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Multiple Reference Frame-Based Control of
Three-Phase PWM Boost Rectifiers under
Unbalanced and Distorted Input Conditions

Peng Xiao, Student Member, IEEE, Keith A. Corzine, Senior Member, IEEE, and
Ganesh Kumar Venayagamoorthy, Senior Member, IEEE

Abstract—Many control algorithms and circuits for three-phase
pulse width modulation active rectifiers have been proposed in
the past decades. In most of the research, it is often assumed
that the input voltages are balanced or contain only fundamental
frequency components. In this paper, a selective harmonic com-
pensation method is proposed based on an improved multiple
reference frame algorithm, which decouples signals of different
frequencies before reference frame transformation. This tech-
nique eliminates interactions between the fundamental-frequency
positive-sequence components and harmonic and/or negative-se-
quence components in the input currents, so that fast and accurate
regulation of harmonic and unbalanced currents can be achieved.
A decoupled phase-locked loop algorithm is used for proper syn-
chronization with the utility voltage, which also benefits from the
multiple reference frame technique. The proposed control method
leads to considerable reduction in low-order harmonic contents in
the rectifier input current and achieves almost zero steady-state
error through feedback loops. Extensive experimental tests based
on a fixed-point digital signal processor controlled 2 kW prototype
are used to verify the effectiveness of the proposed ideas.

Index Terms—Active rectifier, harmonic compensation, multiple
reference frame, phase-locked loop.

I. INTRODUCTION

T
HREE-PHASE voltage-source pulse width modulation

(PWM) rectifiers have gained enormous popularity in the

past two decades. In many motor drive and power supply ap-

plications, they have been replacing traditional diode/thyristor

bridge rectifiers as the front end ac/dc interface due to their low

line current distortion and high power factor. Although there are

constant efforts to improve the power quality of diode/thyristor

rectifiers, either through additional circuits [1]–[3] or using

active filters [4], PWM rectifiers are still one of the most viable

solutions for many applications, especially when bidirectional

power flow is required [5].

The main benefits of PWM converters come from the fact that

their switching devices operate at a frequency many times higher

than the system fundamental frequency. This enables the con-

verter to have fast response and close regulation of the dc voltage.

Since the switching noise can be easily eliminated by passive fil-

ters, the supply currents drawn from the utility network are nearly
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sinusoidal in normal conditions. In addition, the PWM rectifier

can maintain good power factor through a wide load range.

The claim that PWM rectifiers draw little low-order har-

monic current, however, is seldom true when the input voltages

are unbalanced or contain harmonics. The three-phase power

source, be it the power grid or a stand-alone generator, is rarely

ideal in practical situations. If the rectifier control scheme is

not designed properly to account for these non-ideal situations,

the three-phase input currents can indeed contain low-order

harmonics. It has been pointed out that with unbalanced input

voltages the rectifier dc output voltage may contain second-order

harmonic ripple, which in turn causes third-order non-zero-se-

quence harmonics in the input currents [6]. Although the

magnitude of these harmonics is much lower compared to those

generated by the diode/SCR counterparts, they can lead to lower

power quality and may require additional passive filters to meet

harmonic regulatory standards such as IEEE-519. Furthermore,

non-ideal input voltage conditions may interfere with the con-

verter controller and degrade its performance in achieving the

two major objectives: dc voltage regulation and power factor cor-

rection. Laboratory experiments have shown that a large amount

of harmonics in the line voltages can cause sub-harmonic

resonance and affect the stability of the rectifier control.

The performance of PWM rectifiers under distorted input

conditions varies greatly depending on the control scheme

adopted. Harmonics and imbalance in the input voltages create

a disturbance to the control, and very few control algorithms

can provide a wide enough bandwidth to effectively suppress

them. This is especially true for controls with slower current

regulators.

Several methods have been proposed to improve the oper-

ation of PWM rectifiers under unbalanced input voltage con-

ditions. Early research focused on the analysis of rectifier be-

havior under these conditions, and attempted to alleviate the

situation by proper design of input inductors and dc capaci-

tors [6]. In [7], a feed-forward control circuit was proposed,

which used analog/digital components to generate appropriate

PWM gating signals based on an unbalanced transfer matrix.

Although the control had a simple implementation, its lack of

feedback made the compensation sensitive to sensor errors and

component variations. Based on symmetrical component theory,

a feed-forward control strategy was proposed in [8] to eliminate

harmonics caused by unbalanced input conditions. One of its

main drawbacks is that unity power factor cannot be achieved.

A dual current controller was proposed in [9], which utilized

0885-8993/$25.00 © 2008 IEEE
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two synchronous reference frames (SRFs) to separately regu-

late the positive and negative sequence currents. The use of two

SRFs achieved very good control performance of the negative

sequence components. However, the separation of the positive

and negative SRFs was implemented with either low-pass filters

or notch filters, whose limitations are detailed in Section III.

Some recently developed rectifier control algorithms also

consider harmonics in the source voltages. A generalized

model was derived in [10] to address the control issues caused

by unbalanced and/or harmonic input conditions. Effects of

harmonics on rectifier control were investigated in detail, but

the compensation scheme only considered unbalanced inputs.

Elimination of low-frequency harmonics in active rectifiers

was also considered in [11], which attributed the sources of

harmonics to pulse-width limits, improper PWM patterns and

dead time. A predictive cancellation algorithm was proposed in

[12] to reduce harmonics in the rectifier input currents. How-

ever, due to the algorithm’s open-loop nature, its performance

was sensitive to sensor errors and control time delay.

With advances in the design of active filter controls, a new

trend in harmonic current regulation is the use of selective

harmonic compensation techniques, which target only a se-

lected group of harmonic components, instead of trying to

regulate signals over a wide spectrum. These techniques can

be roughly classified into two categories based on the frame of

reference they employ, although it has been proven that some

of the methods are just equivalent implementations in different

reference frames [13], [14].

Several stationary reference frame based control methods have

been proposed and found applications in active filters, voltage

source rectifiers, uninterruptible power supplies (UPS), and

static var compensators (STATCOMs) [13]–[19]. The majority

of these techniques are based on a form of resonant notch filter

transfer function. In some cases, an integrator or proportional-

integrator (PI) stage is also incorporated in the transfer function.

Another stationary frame based method was the adaptive selec-

tive harmonic elimination (ASHE) algorithm [20], which could

eliminate certain harmonic components by slowly adjusting

weight parameters using a least mean square algorithm.

The other category of selective harmonic control methods are

based on rotating reference frames. In [21], Schauder et al. pro-

posed a multiple reference frame based controller for active fil-

ters and power line conditioners. A similar implementation was

set forth in [22] for active filter control.

In this paper, a novel control algorithm is proposed to elim-

inate the low-order harmonic components in the ac currents

of grid-tied converters when input ac voltages are unbalanced

or contain low-order harmonics. Based on multiple reference

frame theory, the proposed method improves existing imple-

mentation to achieve faster dynamics and lower computational

requirement. The main goal of the control is to produce

high-quality balanced sinusoidal three-phase currents on the ac

side in the presence of distorted input voltage conditions, thus

avoid drawing harmonic or unbalanced currents from the utility

system. The proposed harmonic elimination control method

can be applied to both PWM rectifiers and grid-tied PWM

inverters. In this paper, a 2 kW three-wire PWM boost rectifier

system is used as an example to demonstrate its effectiveness.

Fig. 1. Circuit diagram of a three-phase boost-type rectifier system.

The effects of distorted input conditions on rectifier control

are briefly studied in Section II, in which the control objectives

of the proposed technique are also defined. In Section III, the

decoupled multiple reference frame algorithm is derived, and

comparisons are made between existing techniques and the pro-

posed method. Based on the MRF technique, a line synchronous

algorithm is set forth in Section IV, where simulation results are

used to demonstrate its effectiveness. Although the MRF-based

harmonic compensation technique can be integrated with many

basic rectifier control algorithms, a decoupled control

scheme is adopted in this work and illustrated in Section V. Im-

plementation of the proposed algorithms in a digital signal pro-

cessor (DSP) system is described in Section VI, where extensive

test results are presented.

II. BEHAVIOR OF RECTIFIER CONTROL UNDER UNBALANCED

AND DISTORTED CONDITIONS

A. Circuit Description

The typical circuit diagram of a three-phase PWM voltage
source boost-type rectifier is shown in Fig. 1. Therein, the three
legs of a three-phase IGBT bridge are connected to the power
grid through an inductor (with series resistance ). In most
control schemes, the output dc voltage and the input source
voltages and currents
are sensed and then used to determine the proper PWM gating
signals and their complements. In a three-wire system
as shown in Fig. 1, since there is no zero-sequence current path,
the three-phase quantities are not independent. Therefore, only
two line-to-line voltages ( and ) and two currents ( and

) need to be sensed. Switching at a high frequency, the IGBT
legs produce voltages at the rectifier terminals, whose average
values would form a set of three-phase
balanced sinusoidal voltages under ideal conditions.

It should be noted that since there is no neutral wire, the
zero-sequence ac current is always zero, no matter what source
voltages are applied. Therefore, it is convenient in the following
derivation to omit the zero-sequence component, and only -
and -axis quantities are considered in each reference frame.

B. Synchronous Reference Frame Equivalent Circuit

A brief analysis of the behavior of the rectifier is helpful for
the understanding of the effects of unbalanced and distorted
input conditions. The state-space model of the above circuit
can be established in the synchronous reference frame, in which
the variables are transformed into variables in a rotating
coordinate.

Authorized licensed use limited to: University of Missouri System. Downloaded on March 12, 2009 at 10:12 from IEEE Xplore.  Restrictions apply.



2008 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 4, JULY 2008

A two step transformation process is often seen in the litera-
ture, in which variables were first translated into stationary

variables with a constant matrix, then translated into the syn-
chronous reference frame with a time-varying matrix. In this
paper, a direct approach is taken as follows:

(1)

where denotes any three-phase quantities such as voltages,
currents, or flux linkages, and is the phase angle of the -phase
utility voltage . As mentioned earlier, it is assumed that zero-
sequence component is negligible, therefore

(2)

The inverse transformation is

(3)

The state-space equations for the ac side circuit are

(4)

where denotes differentiation with respect to time, is
the electrical angular speed of the utility voltage, and ,

and are the results obtained when , , and
are transformed into the synchronous reference frame, re-

spectively.
For the dc side circuit, the following equation holds

(5)

In (5), is the capacitance of the dc linkage capacitor, and
is the equivalent resistance of the dc load. The two sides are

related through instantaneous power balance

(6)

Fig. 2 shows the ac side circuit diagram in the SRF. It can
be shown that if the input voltages are balanced and free
of harmonics, and become dc quantities. A controller
can be designed to determine and , which are also dc
quantities in steady state.

However, if the input voltages are unbalanced or contain
harmonic components, and are no longer constant and
contain a series of sinusoidal components, which act as distur-
bances to the system. In this case, the operating point of the
system is no longer fixed, and the controller must have a very
large bandwidth to suppress these disturbances, otherwise har-
monic components will appear in the state variables, i.e., the
input ac currents and output dc voltage. It should be noted that
the input inductor of the rectifier circuit often has a relatively
low inductance. Therefore, even a small amount of harmonics
in can create large harmonic currents if does not have the
same canceling components. To address the issue of non-ideal

Fig. 2. Equivalent circuit diagram of the rectifier system in the synchronous
reference frame.

input conditions, several approaches have been proposed [23].
The constant power method tries to maintain a constant input
power (assuming the dc load is also constant), thus eliminating
ripple in the output dc voltage. The constant resistance method
regulates the rectifier so that it appears as a three-phase balanced
resistive load. In this work, the control objective is to maintain
balanced sinusoidal three-phase input currents, even when the
input voltages are unbalanced and/or contain harmonics.

III. MULTIPLE REFERENCE FRAME HARMONIC

CONTROL SCHEME

A. Overview of the Multiple Reference Frame Theory

The concept of multiple reference frames was set forth sev-

eral decades ago and was initially used in the analysis of electric

machinery. In [24], Krause established the basic architecture of

MRF and considered its application in the analysis of symmet-

rical induction machines. It was shown that the MRF method

allowed simplified steady-state analysis of machine operations

under unbalanced or non-sinusoidal voltage conditions. Later,

Sudhoff et al. presented MRF-based analysis of a variety of

other electric machines, including unsymmetrical induction ma-

chines [25], multistack variable-reluctance stepper motors [26],

and brushless dc motors [27]. These machines are difficult to

model with conventional methods due to asymmetry or non-si-

nusoidal back emf. MRF provided a means to keep state vari-

ables of the model constant in steady state so that the model

equations could be readily linearized. Recently, MRF was also

employed in the identification of inter-turn faults in induction

machine stators [28].

It is interesting to note that although MRF has found many

applications as an analysis tool, its use in real-time controllers

has not received much attention. This is primarily due to the

fact that, 1) significant computation arises from the need for

reference frame transformations; 2) the dynamic performance

of most existing MRF based controllers is not satisfactory; and

3) accurate synchronization with utility voltage is required.

With the advances in modern DSP design, commercial off-

the-shelf DSP chips today have greatly improved their compu-

tational power through increased clock speed and parallel oper-

ation. Thus the computational requirement is no longer a deter-

mining factor. Herein, the issues of performance and synchro-

nization will be addressed.

Authorized licensed use limited to: University of Missouri System. Downloaded on March 12, 2009 at 10:12 from IEEE Xplore.  Restrictions apply.
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B. Multiple Reference Frames for Arbitrary Three-Phase

Signals

The synchronous reference frame is commonly used in the

control of PWM rectifiers and inverters. By transforming the

time-varying three-phase sinusoidal voltage and current signals

to this rotating reference frame using (1), these signals become

dc quantities in steady state. It is thus much easier to design

the controller to achieve zero steady-state error. The same con-

cept can be naturally extended to cases where the signals are un-

balanced and/or contain harmonics. Let be a

set of three-phase periodic voltage signals with arbitrary wave-

forms. As long as all three signals are periodic with the same

base frequency , each can be expressed as the sum of a series

of harmonics using the Fourier transformation

(7)

where , , and ; and are respectively the magni-

tude and phase angle of the -th harmonic component in phase

.For each harmonic frequency , symmetrical

component theory can be applied. No matter what magnitude or

phase angles each phase component has at this frequency, there

exists three sets of symmetrical components that can uniquely

represent the three-phase signals at

(8)

If the zero-sequence component is assumed to be zero, the

harmonic contents at frequency can be represented by two

balanced sets of quantities with the same electrical angular ve-

locity : one set has positive sequence and its

vector rotates counterclockwise in the vector plane, while the

other set has negative sequence and its vector rotates

in the clockwise direction.

From the above analysis, it is clear that a set of periodic

three-phase quantities can be viewed as a sum of multiple ro-

tating vectors in the vector plane. Generally speaking, for each

harmonic frequency , two vectors may exist

that rotate at the same electrical angular velocity but in op-

posite directions.

A reference frame can be intuitively viewed as a rotating co-

ordinate in the vector plane, which has a -axis and a perpendic-

ular d-axis. The - and -axis quantities of a vector viewed in

that reference frame are simply the projection of the vector onto

the two axes. Reference frame transformation, in this sense, is a

change of the viewer’s perspective from the stationary coordi-

nate to a rotating one.

As proven in [24], if a balanced set appears in any reference
frame, there is another reference frame wherein this balanced
set will appear as constants. Therefore, when is transformed
into a reference frame that is rotating counterclockwise at ve-
locity , the positive-sequence vector of the -th harmonic
in will appear as standing still because it is moving in the
same velocity and direction as the reference frame. In other
words, transformation of this vector gives constant - and -axis
quantities. A positive sequence vector that is rotating at velocity

will appear as sinusoidal terms with a
frequency of . A negative sequence vector that is
rotating with will appear as sinusoidal terms with a fre-
quency of .

In summary, when the zero-sequence component is not
considered, a periodic three-phase signal can be decomposed
into a sum of balanced three-phase sets; each can be of different
harmonic frequencies, and can have either positive sequence
or negative sequence. For each harmonic set, there exists one
and only one reference frame into which the component can
be transformed to be dc. Conversely, when the signal is trans-
formed into a specific reference frame, only one harmonic set
becomes dc quantities, and all other sets become sinusoidal
terms whose frequency is determined by the relative angular
velocity between the set and the reference frame.

C. Existing MRF-Based Control Methods

One technique based on multiple reference frames for active
filter control was proposed in [22], where a current regulator was
constructed and each harmonic component was regulated on its
own rotating reference frame. A similar technique was proposed
in [21] which integrated a PI controller in the MRF structure for
each frequency of interest. Although these methods are simple
and straightforward to implement, they suffer from a serious
drawback, i.e., interference between different reference frames.

As described earlier, a balanced harmonic set that
is not in synchronization with the reference frame becomes si-
nusoidal terms after the transformation. The frequency of the
terms is determined by the relative velocity of the set and ref-
erence frame, and their magnitude is unchanged by the trans-
formation. In [21], the original three-phase signals were sent
to each reference frame so that the transformation result con-
tained not only the desired dc component, but also a variety of
sinusoidal terms. This inevitably affects the accuracy and dy-
namic performance of the controller since even in steady state
the state variables of the system were not constant. In each ref-
erence frame, the system was constantly perturbed by a group
of sinusoidal disturbances.

One way to alleviate this situation is to attenuate at least the
dominant component with filters, as was done in [22]. Therein,
a low-pass filter was constructed to reduce the magnitude of
the positive sequence fundamental components, which was the
dominant one in the nonlinear load currents. The output signal
of the filter was then processed by MRF. Although filters can in-
deed partially reduce interactions among reference frames, their
use comes with a price, i.e. the degraded dynamic response of
the system. This is especially true when simple low-order filters
are used. In fact, as will be shown in the next section, a diffi-
cult compromise has to be made between the attenuation and
dynamic performance.

Authorized licensed use limited to: University of Missouri System. Downloaded on March 12, 2009 at 10:12 from IEEE Xplore.  Restrictions apply.
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Fig. 3. Block diagram of the multiple reference frame estimator/regulator.

D. MRFSER

A novel multiple reference frame synchronous estimator/regu-
lator (MRFSER) was set forth by Chapman and Sudhoff in [29].
The technique was applied to the optimal control of permanent
magnet synchronous machine drives. Fig. 3 depicts the block dia-
gram of the MRF synchronous estimator, which is essentially the
same diagram as shown in Fig. 3 of [29], except that in the orig-
inalfigureanintegratorwithunitynegativefeedbackwasused, in-
stead of a low-pass filter. It can be shown that the integrator with a
unity negative feedback loop has a transfer function

(9)

which is identical to that of a first-order low-pass filter with unity
dc gain and a cutoff frequency of . Thus Fig. 3 can be seen as
a generalized version of the MRF synchronous estimator in [29].

As can be seen in Fig. 3, a three-phase current signal is pro-
cessed by several parallel channels, each representing a frame
of reference . Unlike conventional MRF techniques
which multiply the raw signal directly with transformation ma-
trices , MRFSER subtracts the sum of all es-
timated components from the original signal, and adds to it the
estimated component resulted from the specific reference frame
the signal is being transformed into. In the steady state, this
feedback network allows only one component to pass through
each reference frame, and that component is exactly the one that
is in synchronization with the reference frame. Therefore, the
scheme essentially decouples all the different reference frames
so that the output of each channel contains only constant quan-
tities, which are the - and -axis values of a balanced harmonic
set that rotates synchronously with the reference frame. In other
words, the MRFSER is capable of extracting cleanly each har-
monic component in the input signal. This is a feature that can
not be achieved by using either low-pass filters or notch filters. It
is important to note that although harmonic contents considered
in [29] were assumed to be balanced, the general idea can be ex-
tended to three-phase periodic signals with arbitrary waveforms.
Formal mathematical justification was presented in [29], which

shows that the error of the estimator will converge exponentially
to zero if the input is constant and all harmonic components are
considered in the MRFSER structure. The rate of the conver-
gence depends on the number of channels and the low-pass
filter. In the case of simple first-order low-pass filters, the decay
rate is , where is the cutoff frequency of the filter.

Although MRFSER provided a fast and accurate means to
estimate individual harmonic components in a three-phase pe-
riodic signal, it has not been widely adopted in practical ap-
plications. One drawback of the MRFSER implementation is
that it requires very intensive computational power to perform
the transformations of different reference frames. For each har-
monic component, signals not only need to be transformed into
the reference frame, they also need to be re-constructed by in-
verse transformation back into the forms. This would signif-
icantly increase the required computational efforts. Therefore,
for practical implementation with DSPs, the MRFSER presents
hardware and software challenges, especially when the number
of harmonic channels is high.

E. Improved MRF Scheme

To apply MRFSER in rectifier control, one major challenge is
to reduce the amount of calculations it requires. For three-phase
utility-connected power converters, the following observations
are made.

1) The most dominant component in the converter currents is
the positive sequence fundamental frequency component,
which can have a magnitude tens of times higher than that
of harmonic components.

2) Imbalance can be a common phenomenon in the utility sys-
tems, and a high magnitude of negative sequence funda-
mental component may exist.

3) In most systems, even and triplen harmonics are not an
issue. The dominant low-order harmonics are the fifth, sev-
enth, 11th, 13th, etc. Furthermore, the higher the frequency
is, the lower the magnitude is.

4) If the signals are balanced, the fifth, 11th, harmonics
have a negative sequence, while the seventh, 13th, har-
monics have a positive sequence [30].

5) If the signals are unbalanced, positive sequence fifth, 11th,
etc. harmonics and negative sequence seventh, 13th, etc.
harmonics may exist, but they have very low amplitudes.

Based on these observations, a modified MRF scheme is pro-

posed in this paper. The block diagram of the scheme is shown in

Fig. 4, where the superscript is used to denote fundamental

frequency positive sequence component, stands for funda-

mental frequency negative sequence component, stands for

fifth harmonic negative sequence component, and so on.

Before the input current signal is transformed into reference

frame , the output of reference frame is reconstructed and

subtracted from the input signal. Similarly, the output of ref-

erence frame is reconstructed and subtracted from the input

signal that goes into reference frame . The estimated com-

ponents are

(10)

and the estimated components are

(11)
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Fig. 4. Block diagram of the proposed multiple reference frame scheme.

Compared with MRFSER, it can be seen that only funda-

mental frequency components are involved in the feedback net-

work, and no reconstruction of harmonic estimations is needed.

In this way, the input current is divided into three major com-

ponents, 1) the positive sequence fundamental frequency com-

ponent , 2) the negative sequence fundamental component

caused by imbalance, and 3) the remaining components

which are harmonics. All reference frames that process har-

monics share the same input signal, which is

(12)

If the input signal does not contain any harmonic components,

this structure will cleanly extract the positive and negative se-

quence fundamental frequency components. Since harmonics

are not considered in the feedback network, in reality there is

some interference between different reference frames. However,

the low magnitude of the harmonics means that their effects are

small, as is shown below.

F. Simulation Results

To demonstrate the effectiveness of the proposed MRF

scheme, a computer simulation was performed and compar-

isons were made between three MRF implementations, the

conventional filter based method, MRFSER, and the proposed

scheme.

In the simulation test, a 60 Hz three-phase voltage signal was

processed with the three MRF schemes. In the signal, phase

had a magnitude of 197 V, which was 10% higher than that of

phase and . In addition, the signal contained 5% negative se-

quence fifth harmonic component. To test the dynamic behavior

of the methods, a step change occurred at time when

the magnitude of the signal dropped by 30%.

The simulation results are shown in Fig. 5. Therein, the left

column depicts the -axis quantity of the extracted positive

sequence fundamental components , the right column

depicts the extracted -axis values of the negative sequence

fundamental components and fifth-order harmonic com-

ponent .

Fig. 5. Comparison of simulation results from three MRF-based methods. First
row: conventional MRF; Second row: MRFSER; Last Row: proposed MRF
scheme. Left column: estimated q-axis values of 1p component; Right column:
estimated q-axis values of 1n and 5n components.

The two plots shown in the first row of Fig. 5 illustrate

the results of the conventional MRF method. To reduce the

interactions between different reference frames, a low-pass

filter with cutoff frequency was used. It can be

seen in Fig. 5(b) that the extracted and components still

contain very large amount of ripple caused by the dominant

component. Although decreasing the cutoff frequency can

reduce the amplitude of the ripple, it also further deteriorates

the dynamic performance of the system, which is already very

poor as shown in Fig. 5(a).

The results from the MRFSER method can be observed in

the two plots shown in the second row of Fig. 5. In this study,

a cutoff frequency of 60 Hz was selected for the low-pass fil-

ters. It is clear that MRFSER achieved much better dynamic

performance and could completely eliminate interferences be-

tween different reference frames. In steady state, the estimated

-axis quantities are all constant values in each reference frame.

Finally, the traces in the bottom row of Fig. 5 depict the be-

havior of the proposed MRF algorithm, which used the same

cutoff frequency as in the MRFSER study. The dynamic re-

sponses compare nearly identically to those of MRFSER. In

steady state, there was only a small amount of high frequency

ripple in the and component, which is expected due to the

fact that is not included in the feedback network. Because the

component has a much lower magnitude compared with fun-

damental frequency components, its effects on them were neg-

ligible in most cases. On the other hand, since the input signal

to reference frame has no or components, the trans-

formation results are nearly dc quantities.
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It is interesting to note that the component becomes a

360 Hz sinusoid in the reference frame, while it appears as a

240 Hz sinusoid in the reference frame. Since the same cutoff

frequency was used for all low-pass filters, the magnitude of the

ripple in the reference frame is higher than that in the ref-

erence frame.

Based on the study, it can be concluded that although the pro-

posed MRF may introduce some ripple caused by harmonics,

their impacts are very limited in practical situations. The dom-

inant components, which are often the ones with fundamental

frequency, are decoupled and removed. The proposed method

simplifies the MRFSER structure and reduces computational re-

quirement, without degrading dynamic performance.

It is important to mention that in some cases a harmonic com-

ponent may have a high enough magnitude to cause large ripple

in other reference frames, and the proposed MRF method can be

readily modified to include that harmonic channel in the feed-

back network.

IV. MRF-BASED LINE SYNCHRONIZATION ALGORITHM

The tracking of phase and frequency information of the utility

systems is an important aspect of most converter control algo-

rithms that use the SRF technique. Although small variations of

the estimated system frequency normally may not cause prob-

lems for the control of fundamental frequency signals, they can

introduce a lot more ripple in the quantities of higher-order

harmonics.

For example, an estimation error of 0.5 Hz for the funda-

mental component would cause an error of 6.5 Hz for the 13th

harmonic reference frame, and it is very difficult to remove such

ripple with simple low-pass filters while keeping good dynamic

performance. Thus, to achieve good performance using MRF,

the frequency of the utility system must be accurately tracked.

A commonly-used line-synchronization technique for three-

phase applications is the synchronous reference frame phase

locked loop (SRF-PLL) method [31], in which the source volt-

ages are transformed into the rotating reference frame, and a

feedback loop is used to regulate the angular position of the ref-

erence frame so that either the - or -axis component becomes

zero. The SRF-PLL gives satisfactory performance under ideal

input conditions, i.e. when the source voltage is balanced and

free of harmonics. However, imbalance and distortions in the

source voltage can cause large oscillations in the extracted fre-

quency and phase information. Even though these oscillations

can be attenuated by low-pass filters, this approach has a serious

negative impact on the dynamic performance of the PLL. There-

fore, this method is not appropriate for the proposed MRF-based

harmonic compensation algorithm.

Recently, based on the conventional SRF-PLL, a novel im-

provement called the decoupled double synchronous reference

frame PLL (DDSRF-PLL) was proposed [32], which utilized

two synchronous reference frames to process the input volt-

ages. The two reference frames have the same angular speed,

but are rotating in opposite directions. Signals in the two ref-

erence frames are decoupled through a feedback network so

that the interference between them can be totally eliminated.

This key feature of the technique makes it possible to extract

Fig. 6. Block diagram of the multiple reference frame based synchronization
algorithm.

separately the fundamental-frequency positive-sequence com-

ponent, which can then be used in the PLL stage. Through sim-

ulation and experimental results, the authors showed that the

technique had excellent performance even when input voltages

were highly unbalanced. The effect of harmonics on the PLL

was also investigated and the results showed that they have very

little impact.

In this paper, the same idea of DDSRF-PLL is adopted, but a

different approach is taken for the implementation. Fig. 6 shows

the control diagram of the proposed MRF-PLL scheme. It can

be seen that the a decoupled MRF structure similar to the one

shown in Fig. 4 is used. As discussed earlier, the decoupled

MRF structure is able to extract precisely both the positive- and

negative-sequence components of the fundamental-frequency

voltage signals. The extracted positive sequence -axis compo-

nent is passed through a PI controller to generate an estimation

of the angular speed of the component. The speed estimation, ,

is integrated to give the angular position , which is used in the

transformation matrices for both positive and negative sequence

reference frames.

Compared with DDSRF-PLL, the proposed MRF-based PLL

method has a very straightforward implementation and almost

identical performance. It can also be easily extended to include

other harmonic components in the decoupling feedback struc-

ture if these components are large enough to degrade the PLL’s

performance.

A simulation was performed to verify the effectiveness of the

proposed MRF-base PLL algorithm, in which the cutoff fre-

quency of the low-pass filter was 60 Hz, and the parameters of

the PI block were , and . Fig. 7 shows

the responses of the MRF-PLL under various input voltage sit-

uations. Initially, the three-phase voltages were balanced and

had a frequency of 48 Hz. At time , there was a step

change in the utility frequency, which increased by 25% and be-

came 60 Hz. The dynamics of the PLL under such a large step

input can be clearly observed by looking at the estimated an-

gular speed, which rapidly increased to the set value in less than

one cycle. The effect of this step disturbance on the angular po-

sition was even more attenuated due to the low-pass filtering

effect of the integrator.

At time , the magnitude of phase voltage was

increased by 40%. This imbalance in magnitudes created nega-

tive sequence components in the source voltage. As can be seen

in Fig. 7, the estimated electrical angular velocity only had a
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Fig. 7. Simulation results of the proposed MRF-based PLL algorithm.
(a) Three-phase voltages (V). (b) Estimated electrical angular speed (rad/s).
(c) Estimated phase angle (rad).

Fig. 8. Block diagram of the complete MRF-based active rectifier control.

short period of transient process, then quickly settled down to

its nominal value of 377 rad/s. No visible distortion in the an-

gular position is observed.

V. THE COMPLETE CONTROL ALGORITHM

The complete block diagram of the proposed rectifier con-
trol algorithm is shown in Fig. 8. The details of the two grayed
blocks, MRF Compensation and MRF-PLL, have already been
described in previous sections. It can be observed that two par-
allel paths are used for the regulation of dc voltages and power
factor. The reactive power is calculated directly from the three-
phase voltages and currents with

(13)

The estimated quantities in each reference frame are
passed through a PI block, then transformed back into the
frame and added to the rectifier voltage references. This guar-
antees that in steady state all the harmonic components become

zero. In this study, the negative sequence fundamental fre-
quency component is also regulated to zero, which effectively
maintains a balanced set of three-phase input currents even
when the source voltage is unbalanced. It should be pointed
out, however, that other control strategies for unbalanced input
can also be used by setting appropriate reference currents for
the and current components [9].

VI. EXPERIMENTAL RESULTS

A. Prototype Description

To experimentally verify the effectiveness of the proposed
MRF-based technique, a 2 kW three-phase PWM boost-type
rectifier prototype system was built in the laboratory. The
system consists of a 1.2 mH three-phase input inductor, a
rectifier bridge with six IGBTs (rated 600 V and 75 A), a dc
link capacitor of 3900 , and a resistive dc load of 40 ohms.
Hall effect voltage and current sensors were used to measure
the output dc voltage , input line-to-line voltages ( and

) and input currents ( and ).
The IGBTs were controlled by a fixed-point DSP

(TMS320F2812 from Texas Instruments) with a clock fre-
quency of 150 MHz. The switching and control frequency was
set to 20 kHz. In each control cycle, the DSP samples the sensed
signals and completes all the calculations needed to determine
the switching states. In addition, two D/A channels were used
so that internal variables can be displayed on an oscilloscope.

The proposed MRF-based rectifier control algorithm was im-
plemented on the DSP. In addition to positive and negative syn-
chronous reference frames and , three harmonic reference
frames ( , , and ) were also used to target the second,
fifth, and seventh harmonics, respectively. A flag variable was
used so that the harmonic/imbalance compensation function can
be turned on or off while the system is running.

Although voltages from the electric power grid can become
unbalanced and contain harmonics due to nonlinear loads, the
amount of distortion cannot be controlled. Therefore, to test the
performance of the prototype system under various distorted
conditions, a 5.25 kW three-phase programmable power supply
(Elgar SW5250) was used as the input power source of the rec-
tifier. The device can generate three-phase voltages of arbitrary
phases and magnitudes, and the waveforms can be programmed
using GPIB commands. It is thus very convenient to generate
voltages with a controlled amount of imbalance and harmonics.

All the test results shown below were based on the following
operating point: the line-to-line rms voltage of the power source
is 120 V, the commanded dc link voltage is 280 V, and the rated
load power is 1.96 kW.

B. Harmonic Compensation Test

In the first test, only harmonic components (fifth and sev-
enth) were intentionally added to the source voltages, and the
three phases are balanced. Fig. 9(a) shows the distorted input
line-to-line voltages and , which contain 10% of fifth har-
monic and 5% of seventh harmonic contents. It was mentioned
in previous sections that if harmonic compensation algorithm is
not used, even a small amount of low-order harmonic voltages
can create highly distorted currents, which can be clearly seen
in Fig. 9(b). As expected, when the compensation function is
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Fig. 9. Experimental results for test with balanced harmonic input voltages. (a) Line-to-line source voltages. (b) Input currents before compensation. (c) Input
currents after compensation. (d) FFT results of phase a current before (top trace) and after (bottom trace) compensation. (e) 1n and harmonic components before
compensation. (f) 1n and harmonic components after compensation.

turned on, the input currents ( and ) are much cleaner and
become almost pure sinusoidal, as illustrated in Fig. 9(c).

The spectra of the phase current before and after the com-
pensation are shown in Fig. 9(d). As can be seen, the second,
fifth, and seventh harmonic components are completely can-
celed by the MRF algorithm. With the compensation in effect,
the THD of the input current is decreased from 19.5% to 1.7%.

In the proposed algorithm, the negative-sequence compo-
nents and harmonic components in the source currents are
separately extracted. Although these signals do not physically
exist and can only be obtained through calculations, they are
important indicators of the degree of distortions in the currents.
Through a two-channel D/A converter, the waveforms of
and are shown on an oscilloscope. Fig. 9(e) and (f) show these
signals before and after the compensation is used. In Fig. 9(e),
only a very small negative sequence component (the top trace)

can be seen because the three-phase source voltages are mainly
balanced. However, the harmonic component (the bottom
trace), which includes the sum of all harmonics, indicates that
the input currents are highly distorted. In Fig. 9(f), with the
help of the MRF-based harmonic compensation method, both
the negative-sequence and harmonic traces are very close to
zero, indicating a relatively clean current waveform.

C. Unbalanced Harmonic Cases

Next, unbalanced conditions were added to the source volt-
ages, which still contain the same amount of harmonics as in the
previous test. In this case, the magnitude of the phase voltage
was decreased from 70 V to 50 V, which is a 28% reduction.
The magnitudes of phase and voltages remained the same.

To better illustrate this magnitude difference, the waveforms
of line-to-line voltages and are placed on the same level
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Fig. 10. Experimental results for test with unbalanced harmonic input voltages: (a) line-to-line source voltages; (b) Input currents before compensation; (c) Input
currents after compensation; (d) FFT results of phase a current before (top chart) and after (bottom chart) compensation; (e) 1n and harmonic components before
compensation; and (f) 1n and harmonic components after compensation.

in Fig. 10(a). The effects of this voltage imbalance and har-
monics seriously degraded the performance of the rectifier con-
trol. As can be seen in Fig. 10(b), not only did the input currents
have large amount of fifth and seventh harmonics, other har-
monic components (second, third, fourth, etc.) also appeared.
Due to the unbalanced input voltage, the magnitude of (top
trace) was much lower than that of (bottom trace).

Fig. 10(c) shows the input current waveforms when the MRF-
based compensation function is in effect. Apparently, the shapes
of the waveforms are considerably improved. FFT calculations
showed that the three targeted harmonic components were ad-
equately compensated, and the magnitude of these harmonics
were close to zero, as illustrated in Fig. 10(d). The harmonic
and imbalance compensation control achieved a great decrease
in THD of the phase current, which reduced from 98.7% to

4.4%. Fig. 10(e) and (f) show the extracted negative-sequence
and harmonic components in the input current. Without com-
pensation, there exists a large amount of negative sequence cur-
rent. Fig. 10(f) clearly shows that the compensation method can
effectively balance the input currents.

It should be noted that because the harmonics are also unbal-
anced, they contain both positive and negative sequence compo-
nents, and in theory two compensation channels should be used
for each harmonic frequency to achieve complete compensation.
However, in general the amount of non-typical harmonic com-
ponents (positive fifth and negative seventh) are much smaller
than those typical harmonic components (negative fifth and pos-
itive seventh). This fact justified the decision in the DSP pro-
gram to only target the dominant typical harmonic components.
On the other hand, if a specific harmonic component is particu-
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Fig. 11. Experimental results of the MRF-PLL algorithm under unbalanced
and harmonic input conditions. Top trace: estimated q-axis values in 1p refer-
ence frame; Bottom trace: estimated phase angle.

larly large, or a resonant condition is observed, a dedicated com-
pensation channel should be added to the MRF-based algorithm.

D. Performance of MRF-PLL

It is noteworthy to look at the performance of the MRF-based
PLL algorithm under unbalanced and harmonic input voltage
conditions. Fig. 11 depicts waveforms of the estimated -axis
voltage in reference frame (whose absolute value is equal
to the magnitude of the input voltage) and the estimated phase
angle. These were both internal variables in the DSP algorithm
and brought out using D/A channels. The voltages used for this
experiment contain a large amount of fifth and seventh har-
monics; they also contain a large amount of negative sequence
components, which normally have a negative impact on the
identification of voltage phase information.

Fig. 11 shows that the estimated phase angle and magni-
tude have very little ripple. This result is expected since the
MRF-PLL decouples the interaction between positive and nega-
tive sequence components of the fundamental-frequency source
voltage. Due to the low-pass filtering effect of the integrator,
the harmonics have almost no visible impact on the phase an-
gles. Some harmonic ripple may still appear in the magnitude
waveform, even though they are attenuated by the LPF.

E. Dynamic Response Test

The fast dynamic response feature of the proposed MRF-
based compensation algorithm can be appreciated by investi-
gating its transient behavior. Fig. 12 depicts waveforms of the
input currents ( and ) when there was a sudden turn-on of the
algorithm. Before compensation, the unbalanced and distorted
nature of the currents can be clearly seen. When the algorithm
was turned on at time , and became balanced
and free of low-order harmonics almost instantly, only after a
short period of transient process.

VII. CONCLUSION

A multiple reference frame based harmonic compensation
algorithm for grid-connected three-phase power converter ap-
plications has been presented in this paper. A decoupled mul-
tiple reference frame architecture is proposed to eliminate inter-
ferences between components of different frequencies, which
enables the selective compensation of dominant harmonic cur-
rents. Furthermore, a MRF-PLL technique was set forth to pre-

Fig. 12. Experimental results of the dynamic performance test. Compensation
algorithm is turned on at time � � ��� ��. Top trace: phase a current; Bottom
trace: phase b current.

cisely track the frequency and phase information of the utility
system. The presence of imbalance or distortion in the source
voltages does not degrade the performance of the phase-locked
loop operation. The decoupled structure can cleanly extract the
fundamental positive sequence component without sacrificing
good dynamic performance. A complete experimental evalua-
tion based on a three-phase rectifier system demonstrated that
the proposed technique can yield fast and accurate operation.
Balanced sinusoidal input currents can be achieved even under
severe unbalanced and harmonic input conditions.
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