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Abstract. Ecologists and conservation biologists frequently use multiple regression (MR) to try to
identify factors influencing response variables such as species richness or occurrence. Many frequently
used regression methods may generate spurious results due to multicollinearity. Mac Nally (2000,
Biodiversity and Conservation 9: 655-671) argued that there are actually two kinds of MR modelling:
(1) seeking the best predictive model; and (2) isolating amounts of variance attributable to each predictor
variable. The former has attracted most attention with a plethora of criteria (measures of model fit
penalized for model complexity — number of parameters) and Bayes-factor-based methods having been
proposed, while the latter has been little considered, although hierarchical methods seem promising (e.g.
hierarchical partitioning). If the two approaches agree on which predictor variables to retain, then it is
more likely that meaningful predictor variables (of those considered) have been found. There has been a
problem in that, while hierarchical partitioning allowed the ranking of predictor variables by amounts of
independent explanatory power, there was no (statistical) way to decide which variables to retain. A
solution using randomization of the data matrix coupled with hierarchical partitioning is presented, as is
an ecological example.

Introduction

Ecologists and conservation biologists rely heavily on multiple regression (MR) to
develop inferences about the determinants of patterns affecting species distributions
or numbers (Mac Nally 2000). MR typically is used in conservation ecology to
model the occurrence or density of a species (response variables) as a function of
landscape and habitat-patch-specific variables (predictor variables) (e.g. Loyn
1987). Experimentation usually is inappropriate, unethical or intractable, so MR
(including multiple logistic and multiple Poisson regression) is used to derive
inferences about which predictors are important. Unfortunately, these predictor
variables are frequently significantly intercorrelated (multicollinearity) so that
identifying the likely causal variables is problematic.

Mac Nally (2000) reviewed some of the main methods used by ecologists for
sifting through data sets with many potential predictor variables, highlighting
weaknesses of many commonly used methods (e.g. all stepwise-selection tech-
niques). He emphasized the distinction between finding the best model to describe
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the data and drawing inferences about the likely causality of variables, which is
often of more interest in ecological management. The former involves the explicit
development of predictive functions while the latter need not produce a computed
function. Criteria (functions of model fit penalized for model complexity) and
Bayes-factor-based methods are widely advocated for finding a single best predic-
tive function [e.g. AIC, AIC_, QAIC, BIC; see Burnham and Anderson (1998) for
an extensive review], with methods explicitly addressing the role of model mis-
specification in inference also offering promise (e.g. Buckland et al. 1997). Never-
theless, these approaches still focus on finding the single best model. However, in
many ecological and conservation applications, managers would have little confi-
dence in the values of regression coefficients associated with terms in the selected
model. They are likely to be happier with information on the directions and relative
magnitudes of change in the response variables associated with management
scenarios based on manipulations of the most likely causal variables.

Hierarchical partitioning

Seeking a single model is not the most effective way of identifying those variables
most likely to influence variation in the response variable. Multicollinearity is
difficult to deal with in one-model approaches. Predictor U may be included in the
best model because it contributes to the overall best fit, but U may have no influence
on the response variable. In the specific data set U may happen to be correlated with
the true causal variables, V and W say, in such a way as to pick up the explanatory
power of both V and W, which then are left out of the model.

A possible solution to this dilemma, hierarchical partitioning (HP; Chevan and
Sutherland 1991), considers all models in an MR setting jointly to identify the most
likely causal factors. In the illustration above, the increase in model fit generated by
U is estimated by averaging its influence over all models in which U appears (i.e. U,
UV, UW, UVW). This averaging is likely to alleviate multicollinearity problems that
are effectively ignored by using any single-model-seeking technique. The hierarchi-
cal organization in exhaustive regression-model building arises because of the
relationship of simpler models to more complex ones, of which the former are
subsets.

HP employs goodness-of-fit measures for each of the 2% possible models for K
predictor variables (e.g. X2 in log-linear models, R’ in MR, etc.). These measures
are partitioned so that the total independent contribution of a given predictor
variable is estimated. HP allows identification of variables whose independent, as
distinct from partial, correlation with a response variable may be important from
variables that have little independent effect. Thus, HP involves calculation of
incremental improvement (i.e. increased goodness of fit) in models by the addition
of a given variable (U, say), and averages these over all combinations in which U
occurs to provide a measure of the effects of predictors (Christensen 1992). The
independent impact of variable U is estimated by comparing goodnesses of fit for all
possible models involving U. What is the average effect of including U in all
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first-order (i.e. just V, W, ...), second-order (VW, VZ, ...) and higher-order (VWZ,
VWT, ..., VWZT, ... ) models? For each predictor variable, explanatory power is
ultimately segregated into independent effects, /, and effects that cannot be un-
ambiguously associated with that single variable but are due to joint effects with
other variables, J. Note that HP does not lead to the development of a predictive
function per se because this is not its purpose.

Hierarchical partitioning and statistical significance

How does one use results of HP to determine which variables to retain? The output
of an HP analysis is just a list of predictor variables and their independent (/) and
joint (J) influences on the response variable Y. In many ecological and in most
conservation problems, one wishes to identify those predictor variables that have the
most independent impact on Y. The outcome of an HP analysis is a list of variables
that can be ranked by their independent contributions but where there is little
guidance as to which variables to retain for the purpose of making management
decisions (Mac Nally 1996).

Randomization approaches have become popular as ecologists deal with data that
are not easily treated by other means (Clarke 1993; Manly 1997; Anderson 2001).
The same approach seems to be useable in the current problem: randomize the data
matrix many times (e.g. 1000 from a possible [N!]* combinations) and compute the
distribution of Is for each predictor variable. If the observed value I, is extreme
(>95 percentile) relative to the generated distribution, then that predictor variable is
worth retaining as a potentially important one for management purposes. Results of
HP analyses for each variable can be expressed as Z-scores ([observed — mean
{randomizations}]/sp{randomizations}), and the statistical significance based on
upper 95% confidence limit (Z = 1.65).

An example

We collected historical and contemporary data on the characteristics of fragments of
forest in central Victoria, Australia [see Mac Nally et al. (2000) for descriptions].
These predictor variables include In(area 1996), absolute area change from 1963 to
1996, relative area change 1963-1996, land tenure (public/private), grazing pres-
sure, shrub regeneration, distance to closest extensive existing forest blocks,
distance to closest other fragment, area of nearest fragment, connectivity, and three
compound variables describing habitat structure within each fragment (MDSI,
MDS2, MDS3).

The response variable was species richness — deviation from expected, which
represents the species richness of a fragment of a given area (i.e. 10—80 ha) minus
the mean richness of a reference area of the same size but set within continuous
forest of the same kind [see Bolger et al. (1991) for a rationale]. Thus, if the average
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richness in 10 ha reference areas was N = 20.4 species, then the value for a 10 ha
fragment with 16 species was —4.4.

Two separate analyses were conducted, one with absolute area change and the
other with relative area change, since these cannot both be incorporated into the one
analysis. By using the Z = 1.65 criterion, current area is the most significant factor
controlling species richness in these fragments (Figure 1). Z-scores for the in-
dependent contributions for this variable were >5.6 (P < 10~*) whether absolute or
relative area changes are used. The independent influence of only one other variable
bordered on significance, the second compound variable MDS2, but only when
absolute area change was a variable (Z =~ 1.67; Z = 1.0 for relative area). This
sensitivity to which version of area change is included, and the marginal signifi-
cance, suggest that MDS2 should not be regarded as a probable causal factor in
controlling species richness in this system.
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Figure 1. Plot of Z-scores for independent contributions, /, from randomizations of data matrices for
potential explanatory predictor variables for two sets of analyses: one including absolute area changes
(ZA) and the other relative area changes (ZR). The dashed horizontal line represents upper 95%
confidence value for the Z-scores.
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Conclusions

Given the ongoing reliance on MR analyses in much of conservation and ecology,
use of robust methods for inference and model construction clearly is important.
While criterion-like approaches are useful for locating the best single functional
model, hierarchical partitioning offers the great advantage of considering the whole
web of relationships between predictor variables as an ensemble. The previous
drawback of having few grounds for discerning which of the predictor variables to
retain in HP seems to be relatively easily solved by using the randomization
approach related here.
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