in Irregular LDPCC Construction. In IEEE Transactions
on Communications, August 2004.

[5] A. Ramamoorthy and R. D. Wesel. Construction of Short Block
Length Irregular LDPCCs. In Proc. IEEE ICC 2004, Paris,
France, June 2004.

[6] Xiao Yu Hu, Evangelos Eleftherioua, and Dieter Michael Arnold.
Progressive edge-growth tanner graphs. In GLOBECOM, The
Evolving Global Communications Network, pages 995–1001, San
Antonio, Texas, November 2001.

[7] W. Weng, A. Ramamoorthy, and R. Wesel. Lowering the error
floors of irregular high-rate ldpc codes by graph conditioning. In
VTC, Los Angeles, California, September 2004.

[8] M. M. Mansour and N. R. Shanbhag. Low Power VLSI Decoder
Architectures for LDPCCs. In 2002 International Low Power
Electronics and Design, pages . 284–289, June 2002.

[9] M. Yang, W. E. Ryan, and Y. Li. Design of Efficiently Encodable
Moderate-LengthHigh-Rate Irregular LDPC Codes. In IEEE
Trans. on Comm., volume 52, pages 564–571, April 2004.

[10] T. Richardson and R. Urbanke. Efficient encoding of low-density
parity-check codes. In IEEE Trans. Inform. Theory, volume 47,
pages 638–656, February 2001.

2014


