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P REFACE

There are many pro blems in hydro logy tha t may be solved by multip le

regression procedures . This type of analysis ma y be used in fl ood and low fl ow

stud ies, for examp le, and in ca tchment modelling. Rainfall-ru noff equations

der ived by using multiple regression procedures have been developed and used

for a variety of pur poses such as fl ow projection in times of drou ght and fo r the

est ima tion of past fl ows from weather data .

As no single work of reference dealt co mp rehen sively wit h the use of

multiple regression in hydro logy, the Department of the Environment' s

Cen tral Water Plannin g Unit, in J un e 1975, commissioned one from Mr R . L.

Holder of the Department of Mathematical Sta tistics, Birmingham

University. Following the transfer of cer ta in functions and responsibilit ies of

the DoE Unit to the Natura l Environm ent Research Cou ncil's Institute o f

Hydro logy, a revised and updated bo ok incor porating mo re substantia l

examples was prepa red wit h the assistance of the staff of the Institute .

Because of the appa rent genera lity of the method of rela ting one variable to a

set o f o ther varia bles, mu ltip le regre ssion is pr obably the most frequen tly

used—and ind eed misused— stat istica l too l. Und oub ted ly, the techniq ue is

po ten tially very useful and it is curren tly the subject of much theoretical

resea rch by ma them atical statisticians ; but , as with any sta tistica l proced ure, it

is crucially impo rtant to understand the basis, assu mptions and limita tions of

the techn ique . Computer packages have taken the drudger y ou t of regression

analysis and some allow great fl exibility in the type of ana lysis co nd uc ted . As

well as instructing the reader on the ba sic techn iques, th is bo ok aims to educate

readers to extend their use of regression beyond the stand ard pr ocedures.

I am very pleased therefore that it has been po ssible for this Institute to

publish Mr Holder' s mo st usefu l add ition to the hyd ro logical literature .

J . S. McC ulloch
D irector, In stitute of Hydrology

Apr il, 1985



á



ACKNOWLE DGEM ENTS

My sincere thank s to Colin Wright of the Depart men t of the Environment , fo r

the original idea and initia l supp ort for this boo k , to David Jones of the

Institute of Hydro logy for pro viding the pr oblem s and data sets for Chapter 5

as well as ma ny helpful suggestion s, to Mrs T . Carr for typing the manuscript ,

Mrs A . Mayho for assisting with the co mp uting and Miss P. Binn fo r

suggesting many impr ovements to the original manuscr ipt .

Birmingham,

October , 1984

R. L. H.



á



CO NTENT S

Pref ace

A ckno wledgem ents

Chap ter 1  Simple Linear Regression / .
1.1 In trod uc tion .

1.1. 1 A prob lem in linear regression analysis

1. 1.2 A ssumptions made in linear regressio n J

1 . 1 . 3 In terpreta t ion of the assumptions 4

1.1.4 Wha t ca n be achieved by u sing linear regressio n analysis? 6

1.2 The Basic Meth od 7

1.2. 1 F itting a stra ight line . 7

1.2.2 Est imate s and their precision 9

1.2.3 Sign ifi ca nce te sts 10

1.2.4 Pred ict ion . . . 12

1.3 Extensions to the Basic Method 14

1.3. 1 Repeated observa t ions 14

1.3.2 F itting and compa ring sever a l stra igh t lines 17

1.3.3 O bserva tions with unequ al precision 2 1

1.4 A lter na t ives to Least Squa res 23

1.4. 1 Pencil and ru ler . 23

1.4.2 Ro bu st and d istributio n free methods . 24

1.4.3 Bayesian method s 26

1.4.4 Linear functio nal re lat ions hips 29

Chapter 2  Multiple Linear Regression 32

2. 1 Intr od uc tio n . . . . 32

2.1.1 Pro blems for multiple linear regression analysis . 32

2. 1.2 A ssumptions made in multiple linear regressio n 32

2. 1.3 In terpreta t ion of the assumpt ions 33

2. 1.4 What can be achieved by using multiple linear reg ressio n ? . 34

2.2 The Basic Method . 35

2.2. 1 F itting the mode l 35

2.2 .2 Est imates and their precision 3,7

2.2 .3 Predict ion 39



C O NT EN TS

2.3 Sign ifi cance Tests and th e 'Best' Equa tion 40
2.3. 1 Genera l linear hypothesis 40
2.3 .2 In itial sign ifi cance te sts 4 1
2.3.3 Selec tio n of va riables—the 'best' equation 43
2.3 .4 A ll possib le regressions 43
2.3 .5 Forwa rd selection 44
2.3.6 Backward selec tion 46
2.3 .7 Stepwise regression 46

2.4 Exte nsions to the Basic Method 47
2.4 . 1 F itt ing and comparing sever a l regression lines 47
2.4 .2 Observat ions with unequal precision 50
2.4 .3 Missing observa t ions 5 1

2.5 Special Mod els 51
2.5 .1 Un iva riate polynomia l mod els 51
2.5 .2 M ultivariable polyn omial mode ls 57
2.5 .3 Per iodic regression 57
2.5.4 D ummy varia bles 62

2.6 Alterna tives to least squares 63
2.6 . 1 Penc il and ru ler . 63
2.6 .2 Robu st and d ist ribution free meth od s 64
2.6 .3 Ridge regressio n and principal com ponents regression 65
2.6 .4 Bayesian met ho ds 70
2.6 .5 Func tional re lat ionships 70

Chap ter 3  Before a Multiple Regression Analysis  72
3. 1 What to Inc lude and Why 72

3. 1.1 Why is the ana lysis being cond uc ted ? 72
3. 1.2 Which indepe nd ent va ria ble s should be used ? 73

3.2 The dist ribu tion of the d ependent va riable 75
3.2 . 1 Requirements o f least squares 75
3.2 .2 Evidence to just ify or quest ion the assumpt ions . 76
3.2 .3 Test of the assu mptio ns 80

3.3 Tra nsformations 82
3.3 . 1 Variance stabilisin g transformat ions 82
3.3 .2 T ransfo rmat ions to norma lity and linearising t ransfo rmat ions 83
3.3 .3 Box—Cox t ra nsfor mat ions 87

3.4 Au tocorrelat ion in Mu ltip le Regression . 89
3.4 .1 Po ssib le causes and consequences 89
3.4.2 T ransfo rmations 90

Chap ter 4  After a Multiple Regression Analysis  94
4. 1 Some P reliminary Checks 94

4. 1.1 Examining the fo rm of the regression equ at ion 94
4. 1.2 Examining the beha viou r of the regression mod el 95
4. 1.3 Sta bility of the model 96

4 .2 Problems of N umer ica l Stability 96
4.2 .1 N umerica l meth od s used in regression 96
4.2 .2 The re lat ive merits of the va rious numer ica l met ho ds . 97
4.2 .3 Detecting the fa ilu re of the numerica l met ho ds 98



C O NT ENTS

4.3 Analysis of Residu als 99

4.3.1 Plot ting the residuals . 99

4.3.2 Some tests on the residuals 100

4.3.3 Other residua ls 102

4.3.4 Autocorrela t ion 103

Chapter 5  Some Examples  106

5. 1 An Example of F ittin g and Comparing Sever al Regression Lines 106

5.2 Mu ltiple Regressio n on Mean Annua l F lood 114

5.2 .1 Int roduc tio n 114

5.2 .2 T ransforma tions and weights on annu al maximum fl ood 117

5.2 .3 Regression of the stand ard deviation 118

5.2 .4 Compa rison between regions 120

5.2 .5 Exa minat ion of assumptions . 123

5.3 Stepwise Regression Cho osing the Best Pred ictor s 125

5.3 . 1 Int roduc tio n 125

5.3 .2 An exa mple of ste pwise regressio n 126

5.3 .3 Some fu rther regressions 130

5.3 .4 A simple pred icto r for mon th ly fl ow 134

Postscrip t" 14 1

Index 143



á



Chapter  1

SIM P LE LINEAR REGRESSION

1.1 Introduction

1.1.1 A problem in linear regression analysis

A stud y of the relat ionship between rainfall and run-off in a par ticular area

may, amongst other things, have led the investigator to keep records of the

annua l rainfall and the annual run-off over a period of severa l years. An

example of such records, taken from the Alwen catchment, Lewis (1957), is

given in Table 1.

Table 1 Mo nthly rain fa ll and ru n-off for the Alwen Catchmen t, Nor th Wales 19 12- 19 15 (mm)

Year Jan . Feb. M ar. Ap r. May June July A ug S ep . Oct . N ov. Dec .

This table gives the precise details, within recording accuracy, of rainfall and

run-off in the Alwen catchment between 1912 and 1915 and , as such, is the most

complete statistical representat ion of the investigator's fi nd ings. However ,

some alternative statistical representation of these facts may be necessary in

order to achieve some specifi c objective. The investigator may wish to :

(a) Summarise his data in terms of just a few pertinent numbers.

(b) Decide whether rainfall and run-off infl uence each other .

(c) Predict some future run-off which might be expected from a certain

annual rainfall.



Predict the rainfall that would be necessary to produce a certain run-off .
Decide whether certain of the readings in the table are exceptional or are
not of the same pattern or trend as the others.
Build or complete some mathematical model relating ra infall and run-
off .
Make some comparison between the readings given in Table 1 and
similar readings obtained from another area.

To achieve any of these objectives, the fi rst step could be to draw a graph of
an nual or monthly ra infa ll against run-off .

Careful examination of this graph and judicious use of a ru ler , a fl exible
curve and his own experience would help to give the investigator an answer to
objectives (a), (b), (c), (d), (e) and (g). Linear regression analysis would also be
helpful. However, in suggesting this further technique, it is not our intention to
denigrate graphical and visual methods; indeed, it is hoped that the read er will
rea lise that the two are complementary. Allowance for other factors, such as
evapora tion or month to month variation , would improve the accuracy of the
rela tionship shown in Figure 1. More complex relationships of this type are
discussed in Chapter 2.

(d)

(e)

(f

(g)

250
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250



SI M PLE LIN EAR REG R ESSI ON

1.1.2 Assumptions made in linear regression

Simple linear regression may be applied to problems in which a record has been

made of the values of two variables, referred to as  y ,  the dependent variable,

and  x ,  the independent variable. It is assumed that , for any such record , the

mathematical model
y = a + bx + e ( I)

where  a  and  b  are constants and  e  is a variable, describes the relat ionship

between the  y  reading and the  x  reading . By temporar ily ignoring the term  e,  we

see that a straight line (linear) relationship is assumed between  y  and  x ,  with  a,

the intercept, and  b,  the slope of the graph of  y  plotted against  x .  However , if

our model only allowed for readings of  y  and x which fell exactly on a straight

line, it would be of little practical value. Inclusion of the variable  e  allows

readings of  y  and x to deviate from a straight line, but assumptions are made

about  e  so as to force these deviations to have a par ticular pat tern. If we

imagine being able to take many readings all giving the same value of  x ,  then

some  y  values will be greater then  a + bx  and some less, i.e. some values of  e

will be positive and some negative. Most of the assumptions made in linear

regression can be stated in terms of the values of  e.  We will assume that the

arit hmetic mean of the values of  e is zero. We will also assume that the variance

of these values of  e  is always the same wherever the value of x happens to fall.

At a later stage, we will also need to assume that these values of  e  form a normal

distribution .
Figure 2 indicates the type of graph one would expect if it were possible to

record many values of  y  all with the same  x  value.

In practice, we will frequently have only one value of  y  to plot at one  x

position . Consequently, one of the problems we will have to consider is how to

justify the above assumptions when the readings are not available in the ideal

form as shown in Figure 2.

An altern ative interpretation of the assumptions is as follows. If we are able

to fi x a value of  x ,  then the value of  y  we record should be  a + bx.  However , due

y = a . 13x

Fig. 2. Distribution of va lues about the regression line.
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to errors, inaccuracies, uncontrollable or inexplicable variations, the reading
of  y  t hat we make is  a + bx + e, e  representing the error in measurement . Then,
on average, such errors should be zero, i.e. there is no consistent bias in our
readings as a result of errors made. Furthermore, all readings should be mad e
with equal precision, i.e. a given size error is equally likely to be made at any
value of  x .  Fina lly, the errors of measurement should form a normal
dist ribut ion .

There is one further assumption to add to both of these explanations and this
is that all errors (values of  e)  are assumed to be independent , i.e. the magnitude
of the error in one read ing does not infl uence the magnitude of the error in
an other reading.

1.1.3 Interpreta tion of the assumptions

Let us con sider the direct application of linear regression to the data of Table 1.
As may be deduced from their titles, and certainly from equ ation ( 1), the
variables  y  and x are treated diff erently in linear regression ; they are not
interchangeable. Thus, some thought must be given to which variable we call  y
and which we call  x .  Ideally, we would have one variable subject to errors and
the other fi xed, con tro lled or error free; the former would be  y  and the latter x.

However, with rainfall and run-off as potential  y  and  x  var iables, the choice
is by no means straightforward . Indeed , considering the measurement of these
two variables, we would probably have to conclude that both were subject to
errors ; consequently, the linear regression model (1), which appears to
attribute all error to one variable, is not appropriate. Models which allow both
variables to be subject to error will be discussed later but for now, let us
consider what circumstances might lead us to use linear regression for
ra infall/run-off problems.

As is so frequently the ca se, it is our objective, together with some knowledge
of the physical process being studied, which determines the form of the model.
If we wish to predict the likely annual run-off from an annual rainfall of R , then
we will need to assume that R is fi xed and predict what we regard as an
uncertain quant ity, run-off . Thus, there is some intuitive support for assuming
that the available rainfall readings are fi xed and , together with some stat istical
reasoning, this leads us to conclude that rainfa ll should be treated as the
independent variable  x .  In general, we should usually aim at taking the
predicted variable to be  y  and the predictor to be  x .  In this particular example,
there is a further reason for taking rainfall as the  x  variable in that rainfall is, to
some extent, causal of run-off and hence our model may be interpreted as being
of the form

output = some function of input + error

H aving decided upon an  x  and  y ,  we next have to consider our assumption s
about the errors or inexplica ble variations. Imagine drawing the best possible
line to describe the points in Figure 1, as illustra ted in Figure 3; the vertical
displacement of each po int from this straight line represents the error or
inexplicable variation for that read ing.

If the fi rst assumption of errors averaging to zero is true, then this will
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usually lead to a collection of displacements which appear to have no pat tern to
them and few particularly outstanding values.

Similarly, reference to Figure 3 will help in assessing the second assumption ,

that of equal precision or error variance. This would be refl ected iq the grap h by
a similar spread of deviations about the line over the whole range of x values. If,
on the other hand , points tend to group close to the line in some regions of x
and are widely dispersed to either side of the line in other regions of x, then this

might suggest that the precision of results varies.
The assumption that the errors form a normal distribution is not essential

for all the steps in a linear regression analysis. For instance, a best fi tting
stra ight line may be obtained, and some approximate sta tement made about
the accuracy of that line, without this assumption . However, if such an
assumption can be made or arranged (see Section 3.3) a far more complete and
satisfactory analysis can be accomplished. As in the case of the two previous
assumptions, it is usually necessary to refer to the outcome of a linea r
regression analysis in order to assess the validity of this assumption (see Sect ion
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4.3). However, some knowledge of the distribution of hydrological data will be
of value in detecting likely problem cases (see Section 3.2).

The assumption of independence is usually violated when there is some carry
over from one reading to the next , frequently when such readings come as a
sequence in time. An example might be where two run-off measurements are
made over time period s which over lap or which are both aff ected by the same
heavy rainfall or drought . Another example is where one reading contributes to
the next in some way, as might happen with river fl ow measurements taken at
stations which are close together . Problems which are more appropriately
modelled as time series are considered later . However, as with the normality
assumption , the choice of a best fi tting straight line is not necessarily dependent
on this assumpt ion of independence being satisfi ed .

1.1.4 What can be achieved by using linear regression analysis?

So far , it has been suggested that linear regression analysis might help in
solving problems (a) to (g) of subsect ion 1.1.1 and that some 'best fi tting'
straight line might also appear. Before plunging into a detailed description of
how we might give an answer to these objectives, it would be as well to examine
mo re specifi cally what it is possible to achieve using linear regression an alysis.

First of all, let us suppose that the assumptions mentioned earlier are
satisfi ed, that we have chosen a  y  and an  x ,  and that we have a set of data similar
to that of Table 1, namely pairs of values of  y  and x. We may estimate  a  and  b  in
equation (1), together with their standard errors, or, alternatively, we may
derive confi dence interva ls for  a  and  b  or for the line  a + bx .  This will give an
an swer to problem (a), some idea of (b), and possibly an appropriate answer
to (f) .

Having estimated  a  and  b,  we may use these estimates to predict a value of  y
corresponding to a particular x (and vice versa) by calculating

= + bx (2)

where a and S are estimates of  y , a  and  b  respectively. Alternat ively, we may
derive a confi dence interval for this unknown value of  y .  This will help to
answer (c) or (d).

We may carry out tests of signifi cance on  b  and/ or on  a  in order to examine
simplifi cations of equation ( 1). For example, we cou ld test a =0, or even  b =  0.
If we have severa l sets of similar data , then we may estimate  a  and  b  for each set
and carry out tests on the similarity of the diff erent as and bs. The fi rst tests
might help with problem (b) or (f) and the others with problem (g).

If, for each value of x recorded in our data , we estimate the corresponding
value of  y  using equat ion (2) with our estimates of aand  b,  then the diff erence
between the recorded and the estimated value of  y  is usually referred to as the
residual. The set of residuals calcu lated from all the data contains useful
information . Patterns in these residuals, when plotted against their associated
x  va lues, may indicate a poor model and may suggest the direction in which
improvements might be made. The residuals may also be used to examine the
validity of the assumptions mentioned in subsect ion 1.1.2. A residua l which
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was ma rked ly d iff erent from the others would be an ind icat ion to the solut ion

of problem (e).

1.2 The Basic M ethod

1.2. 1 Fit ting a straight line

T he basic data for this section will consist of pa irs of values ofy and x where the

identity of y and x ha s been established as a lready out lined . T hese pairs of

values will be denoted by (y , , .v, ), (y 2, x2), ,  (y„, x , ) and model ( 1) will then

become

vi  = a + bx 1+ e1 (for i = 1, 2, 3, . . . ,

This is illustra ted in F igure 4 for three pa irs of po ints.

Y3

X I

X 2

a 2

y oa+b

(3)

= 3

Fig. 4. Regression line and associated data.

The exact po sition of the line y = a + bx is unk nown and our problem is to

ma ke an inte lligen t guess a t its po sition , given the po ints on the graph . There

are ma ny propo sals as to how this inte lligent guess shou ld be made. We will

exa mine one met hod in detail, namely least squa res estimation , but we will a lso

consider some a lternatives .
The object ive of least squares estimation is to cho ose values of the unk nowns

so as to minimise

S 2=, E e? = E (y1— a — bx j 2
i= i=1



i.e. the total vert ical discrepancy of the points from the line (regardless of sign)
should be as small as possib le.

Solving as2/aa =0, and aviab=0 will give the values of a and  b,  denoted by
a  and  b,  which minimise S 2• Hence, solving the equations

will give the estimates

E Yi) I n E  i xxi—
1= 1 i = 1 i = 1  

rt

E X - ( i X )

2

I n E (x i —
i = 1 1= 1 i = 1

and

where

— 2 E (y i — —ti xo = 0 and — 2 E (y i —  6.x) x i = 0 (4)
1= 1 1= 1

= (
1=1
± b( ri

i=1

1= 1

„
E y 1) 111 and I = xi) / n

1= 1

The fi rst expression in equation (5) is the one usually recommended for
calculation becau se it preserves accuracy. However , this point is only valid
provided full accuracy can be retained throughout the calculation . If there are
a large number of data points and y and x are relatively large values, then this
may lead to Et y ix i and  (E ':= x 1) (E 7=, y i)/n bot h being large and similar ;
hence, their diff erence may be seriously aff ected by the roundoff errors
generated when calculating either of the large expressions. In such
circumstances, the second expression in equation (5) is more satisfactory.
Roundoff problems usually arise where a digital computer has been used for
calculation and , under these circumstances, there is litt le extra hardship
involved in using the alternative expression.

As sum of squares and cross products appear frequently in regression
calculations, let us defi ne the following terms :

Sx„= E (x i — )2 = 4 — x ) 2
1= 1 i = 1

M U LTIPLE REG R ESSI O N IN H YDR O LOG Y

1= 1

syy = E (Yi— )7)2= E
i 1

y? Yi) 2 I n
= 1= 1

Sxy = E  (x,— i ) y, —37) = E x iyi —( E  y i) I n
1= 1 i = 1 1= 1 i = 1

Thus, in this new notat ion, equation (5) becomes 5 =  sxylsxx.

(5)

(6)
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1.2.2 Estimates and their precision

The most we can hope to get from data which do not exactly form a stra ight line
is estimates of a and b ; if we add some new data , then almost certainly our
estimates will change. By making some assumption about the variance of the
variable e (see subsect ion 1.1.3), we can derive the variances of a and b. In
particular, if we assume that the variance of e (denoted by Var (e)) is 0-2, then it
follows that

and

2 2
a X i

Var (á) —  
i = 1  

ns xx
(7)

Var (b) = (3. 2 (8)
Sxx

All the quantities in expressions (7) and (8), except for a 2 , may be calculated
from the data . Since or2 is the variance of the variable e, it is natura l to use the
residuals, namely

i t = y , — —bx, (for i = 1, 2, . . . , n) (9)

in order to estimate a' . We know from equation s (4) that 1 = I et = 0 and ,
hence, that the ar ithmet ic mean of the residuals is zero.

Consequently, if we use the sum of squares about the mean of the residuals as
the basis of our estimate of o-2, then that sum of squares will just be

: 7= le?.
The appropriate divisor is n — 2, two degrees of freedom having been 'lost' by

estimating a and b. Hence, our estimate of a2 will be

1 " 1
=  E (y, — — 5,0 2u 2 =

n —2 i= n —2 1=1

1 ( c, (Sx,)2  

n — 2 V j YY S x x )

(10)

Which expression in equation (10) is chosen for calculating Oa depends on two
factors. If the residuals are to be calculated in an y case, then it is obviously
sensible to use the fi rst expression. If they are not , then the last expression may
be preferable. In evaluating the component expressions S x„, S xy and S yr the
remarks which were made at the end of subsection 1.2.1, concerning numerical
accuracy apply also in this context.

We are now able  to report estimates of a and b together with estimated

standard errors ( / estimated variance ) for those estimates. An alternative
summa ry would be to provide confi dence intervals for a and b. However, as
these are probabilistic statements, they require some assumptions about the
probability distribution of the variable e. The usual assumption is that e is a
normal random variable; we have already assumed that its mean is zero and
that its variance is o-2. Shor thand notat ion for these assumpt ions is
e N (0, a2).
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l f, in our model (3) , we assu me that e1 N(0, a ' ) (for i = 1, 2, . . . , n) and tha t
e are ind ependen t (see subsection 1.1.2), then

E 4
N ( a,  

nSx„.

- N( b
)

In addition , E7t ,(y , —a — bx ,)2, usually ca lled the residual (or er ro r) su m of
squa res , follow s 6242_2 (see footno te). This in turn means tha t

— a]

and

and

t n - 2

i d2 E 4
i=1  

ns n..,

If t(n, p) is defi ned by p = n 7 (tn) dtn, where .1*(0 is the pr obability density
fu nc tion of the t rand om variable with n degrees of freedom , then the
100(1 — a) % confi dence in terval for a is

E 4

ns xx

and the 100( 1 — a) % confi dence interva l for b is

it + 1(n —2, 1 — a/ 2)

5+ t(n — 2, 1 — 4 2)

(12)

1.2.3 Signifi cance tests

Equation s ( 11) and ( 12) may a lso be used to test the validity of appr opriate
hypo theses abou t a and b. F or ins tance , with the Alwen data , we might ask
whe ther a hypo thesis of a = 0 is valid . If it is valid, then this would imply tha t
the model should be

ru n-off = b x rainfall + error

Each of the three random variables x!, t. and F.  are special funct ions of Nor mal random
variables which are frequen tly encountered in practice. The suffi ces are referred to as degrees of
freedom and relate to the number of independent normal random var iables involved in the
funct ion. Most texts on mat hema tica l sta tistics give defi nitions of these random variables and
derive their pro bability density funct ions.



SIM PLE LINEAR REGRESSION

so that, except for error, we would expect zero run-off when there is zero
rainfall.

If our hypothesis  a =  0 is true, then equation (11) becomes

nS .

Hence, if we accept the hypothesis  a = 0  whenever

[Ian < t(n — 2, 1 — al2)

[a]

1= 1

i n- 2

and reject the hypothesis otherwise, then this will give us a 100a % signifi cance
test for this hypothesis.

We might also consider whether the hypothesis  b = 0  is valid . If it is valid ,
then this would give a model

run-off = constant + error

which would imply that rainfall does not aff ect run-off .
If the hypothesis  b = 0  is true, then equation (12) becomes

[5]

62 — ' n- 2

Hence, if we accept the hypothesis  b = 0  whenever

  < t(n — 2, I — a/2)
62

1 S .

and reject the hypothesis otherwise, then this will give a 100a % signifi cance test
for this hypothesis.

Clearly, both of these test procedures are equivalent to accept ing the
respective hypotheses whenever the points  a  = 0 or b = 0 fall within the
100(1 — a) % confi dence interva ls const ructed for  a  and  b.

Another hypothesis on  b  which may be of interest , although no t to the Alwen
data example, is the hypo thesis  b =  I . If we are testing a new measuring
instrument and we are taking readings (y ) on items where the exact result  (x )  is
known , then fi tting a straight line  y = a + bx  will allow us to test for cor rect
zeroing of the instrument  (a = 0)  and correct calibrat ion  (b = 1).  This, of
course, assumes that a linear relationship is appropriate.
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The appropriate test procedure would be to accept the hypothesis  b =  1
whenever

which ha s variance

lb —11  < t(n
— 2, 1 — oe/2)

/ 6 2

S n

and to reject the hypothesis otherwise. Calibration experiments are discussed
again later .

1.2.4 Prediction

One of the purposes of fi tting a straight line to a set of data might be either to
interpolate or to extrapolate. Having carried ou t a regression of y on  x ,  it is
usual to want to predict a value of y corresponding to a known value of x . The
obvious predictor is

= a +

Var (fi ) =  + (x
- I

S x„

However , we must be careful to consider just what this estimate is estimating
and , in particular , what its variance implies. If we were able to measure values
of y repeatedly at this known value of x, then the arithmetic mean of these ys
would tend to some fi xed number , confusingly called the mean value of y. It is
this fi xed number which we are estimating and the variance represents the
errors of estimation which we will make as a result of using only estimates of a
and  b.  Our fi xed number would be a +bx  which we could calculate exactly if
only we knew a and  b.

However, we supposed in model ( 1) that an y single reading ofywas made up
of a +bx + e,  each reading showing some unpredictable error  e  from its ideal
value a +bx  (the one we have discussed in the previous paragraph) . Our
est imate of any single reading will be a +  bx  (as our estimate of  e  must be zero)
but its variance will be

(72 + 6 2 1- I + ( X 2)0 1

Sx„

the fi rst component for the error of the reading and the second component for
the error of prediction .

An alternative presentation of this information is to give confi dence interva ls
for  a + bx  and  a + bx + e,  the former being for the mean value of  y  and the
latter for a single reading of  y .  They are

"
+ bx t(n —2, 1 —

a
ot/2) ^ 2

( 1 (x  — ) 2

n S, „ )
(13)
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and

+ ti x + t(n —2, 1 — a/ 2) 62( 1 + 1 + (x *12) (14)
n S „x

respectively, for 1000 — a) % confi dence intervals.
Figures 5 and 6 show the confi dence intervals (13) and (14) plotted on the

same graph as the regression line,y = a+ bx ; these graphs give a more obvious
impression of confi dence interval (13) representing the precision of the
regression line and confi dence interval (14) represent ing the interval which
gives some limits to the read ings of y.

Fig . 5. C onfi dence interva l for the mea n va lue of y .

Figure 5 shows the loci of the confi dence limits for the mean value of y.
Therefore, for a fi xed value of x , there is a probability of (1 — a) of the interval
defi ned by (13) containing the mean value of y.The whole region illustrated in
Figure 5 should not be confused with the confi dence region for the line
y = a +bx , i.e. the region such that there is an overall probability of (1 — a) of it
containing y = a +bx .

To fi nd the confi dence region for y +bx , replace t(n —2, 1 — a/2) in
equation (13) by [F(2, n —2,1 — a)] 2, where 1 — a = foFt2,. - 2 , 1 - a)g ( F ) d F and
g(F ) is the probability density function of the F random variable with 2 and
n —2 degrees of freedom . Tables of F(n 1, n2, 1 —a) are widely available (for
instance, Table 18 of Biometrika Tables for Statisticians, Vol. 1, Pearson and
Hartley, 1972).

V . ; + 6

Fig. 6. Confi dence or pred ict ion inte rva l for a single reading of y .
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If, because of the nature of the variables x and y , it is necessary to predict a
value of x from an observed value of y , then the natural estimate would be

Y—
x —

A 100(1 — a)70 confi dence interval for the correct value of x would be

(5c, _ i ) 1282 to[ 62(

n S

1 + + ( .1-c‘ (

n

i + 1 1.2 6 2 1 1/ 2

Sxx xx ) ) S xx
+ 82 t 2 0 .- 2

S xx
where t = t (n — 2, 1 —

1.3 Extensions to the Basic Method

1.3.1 Repeated observations

Let us consider the situat ion where, instead of a single value ofy being recorded
for each value of x , several independent observations of y are available.
Alternat ively, we could consider that , by chance, there are several values ofy all
with the same value of x . A notation to cope with this situation is outlined
below.

Such a situation might arise when x is a variable over which we have some
control or choice and we are able to repeatedly observe values of y under
identical conditions.

Our model might be

y o = a + bx i + eij (for j = 1, 2, . . . , ri and i = 1, 2, . . . ,n) (15)

which is not very diff erent from model (3).
Let us defi ne the following terms :

2

S ,Rx = E 1 ) 2 = E 1.14 — E rix i N
i = 1 i = 1 i =  1

r ; n r i

S ix; = E , ) = E x; E yi; - E E yu) ( E rix i) / N
1=1 i = 1  j =  1 I = 1  j =  I  i =  I

2

SyRy = E (Yu —P. )2 = E Y?t — E  it
y ) / N

i=1  j =  1  i =  1  j =  1 i = 1  j =  1
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where

and

N = E ri =  tot a l number of  y  read ings
i = I

Then , the least squa res estimates of  a  and  b  a re

= ;T. —S.)z
and

- S R
b =  " Y ( 17)

s

The estimate of slope, 5, is similar to that which would have come from fi tt ing a
stra ight line to the pairs of po ints (j , ,,  x i)  excep t tha t each point is weighted
accord ing to the number of  y  read ings taken .

The va ria nces of the estimates are

and

r n .r  •

Yi. = YaV ri Y = ( E•=1 i=1j = I

E 1.14

Var (ci) =  
NS 1

rix iV N

( 16)

(18)

Var (8 ) =
isf
a 2

(19)
x

Wh en considering a po ssible estimate of a 2,  it is wort h noticing the ext ra
po ten tial off ered by data in this form . An estimate similar to (10) would be

1  "
E r o7 —d — 5.0 2 (20)

n — 2  i=1  " •

However, an altern ative estimate is available by considering the va riability of
all the  y  va lues which have been recorded fo r one  x  va lue . For instance ,

1
  L 9,.)2— j l

would give an estimate of cr2 from  y  values record ed with x =  x i.  Using simila r
estimates of a 2 from  y  va lues reco rd ed with ot her x values, and combining
these into a single exp ression , gives an estimate

1  
E (y

•
e— )2 (2 1)

N —n i=1  ; =1 '  

We might now use the estimate (20) as a measure of how well the linear mod el
fi tted the data . For ma lly, this may be achieved by mod ifying the model (15) to

y ri = a + bx i + Li + e, (for j = 1, 2, . . . ,  r,  and i = 1, 2, . . . ,  n)  (22)
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where L 1, L 2 , . . . , L n are unknown parameters which allow for consistent
deviations from  a + bx ;  in the means 5 . If we fi nd the hypothesis
L 1= L 2 = • • • = L „ = 0 to be valid, then this implies that a linear model

= a + bx , + e,.,  is adequat e for relating  y  and x. Conversely, if we fi nd the
hypothesis to be unreasonable, then this implies that the linear model does not
adequately explain the rela tionship between  y  and  x .

An analysis of variance table provides a neat summary of the information
necessary to test this hypo thesis, as well as the hypothesis  b =  0.

T he column mea n square has been derived fro m (su m of squ ares/d egrees of freed om) .

In an analysis of variance table, the total variation in the data (represented by
the total sum of squares) is partitioned into a series of meaningful independent
quantities. In this case,

Total Variation explained Variation explained +
Error

variation by the regression line by L 1, L 2 , . . . , L n variation

or, in other words,

Systematic depar ture
Total sum = Regression sum + from regression line Residual sum
of squares of squares sum of squares of squares

In most properly const ructed analysis of variance tables, the ratio

Mean square due to X

Residual mean square

will follow an F distribution, with degrees of freedom equal to those of the
numerat or and those of the denominat or respectively, whenever  X  has no real
eff ect , or role, in explaining the total variation .

Thus,

Regression mean square
F I,N- n

Residual mean square

when no variation has been explained by the regression, i.e. when the
hypothesis  b =  0 is true.



SI M PLE LIN EAR REG R ESS IO N

The 100(1 — a) tyoconfi dence interva ls for a and b are

Similar ly,

Systematic departure • • • mean square
Fn_2 ,N _ n

Residual mean square

when there is no systematic departure from the regression line, i.e. when the
hypothesis L I = L 2  = • L „= 0 is true.

Hence, a 100a % signifi cance test would lead us to accept the hypothesis
b = 0 whenever

Regression mean square
< F(1, N —n, 1 —a)

Residual mean square

Similar ly, a 100a % signifi cance test would lead us to accept the hypothesis
L i = L 2 = • • = L,, = 0 whenever

Systematic departure mean square
< F(n — 2, N —n, 1 —a)

Residual mean square

and

+ t(N —n, 1 — a/2)

+ t (N —n, 1 —a/2)

respectively, where a2  is given in equation (21).

1.3.2 Fitting and comparing severa l straight lines

If several sets of rainfall—run-off data have been collected from diff erent sites
and a linear model has proved to give a sat isfactory explanation of the data,
then it may prove useful to compare the estimates of a and b calculated from
the data from the diff eren t sites. Some interpretation may be at tached to a and
b; for instance, if we interpret a as the run-off from zero ra infa ll and b as the
proportion of rainfall ap pearing as run-off, then subsequent compar isons of
the estimates of a and b will give some idea of the similar ity of the sites in these
two features.

Let us assume that there are n sites from which data have been collected and
that , from site i, the dat a consist of r, pairs of readings of y and x which are
denoted by (y ,i, x ,j) (for j = 1, 2, . . ri) . It will usually be sensible to fi t sepa rate
straight lines to the data from each site. For site i, the model equivalent to (3)
would be

= a,  + b1x 11+ e1 (23)

Estimates of a, and b, would be derived by applying the basic method
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described in Section 1.2 to the data from each site in turn . Using the above
notat ion , this would give estimates

di = —
and

where

where

b,=( E
j =  1 ' = 1

1
Yi. — Yi;
_

r, J=1

1
and  L x ii

r1 J=1  •

Similarly, the variance of the variable  e  for site i, denoted by cr7, would be
estimated by

1 r .
^ 2 (y - - a.—h .X . .) 2

z.1
r i — 2  ; ,. 1

) 2 )

Thus, we would be able to imagine the data_ from each site having been
condensed into three numbers, denoted by  6„ b,  and 67 . In a compar ison of
sites, it would be sensible, from the sta tistical point of view, to star t by
compar ing the values of 67 from each of the sites.

This may be achieved by testing the hypothesis  a?= crl = • = a .  One test
stat istic for this is

[
E (r , - 2)67

M = (N —2n) loge  ' - 1 E (r, — 2) log,  67
(N —2n) _ i= 1

N = E r,
i=1

The distribution of  M  is approximated by  2e,_  I whenever o-2, = = • - • =
Thus, a 100a % signifi cance test would be to accept this hypothesis whenever

M < x2(n —  1, 1 — a)

where 1 — a = f 62(n —  1 , 1 — ce)fi x n2 — 1) d x n2 and  J (x„2_  i) is the probability density
function of x _ I. Tables 7 and 8 of Biometrika Tables for Statisticians, Vol. I
(Pea rson & Har tley (1972)) may be used to give values of z2(n — 1, 1 — a) and
improvements to the approximation of the distribution of  M  are given in the
text accompanying Table 32. This test assumes that the var iable  e  follows a
normal distribution and , unfortunately, a signifi cant value of  M  may indicate
non-normality rat her than heterogeneity of variance.

However , if the hypothesis a; = = • • • = a n2 is acceptable, then this implies
that run-off readings at a fi xed rainfall level show similar variability within each
of the diff erent sites and/or tha t the linear model is equally successful at
explaining the relat ionship between rainfall and run-off within, each of the
diff erent sites.
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Being ab le to accept this hypothesis leads to simpler and more meaningful
comparisons between the other stat istics. The appropriate tests are most easily
displayed in an analysis of variance tab le but , in order to avoid cumbersome
algebraic expressions, it will be necessary to introduce some new notat ion. Let
us defi ne the following terms .

Sxl„ = E (x i./ — 1i .)2

[Hence, ii i = 5;,y1S cx.]

where

57,y=

.i = 1

F .

S tyr = E
j = 1

= (yu— .}7i.)(xiJ
j = 1

S:„= E (x ij - 1 . .)2
1=1j = 1

(y&J— .f ..)2
= 1  j = 1

S:y = E (x ii
1= 1 J=1

ti o=s:i sih

I v,"
L L and

j =1

The fi rst four quantities are calculated using dat a from just a single site.
However, although the remaining expressions are of a similar type to the fi rst
four, they involve dat a from all of the sites. They are calculated by ignoring the
distinction of sites and using all of the data from all sites to give an 'overall'
quantity (o = overall).

Finally, let us defi ne

S  xe x = E  sxix
i = 1

S:y = E S y
i = 1

)(yu— ..)

n

=— E E y uN i_ y y=y  

These four expressions are of a similar type to S :x, S :y, etc ., in that they involve
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dat a from all of the sites. However , they do not ignore the identity of the sites
bu t give a combined quantity which allows certain diff erences that might exist
between the sites to be tak en into account (c = combined) .

If we were able to conclude that the hypothesis b 1  = b  2 = • • = b„ was
acceptable, then be would represent a sensible combined estimate of the
common slope. However, if. in addition , we were able to conclude that the
hypothesis a l = a2 = • • • = a„was acceptable, then bewould be a more sensible
combined estimate of the common slope.

O verall
regressio n

D iff erence in

posit ions

D iff erences in

slo pes

Residual

T ota l

Source Sum of squares Degrees of
f reedom

ti os°,

— (5;, —best )

E hes ,
i=

—E
1= 1

N —2n

STy N —

M ean square

( Sum of squ ares

Degrees of freedom )

A similar procedure may be applied to this analysis of variance table as to the
previous one. However, it is preferable to carry out the tests in the following
order :

for 100a % signifi cance tests

1 . accept the hypothesis b, = 62 = • • = b„whenever

Diff erence in slopes mean square
< F(n — 1, N —2n, 1 —

Residual mean square

2. if the hypothesis 61 = b2 = = 6, has been accepted, then accept the
hypothesis a l = a2 = = ; whenever

Diff erence in positions mean square
< F(n — 1, N —2n, 1 — a)

Residual mean square

3. if both hypotheses b 1  = 62 = = b„and a l = a2 = • • = a have been
accepted, then accept that there is no linear association between y and x
whenever

Overall regression mean square <
F(1, N —2n, 1 — a)

Residual mean square

For more complex comparisons, such as concurrency of regression lines, the
reader is referred to a more advanced text on regression analysis, such as
Williams (1959) or Seber ( 1977).
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1.3 .3 Observations wit h uneq ual p recision

One of the assumpt ions ment ioned in subsection 1.1.2 was tha t all of the y

va lues shou ld be measured with equ al precision, i.e. the fl uctuation o r
variability in each y value shou ld be the same . T his will no t a lways be t ru e fo r

hydro logica l data and met hods for detect ing whet her this is the case, which use
the data on ly, are given in Section 4.3.

By considering the type o f data be ing record ed , or by using the results o f
pr evious studies, it ma y be possible to re late the variance of a y va lue to the y

va lue itself . If it is possible, then the prob lem of unequ al precision may be
overcome by taking some tra nsfor ma tion of the y va lues as described in Section

3.3.
Occa sionally, the variances of the y va lues are kn own exactly. This will no t

usually happen when , for instance, y is run-off and x is ra infall. However , it

may occur when the ys are some statistics such as the slopes of a regression line
calculated on separate sets of data which are being related to some feature x

measured on each of the set s of data .
Our informa tion will then consist of the pa irs of point s (y 1, x 1), . . . , (y , x „)

together wit h the n varia nces of the y va lues, a ?, a;, . . . , a . The estimate in

equation (5) will still be an un biased estimate of the slope of the regressio n
line. H owever , und er these new a ssumptions, its va riance will be
(E 11= ol (x i —X)2)/ (Sxx)2 and this is larger tha n the variance of an a lternative

estimator,
sx";
S x x

where S„'„ and Sxwy are defi ned as follows :

where

and

Sr; = E wi(xi —
i=

S bx; = E wi(x i —
i = 1

(E
„ . .

1

.
wiy i) 1 ( E wi) ( E w. ;)/ (iE. , wi) and

i = 1 i = 1 i =

The co rrespo nd ing estimator of a is

ti = )7 —1).

The va ria nces of these new estimators are

Var (5) =  

1
Var (d) —  n +

W i "
i = 1

1
(7 2

(24)
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The 100(1 — a) % confi dence intervals for a and b would be

and

where

and

where

and

Yi. = ( 2 y u) I ri
J=1.

+4 (4 2)

a ± Z (a/2)

i = 1

i = 1

Var (8) = 1
Sr;

Srx

-

1

Z OO  I

1 - -=   e - " 2 duI_ .07 27c

(The use of the normal distribution rat her than the t distr ibution in these
calculations is a direct consequence of knowing the variances of the y values.)

If repeated observations are ava ilable, and if the y readings associated with
each value of x ;have variance 4 , then the estimates in equations (16) and (17)
will become

S WR
b =

xx

where Sr: and S 'xvyR are defi ned as follows :

SZ,R  = E x )
=

Sr:  = E

E wirix s) / ( E  win) and
i 1 i = 1

The variances of a and Bwill be

Var (a) = „

E
1

wit.191.) / ( i wit)
i=  i = 1

1

switE wit.;

WI = —0.2
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The analysis of variance table will become

Regression

Systemat ic depa rture from

regressio n line

Resid ua l

Tota l

Source

1.4 Alternatives to Least Squares

S um of  squares Degrees  of  f reedom

P S71'

— a  —  n — 2
i= 1

r i

E ivicy;, —.13 .)2  N — n
i=l j = 1

1= 1 j = 1

The methods of testing and the conclusions are similar to those described in

subsection 1.2.1.
As will be seen in Sect ion 3.3, it is a help to have repeated observation s in a

study where it is suspected that the variance of y may not remain constant .

Initially, it is stra ightforward to test whether the variance of y has remained

constant and then , if it has not , it is possible to allow for this even when the

variances Gq , a„2 are unknown. Estimates of these variances may be

obtained from

= (Yi• — .?1 j ,

and these may be used in the preceding theory to give estimates of a and  b.

However, inference from the confi dence intervals and the analysis of variance

table should be made with caution , particularly when any of r 1 , r2, r„ are

small.
Alternat ively, plotting  (it  aga inst x , may suggest that a rela tionship exists

between the variance of y and the variable x (e.g. (4 . = °cc; or = ax l) . If such a

relationship were, for instance, a? = ax i, then wi in equ ation (24) cou ld be

replaced by 1/(ax1) giving

h= ( 02, —9)(xi — -,z)) 1( f (xi— iz)2)
x; ) 1 V; si )

Otherwise, a transformation of y might be appropriate and this technique is

described in Sect ion 3.3.

1.4.1 Pencil and ruler

Anyone who attempts a regression analysis without plotting the data in some

form is asking for trouble. A plot of y against x on graph paper will reveal the

type of relationship that might exist between y and x . It will show whet her y
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increases or decreases with x and whether the relationship is linear or non-
linear . It will suggest how strong or weak the rela tionship might be and, indeed,
whether there is any relat ionship at all. It will show up points which are
obviously diff erent from the majority and it will indicate the range of y and x
over which the relationship has been investigated .

Why then do we not fi nish the j ob, draw a line down the middle of the data
and forget abou t mathematical formulae and calculations? The main reasons
are that least squares is a method which is impartial, gives repeatable results
and provides a framework for inference. Furthermore, if you genuinely believe
that the linear regression model is the appropriate one, then least squares is the
method which will give the 'best line' (i.e. the most precise estimates of a and b).
Imagine being faced with a plot of points ; there is frequently no nat ural
'middle' , no person would have much confi dence in someone else's straight line,
and who, in any case, could quantify the precision of their straight line?

Unfortunately, least squares estimation will not necessarily give 'the right
line' ; it is, at best , an intelligent guess. It relies on certain assumptions and ,
consequent ly, if these are not valid, then a critical assessment bv eve, which
discounts some points and gives greater weight to others, may give a stra ight
line which better suits the short term objectives that the experimenter has in
mind . However , in the long term, he will probably benefi t from investigating
the reasons why the least squares assumptions are invalid .

1.4 .2 Robust and d istr ibution free methods

Distribution free methods of estimation and testing occupy an intermediate
position between the pencil and ru ler method and the method of least squares
estimation . They do not require as many assumptions as the least squares
method but , nevertheless, they do allow inference, as well as estimation , to be
mad e on the slope parameter b. The assumptions usually required are that the
relationship between y and x is of the form described in equ ation (3) and that
the es are mutually independent and follow the same distribution .

A simple distribution free method of estimation is to take a pair of points,
say  (y „ x i)  and (y 1, x j), and to calculate the slope of the line joining these two
points, i.e. calculate

  =

This is repeated for all n(n —  1)/2 pair s of points to give n(n —  1)/2 separate
slopes,  b12, fi n , •. . 115,_ s„. Then, the numbers 612, 613, , 6„ _ are ar -
ranged in increasing order of magnitude to give an ordered sequence denoted
by b(, ) 8(2) 6 3 ) • • • 6 0 .9 where N =  n(n —  1)/2. The median of this
set of numbers (b,(N 0 / 2 ) if N is odd and W 7(N7 2 ) bo„12 if N is even) is then
taken as the estimate of the slope parameter, b.

To obtain an approximate 100(1 — ct) % confi dence interva l for b, the
following quantities are calculated :

nearest
in(n —l )(2n + 5) ))

r , = integer N — Z (a/2)
18to
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and

where Z (4 2) is defi ned in subsection  1.3.3.

The lower and upper limits o f the 100( 1 — a) %con fi dence in terva l for b are

taken to be b fr o and 60.2, respectively. This appr oximate procedur e is only va lid

for a rela tively large n. For an exact proced ure , the reader is refer red to

Holland er and Wo lfe  ( 1973), p. 207.

An alterna tive and ingenious met hod was developed by Daniels  (1954).  It is

based on the fact tha t y = a + bx may be written in the form a = y —.vband that

this equation ma y be regarded as a stra igh t line re lating a and b,with slo pe —

and intercep t y . T hu s, the set of read ings (y „ x 1), , (y„, x„) ma y be

represented as  n  lines (a = y i — x ,b), (a = y 2 —x 2b), . . . , (a = y„ —x b) which ,

in pictorial fo rm , might look like Figure  7.

Idea lly, we wou ld expect a ll the lines to intersect at one po int which wo uld

give us our estimates of a and b. Of course , this would only occur if all the

original points (y 1, x 1), . . , (y x „) happened to fall exact ly on a straight line .

We will usually have to cho ose some regio n in the 'middle' of the ma ss of

intersecting lines as containing our estimates o f a and b.

As is illustrat ed in Figure  7,  the pictur e will u sually consist of a set of closed

regions (nea r the midd le) and a set of open regions (a ro und the edge). A

convenien t score for any pa rt icular regio n is denoted by m and defi ned to be the

minimum number o f lines which have to be cro ssed to escape from tha t region

into the nearest op en region .

a

nearest

r 2 = integer -
21

N + Z (4 2)
\ I n(n — I )(2n + 5))

18
to

Fig. 7. Da ta po ints represented by a ser ies o f stra ight lines.
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Thus, if one region has the largest  in,  then it would seem reasonable to take  a
and  h as  being in that region . However, as this does not give us unique values of
a  and  b  and as it is not necessarily true that just one region will have the largest
m, it seems that a confi dence interval is the natura l outcome of this method of
estimation .

The 100(1 — a) %confi dence region for  a  and  h is  made up of all those regions
for which  m >  mo where the value of  mo  is calculated as follows:

for a = 0.05,

for a = 0.01,

where

nearest
m o — integer  i (n  — 3.0231 T)

to

nearest
= integer  i O — 3.562

to

These values of  mc,  are approximations for large ii. However, the for mer is not
misleading for  n >  12 and the latter for  n >  16 and , in bo th cases, when  n  is
below these limits, the exact value of  mc,  is zero . Alternatively, the exact value of
mo may be calculated by solving

co  4z 1
 e - (2r:+z)2/2a =  

r=0 \./ r

for mc, where z = (n — 2n/0)/ 1 ;i.
We may use this information to test hypotheses about  a  and  b.  For instance,

in order to test the hypothesis  a =  0,  h =  1, we check whether the region in
which this po int falls has been included in the 100(1 — a) %confi dence int erval.
If it has, then we accept the hypothesis that  a =  0, b  =  I ; if it has no t, then we
reject the hypothesis. This will give a 100a % signifi cance test.

A similar use may be mad e of the confi dence interval which was calculated by
the previous method . For a 100a % signifi cance test, we should accept the
hypothesis on  b  whenever the hypothesized value of  b  is included in the
1000 — a) % confi dence interval.

1.4.3 Bayesian methods

In this section on Bayesian methods, it will be more convenient to take the
model relat ing  y  and x in the form

y i = a + fi (x i — ei  (25)

_  1
x L x i

n

By compar ing this model with model (3), it will be seen that  a = a —  and
b = 13.  Using the same notation as before, the least squares estimates of a and )3
are

1 "
(26)n  1. 1
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and

and the variances of these estimates are Var (a )  = o' In and Var (fl ) . cr2IS , If

the assumptions described in subsection 1.1.2 are valid, then the estimates, a

and #, are independent .

Bayesian method s allow the use of information about a and # which is

additional to that provided by the data . Ideally, the information about a

should take the form of a distr ibution (called the prior distribution) which

would give the possible values of a and how likely they are to occur, i.e.

the prior distribu tion for a would be a summary of the state of knowledge

about a before the data in question were available. A similar distribution

should be available for 13.

For example, we might assume that the prior distribution for a is Normal

with mean p„ and variance c , i .e. our past experience suggests a tendency for a

to take values centred about pa with the variability about that point having the

characteristics of the Normal distr ibution. We might also assume that the prior

distribution for # is Normal, but with mean Pp and variance a ti .

An objective of a Bayesian analysis is to update the prior distributions by

including the information on a and fl con tained in the data. The resulting

distribution , the 'updated prior' , is called the posterior distribution and it

summarises all that is known about a and /3, including the information

contained in the data .
In our example, where Normal prior distr ibutions are assumed for a and 11,

the posterior distr ibutions are as follows:

for a,

for #,

n 1 n 1
0.2 + 2 6 2 ± 0. 2 /

n 1
p —

6 2 a o.a2

( 0- S
P fl ? 1

S (27)
Sx„

S x 1 S„ 1
+ 2 +  2

Crp

However, if we want to report only a single value for a, then d would be natural

to use the mean of the posterior distr ibution of a,

This is called the Bayes estimator of a and it is clearly just the weighted mean of
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the least squares estimate of a and the prior mean of a . Similar ly, the Bayes
estimator of  [3  is

1
11,3?

fl  
S 1

2 + 2

Complete prior ignorance about a parameter is usually expressed by using a
uniform prior distr ibution for that parameter. If uniform prior distributions
are assumed for a and  fi ,  then it follows that the posterior distribution for a is
N (a,  02/n) and the posterior distribution for /3 is  N(fi , o-2 IS xx).

Thus , if nothing is known about a and  #  prior to collecting the data , then the
Bayes estimators of a and /3 will correspond with the least squares estimates of a
and  13.

The Bayesian method has the potential to incorporate into the estima tion of
a and 16 all shades of opinion and knowledge which can be summarised in the
form of a prior distribution . However , it is more likely that our prior
knowledge will consist of several independent estimates of a and  13  which we
have previously derived from similar sets of data to our present set. Thus,
although we might be able to guess at the form of the distribution of these
estimates, we will probably be quite unable to describe it precisely and say that ,
for instance, it is Normal with a par ticular mean and a par ticular variance.

Empirical Bayes methods have been derived specifi cally to cope with this
problem. Suppose that , on  k  — 1 previous occasions in comparable
circumstances, data sets similar to the present one have been collected and ,
from each data set, estima tes of a and /3 have been derived. Denote these
estimates by a 1, . . _ and  fi , ,  From the present data , we
may calculate least squares estimates of a,  13  and  o-2  as given by (26), (27) and
(10). Denote these estimates by aik,  fi k  and 62, respectively.

Defi ne h2 to be the larger of

n \ 1/ 5 1
— (65— o) and
k J=1

and defi ne  lig  to be the larger of

where

Now, let

( / ) " 5  I /71 j E l ( fi f - Th2 and

k

and fl =-
k = 1

— Ft •
Cj =

— Ili
and  131= CA

j =
k2 k j 131= A

21113
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Then , an empirica l Bayes estimate of a is

6 2
E ((sin A J)I A J)2 + ((sin B Y B ) 2

j =
a

E ((sin M A) 2
./ = 1

and an empirica l Bayes estima te of /3 is

E ((sin C) / C) 2 +  ((s n DJ)/ D) 2
i =

6 2

fl k

((sin CJ)/ CJ)2
J =

F or further details of this method , the reade r is referred to the o rigina l pa per by

Clemmer and Kru tchk off (1968).

1.4.4 Linear function al re lationships

It has been emphasised tha t the linear regression model ( 1) essent ially assu med

tha t er ro r, rand om variation , etc . only aff ected the dependent variable, y . A

mo re genera l, and perha ps more rea listic, model might allow both y and x to be

rand om variables.
The functiona l relationship model assumes tha t a linear rela tionship would

exist between y and x , if y and x could have been recorded in idealised

circu mstances where no erro r wa s made.

Hence, the funct ional relationship model assumes

idea l y = a + b (ideal x )

However , the no rmal read ings tha t we are able to take of y and x are related to

the idealised ones by

and

y read ing = ideal y + e

x read ing = ideal x +

where e and 3 represent the er ro rs. Thu s, for our n pa irs of read ings,

(y 1, x 1), , (y„, x ), there will be an associated set of (unknown) error s,

(e 1, 31), . . . , (e„, 3„), and our mod el will be

(y ; — e1) = a + b(x ;— Si) (28)

We will also assu me that bo th the e and the 3 er ro rs are no rmally dist ribu ted

with varia nces cr,2; and 01,respect ively. Consequen tly, we are assuming tha t all y

observa tions are made with equal prec ision , and likewise for the x

observations .
Therefore , if we are stud ying a situa tion in which bo th y and x are subject to

er ror and model (1) is inappr opr ia te , then we might be obliged to use this

funct iona l relationship mo del. At fi rst sight , it might seem that it will a lways be
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better to use this model, particular ly as model ( 1) is just a special case of model
(28) with  Si =  0. However, in order to estimate  a  and  b  in model (28), more
information is required than that provided by the  n  pairs of readings alone.

The bare minimum of informat ion required is knowledge of either (a) a! ,
(b) 01or (c) the ratio  A  =  c i ao.

In each case,

However , in case (a) ,

, SYY
- (n —  1

Sxy

in ca se (b),

where

= .); —

-  xy  
s„„- (n —  Dal

(29)

(30)

and , in case (c),

(Sy,.  A2ku  (syy_ A 2s x y 4 A 2 ( s x y) 2

2S „y

If the numerat or of equation (29) is negative, then t ake = 0. If the
denomina tor of equation (30) is negative, then take  b =  a ) .

In case (c), a 100(1 — ) % confi dence interva l for  b  is given by

A tan ( tan  - 1 ( L3) I sin  [2t(n — 2, 1 — a/2)X ])A —2

(31)

22(S xxS — (S xy)2)x 2=
(n —2)[(Syy —A 2s n 2 4 A 2 ( s x y) 2 ]

In order to test the hypothesis  b =  bo (typically,  60  might be 1 or 0), it is
probably easiest to compute the above confi dence interval and then to check
whether 60  is included in this interval. If it is, then we accept the hypothesis
b = 60;  otherwise, we reject the hypothesis. This will provide a 100a %
signifi cance test .

The estimates of  b  given above are the maximum likelihood estimates
appropriate for the three diff erent situat ions. An alternat ive quick method of
estimation is as follows :

1. P lot  (y „  x 1), (y2, x2),  (y „, x„).
2. Divide the x axis into three parts so that approximately 1/3 of the

observed  x  va lues fall in each part. (Ensure that the fi rst and last group
contain an equal number which is as close to n/3 as possible.)

3. Compute the arithmetic means of the  x  and  y  values in the fi rst group
(denoted by .ki and 37 1 respectively) and the third group (denoted by 1 3

and 373, respectively).
4.  Estimate  b  by  b = ( j 3  - P 1 ) / ( 1 3  - 1 1) and estimate  a  by a = j7—
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A 100( 1 — a) % con fi dence interval for b may be formed altho ugh it requires

considerably more calculation . The following ta ble illustra tes the data after

being divided into thr ee grou ps .

DATA

Arithmetic mean

k  should be as near to  nI3  as possible and  m = n —2k.

Let us defi ne the following terms :

S -?x  = E  (x11- 11)2+ E ( x 2 i — 1 2 ) 2 E ( )C3i — 1 3 ) 2

i = 1 i = 1 i =

E  (x11- 1)(y11- .)71)+  E ( X 2 i 1 2 ) ( 3) 2 i .f 2 )s G

References

values values values values values values

X I I Y I 1 x 2 i Y 2 I x 3 I y31
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x I k Y l k X 2 m Y2m x 3k Y 3k

i =  1 i = 1

Group I Group 2 Group 3
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+ E ( )C31 1 3 ) ( y 3 i 9 3 )
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Chapter  2

M ULTIP LE LINEAR REGRESSIO N

2.1 Introduction

2.1.1 Problems for multiple linear regression analysis

An investigator may, for a variety of reasons, be interested in studying the
relat ionship between ra infall and run-off in a particular area . Given rainfall
and run-off records, he would probably fi nd linear regression methods helpful
in achieving his objectives. However , it would be foolish to suppose that, given
informat ion on ra infa ll only, he could hope to predict accura tely the resultant
run-off . Many other factors, some quantifi able, will infl uence the run-off in a
particular area. For instance, rainfall intensity and evapora tion may both
infl uence the resu lting run-off .

Thus, a rea listic dat a base would not just consist of run-off and rainfall
readings only; it would consist of readings on run-off (called the dependent
variable) and readings on as many features which are liable to influence run-off
(called the independent variables) as it is sensible to gather . It is to this type of
dat a base that the technique of multiple linear regression analysis may be
ap plied with profi t. Using multiple linear regression, it may be possible to
achieve objectives similar to those out lined in the sequence (a)—(g) given in
subsection 1.1.1 where, instead of only rainfa ll, we have a whole collection of
independent variab les. Once we progress from studying how one or two
variables infl uence a third , graphical techniques and visual assessment become
more diffi cult and we have to rely much more on mathematical models.
However , this does not mean that the outcome of a multiple regression analysis
cannot be questioned or assessed . A pplied common sense is even more vital in
checking for numerical blunders, invalid assumptions, etc . when interpreting
the outcome of a multiple regression analysis or considering unexpected
features of the data .

2. 1.2 Assumptions made in multiple linear regression

Multiple linear regression applies to problems in which records have been kept
of one variable,  y ,  the dependent variable, and several other variables
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x 1 , x2, . . . ,  xk,  the independent variables, and in which the objective requires

the relationship between the variable y and the variables x l, x2, . . . ,  xk to be

investigated . For any such record , the specifi c mathematical relationship

(model) assumed is

y = a + b ix i + b2x 2 + • • • + bkxk+ e (32)

where a, b 1, b2, . bkare constants and e is a variable. Thus, it is assumed that

y is linearly related to each of the independent variables and that each

independent variable has an additive eff ect on y . Therefore, at this stage, we are

assuming that x 1 , x2, . . . ,  xi, do not interact amongst themselves in their effect

on y . The variable e serves the same purpose as in the simple linear model

described in subsection 1.1.2 and identical assumptions are made on e in

multiple linear regression. Thus, under repeated identical condition s (that is,

when values of x „ x 2, . . . ,  x i, are kept constant), we expect the arithmetic mean

of values of e to be zero and we expect the variance of values of  e  to be the same,

whatever the constant values of x i , x 2, . . . , x k.

To carry out tests of signifi cance or to establish confi dence intervals, we will

need to assume that these values of e form a normal distribution and that all

values of e are independent .

2.1.3 Interpretat ion of the assumptions

The problem of deciding which is y and whieh is x is more well defi ned in the

multiple regression situat ion . Usually, we will want to assess the combined

eff ect of several variables on a single variab le. This may be to predict y when we

know x l, x2, . . . x i, or to decide which of x l , x2, ,  xk do, in fact , infl uence y ,

or we may simply want to summarise the data .

It is probably on ly in the latter case that there might be some doubt as to the

identity of y . The type of relationship being estimated again assumes that

x x2, ; xk are known or err or free, fi lling just the same role as x in

subsection 1.1.3. Indeed, if it proves impossible to decide which is y amongst

the variables measured , then this may indicate that multiple regression analysis

is inappropriate and that some other type of correlation analysis, or principal

components analysis, would be more suitable for the problem.

The assumptions about the variable e cannot be seen easily in terms of a

graph , mainly because the model (32) is a hyperplane in  (k +  1) dimensional

space. However, we can use the interpretation of the simple linear model given

in subsect ion 1.1.3 to explain this more complex situat ion. If we interpret

a + b 1x 1 + b2x 2 + • • + bkxk as being t he value of y that we expect to observe,

given the conditions or situat ion defi ned by the values of x 1, x 2, . . . , x k, and if

we interpret a + b ix , + b2x 2 + • • • + bkx k + e as being the value of y that we

actually observe, then the value of e, the diff erence between what we actually

observe and what we expect to observe, again represents the error or

inexplicable variat ion in y .

Thus, if we knew the values of a, b1,  b2, bk and, hence, we could plot a

graph of observed y aga inst y ideal = a + b  1x , + • • • + bkx kfor each record , then

we would have the situation illustra ted in Figure 8.

The vertical displacement of each point from the 450line represents the value
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Y Pdeal

Fig . 8. Plot of observed and idea l values of y .

of  e.  If we were able to observe repeatedly values of  y  all with the same yideal,
then we would obtain a vertical ar ray of points and there should be an equal
spread on either side of the line . Furthermore, if we were to repeat this
procedure at a diff erent value of y ideal then we should obtain a similar spread of
points (they should be neither more nor less widely scattered) . Also, these
points should form a normal distribution centred on the line.

The assumption of independence has the same interpretat ion as in
subsection 1.1.3.

2.1.4 What can be achieved by using multiple linear regression ?

The quick answer is 'everything that was achieved using simple linear
regression and a bit more' . Estimates of  a, bi , b2, . . bk may be derived ,
together with standard errors and confi dence intervals. However , in multiple
linea r regression , there is far more scope for tests of signifi cance and far more
need for them.

Typically, for a variable  x i,  we will be able to decide the following :

(1) Whether x , has an infl uence on  y .
(2) Whether , after allowing for the infl uence that other specifi ed variables

have on  y ,  the variable  x ; still gives some futher explanation of the way
in which  y  var ies.

As an example of this, let us suppose that

y =  run-off

x 1=  rainfall

x 2=  duration of ra infall
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Furthermore, suppose that , for the area being studied, when it ra ins, it rains at

a constant ra te. Then , we would have the relationship x = kx ,  where  k  is a

constant .
We would discover from our tests of signifi cance that rainfall and durat ion

of rainfall both infl uence run-off . However , when we know what the rainfall has

been, the duration of the rainfall will tell us nothing further about run-off , i .e. if

x 1 is known, then x2 is redundant. Realistic practical problems are rarely this

distinct, but we do have the potential to make this type of investigation in

multiple regression analysis.
Having summarised our data in terms of estimates of a , bp  b2, . . . ,-bk, we

may compare these estimates with similar estimates from other sets of dat a so

as to assess the similarity of the sets of data in terms of their relationship

between  y  and x l , x 2, . . , x k.

By substituting our estimates of a, b1, b 2, . . bk into model (32) (and

disregarding e), we may predict y for specifi ed values of x i , x 2, . . . , X . Having

predicted y values at observed values of x1, x2, . . . ,  xk, we may form the

'residuals' (the diff erences between the predicted y values and the observed y

values) just as for the simple linear model and for similar reasons.

2.2 The Basic Method

2.2.1 Fitting the model

The basic unit of data for this model will no longer be a pair of values of y

and  x ,  as in subsect ion 1.2.1, bu t  k +  1  numbers corresponding to values

of y , x „, x2, , x k. Hence, the whole data set will consist of n such basic unit s

and will be denoted by (y 1, x 11, x 21,  . . . , xki ), (y2, x 12, x22, . . . , xk2),

(y r, x 1r, x2„, xk„).

The model (32) would imply the relationship

y = a + b1x 11+ b2x 21+ + bkx k; + (for i = 1, 2, 6. . , n) (33)

for this set of data . However, just as it proved useful in simple linea r regression

to rewrite the model into the form of model (25), there are some advantages in

rewriting the model (33) into the form

Yi = 11 + Pi ( x l i i l ) /6 2 ( x 2 1 i 2 ) + • • • + fi kk t i - ei

where

1 c_n,
-)C2 i

n 1, 1
etc.

(34)

This is the form of model usually encountered in texts on multiple

regression . By comparing model (34) with model (33), we see that hi = fI (for

j = 1, 2, . . . ,  k)  and a = a - 81 1. /6 2 -1 2 - • • • - ll ki k •

Figure 9 illustrates how the model and data might look if plotted with  k =  2

and n 3. The shaded area represents the plane y = a + b 1x , + b2x 2, drawn

for y , x „ x 2> 0, and the large dots indicate the position of the points,

(Y 1, ) ( 1 15 x 2 1) , ( y 2 ) X i 2 , X 2 2 ) , (323,  x 13, xn ). Hence, the lengths e 1, e 2, 6.3

represent the vertical distance from each of these points to the plane.
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Our problem is that, although we know the position of the points, we do not
know the position of the plane; in other words, we do no t know a,  b, and  b2.
The method of least squares would lead us to choose those values of a, bl  and
b2  which minimise

3 3

5 2  = E
i=1
4 = E (y,—  a— bix,,— b2x2i)2

Once aga in, we are attempting to make the vertical discrepancy of the points
from the plane (regard less of sign) as small as possible.

In the general case of nobservations and  k  variables, we will want to choose
a,b1,  b2, . . ., bk  (or a, fi l , $2, . . .,  flk)  to minimise

S 2 -= E 4 = E (y,—  a —b1x 1,  — b2x 2i — — bkxki)2

Solvingas2/8«=0,as2lap,=0, . .
for the values of cx,  fi t )6'2,

Si , fi z, • fl d:

(yi X 1
i =

= E 0 11 a 131(x  1  ,Z1) /6 20 ( 21 fi k k kj ± k) ) 2
i =

1  02 i- 51)(X2i
i =

0,52/0fl k  = 0 giVes the following equ ations
4 3k  which minimise  S 2  (denoted by

n
E Yi = Yn i=

SI E (x 11— k 1)2 + 11,E CX — ) ( X 2i — 1 .2)
i = 1 i = 1

fi k E ()C 1 .10 k;
i =

= 1 E (x1 —
• ' 1) ( "t 2 i — .k 2) + B 2 E ( r 2i i 2 ) 2

i = I i =  I

• +  fi k E (X 2i  — 1 2) ( X 1a  -1 1‘ )

E j7)(x ki — i k) fi ,  E  oc 5E—,)(xkl— 10 + E O C21 — i 2)(xki —.k k)
i = I i = i =

• + il k O Ck i — 1 0 2
i =

Simplifi cations may be made to the presentat ion of this information by :
( 1) A representat ion using matrices.
(2) Use of the notation

Sxjy= E — ,9 (y1— ) (for  j =  1, 2, . .  k)
i= I

s„, = E  (x —1 ) ( 1 — i ) (for j = 1, 2, .  k  and  1=  1, 2, . . . ,  k )
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1 12

V2

Iy=a+bir l +1, 21 2

e3

Sxy = S„xji (35)

Thus , the estimates s,$2, ,  fi k are given by

fi = (36)

which , together with a = .)7, gives us estimates of a ll the pa ra meters in mod el
(34) . (S2 is the ma trix inverse of S„y.)

2.2.2 Estimates and their precision

If we assume tha t the varia nce of e, i s 0 -2 (for i = 1, 2, . . . , h), then it fo llows t ha t

o-2

Var (a ) ,

However, as the est imates of /3 /32, . . . , fi k are no t mu tually independent , the re
are k 2 d iff eren t variances and covariances associated with them. T hese are
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co nvenien tly d isplayed in
which 's denoted by

Var (P O Cov ($ /32) Cov ($1,133 )

C o li ( /3 1 ,  [3 2 ) Var (n2) .  Cov ($2,p3)

_Cov (a l ,  Bk) Coy (/2,A)

and referred to as V It may be shown tha t

Vs = u2S,72
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a matr ix, ca lled the variance covariance matrix,

Coy (PI,  Ski

Coy ($2,fik)

Var (fi k) —

(37)

Equation (37) requires knowledge of a 2 which , a s in simple linear regression ,
will be unk nown. However , also as in sim ple linear regression , we may estimate
ei by the ith residual.

671 = y i ( x l  P 2 ( x 2 i -* 2 ) — • • — fi k ( ) Ck i i k) (38)

It may easily be shown tha t E 7=1 = 0 and , consequen tly, the arithmetic mean
of the residuals is a lways zero . Hence , we ma y aga in base ou r est imate of a 2 on
R = E T= e?, called the residu al sum of squ ares. However , in this ca se, the
appropr iate d ivisor will be n —k — I as k + 1 degrees of freedom have been
'lost ' in estimating v,  8 B, 1 , 2 , • • • fl k •

a =  1  E (Yi — — i t)—/ 12 ( X 2 i 5E.2 ) — • — P k ( X ki -k k ) ) 2
n — k —1

1

Hence ,

[is st
n — k —1 " 1Y

—
2  •  2Y

where S . = 17=, (y1—.0 2.
To ca lculate Syy, S  and t may be easier to use the exp ressions

= —
n ) 2

S E y? ( i E y
i=1 i=1

Sxfy= E y ji —( V n
i= =  1 i = 1

(39)

(40)

1;
i=1

a lthough rema rk s made in Chapt er 1, a nd in pa rt icu lar in subsection 1.2.1,
concerning numerical accu racy, are equally pertinen t in this con text .

T hus , we now have suffi cient in formation to estimate the va ria nces and
covaria nces of Th , /32, . . . , fi k as well as the variance of az. It is usually mor e
informa tive to stud y the correlat ions than the covariances and these may easily
be derived by

Coy (Th , 81)
Correlation between and 13,

7 Var (Ai) Var (81)
(4 1)
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By assuming that  ei —  N(0, a 2) (for  i =  I, 2, . . . ,n), we may derive confi dence
intervals for the parameters a, )01, fik. In multiple regression, the residual

sum of squares follows o2 y.„2_k _ Consequently, — a)/7 62/n  t n_k_  and

Th )/Y Estimate of Var (fi j)  (n_k_ 1 where 'Estimate of Var (fi i)' is

obtained from the appropriate element of VB (given in equation (37)) after

substituting 62 (given in equation (39)) for  a' .
Hence, a 100(1 — a) % confi dence interva l for a is

t(n k — 1, 1 — a/ 2)7 62/n (42)

and individual 100(1 — a) % confi dence intervals for  /31, 02, • , fl k are given by

±  t(n —k — 1, 1 — a/2)i Estimate of Var (pi) (43)

Since fi k will almost always be correlated , there is some danger in

using these separate confi dence interva ls, particularly when the objective is to
fi nd some 'joint' confi dence region , for example, for fi t and )62. An assessment
of the correlation between piand fi 2 (see equation (41)) would be advisab le and

if it proves high, then it may be as well to consider using the joint confi dence
region . The 100(1 — a) % confi dence region for  1,  132,  lik is defi ned by those
values of /31, )32, , P k which satisfy

(fi Th 'S (fi —fi ) (k + 1)(12 F(k + 1, n —k 1, 1— a)

where

and (A' denotes the transpose of A)

2.2.3 Prediction

Having estimated the unknowns in model (34), we are in a position to predict a

value of  y  from knowledge of x l , x2, . . . , xk. If we have values for  x  1, x2, . . . , xk

and these are denoted by x 1 p , x 2 X k p , then we may predict  y  using

= + /31(x1,_ i) +$ 2 ( X 2 p - 1 2 ) + fi k( X kp (44)

To determine the variance of 9, let us defi ne X,, = Kx1p—fe,), (x2p— £2), .
(xk, — 101

t hen, the variance of fi is given by

Var (9) = o-2X,,,S2 (45)

The problem of considering what we are actually attempting to predict with fi
has been discussed for simple linear regression :The distinctions made there are
equally relevant in the context of multiple regression . The variance given in

equation (45) only represents our uncertainty about a, /11, , fi k and its use is

only appropriate when we are trying to predict the mean value of  y .  However,
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when we are trying to predict the outcome of a single reading, the variance
given in equat ion (45) should be increased to

+ a2X Sp x x p

the additional component, a 2, being for the error of the reading.
Corresponding 100(1 — a) confi dence intervals for the mean value or the

outcome of a single reading are

)3±  t(n  —k — I , 1 — a/2)7 62XpS;x' X;, (46)

and

fi  ± t(n —k —  1, 1 — a/2) \/ 62(1 +  X, S;; X )  (47)

respectively.
The confi dence region for the hyperplane

Y = + il l (x 1 — 1) + )612(x2 —12) + + fi k ( X k -

does not have any great practical merit, mainly because of the diffi culty of
visually displaying such a region.

2.3 Signifi cance Tests and the 'Best' Equation

2.3.1 General linear hypothesis

A variety of signifi cance tests are available for studying various features of the
model (34). We deal here with these tests in isolation and later on will explain
how combination s of such tests may be used, for instance, to decide which is the
'best' equation.

Many tests can be constructed from one basic result which is, somewhat
ambiguously, referred to as the general linear hypothesis . A hypothesis about
the parameters in model (34) might , for instance, sta te that /31, 133, I?, and fi 9 are
all zero (i.e. variables x i, x3, x 7 and x9 are of no importance in model (34)).
Thus, a genera l linear hypothesis might take a form which exactly specifi es the
values of  p  of the parameters in model (34).

Imagine modifying equation (34) to take account of the information
contained in the hypothesis (in the above example, this wou ld mean omitting
variables x 1 , x 3, x , and x9 from the equation) and performing the necessary
ca lculations to ar rive at the residuals (given by equation (38)) associated with
this new (smaller) model. Suppose that the sum of squares of these residuals is
formed (denoted by RH). Then, this quantity will be reasonably close to (but
larger than) the residual sum of squares calculated using the full model
(denoted by R) whenever the hypothesis is acceptable. In fact , it may be shown
that

( RH R 1(  R  

k — 1) F k -
(48)

whenever the hypothesis (assumed in calculating RH) is valid.
Thus, in our example, R H would be the residual sum of squares obtained by

omitting variables x  1 , x3, x 7 and x9 from equation (34). Acceptance of the
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hypo thesis /3,  = $3= /32 = fl 9 = 0 when ever  [(RH— R)14]1[R1(n — k —  I)] <
F (4 ,  n —  1, I — a) would pro vide a 100a % sign ifi cance test of this
hypothesis .

In its most general form, a 'genera l linear hypo thesis' will impose p
functionally ind ependent constraints on the pa rameters a , )61, $ 2 , . fi k. T he
result given by equation (48) will still apply, even in this very gene ra l con text .
Thu s, a hypothesis of the form = /12 (wh ich implies 111 —192 =  0) would fi t
wit hin this framework and might well be in formative if x 1 and x 2 were
measuring similar qu antities. R H would be ca lculated by using the model

Yi = a + (xi' - ±i) +  Si (x2i - ±-2) + fl 3(x3i - + • • • + fi k k k i ei

= + fl 1  R x  1 i x 2 i ) 1 + i 2 ) ] fl 3 ( ) C 3 i - 1 3 ) + /31( ( x k1 ei

= a  + I(ui —a)+ 113(x3,— i 3) + +fik(xu —:,?1,) + e;

where  u1=  x ki + x 2;and 6 = (11n) l it , Ui.  For a 100a % signifi cance test , the
hypo thesis = /32 would be accep ted when ever (RH — R)I [R1(n — k
F(1, n — k —  1, 1 — a).

2.3.2 Init ia l signifi cance tests

Having estimated all of the pa rameters in model (34), the most pertinent
question might be ' Is there any evid ence of a rela tionship between the y variable
and any of the x variables I have used' ? or , in other word s, V an I pred ict y with
any success, from the x variables I have used ?'

This question is equiva lent to considering a hypothesis fl , = /32 = • • =
fl k = 0 and , if this hypot hesis were tru e, then mod el (34) would reduce to the
simple form y ; = a + e,. The residual sum of squ ares resulting from such a
mod el would be RI; = E7=1(y , —37)2, since a =

Then , equation (48) would lead us to accept the hypo thesis /31 = = • • • -
/Ik = 0 whenever

R \

)/

I(

—

R  ) < F(k , n — k — 1, 1  — a)

k —  1

for a 100a % signifi ca nce test .
This procedu re is usually displayed in the form of an analysis of va riance

table .

Source Sum  of  squares Degrees  of

f reedom

Regressio n

Resid ua l

Tota l

.3,),IL=R„ — R
.i=1

S yy  - E Sxiyfi i = R
.i= I

E (y,- .02=
i= I

Sum of squa res
n — k —  I ( —  

Degrees of freedom

n —  I

M ean square

4 1
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The ratio

Regression mean square

Residual mean square

gives the same test stat istic as that previously mentioned for testing the
hypothesis  16  = 0 2 = • • • = jek = 0. The quantity

egression sum of squares

Total sum of squares

is called the multiple correlation coeffi cient between y and x 1 , x2, . , X  and it
takes values between 0 and 1. At one extreme , if all the residuals (38) were zero
and, consequent ly, R was zero (i.e . the model managed to predict all the
observations exact ly), then the multiple correlation coeffi cient would be 1. At
the other extreme, if the model predicted each observation as being t7 and ,
therefore, totally disregarded any con tribution which might be made by
x l , x2, . . ., x ,„ then R would be equal to R H and the multiple correlation
coeffi cient would be zero . Thus, the multiple correlation coeffi cient takes values
between 0 and 1, a value near 1 indicating strong association (correlation)
between y and x  1, x 2, . . . , xk  and a value near 0 suggesting little associa tion
(correlation) between y and x l, x2, . . ., .xk (or , at least , their observed values).

The next step in our analysis would probably be to enquire into the
ind ividua l eff ect of each of the x variables on the y variable. The hypothesis
/31 = 0 would appear to consider the eff ect of x1  on y , but if we test this
hypothesis using the results of the general linear hypothesis (Section 2.3.1),
then it takes on a special meaning. We will, in fact, be compar ing the model

Y i = l + fl i ( X 1 / 12 ( X 2i i 2 )  + • • +  )6 1,( x k i -1 k) ei

with the model

= + fl 2(x2; - + • • + fl k(xki +ei

and , consequently, our test will be telling us how much better our model would
be by including the term )3i (x  1; — .i 1)  as well as all the other terms already in the
model. In other words, it will give us some idea of the additional informa tion
that x , can provide about y over and above that already provided by
X 2 , X 3 , . . .  X k .

Thus, if we calculate the residual sum of squares R H omitting the variable x 1
from our model (34), then a 100a % signifi cance test for /3, = 0 would accept

= 0 whenever (R H—R )1[121(n —k — 1)] < F(1, n —k — 1, 1 —a).
However, we also know, from Subsection 2.2.2, that

P1- P,
Estimate of Var )

and , hence, a 100a % signifi cance test for /31 = 0 would accept [31 = 0 whenever

Pi
< t(n —k —1, 1- 4 2)

/ Estimate of Var )
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which is equivalent to checking whether = 0 falls in the confi dence interva l

(43). (See equation (43) for the source of / Estimate of Var (/31).)
These two test procedures are, in fact , identical ; the square of the latter test

stat istic gives the former and it is well known that F(1, n —k —  1) =

Therefore, it is important to note that both procedures are assessing the
additional information supplied by x 1 over and above that alread y provided by
x 2, . . . , X .  Hence, in a situat ion in which  x 1 has a strong eff ect on  y ,  bu t it is also
correlated with, say, x2 and x5, which in turn have a strong eff ect on  y ,  it is quite
likely that we would accept fl i = 0 from the preceding test . This would simply
be because x 1 provided no additional information about  y  after the

information provided by x2 and x5 had been taken into account . To assess the
eff ect of x 1 alone on  y ,  a simple linear regression of  y  on x 1, as described in
Chapter 1, would be appropriate.

2.3.3 Selection of variables—the 'best' equ ation

In the previous subsection, an example was given where  x 1  supplied no further
information above that already provided by x2 and x5. However , we might also
have concluded that x2 supplied no further information above that already

provided by x1 and x5. This would clear ly be true in the trivial case of x 1 = x2.
What should we do ? Should we either include x1 and exclude x2 or vice

versa, or should we include both  x i  and x2? In what order should we start to
assess the relative importance of our variables and, furthermore, is that order
crucial ? As has previously been the case, our answer partly depends on what we
want to fi nd out and on what purpose we have in mind for the regression
equation .

If, in fact , the requirement is to fi nd which of x 1 , x2, , xk are associated
with  y ,  then a simple linear regression analysis of  y  on each of the x variables in
turn will provide the answer . However, if the requirement is to predict  y  from

available information in the form of x l , x2, , xk, none of which are
par ticularly costly to observe, then there is little harm in leaving most of the
variables in the model. Some reduction might be made by using the technique

described at the end of the subsection on initial signifi cance tests (2.3.2), but
whenever a circular confl ict ar ises amongst a group of  x  variables, all should be

left in the model. Occasionally it may be appropriate to quote several diff erent
models. When the requirement is to 'understand' what infl uences  y  or to predict
y using only the 'signifi cant'  x  var iables, some more elaborate method s of

selecting variables must be used. Severa l such methods are available and some
of these are out lined in the following subsections.

2.3.4 All possible regressions

If we only require an idea of the 'best' regression equation and un limited

computer time is available, then computing all 2" possible regression equat ions
(either including  x 1 or not, either including x2 or not , etc.) will give a good basis

from which to decide. If the multiple correlation coeffi cient is calculated for

each regression and the resulting 2k such coeffi cient s are ar ranged in order of
magnitude, then examination of those regression equations that are associated
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with high mul t iple correlation values should give an idea of the most important
factors.

2.3.5 Forward selection

For moderately large k, the 'all possible regressions' method is ext remely
expensive in computer time. As a cheaper alternat ive, ' forward selection' aims
at ignor ing equations which are likely to give small mul tiple correlations.

Step 1 is to perfor m thek simple linear regressions of y on .vi ,  y  on x2, . . . ,y
on .t k, as described in Subsection 1.2.2. T he test statistic for b = 0,

f al ( E (xi _ s,)2)
i =

is calculated for each regression and the  x  variable which gives the largest of
these values is selected for inclusion in the 'best' equation, provided that its test
stat istic is signifi cant at a specifi ed level. As an example, suppose that this
variable is xk.

Step 2 is to compute the partial correlation coeffi cients between  y  and each
of the variables not yet included in the 'best' equation, conditional on the
variable already included in the best equation. In our example, these would be
calculated by

— r y.,41-xix4
(49)

( 1 — r2 )( I —r .2, isk)

where .vk is the variable included in the 'best' equation. The ordinary product
moment cor relation coeffi cients  r r and  rvxj  are

Sx„ .

‘ / SxixiSx„ „
and

sx,„
,./s).)Asx,„

respectively. A n interpretation of the part ial correlation coeffi cient is that
it measures the correlation between  y  and  xi  after both  y  and xj have been
cor rected for the eff ect that .vk may have had on them. Thus,  r will give an
indication of the further contribution which xi would make in predicting  y  if it
was included in the 'best' equation together with x.k. The variable with the
largest absolute value for its partial correlati on is selected for inclusion in the
'best' equation. For our example, suppose that this is variable xi, _1.

Step 3 is to fi t the 'best' equation as it is so far and, then, to test the j oint
signifi cance of all the variables included in the equation and the individual
signifi cance of the most recently included variable. If it is concluded from the
fi rst test that the model is of some value and, furthermore, from the second test,
that the addi tion of the most recently included variable is of value in the model,
then the procedure advances to step 4. However, if , from the second test , it is
concluded that the most recently included variable is not of value in the model,
then the procedure would stop here and the 'best' equation would be taken to
be the present equation omitting the most recently included variable.
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Thus, in our example, the model would be

Yi = a + ilk - CI & - 1.i — 1) ± fl k(-vki — -F e;

and we would use the procedure described in Subsection 2.2.2 to estimate a ,
flk_ and flk• Then, using initia l signifi cance tests (2.3.2), we would try
separately the hypotheses fi k _ = fi k= 0 and /3k _ 1 = 0. Rejection of the fi rst
hypo thesis would suggest that the model was of some value and rejection of the
second hypothesis, as well as the fi rst , would suggest that the addition of xk _
was of value in the model (as well as .rk). However, acceptance of the second
hypothesis would lead us to stop at this point and to sta te that the 'best'
equation had been obtained by using xi, alone, i.e. the 'best' model had been
given by the simple linear regression of y on x k.

Step 4, which is similar to step 2, is to calculate new partial correlation
coeffi cients between y and each of the variables not yet included in the best
equation , conditional on the variables alread y included in the best equation . In
general, to calculate the partial correlation coeffi cients of y and x i, x2, . . . ,
conditional on x p,  .5 +2, . . . , ,rk,  the matrix

A p y p y S Ai r

• x l y s A i x i
Sx,„ , xixp+1 Sy m

Sspy  S q Sxpxo Sxpxpt I Sxpx,
' r

SA.p+,,, Si p+ lx, S c p , 0 . p 5 1, p +  1.,,p , I

S x kY

is partitioned as shown and the four regions are denoted by

E ' E 2

•2-i1).-}-±j2-2-[
Note that the variables not yet included in the model are used to form E l l and
those alread y included in the model are used to form E 2 2 . The corrected sums
of cross product s between these two sets of variables occupy

E 2 I = E 'l 2 Then,
E 1 1. 2 is coMputed by

E l 1 . 2 = E l I —E l 2 E 2- 21 E 2 1

This will be a symmetric (p + 1) x (p + 1) matrix whose elements are denoted,
for the sake of brevity, by

aoo

ao

a0 2

ao,

a 1 I

a 12

,

a 0 2

a 2

a 2 2

a —Op

a lp

a2 p

_aop alp a2p a

S x p I A k
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The partial correla tion coeffi cient of  y  and  x i,  conditional on xp +1,

x p+2, . . ., xk,  is denoted by and is given by

acoaii

It represents the correlat ion between  y  and  x i after both have been corrected for

the eff ects of  x r,±1, xp+2, . . ., xk.  The variable with the largest partial

correlation is now included in the 'best' equation .
Thus, in our example, we would calculate new par tial correlat ion coeffi cients

between  y  and each of  x l , x 2, . . . , xk_ 2 , conditional on xk _ l and  xk.  The

variable with the largest absolute value for its par tial correlation coeffi cient

would then be included in the 'best' equation . Suppose that this variable is

X k - V

The next stage in the procedure is to go back to Step 3 with the additional

variable included in the 'best' equation. In our example, this will mean that we

would have to estima te /3k _2, _ 1 , 13k and a and then test separately the hy-

potheses  8k - 2 = S k - 1 = fi k=  0 and  /3k- 2= 0 , If these tests suggested that xk _2

was of value in the model (as well as xk and xk), then we would again proceed

to Step 4. Otherwise, we would stop with the 'best' model using only the
variables xk and  xk_  1.

This procedure will cycle around Steps 3 and 4 until eventually it stops in

Step 3 with a 'best' set of variables. The model estimated at the previou s

execution of Step 3 will be the 'best' equation .

2.3.6 Backward selection

This method is simpler to explain as it does not require calculation of partial

correlation coeffi cients.
Step 1 is to fi t the full regression equation with all variables included.

Step 2 is to perform the initial signifi cance tests (Subsection 2.3.2) for each

variable, i.e. to test /31 = 0, then fl 2 = 0, then / 13 = 0, etc . by computing

P, (for  i =  1, 2, . . . ,  k)
/ Estimate of Var

If the smallest of these  k  quantities is less than  t(n — k —1,  1 — a/2), then the

relevant variable is omit ted from the equation . If not, then the equ ation as it

stands is used as the 'best ' equation . (It is, of course, necessary to fi x on a value

of a, preferably before starting the whole procedure .)
If a variable has been omitted in Step 2, then the procedu re is to return to

Step 1 with the variable omit ted. The procedure is then to cycle around Steps 1

and 2 until a 'best' equation is eventually reached in Step 2.

2.3.7 Stepwise regression

Forward selection suff ers from never being able to drop a variable once it has

been included into the 'best' equation . Backward selection starts with all the

variables in the equation and , consequently, is susceptible to rounding error s
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which may ar ise from inverting large matrices. A compromise between these
two methods would be one which performed forward select ion with a
'backward' look at each stage. Stepwise regression is such a method .

Stepwise regression follows the sequence of steps outlined in forward
selection except that , in Step 3, each of the regression coeffi cients of each of the
variables included so far in the 'best' equation is tested and , for those not
signifi cantly diff erent from zero, the corresponding variables are dropped from
the 'best' equation . Thus, in our example, in the fi rst pass through Step 3, we
would not only test fi k _1 = 0, but  fl k =  0 as well. If either of these hypotheses
were accepted, then the corresponding variable would be dropped from the
'best' equation .

2.4 Extensions to the Basic Method

2.4.1 Fitting and compar ing several regression lines

The comparisons suggested here are a direct extension of those discussed in
Subsection 1.3.2, the diff erence here being that , instead of having readings on
only one x variable, we have readings on  k x  variables. Thus, if there are  n  sites
from which we have collected data, then the data from site i will consist of  r  sets
of  (k + 1)  values and will be denoted by  (y u, x 1u, x 2u, . . . , x ku)  (for
j =  I , 2, . . . ,  r1).

Our model for the data from site i will be

-= + i(x ii; — . ) + M i(X2ij - ± • ' • + fi kA kij - eu  (50)

Estimates of ao fl u , . . . , Ski may be derived by applying the basic method
described in Section 2.2 to each site' s data in turn . The sums of squares and
cross products thus defi ned (Subsection 2.2.1) receive an extra suffi x to indicate
that they relate to the data from site i, i.e. they are denoted by Sx' and Sx'd,„. A
separate estimate for (72 (see equation (39)) will be available from each site,
namely

1
CTi =

k 1[S jYY aus ix ]
(51)

for site i.
To compare estimates of a 2 derived from the diff erent sites, we may formally

test af = cr = • • • = 0; 12 by calculating the test sta tistic

E (ri — k — 1)61
=  

M = (N — (k +  1)n) loge E (ri — k —1)  loge if;
_  IV — (k + 1)n 1=1

where  N = ri. As in the analogous test presented earlier in Subsection

1.3.2, a m a%signifi cance test on c f. =  cr; = • • • = c)- ,  would be to accep t this
hypothesis whenever

M < x2(n — 1, 1 — a)

If we are able to accept this hypothesis, then we may safely proceed to tests on
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the similarity of the regression lines from the  n  sites. For this, we need some
further notation . For site  i,  we have already defi ned

( X . )

m = 1

where

ri „f Yi.
_s_

In addition , for the data combined over all the sites, we will defi ne

where

= Y' N  1=1 , HP'

Sx' jci = (,
m=1

m = 1

and

(X Jim— (cc- . .) (y i„, — .)
t = m = 1

= ,
1=1m = 1

i = 1 m = 1

and

) ( x  l i m

1'1 „,=

1 "
=NE L xi.— 1 m = 1 i m

These latter quantit es are sums of squares, sums of cross products and
regression coeffi cients which are derived by supposing that all the sites data
were pooled into one large set and using the basic method described in Sect ion
2.2. Thus, if we are able to conclude that the regression lines from the  n  sites are
similar , then the best summary of the relationship between  y  and  x  1, x 2, , xk
would probably be provided by the overall estimated regression line,

9 11 = 6(0 +  M O ( I M ( x 2 1 . . ) + M ( -t k ij k . )

where &= 9 .
However, we may conclude that, although the regression coeffi cients

u , fl 2 . . . . . fl k i do no t diff er from site to site, the position parameters ; do. To
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assess this , and a lso to give an estimate of the appro pr iate regression line , we
will defi ne

S iy =  S ix j y

i = 1

Slevjx , = S ixj x ,

i = I

S e = S i

i = 1

The quantities /31, fi c2,  13;;  will be given by

P C

Source

Overall regression

Diff erence in posit ions

Diff erence in regressions

Residual

Total

5C 5,̀,,,„

S

S

-

The appro pr iate regressio n line fo r site i wo uld be

= .)7i.+ 11 (x iii —j 11.) + Sc2(x 211- -k2i.) + + fi axku—)Zki .)

Notice tha t the regression coeffi cients are the sa me for each site bu t tha t the
po sitio n pa ra meter varies from site to site .

Sum  of  squares

E
j = 1

msff„)
1 = 1

1 .= 1n  k

E  
j I j = 1

n  k

E E
i = I j = 1

0

)c

S ff v 2Y

Degrees  of  ,f reedom

(n —  1)k

N — (k +  1)n

N —  1

This ana lysis of va ria nce table gives the sa me type of informa tion as the one in
Subsection 1.3.2 and , as previously , it is preferable to carry out the tests in the
following ord er :

for 100a % sign ifi ca nce te ts

(1) accep t the hypo thesisfi i , =  p = = j„  (for j = 1, 2, . . . ,  k )  whenever

Diff erence in regressions mea n square

Residu al mean squa re

IF( (n —  1 )k , N — (k + 1)n, I —
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(2) if the above has been accepted, then accept a l = a2 = • • • = an whenever

Diff erence in positions mean square
< F(n —1,  N —(k + 1)n, 1—a)

Residual mean square

if both the above hypotheses have been accepted, then accept that there
is no linear associa tion between y and x1, x2, . . . ,  xkwhenever

Overall regression mean square
< F(k , N — (k + 1)n, 1 —

Residual mean square

(3)

In each case,

Sum of squares
Mean square —

Degrees of freedom

2.4.2 Observat ions with unequal precision

We con sidered ear lier (Subsection 1.3.3) the problem of observation s with
unequal precision where readings on only one x variable were available. In this
subsection, we will assume that our information consists of n sets of readings of
y , x „  x2, . . . ,  xk, denoted by (y 1,  x 11, ,x 12, (y2, x21, x 22, . . . , x2k),
(y , xn1, x„2, x „k), together with n variances of the ys, a t , 61 , . .

The estimates given by equation (36) will still provide unbiased estimates of
the regression parameters fi l, $2, /3k ;  however, as in Subsection 1.3.3,
alternat ive estimators with smaller variance are available.

Suppose that we re-defi ne

where

Sxfy= E  wi(xJ; — - 37)
= 1

sx), = E wi(xj; — .9 (x11 —
i= 1

1

E  wpcjg E E wo,i)/( E  wi) and iv, =
= 1 i 07

Then , we have i = ,f and least squares estimates for /3, , 13 „ . (3„are given by
equation (36) with S, i, and S defi ned as above. Similarly, the variance

covaria nce matrix is given by eq ua tion (37) wit h  cr2  omit ted .
Thus , the 100( 1 — a) 7„ confi dence interval for  13, would be

/1,± Z (a/2) 7 Var (A )

It is unlikely in practice that repeated values of  y would be available with fi xed
values of all the variables x2, . . . ,  xk and, consequently, the n variances of
the ys, af, a,t , could not normally be estimated. Hence, no further
discussion of this topic is given here.
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2.4.3 Missing observations

The method of estimation described in Sect ion 2.2 relies on there being
available  n  complete sets of  (k +  1)  numbers  (y , x 1,  x2, . . . ,  xk). When , for some
reason, a value for one of the  x  variables is not available in one of these sets, the
method of estimation as described is no longer applicable. As this problem
ar ises frequently, many attempts have been made at providing a solution which
takes the form of a simple mod ifi cation to the least squares method .

However , no one particular solution appears to be the best in all situations.
The basic solution, with which most others are compared, is to discard all sets
of observations which are not complete and then to apply the usual least
squares method to the remaining data . Two of the simpler rival solutions are as
follows:

Use the mean value of the ava ilable observations of the variable in place
of the missing value.
Select an x variable highly correlated with the variable which has the
missing value. With complete data , perform a simple linear regression
(as described in Sect ion 1.2) between these two variables and use the
resulting equation to predict the missing value.

It is said that solution (i) is good when nsing data with small correlat ions, the
basic solution is good when moderate correlat ions are present and solution (ii)
is best for highly correlated data . Each of the methods described can be used
when several values are missing, simply by repeated application . The basic
solution tends to be best when rela tively few values are missing .

i

(ii)

2.5 Special Models

2.5.1 Univariate polynomial models

Chapter I dealt with the problem of fi tting a straight line; iti contrast , this
section will consider the problem of fi tting a curve. If the model  y = a + bx  is
found to be inadequate in describing the relationship between  y  and  x ,  then a
natura l extension , which introduces some curvature, would be to consider the
quadrat ic model  y = a + bx + ex 2.  If a plot of  y  against x reveals two turning
points, then a model  y = a + bx + cx2  +  dx 3  might be appropriate. In genera l,
the polynomial model

y = a + blx +  b2x2 + • • + bkxk (52)

is a model to be considered as an alternative to a straight line model (which is, in
any case, only model (52) with  k =  1).

With the usual set of data (y 1,  x 1),  (y2, x2),  . . . ,  (y „, x„),  then model (52)
would imply a relationship

y i = a + blx i+ b2x ? + • • + bk4 +  e; (53)

By comparing this with model (33), it is evident that when x 11 =  x i, x 2; =  x ?,
= 4 ,etc., the two models are identical . Hence, to fi t a polynomial of degree

k,  it is possible to use all the techniques of multiple regression taking  x 1= x ,
x2  = x2, . . . ,  xk =  xk.  Rewriting the equation (34) presents no special problems,
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Fig. 10. Inappropriate data for fi tt ing a quadratic model.

,,?1  being the mean of the  x  values, i 2 the mean of the squares of the x values,
etc. Estimates of the po lynomial coeffi cient s 61, b2,  bk  (which equal
$ 1, /3k) are given by equation (36).

Some diffi culty may arise in determining S 2 when  k  is particularly large or
when the  x  values are spread in such a way that it would be diffi cult to envisage
drawing a unique polynomial of that degree through those point s. For
instance, if  k  =  2 (i.e. a quad ratic is being fi tted) and x „ x2, . . . ,  x„ consist of  n i
values of —1and n — n1 values of + 1, then a graph of the data would be similar
to Figure 10.

One might be convinced by the a rgument that the best straight line should be
that which passes through the mean of the  y  values at x = —1 and the mean of
the  y  values at  x = + I . However, there is an infi nity of quadra tics which would
pass through these two points. This is refl ected in equation (36) by Sxx  being
singular and , consequently, Scx' not existing.

Numerical problems in actua lly fi nd ing S2 arise when Sxx  is almost
singular . Such a situation might have ar isen if, in the previous example, one
fu rther y  value had been availab le at x = 1.000 000 001. The eff ect of this
additional information on Figure 10 is a fair refl ection on the small movement
Sxx would make from singularity. As most numerical routines for matrix
inversion are not 100 % effi cient, there may be practical problems in
determining Sk-xl.

Because b l, b2,  bk are associated with successively higher powers of x, a
more natural order to the tests of signifi cance is now available. For instance,
investigating whether it was in fact necessary to fi t a polynomial of order  k
ra the r than one of order  (k —1) would be a natural fi rst step to take. This
would be achieved by testing fl = 0, as described in the second of the initial
signifi cance tests of Subsection 2.3.2. Kit proved possible to accept ( I k = 0, then
the next step might be to refi t the model with the .7Ck term omitted and to test
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fi k = 0, and so on. Eventually, when the hypothesis /3, = 0 has been rejected ,
a satisfactory order of polynomial would have been reached and it would have
order s.

Depending on the problem, there might be some value in considering the
coeffi cients of the lower order terms in the model by refi tting the model as

y i = a + b + b2.s ? + + bsx ; + et

and testing each of b 1 = 0, b2 = 0, . . . , bs = 0 sepa rately, using the second
test procedure of Subsection 2.3.2. However , usually one wants to discover the
minimum order of polynomial that it is necessary to fi t and then to predict y as

accura tely as possible using that order of po lynomial.
There is some advantage in using a set of orthogonal polynomials to rewrite

the model (52). This was par ticularly useful when the only available calculating
aid was a desk calculator as the need to invert a k x k matrix (S„x) is eliminated .
However, with the availability of programma ble digital computers nowadays,
this advantage is less crucial.

By defi ning P,.(x i) as an rth order polynomial in .x„ the model (53) may be
rewrit ten as

Yi = y 0 P 0 ( x i ) y l P 1(x ,) + 2P 2(x 1) + + k(xi) + ei (54)

L Pk(x d P0(-11)

•

PIA-0 1' 10 0

•

[Pi(x1)12
i 1=1 1=1

E  .v,Pk(xi)
i = 1

) 3

However , if it were possible to ar range for

E P (x ) 1' s(x 1) = 0 (for r ,s = 0, 1, 2, k and r s) (55)
i=I

then we would immediately have

E

•

JP Ax 1)

I  (for r = 0, 1, 2, . . . , )

E [Procm2
i = 1

When the restrictions (55) hold for the polynomials P0(x ), P 1(x ), . . . , Pk(x ),

they are referred to as orthogonal polynomials. These restrictions enable the
coeffi cients in the polynomials to be calculated in terms of x l , x2, , x„. Using
a set of orthogonal polynomials was particularly valuable in precomputer days
as it avoided the inversion of a large matrix . However, even nowadays it is
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ad vantageous to use orthogona l polynomials so as to avoid problems of
num erical instability when invert ing large, almost singular , matrices.

When the xs are equally spaced and thus x i = a + ib, the problem is
simplifi ed by transforming x on to a unit interva l scale using

.x, —
X , =  (56)

where

_ 1 " ( n + 1)
b.x , — z i = a +

n 2

Hence, the values X l , X . . . , X „become  —1(n —  1), -- i (n — 3), . . . , j (n — 3),
(n —1) . Rewriting model (54) using the transformed X gives

Yi = or00 0(X ) + ; 0 1(n + • • • + akokk(X ) +

where

E opoosai), 0 (for r, s = 0, 1, 2, . . . , k and r s) (57)
i=1

Since all problems with equally spaced x values will have the same X values (X ;
will always be i — [(n + 1)/2], it is possible to establish 0 ,.(X 1) suitable for all
such problems. The fi rst six orthogonal po lynomials are

490(x)=1
0,(x), A1X
0 2( X ) = 2 2,1(X 2 —T17.0 12 — 1))

0 3(X ) = 23 (X 3 —2i ,-(3n2 —7)X )

04(X ) = Aan(X 4 1.(3n2 13)X 2+ th (n2 — 1)(n2 —9))
05(X) = 25 (X 5 — —155(n2 —7)X 3 + 1± 28(

and
02,.(- X ) = 0 2,.(A' )

15n4 —  230n2 + 407)x )
0 6 ( x ) )16 n( A7 6 _ 454 ( 3 n 2 31)X4 1,176(50 110n2 + 329)X2

14 74(n2
) (n 2 9)(n2 25))

Furthermore, for positive values of X , tables of the values of these polynomials
are available (Pearson and Hartley (1972)). For negative values of X , the
following relationship enables the values of the polynomials to be calculated
easily:

(P 2 r 1( — X ) = —0 2r_ 1 ( X ) (for r = 1, 2, 3, . . .)

The restrictions (57) defi ne the polynomial Or(X ) except for the arbitrary
constant Ar„•This could be taken to be unity, but tabulator s usually choose the
value of 2„, so that the values of 4),.(X ) are integers. Thus, most tables contain
the values of 0 ,,(X ) for positive X , the value of An, and the value of

,[4),(X,)]2.
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Using these tables, it is a simple ma tter to calculate the estimates

' 11)

and their variances

The only inconvenience of using orthogonal polynomials occurs when rewriting
the estimated equat ion as a polynomial in x. For the case of k = 2, we would
have to unravel the fi tted equation

Y = 02000(X) + 1 (151(X) + i 2O2(X)
- 2

= + I[ AI nc (  +  di2 L A 2 n( X —b x ) 1I2 ( n 2 0 1

Fortunately, it is not usually necessary to perform this step before carrying ou t
tests of signifi cance on the polynomial coeffi cients. With no prior knowledge of
the order of polynomial which would describe the rela tion between y and x , a
procedure analogous to that used with model (53) would probably be a natural
fi rst step to take. This would be achieved by, fi rst of all, forming the analysis of
variance table which is given below.

S ource S um of squares Degrees of

f reedom

Linea r term

Quadra tic term

kth Order term

Resid ual

Tot a l

Var (&,.) — n

(4),(AtM2

E [49,(xi)12
J. ,

By subtractio n

(Yi —i 0) 2

= I

1= 1

[ t 0,(Xi
i=1

1= 1

U 2

n — k —  I

n - 1

M ean squa re

(58)

)Sum of sq uares

D egrees of freedom

Then, the hypothesis 'coeffi cient of x k' = 0 would be tested by accepting the
hypothesis whenever

kth Order term mean square
< F( l , n —k —1, 1— a)

Residua l mean square

f or a l 00a % signifi cance test .
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The procedure with model (53) suggested that if this hypothesis was
accepted , then the next step would be to drop the term .x" from the model, re-
estimate the parameters and then test the hypothesis 'coeffi cient of x ' = 0.
Using orthogonal polynomials, this is achieved simply by adding the kth order
term sum of squares into the residua l, doing likewise with the degrees of
freedom and then testing the hypothesis 'coeffi cient of = 0 by accept ing
the hypothesis whenever

(k -  1)th Order term mean square
<  F( 1, n - k ,  1 - a)

New residual mean square

for a 100a % signifi cance test .
If this hypothesis was accepted, then the next step would be to add the

(k -  1)th order term sum of squares and degrees of freedom to those of the
already augmented residual and to test the hypothesis 'coeffi cient of .x.k- 2 = 0.
This procedure would then be repeated until a hypothesis 'coeffi cient of = 0
was rejected and then the fi tted model decided on would be

+ a
-

Y 2 = Ci 0 + 62 10 1(
b + cc2Q  ) + • • sob  ' ) + ei  (59)2

The new residual mean square used in the test of 'coeffi cient of f = 0 would
provide an est imate  82  of a 2 and it wou ld have (n - s - I) degrees of freedom.

The 1000 - a) % confi dence interva ls for a , a . . . , as are given by

Cc + t(n - s - 1, 1 - a/2) 2/ fora m2 (for r = 0, 1, 2, . . . ,
i = 1

If it is intended to use equation (59) in order to predict y for x = x0, then the
predicted value of y is given by

fi  = + 6210/(x, - - 1+ (24 2 .
( xo  

b )

and its variance is given by

1 '
Var ( = a t - + E ([ (x0

b
) ] 2 / i t [ok VA ) ]

n

This variance on ly refl ects the uncertainty about ao, a l, as and its use is
appropriate when the intention is to predict the mean value of y . When the
intention is to predict the outcome of a single reading of y , a further e should
be added to Var (53).

Corresponding 100(1 - a) %confi dence intervals for the mean value of y and
the outcome of a single read ing of y are given by

fl
1 y 2 1 ri

± t(n - s - I, 1 -
s

a/2) cr2L + ([0,(-
b

1

k miym2)1
n r = i = I
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and

5 , C O - -5Z  

± 10 —s — I, 1 — a/ 2) 8 2 [ 1 +
1

+ ([4) (  2 nE [44 x1)121
i = I

respectively.
However, it must be emphasised tha t it is dangerou s to ext ra polate using a

po lynomia l mod el which ha s been formed by delet ing higher powers . The order

of polynomial fi tted ha s been cho sen to describe the relation between y and x

within the region of x values observed and , ou tside of this regio n , ther e is no

information on the relationship between y and x . Con sequently, it is only safe

to extrapolate when it is known that a certain degree of polynomial descr ibes

the rela tion between y and x both wit hin the region of x values observed and

over the region in which extra po lat ion is to be per formed .

2.5.2 Multivariable polynomial mod els

Just as the simple model y = a + bx wa s exp and ed to the polynomial model (52)

so the mu ltiple regression mod el (33) may be exp and ed to include powers

of x l, x 2, . . . , xk, pr oducts of x x2, . . . ,  xk and pr od uc ts of power s of

x l , X 2 , . . . , X k .

For examp le, for k = 2, we might have the model

y , = a  + b lx u + b2x 21+ bI 1x 211 b 2 2 )(1 1 b 12 X 1iX 2 1 + ei

(a qu adratic in x 1 and x2). However , simply by defi ning X li = x l i, X 2 i = X 2 i ,

X 3 . = X 2 D X 4 i = X 2 D2 X 5 i = x l ix the model would become
t I  

y i = a + b iX + b2X2i + b 11X 3 + b22X41+ b12X 51+ ei

which is identical to mo de l (33).

Thus , the polynomial extension of model (33) simply pro duces a mod el of

the same type as mod el (33) and it can therefore be hand led by the techniques

described in Subsection 2.5.1 in connection with the po lynomial mod el for a

single x variable . However , wit h a mod erate value of k , the po ssib le nu mb er of

terms generated (even by a quadrat ic form) can be enormou s and fi t ting such

mod els is usually qu ite unj ustifi able and frequen tly dangerous . Unless a large

nu mber of observa tions, spread over a wide region of values of x 1, x 2, . . . , x „

is ava ilable, an appa rently go od mo del may be generated , not because the

correct re lat ionship between y and x l , x Z, . . . , xk has been found , bu t because

there are so ma ny pa rameters in the model tha t there is almost a sepa ra te

pa rameter for each observed y value.

2.5.3 Period ic regression

Many hydrological phenomena exhibit periodicity , the period being possib ly

annu al, mo nthly or daily, but usually associa ted wit h time. F or exa mple ,

evapo rat ion in the United Kingdom is strongly seasona l wit h a pr ono unced

annu al cycle.
Suppo se tha t we have record s of the value of a variable y taken at n equally
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spaced time point s, i.e. pairs of values (y 1, (1), (y2, t 2), . . . , (y ,„ t„) where
t, = a + ib . Then , the time scale may easily be modifi ed to give readings at times
1, 2, . . . , n by redefi ning the time scale as T1= a)l b.

Using this new time scale, a model with period n would be

( 2 71 T i  )
y = a + fi cos + y sin 21rTl +

= + COS e ir i ) + sin ( -21 + ei

2nk 2nk
= a + /3CO S ( 2 n+ —

n
y sin ( 27c + —n ) + en+k

= a + ,6 cos
e nk ) + y sin

2Thk + e„, k

(60)

In other words, if we had further observations, T, = n + 1, n + 2, n + 3, . . . ,
then the mod el value of y for Ti = k would be identical to the model value of y
for T1= n + k , 2n + k , . (except for the erro r terms). For instance, for
T, = n + k ,

( 2n(n + k ) )  .  e n(n + k ) ) + e„ ,
ky ,,,, k = GC + /3 cos + sin

since cos (2n + 0) = cos Band sin (2n + 0) = sin Band , hence, is identical to
the model value for y k(except for the error term). Thus, for a model with period
n, the model values of Ti = n + I onwards repeat those of T1= 1 onwards.

Figure 11 gives an example of such a model with period 12,

y = 1 + 0.5 cos
2ni

+ 0.25 sin
e l

12

plot ted for i = 1, 2, . . . , 24 (i.e. the model repeats itself after 12 values).
As the model (60) is written at the moment, the period icity is equal to the

number of observations collected . To eliminate this restriction, we may extend
our model to include terms with certain other periods and then arrange for our
estimation technique to select those terms with periods which best match the
periodicity exhibited in the observed dat a .

Hence, our model would be

2n r
y i = a + E [fl,cos( r

T,) + yr sin ( n
— Ts) ] + ei

=

nr
= a + E [fir cos(21-7 1) +y r sin

eTh r
) 1 + e1 (61)

r = 1

In the ab ove model, r = 1 gives terms of period n, r = 2 gives terms of period
n/2, and so on, until fi nally r = s gives terms of period n/s. As phenomena with
period of 2 or less are unlikely to be evident in the data , the maximum value
which it is sensible to take for s is 1(n —  1) when n is odd and i n —  I . when n is
even .
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1.0

.5

0 5 10 15

Fig. I I . Per iodic regressio n curve .

By taking

( 2 7Z X  .) . ( 2ir x 1 )
x i ; = cos x 2; = sin

( 2rc x 2 .) . ( 2n x 2 .)
: C31 = C O S x41= sin etc.

2 0

59

the form of mo del (6 1) is clearly identical to that of mod el (33). Hence , the

method s of Section 2.2 are app licable in period ic regression. However, as wit h

orthogona l po lynomia ls (descr ibed in Subsection 2.5. 1), the form of Sxx will

simplify to be a d iagona l matrix.

Since

2nr . C ur .
E  cos = sin /) = 0 (for r = I, 2, . . . , s)

i=1

the means of a ll the x variables are zero .

Therefore , Sx x  = E 7,, i (xj; — will become E7,,, xfix, which is

equivalen t to eA ler

2irr 2irrE  cos (-- ) i) cos
=1

)
. cos( 2mr

i) sin ( 21rr,
i = 1 n n
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or

depend ing on whether xj and x, correspond with 'cos' or 'sin' terms in model
(61) (rj and  r,  are integers between 1 and  s).  For  r ,# 1.1,  the fi rst and third of
these expressions are zero and the second expression is always zero, even when
rj = r,.  Hence, S is a diagonal matrix.

Thus , estimates of the parameters are as follows:

d = J.;

(
i = 1

i  y i  cos ( n? -11. i) ) / (
t=t
i ( cos ( -2Thr ) ) 2)

n

= — L y , C O S - i
n  i= 1

2nr

n

)2  1L,

= ( E y ,  sin ( r
it.

—n i) ) / ( E sin —27Er i 2

i = I i = 1 n

M

y ,  sin
(
? LI. i)

11 1= 1 11

2 "

The varia nces of these est imates a re as follows:

Ter ms of period n

fi t.

Terms of period  n/2

. ( 2nr • 2nr, •E sin i) sin
nt=I

Terms of period Ms

Residual

Tot al

Var  (i ) = -62

Var (fi r) = Var = 262
11

The ana lysis of var iance table analogous to the one produced for orthogonal
polynomials is given below.

Source Sum  of  squares Degrees  of

f reedom

n
(ft   + 7.32)2 I

n -
—2(M +)'D

By subtraction

E (J) .0 2

n —2s —

n —

M ean square

(62)

( Sum of squares

Degrees of freedom
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To test the hypothesis fl , = yr = 0 (i.e . there is no per iodicity of length f i r in the
data), a 100a % significance test would accept this hypothesis whenever

'Term of period nl r' mean square
< F(2, n —2s —  1, 1 — a)

Residua l mean square

To simultaneously test 131 —132 —• • • — Os — yl — y2 — • • ys — 0, a 100a %
signifi cance test would accept this hypothesis whenever

n s - 2 ^2- E (fl + yr )4s '
< F(2s, n — 2s — 1, 1—a)

Residual mean square

As with the orthogonal polynomial model, it is not necessary to recompute the
parameter estimates each time a term is omitted. Consequently, after applying
the fi rst test procedure several times with suitable values of r and, hence,
omitting certain terms from the origina l model, the residual sum of squares for
the new model would be equal to the residual sum of squares of the original
model plus the sums of squares of all terms omitted from the model. It s degrees
of freedom would similar ly be augmented to n —2s' —  1 (where s —s' is the
number of pairs of terms which have been omitted). An estimate of a2 would
then be provided by the new residual mean square with n —2s' —  1 degrees of
freedom .

To predict a value of  y  at time t , calculate T = (t —a)I b and then the
predicted value of y is given by

= + E [A. cos 2rcr
T + yr sin

( nr
T

r =  I

2

where the summation does not necessarily include all terms as some may have
been rejected as a result of the tests mentioned above. Its variance is given by

0.2
Var ( 3) = —n (1 + 4s')

where s ' is the number of pairs of terms left in the summation above.
Clearly, this variance is independent of T and , hence, the precision of

estimation is the same at all point s in time. This emphasises the critica l
dependence of estimation on having the correct model. The model (61) assumes
that patterns are repeated after a defi nite length of time and , consequently,
when that length of time is greater than the range of observed values, this
method of prediction is as dangerous as polynomial prediction. Therefore, it is
only reliable to extrapolate results when prior information on the existence of
certain period icity is available.

The preceding discussion dea ls with the case of a model containing terms
with periods which are simple fractions of n, the number of readings. However,
the model does not need to have its periodicity related to the number of
observations. For instance, if it is known that a 12 month periodicity exists and
observations have been taken monthly, then the appropriate model might be

y i =  a + /11 cos ( 2 it—12 i) +  I s in E Ti) + e
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Also , there is no reason why a model should not contain both cyclic and non-
cyclic terms. For instance, a model might be of the form

27r 27r
yi = a + fl i cos ( -12 T) +  yl sin ( -12 T1) + $2x1+ 133zi + e;

where x; and zi are two independent variables such as temperature and rainfall.
However , for models containing terms with periods which are not simple

fractions of  n,  the full method described in Section 2.2 would have to be used as
Sxx would no longer be a diagonal ma trix.

2.5.4 Dummy variables

So far, we have assumed that all our information will be quantita tive, all our
measurements will be numbers. However, it is often the case that some
information is qualitative. For instance, we may have recorded supplementary
information on the geological features of the area stud ied , such as the area
being either permeable or impermeable. We may have recorded wind force as
being either strong, medium or light .

This type of information may be included in a multiple regression model by
defi ning dummy variables. In the fi rst example, we would have a single dummy
variable x, defi ned as follows :

x = 0 when permeable

x = 1 when impermeable.

The varia ble  x  would then be included in the multiple regression equation with
all readings in per meable sites having x = 0 and all readings in impermeable
sites having x = 1. A signifi cant regression coeffi cient associated with x would
ind icate that permeability was of value in explaining the variable being studied.

As a result of this, we may decide to make the information concerning
permeability more detailed , perhaps on a 5 point scale. We might then use a
variable  x  taking values 1, 2, 3, 4 or 5. However, this could imply an equally
spaced scale which would mean that , for instance, the difference between
permeabilities 4 and 5 would be the same as the diff erence between per -
meabilities 1 and 2. It might be more satisfactory to defi ne four dummy
variables as follows:

Thus, in areas of permeability 3, for instance, we would have x = 0, y = 0,  z = 1,
iv = 0. The estimates of the regression coeffi cients associated with x,  y , z  and W

would then give some idea of the eff ect of permeabili ties 1, 2, 3 and 4, rela tive to
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5.  on the dependent variable being studied. For example, suppose that the
regression coeffi cient s of x, y , z and iv were 0.4, 0.3, 0.2 and 0.1 respect ively.
Then, our model would be saying that we should add 0.4 to readings at sites
with permeability  5  to get readings comparable with those at sites with
permability I , and similarly for sites with permeabilities 2, 3 and 4. It would
also be saying that the ordering of permeability on a scale 1 to  5 was justifi ed by
its eff ect on the variable being stud ied. However , if the regression coeffi cients
had been 0.4, 0.1, 0.1 and 0.4, then this would have suggested that sites with
permeability 1 and 4 had a similar eff ect on the variable being stud ied and that
sites with permeability 2 and 3 had a similar eff ect which was nearer to that of
sites with permeability  5.

For phenomena whose eff ect on the studied variab le is far less obvious than
permeability, the use of dummy variables and , in particular , the study of their
regression coeffi cients may well give insight into the relative eff ects of diff erent
levels or features of the phenomena .

Fo r certain phenomena , it may be sensible to build a multiple regression
model using dummy variables only. On the other hand , dummy variables may
be used in conjunction with other more conventional var iables to make up the
regression model. No assumptions are violated by using a variable which can
obviously on ly take two values, indeed most experimenta l design models are
composed entirely of such variables. However, it must be emphasised that to
deal with r states, levels or conditions, it is only necessary to use (r —  I)
variables. For instance, if variables had been used in the previous problem as
shown below, then Sxx  would have been singular .

2.6 Alternatives to Least Squares

2.6.1 Pencil and ruler

Although a complete assessment of the relationship between the y variable and
the variables x 1 , x2, . . . , x k cannot be made graphically, considerable insight
into the relationship can often be gained from simple graphs. For instance,
plots of y against x l , y aga inst x2,  etc. will give some indication of where there
are signs of strong relationships, where there might be problems due to a poor
dispersion of values of the x variable and where there are signs of nonlinear ity
(manifested by certain points falling a con siderable way from the trend of the
rest of the data or by marked curvature in the plots). Assessments of the
relationships amongst the x variables may also be made grap hically.
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A method has recently been suggested by Andrews (1972) for displaying
observations of many variables on a single two dimensional graph . Suppose
that n sets of observations on variables 21, z2, . . . , 2, are available and denoted
by (2 11, 221, . . . , zni), (212, 222, . . . , 2,2), (z 1„, 22„, 2,„) . For each of these
sets of values, the function

X = 2111 5  + 22 sin t + 23 cos t + 24 sin 2t + 23 cos 2t + •

is plotted (X against t) for —JI G c m. Thus, for n sets of observations, n
periodic graphs are produced.

Probably, the inference that can most easily be drawn from the resulting
gra ph is which of the n sets of observations are similar . A set of graphs that
cluster together will suggest similarity in the sets of observations which
generated those graphs.

In a regression context where we have variables y , x l , x2, xk,  such plots
may be valuable on the x variables alone or on y and .v„ xi,. Similarities
may be detected between certain observations and this would suggest that these
observations may have arisen under similar conditions. Equally well, the
technique may be used to give a concise summa ry of already established
similarities in groups of data . This technique is usually most effective when the
mo re important variables are used as the coeffi cients of the low frequency terms
in the function X.

One graphical method that has been suggested for plotting three
dimensional dat a in two dimensions is to simplify one of the variables by
red ucing the number of different values to say half a dozen (perhaps by
grouping) and then , on a two dimensional plot of the other two variables, to
relate the size (or darkness) of each point plotted to the value of the simplifi ed
third variable.

2.6.2 Robust and distr ibution free methods

The method of Daniels (1954) (see Subsect ion 1.4.2) may be extended to deal
with k independent variables. Equation (33) is equivalent to

a = y i — x116 1—x 2;62 —• • • — xbbk

(with e;omitted). Therefore, each observation generates a hyperplane and the
intersect ion of these hyperplanes will lead to estimates of m h„ . . , bk.
However , with more than one x variable, the visual appeal of this technique is
lost and some of the computation can be cumbersome.

This tends to be the problem with other distribution free methods and the
emphasis in recent years has been more on robust methods of estimation
re lated to least squares. One such method was suggested by Hinich and Ta lwar
( 1975). It aims to minimise the eff ect of the occasional observation which is a
long way from the trend of other observations, i.e. a set of values
(y e, -V 111X 2i, x ia ) which is associated with a large e; (in model (33)).

The method consists of dividing the n sets of observations into m =
separate groups and then estimating a, /11 , /32, • . „ Ilk separately on each group
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of data using the basic method described in Subsect ion 2.2.1. This will give rise

to the following set of sta tistics :

Group Estimate

I 19 1 16 2 13 3

/3 1 PI
2 i PI 191

2 PT

fik

0 )

R I

A prelimina ry estimate of a is taken to be the median of , i n' and it is

denoted by  ciP.  Similar ly, preliminary estimates of Th , )6 2 , , Pk are computed

and denoted by pc, pry The residuals

—Ci = Y i G L I1r(Xri Xr) (for  i =  1, 2, . .  n)
• =  1

are formed and a range estimate of a is calculated using the expression

o= ( g 0 . 7 2 E-0 .2 8 ) / 1 -654,where gq is defi ned to be the value below which 100g %

of the values  "e„ C2,  would fall if they were arranged in increasing order

of magnitude. Thus, 72 % of the values  "e l, e 2 , . . . , e n would fall below 4 , 7 2 and

28 % of the values would fall below 'i 0 2 8 .

All observations whose associated residual  ei  is greater than 46 are discarded

from the data and the basic method described in Subsection 2.2.1 is then

applied to the remaining data . This is particularly suitable for problems in

which there are a large number of observation s, some being of dubious quality.

The general problems of detect ing out liers (observations which are associated

with large  es)  will be discussed in Section 4.3. The choice of 46 as the level at

whieh to reject observations is somewhat arbitrary and it may be necessary to

alter this to satisfy the particular requirements of the problem in hand .

2.613 Ridge regression and principal components regression

The basic method outlined in Section 2.2 relies on the existence of the inverse of

S . If some of the independent variables x  1 , ,  xk  are linearly rela ted (i.e.

there is collinearity or multicollinearity), then Sx-xl will not exist and,

consequently, there will be no solution to equation (35).

Methods developed to cope with problems of collinearity have established

themselves in their own right and , as such, they are included in this section

although they are highly relevant to Section 4.3.
Principal components regression (also known as orthogonal regression)

consists of select ing uncorrelated combinations of variables  x  1, x 2, . . . ,  xk

which show maximum variation in the data (the principal components), taking

these combinations as new variables  21, 22, . . . , 2k  and performing a multiple

regression analysis of  y  on the fi rst few of  21, 22, . . . , 2k.  These principal
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co mpo nent s are der ived by fi nd ing the eigenvalues and eigenvectors o f SA„ afte r
it ha s been scaled so as to have a ll diagonal elements equal to unity .

This scaling of S xx is most easily achieved at the mod el stage by rewrit ing the
mo del

J'i =  a + (x — + 132(x2; — -)z-2) + + fi k(xki e

as

= P 2 N/ " "-v2-v
( x 2I  I . 2 )  y i a  + (x 11— 1.1, 1 S / C

I  7 S x 1n  ‘ / S x 2x 2

( x k i k k)
+ e i

Sx,„

and by lett ing  13,1 9,  =  yr  and  uni = A-ri ‘ / S„,„.  This gives

= — L Ur i —  
n  i = 1 7 s x,„

a nd , afte r substitution , the mode l becomes

yi = + y1(u11—a1)+ y2(u21— u2) + • • • + yk(uki — ak) + ei
Hence, by sta nd ard ising the x va riables as abo ve, the form of the model is
reta ined bu t it is re-writ ten in terms of a set of variables wit h the pr oper ty

Ci r i

( U r i — ad2 — 1=1  _ 1
i = S„r„,

Thus, the least squares est imates of  y „ y2, . . ., yk  a re given by the solu t ion of

and

where

S =  and S u y =  . . (for  j =  1, 2, . . . , k and 1. I, 2, . . . , k )Ufi l l

I S x j x i S x i „ , j \ i S x i x i

T his equa tion ma y be written as Su, =  Sua .
If it is po ssib le to so lve this equ a tion, i.e . if Sul; exists, then the estimates of

the origina l regressio n coeffi cien ts il l , ,62, . . .,  fi k  may be deter mined from

fi r = t 1N/ Sx,x, .
However , in principal components regression our fi rst object ive is to fi nd the

eigenvalues and eigenvectors of S . Suppo se tha t the eigenva lues are denoted
by  )9, . . . ,  AI,  and that their associat ed eigenvectors are denoted by
v1, v2, . . .,  vk  respectively . T hen, these eigenva lues and eigenvectors must
sa tisfy

Suuv,  = Arv,. (where  )9  > 2 2  2 3 • • •

try, = 1
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There are many effi cient numerical techniques for fi nding these eigenvalues and
eigenvectors, especially as S is a symmetric matrix, and most computers have
at least one eigenvalue routine amongst their software.

As Al is the largest eigenvalue, its associated eigenvector vl has the
interpretat ion that  z i = (u1,  . .  uk)vi is the linear combina tion of the
variables  u1, u2, . . . , uk  which shows maximum variation amongst the data .
The next largest eigenvalue is 2 2 and its associated eigenvector v2 has the
interpretat ion that 22 = (u  1 ,  u2,  uk)v2 is the linear combination of the
variables  u1, u2, . . . , 1%  which, amongst those linear combinations which are
uncorrelated with  21,  shows maximum variation amongst the data . The
eigenvalue 2 3 and eigenvector v3 have a similar interpetat ion relative to 22 and
21,  and so on .

Proponents of principal components regression suggest that , in most
problems, the eigenvalues Ai , 2 2 , ,  Ak fall into three groups : those
substantially greater than zero, those slight ly greater than zero and those
precisely zero (except for rounding error).

The existence of eigenvalues nea r zero will indicate that the inverse of Sn
probably does not exist . If the inverse of Sn does not exist, then equation (35)
cannot be solved and , hence, the basic method outlined in Section 2.2 will fail.
The cause of this would be the existence of an inter-relationship amongst
some of the variables x 1, x2, . . . ,  xk (for example, a relation ship such as
x 1 + x2 = x3 + x4), i.e. some of the variables  x l,  x2, . . . ,  x i,  are linearly related .

If an eigenvalue A, is precisely zero, then this would imply that
(u1, u2, . .  „ uk)v,.  = constant, the constant being (a1, a2, Hence,

by investigating the zero eigenvalues, it is possible to determine the nature of
the relationships which exist between x l , x2, . . . ,  xk.

Potentially, there are  k  variables,  21, 22, . . . , 2k,  each succeeding one
summarising slightly less of the variation in the data . In a principa l
components regression analysis, we would discard those  z  variables whose
associated eigenvalues were nearly or precisely zero . Thus, retaining only
21, 22, . . . , 2k,,  our regression equation would become

y i = 60 +  61(z I;— i l ) + 62(z2; —i 2) + • • • + f5p(zpi —i p) + ei  (63)

Because of the orthogonal nature of eigenvectors, estimates of the parameters
60,  (5 1, . . . ,  bp  are given by the very simple equa tions

1 "
3, = E (Yi )7)(2,i — f r)  (for  r =  1, 2, . . . ,p )

n r i = 1

and

It may be shown that estimates of the regression coeffi cient s y1 , y2, . . . , yk are
given by

Y 2

_

= V15 1 ± V2 5 2 + • • • + Vp5 p
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However , in a situat ion in which certain of the eigenvalues 21, 22, . . . , Ak are
precisely zero, it is as well not to place any great reliance on the interpretat ion
of the individual regression coeffi cients of the x variables. For example,
suppose that  k =  4 and that the fourt h eigenvalue was zero, revealing that
x 1  + x2 = x 3 + x4. From a principal components regression analysis, suppose
that we have deduced a regression equation  y = x 1 + 2x 2 + x 3 —2x4. Using
the known rela tionship between the xs, this would give the equ ation
y = x 2 + 2x 3 —x4.

These two equ ations would be equally good at predicting  y ,  bu t clearly the
coeffi cient s of the x variables on their own are virtually meaningless and can be
varied at will.

As a further consequence of the orthogonal nature of eigenvectors, the
variances of the regression coeffi cients are given by the simple equation

Var (SO = (12/2, (for  r =  1, 2, . . . ,p)

and an unbiased estimate of  cr2  is given by

n — p —  1 [ im
  Y (y1- .02 - 213i - AM

As with the orthogonal polynomial models in Subsection 2.5.1, an analysis of
variance table may be established for testing the hypotheses  S I = 0 , 62 = 0, etc .

S ource Sum of squares Degrees of
f reedom

First principa l com pon ent 2,115; 1

Second pr incipal component

p th principal component

Resid ual

Tota l

A2322

A p

By sub tr action

E (Y 17)2
i=I

n — p — 1

n —  1

A 1002 % signifi cance test would accept  6,. =  0 whenever

rth Principal component mean square

. _ ; 3 21
' 11 P

M ean square

(  Sum of squ ares  

Degrees of freed om )

< F( 1,n —p  — 1, 1 —a)
Residual mean square

In order to predict a value of  y  for specifi ed values of  x l, x 2, . . . , xk, it would be
necessary to evaluate  z 1, z2, . z  and then to calculate

33 + 8, (z, - + 32(z, - f2) + • • • + 3,(zp-
When the mean value of  y  is being predicted , this estimate would have variance

a 2( ! + I

r . 1 2,1
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However , when the outcome of a single observa tion of y is being pred icted , the

above va riance sho uld be increased by a 2.

A co rrespo nd ing 100( 1 — a) 7 confi dence interva l for the mean value o f  y

would be

+  t(n  — p —  1, 1 — a/ 2)1 62G + I
n  t r

Ridge regressio n was introd uced by Hoer l and Kennard (1970) and it involves

altering equation (35) to

sxy =(sn +w+ft

The reason for this mod ifi ca tion is, once aga in , an attempt to overco me

diffi cu lt ies of co llinearity, a lthough ot her interpreta tions are available . Thus ,

est imates of the regression pa ra meters are given by

#=(s,x+wr (64)

These estimates are no lon ger unbiased but , under mo st co nd itions , it will be

po ssible to cho ose W so tha t these estimates have smaller mean . squa re er ro r

(average of the squa red d iff erences between estimated and co rrect va lues o f /1)

than the least squares estimates.

In pr act ice , it is necessary to decide on some value for W. To start with , we

will assu me tha t  iv , = w 2 = • • =  wk = and make use of a 'ridge t race' . A ridge

trace involves evaluating /I in equation (64) for a range of va lues of  w( >  0) and

plot ting the ind ividua l coeffi cient s aga inst  w  on a single graph . A typical

example wit h  k = 5  is shown in Figu re 12.

A po int wher e the cu rves are beginnin g to fl a tten out , such as  w =  0.4, would

be taken as a reasonab le va lue of  w  by the proponents of ridge regression. It is

usua l to take as small a va lue of  w  as possible so as to keep iq close to the least

squares estimate (36).

An alternat ive method is to make use of the pr incipal co mp on ents

ment ion ed ear lier in this section . For t his met hod , the regression equation is

writ ten as in equation (63) and the ridge regressio n technique is app lied to this

mod el. Hence, using an ana logous no tation , we obtain the equat ion

Szy = (S + W)8 (65)

A suggested choice for W i is  020 1  (for  i =  1, 2, . . . ,  k ).

Since neither a 2 nor Si , 6 2 , . . 6 k are known , it is necessary to obta in fi rs t

estimates of these pa ra meters. These initial estimates ma y be obtained from the

usual principa l compo nents regression ana lysis. New estimates of 15 are formed

by solving equation (65) and these estimates are used to ca lcu la te new va lues for

, wk which , in turn , are used in equation (65) to re-estimate  S.  The

proced ure con tinues until values of wi stabilise.
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Fig. 12 A typical ridge t race.

0 4 0 6 0 8 1 0

However, as the estimates obta ined are biased estimates and the bias is a
function of the unknown regression parameters, it is not a stra ightforward
matter to proceed further with confi dence intervals or tests of signifi cance on
the parameters.

2.6.4 Bayesian method s

There is an interesting link between ridge regression and certain Bayesian
approaches to the problem.

If we assume that )61, [12, . . . , A have normal prior distribu tions in which
has mean zero and variance cf, and that the /1,s are independent, then the
posterior distribution of /1 has mean (S + W) - ' S where W is defi ned in
equation (64) but with the added restriction that  w1= 521q ,  the ra tio of the
error variance to the 'uncertainty variance' in the prior distr ibution of A (for
i = I ,  2, . . . ,  k ).

Two additional pieces of information are available from the Bayesian
approach. The fi rst is that the variance covariance matrix of the posterior
distribution of /1 is given by c2(S„, + W)- ' . The second is an extension
to equation (64). If the prior distr ibution of A is known to have mean
fl ?,  and fi to = [/1?, /3 , . . . ,  Al ,  then the posterior mean becomes
(S + W) - ' (Sxy + Wfl o).

2.6.5 Functional rela tionships

By generalising the models of Subsection 1.4.4, we obtain an overall model

ideal  y = a + b l(ideal  x 1) + b2(ideal x2) + + bk(idea l
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and
y  reading = ideal  y + e

x ,  reading = ideal  x , +  (66)

x ,  reading = ideal  x , +  (3, , etc.

If we introduce a variable xo which always takes the value unity (and, hence, .vo
reading = ideal xo) and, fur thermore, we denote  y  by xk+ , , then our model
becomes 1 i d br ideal .v,. = 0 where 60 =  a  and bk = — I .

Thus, in general, we may consider the model (66) as being of t he form

/ 1), ideal  x r =  0
r=

where x, =  ideal  x,  + e,..
If we denote the variance of  er  by (7„ and the covariance between  er  and  e,  by

ars,  then the matrix

i s the variance covariance matr ix of  e 1,e2, . . ., ek.
Suppose that we have  n  sets of observations on  x i ,x 2, . . . , xk  which are

denoted by  (..11I , X 12 , • " , X l k) , ( x 2 1, x 2 2 , • • • , x 2k ) , - 5 ( xc t , x n2 , • • • X nk ) and
that Ss,  is defi ned to be

where

Sklxi Sk,x, sk,

smx,_

(x.1— i r)(xsi — i s)
i = 1

Then, estimates of b = [bl , h 2, . . ., k ]' are given by the latent vector

corresponding to the smallest latent root of 1S — 2E1= 0.
However, as i t is extremely unlikely that L would be fully known in a

hydrological problem, no fur ther details of this method are given here.
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Chapter  3

BE FO RE A M U LTIP LE REGRESSIO N
AN ALYSIS

3.1 What to Include and Why

3. 1.1 Why is the analysis being conducted ?

At so me stage it will be advisable to con sider j ust why a multiple regression
analysis is being attempted and precisely wha t are the object ives. This salu tary
exercise is best carried ou t before any analysis is performed , for the following
reasons :

(a) It will probably infl uence the manner in which the analysis is cond ucted .
(b) It will anticipate pr oblem areas and some precau tions ma y then be

taken before the analysis is a ttemp ted .

We have set out a lread y some object ives (Subsect ions 1.1.1 and 2.1.1) which
might lead an invest iga tor to apply a simple or mult iple linear regression
analysis and , for the purposes of the rest of this section , these are best
condensed in to :

( 1) Pred iction of  y  for specifi ed values of  x  1, x 2, . . . ,  x k which are wit hin the
regio n of observed va lues .

(2) Pred ict ion of  y  for specifi ed va lues of  x „ x 2, . . . , x k  which are outside
the region of ob served values.

(3) Investiga tion in to which of the variab les, x l ,  x 2, . . . , xk,  influence  y  and
the nature of any rela tionships tha t may exist .

Objective 1 is probably the easiest to tackle since the basic method s ou tlined in
Sections 1.2 and 2.2 a re usually suffi cient . Ther e may be some ga in in precision
from using the method s of Section 2.3 to eliminate va riab les bu t this gain must
be balanced against the p ro blem s mentioned below in associa t ion with
Obj ect ive 3. T he method s described in Sections 2.4 , 2.5 and 2.6 may, of co ur se,
be used if they are appropriate.

Objective 2 is far more hazardou s. A lthough the methods of Sections 1.2 and
2.2 again form the basis for estimation , some assessment of the stability of the
est imated re lationship sho uld be made before any reliance is placed on
pred iction . In such a situat ion, it is usually unwise to at temp t to eliminate
va riables.
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Objective 3 will require using the methods of estimation given in Sections 1.2

or 2.2 together with the techniques of elimination of variab les given in Section

2.3. However, there is the danger that an important variable may not have been

observed and this would consequent ly distort the estimated relationship and

any conclusions drawn from it . Another problem is that high correlations

between the  x  variables may lead to misinterpretat ion , particularly with

methods from Section 2.3.

3.1.2 Which independent variables should be used ?

When considering which independent variab les to measure, it is worth aiming

for the following ideals, even though it is rarely possible to achieve them.

The fi rst ideal is that variables which are not highly correlated should be

selected wherever possible since high correlations lead to problems of

estimation due to singularity of S and to problems of interpretation when

using the met hods of Section 2.3. If some of t he x var iables are measuring a

similar quantity, then it will usually be better to replace them with a single

variable formed by a simple combination of them. Alternat ively, a principal

component s analysis as mentioned in Subsection 2.6.3 may suggest a

combination of these variab les which is worth using on its own. When the  x

variables naturally fall into groups according to the nature of the measurement

being made, e.g. climatic variables, sur face drainage variables, seasona lity

factors, etc., it may be better to perform a separate principal components

analysis on each of these sets. This might then lead to a single combined climate

variable, a single surface drainage variable, etc . and each of these may then be

used in the regression model.
The second ideal is that variables should be selected in such a way so as to

ensure that the regression parameters have some 'p hysical' in terpretation, as

well as a stat istical one. This will give interpretat ion to any tests mentioned in

Section 2.3 and, in par ticular , it may enable the investigator to see why certain

variables might be eliminated from the regression equation . Equally well, it

may enable the investigator to insist that certain var iables are retained in the

model because of a known causal relat ionship between the dependent variable

and the independen t var iable in question .
The third ideal must be to include all the important variables, i.e. to get the

model right ! This is par ticularly important with Object ive 2, where a

meaningful relat ionship must be established within the experimental region

before it is at all likely to be valid outside that region. As already mentioned ,

elimination of variables from a regression equ ation , using techniques described

in Section 2.3, is liable to lead to error when an impor tant variable has been

omitted . In particular , if the omitted variable happens to be causally related to

y ,  and if some of the included variables are correlated to the omitted one and

consequently also correlated to  y ,  then quite misleading inferences might be

drawn about the eff ect of the included variables. These inferences would, at

best , only be valid within the experimental region .

In contrast, it is quite often useful to include a variable which is known to be

unrelated to the dependent variable  y .  Confi rmation of its redundancy, from

the analysis of Sections 2.2 and 2.3, is some check on both numerical and
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inferent ial procedures. The converse might suggest either numerical in-
accuracy or that an important variable has been omitted and that spurious
relationships are being generated as a consequence of this.

Instead of includ ing all independent variables as values of  x i,  x2, . . .,  xk,  it
may be useful to use particular values of one or more of these variables to break
the data into groups. For instance, consider the simple case of a model with two
independent variables, x  1  and x2, where x 1 is causally related to  y  and x2  is
associated with  y ,  but not causally (a nuisance variable). By grouping the data
in such a way that, within a group, all values of x2  are identical, it will be
possible to perform separate regression s of  y  on  x ,  for each of the groups. The
stability of the regression equat ion in diff erent circumstances may then be
assessed from the variability of the fi tted regressions from group to group .
Information about the eff ect of x2 on  y  will be temporarily lost , but this should
not be important when it is only a nuisance variable. The idea may be extended
to grouping the data in such a way that values of two or more variables are
constant within one group.

In the simple case of two independent variab les, our overall model would be
y = a +  b1x 1 + b2x 2.  When the model  y = a +  b,x ,  is used for each group, this
should lead to  b,  being the same for each group , and to  a  (which is  a +  b2x 2 in
the overa ll model) varying from group to group. However , if  b,  does vary from
group to group, then this might mean that the eff ect of x l is infl uenced by the
level of  x 2 and that a mod el of the form  y = a +  b1x , +  b2x 2+ b3x 1x 2 might be
more satisfactory.

This raises another major problem on independent variables; having decided
which variables are to be included , how should these variables be introduced
into the model ? The possibilities are enormous. For example, just from two
variables, we might have the model  y = a +  b1x +  b2x 2+ b3x 1x 2+ b4x 1Ix2+
b5 log  x „,  and many more terms could have been included . With  n  observations
of  y ,  it is not diffi cult to dream up  (n —1)  ar tifi cial variables (like those given in
the above example) which would lead to a residual sum of squares of zero, i.e. a
perfect fi t of model to data . However , it is unlikely that there would be any
meaning in such a model and , perhaps more important, it is quite possible that
such a model would be quite inadequate with a new set of data . In other words,
the model would provide no insight into the relat ionship between the
dependent variable and factors infl uencing it.

Selection of the types of functions of variables to be introduced into the
model must be made bea ring in mind the practical interpretat ion of those
functions. Methods of choosing a suitable transformation of a variable will be
given in Sect ion 3.3, but these should be treated with caution as they will lead to
a model which is only valid within the region of observed values. When an
at tempt is made to include powers and products of powers of  x  variables (such

2 2 5as x i, x ix2x3,  x lx4,  etc .), this must be done in an ordered manner and with
restraint . The remarks made earlier in Subsection 2.5.1 about the order of
testing for polynomial models are also applicable in this context . It is usually
sensible to begin by enquir ing into the contribution made by the high order
terms and then to eliminate these terms successively unt il a satisfactory model
is. reached . A danger of including too many terms in the model is that an
artifi cially small residual sum of squares could be produced simply because of
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the large number of parameters. However, from signifi cance tests, it might

appear that all of the included terms were vitally important .
The inclusion of product s of certain of the variables implies some joint

(interactive) eff ect of these var iables on y . Thus, it may be informative to use

grouping of the data to examine the rela tionship between these variables. For

example, inclusion of the term x l x2 would imply that x1 and x2 had some joint

eff ect on y . By grouping the dat a acco rding to x2, it would be possible to

examine the nature of the relat ionship between x2 and the regression coeffi cient

of x l . If it is found that they are linearly related, then inclusion of the term x 1x2

would be justifi ed (giving an overall model  y + blx , + b2x 2+  b3x 1x2). But

if, for instance, a quadra tic relation ship is revealed, then it would be

appropriate to include a term (a + bx2 + c4 )x 1 (giving an overall model

y = a + b,x 1  + b2x2  + b3x 1x2  + b4x 1x ).

3.2 The Distribution of the Dependent Variable

3.2.1 Requirements of least squares

In Subsections 1.1.2 and 2.1.2, it was stated that , for estimation purposes, the

errors ei must have constant variance and that , for inferential purposes, they

must follow a normal distribu tion. (The assumption of independence will be

discussed in Section 3.4). As we are regarding the xs as fi xed, this implies that y

mu st have constant variance and follow a normal distribution . However , for a

particular dependent variable such as run-off , it will usually never be possible

to say whether either of these assumptions is true. We may be able to speculate

on the possibility, advance a few theories, carry ou t tests, examine residuals ,

etc., but, at best , we will only ever be able to say that we are 'pretty sure' or that

' it's a reasonable assumption' .
Because of the uncertainty of the situation , it is important to consider

whether these assumptions are crucial and to investigate the circumstances

under which the method of least squares is liable to give misleading estimates

and inference. This type of invest igation examines the 'robustness' of the

particular method , in this case, least squares.
Concerning estimation , least squares estimates remain sensible estimates

regardless of the normality assumption . However, as has already been

mentioned (Subsections 1.3.3 and 2.4.2), when the variances of the eis are not

constant, the estimates may be relat ively imprecise, althou gh still unbia sed,

and the variances of the estimates will be incorrectly estimated. In the case of

simple linear regression when it is assumed that the eis have variance a2,

the variance of the slope estimate is given by equation (8), Var (5) =

(xi—i ) 2 , whereas it should be r = al(xi— )i 2 4 E7, ( x i .70 2 ] 2 when

e
1

e2 , " e have variances Thus, if large values of x are associated
n

with large variances, then the latter will exceed the former and hence equation

(8) will underestimate the true variance of the slope estimate. However , the

variances will need to be quite noticeably diff erent before these weighted

methods show an appreciable gain in the precision of the estimates.

Although an inconvenience as far as estimating the model is concerned, a

relationship between an x variable and the variance may, in itself, be an
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important feature of the process being studied . Discovering this feature may be
just as informative as actually fi tting the model. Consequently, it is wor th
considering the reasons why the variances are changing before either ignoring
the problem or trying to use some transformation to eliminate it .

One problem associat ed with the distr ibu tion of the e,s is that of asymmetry,
i.e . positive and nega tive errors of the same magnitude not being equally likely.
This problem has an unpleasant eff ect both on least squares estimates and on
most other estimation procedures. It is usually advisable to reduce asymmetry
as much as possible by a transformation of the data .

Another problem is that of out liers, i.e. values of  e  which are exceptionally
large and nicht frequent than the normal assumptions would suggest. Outliers
may be produced by gross errors of observation or by undetected changes (or
instability) in the phenomena being stud ied. In at tempting to detect the
presence of outliers, it is easy to confuse their possible existence with that of
asymmetry. Consequently, it is advisable to eliminate this problem whenever
possible and techniques which help to detect ou tliers are given in Section 4.3
(see also Subsection 2.6.2).

F requently, the omission of an important variable from the model is the
cause of apparent variation in the variances of the  eas,  asymmetry or even
outliers, as discussed in Subsection 3.1.2. However, the same problems may
also appear when a linear model is inappropriate or when polynomial terms
which should have been included have been omitted .

Concerning tests of signifi cance and confi dence interval statements, the
assumption of normality for the e,s is more crucial. However , although this
implies that  y  must be normally distr ibuted (as the independent variables are
rega rded as fi xed), it appears that if either  y  or some of the  x  variables are near
normally distributed, then the tests of signifi cance are not misleading. In other
words, the tests of signifi ca nce appear to be insensitive to non-normality in  y
whenever the xs themselves come from a near normal distribution . On the
other hand, if the xs do not come from a near norma l distribution and if some  x
values are very diff erent in magnitude from the remainder, then the tests of
signifi cance are very sensitive to non-normality in  y .

If the variances of the  eis  are not constant and the basic method of Section
2.2 is applied, then a ' will be incorrect ly estimated and , consequently, the
variances of the regression coeffi cients will be incorrectly determined . This will
lead to er rors in tests of signifi cance, the magnitude of these errors depending
on the relative magnitudes of the variances of the  eis.  Typ ically, with ra tios of
3: 1, a nomina l 5 %, test of signifi cance may correspond with only 15  %,
signifi cance. Thus, although unequal variances do not have a serious eff ect on
the regression coeffi cient estimates, they may seriously distort any inference
drawn from tests of signifi cance, in particular, in any of the variables selection
procedures described in Subsections 2.3.3 to 2.3.7.

3.2.2. Evidence to justify or question the assumptions

It would be unwise to assume that, for instance, log (run-off ) always follows a
normal or near normal distribution just because in a few stud ies such an
assumption has been justifi ed. There are no simple rules which govern the
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distr ibution of a quantity in all contexts. Nevertheless, relevant past exper ience
is extremely useful in assessing the possible validity of the least squares
assumptions and , wherever possible, reputable stud ies similar to the one being
undertaken should be examined for supporting evidence and counter evidence.

If the variable being studied either is actually calculated from the average of
several other variab les or could conceptually be regarded as such , then the
central limit theorem may be of help . Roughly, this states that the distribution
of the ar ithmet ic mean of a set of random variables tends to the normal
distribution as more and more random variables are included in that mean ,
provided that the values of one of the random variables do not dominate those
of the others. For example, the distribution of rainfall values will usually
become nearer to the norma l distribution as the time base is increased. On a
daily basis, there are many zero readings and the data is not normally
distribution . However, average monthly rainfall calculated as the ar ithmetic
mean of the twelve monthly rainfalls in a year might have a nearly normal
distr ibution provided that it did not, for instance, always only rain in
November, or never ra in in June. Furthermore, the average rainfall of 48
monthly fi gures might have a distribution which was nearer to the normal than
the distribution of the 12 month average.

If there are obvious restrictions in the range of values that the variable can
take, or if certain intermediate values are impossible, or if the variable is
discrete, then it may be prudent to question the assumption of a normal
distr ibution . By their nature, many of the variables stud ied in hydrology, such
as river fl ow, give positive values only and this contrasts with a normal random
variable which potentially can take values from — oo to co . However, provided
that the majority of values are well above zero (case (a) in Figure 13), this
problem may not be of practical signifi cance. On the other hand , if a large
proportion of values are just above zero (case (b)), then the assumption of
normality may be quite untenable.

Another possibility is that the variable can only take a set of discrete values; •
for example, 0, 1, 2, 3 and 4. The distr ibution of this variable will con sist of fi ve
spikes as shown in Figure 14(a) and this is a long way from the shape of the
normal distr ibution . Equally well, the measuring apparatus which provides the
values of our variable may only work in a series of rela tively wide steps. A

(b)

Fig. 13. D istribut ion of non-negative variables
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(a) lb)

Fig . 14 D iscrete , disco ntinu ou s and t ru ncated dist ribution s

(r

typical shape for the distr ibution of this variable is given in Figure 14(b).
Finally, Figure 14(c) shows the shape of a distr ibution which might result from
a variable where values above a certain level could not be recorded . By
considering the nature of the reading being made and any instruments being
used, it is possible that these gross departures from normality might be
detected .

The existence of a lower limit for values of a variable might cause asymmetry
in the dist ribution . For instance, if some values are a long way above the lower
limit , but most are not far from the lower limit, then the distribu tion might be
similar to that shown in Figure 15(a).

Figure 15(b) shows another type of asymmetry which has been caused by the
distribution of the variable (shown by the continu ous line) being composed of a
mixture of two distributions (shown by the dotted lines). For example, this
might occur in river fl ow measurements when fl ow is maintained by ar tifi cal
means in dry weather (lower distribution) and there is run-off in wet weather
(higher distr ibution). In such a situat ion , asymmetry might be overcome by
dividing the data into dry and wet weather da ta and fi tting separate models to
the two sets.

Consideration of the nature of the readings may also help in assessing the
assumption s of constan t variance. Probably, the situat ion which can most
easily be detected is where the var iance increases (or decreases) with the mean.
Typically, this may be the result of instrument error increasing with the

Fig. 15. Asym met ric dist ribution s.
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magnitude of the readings or the phenomena being much more variab le at high
mean levels. An example of the latter would be a situat ion where there are
extremely high levels of run-off (or river fl ow) which then produce quite
diff erent physical phenomena from those experienced at medium and low
levels. A transformation may help to overcome this problem but , aga in, it
might be more satisfactory to divide the data into two groups and accept that
the two sets of data relate to diff erent phenomena .

When the readings are counts of the occurrence of some phenomenon, it
may be that a Poisson distr ibution is a reasonable model for the readings. A
direct consequence of this assumption is that the mean and variance are equal,
i.e. a rise in the counts means a more variable count. Again, a transformation
might help in this situat ion .

There is also the possibility of visually assessing the assumption of constant
variance. Plot ting y against x in the simple linear regression situat ion was
advocated in Subsection 1.4.1 for a variety of reasons. Figure 16 indicates some
of the possible outcomes of such an exercise.

(a/

(c ) Id )

Fig. 16 Some problem sets of data.

Outcome (a) may have been caused by the variance ofy increasing with x and
outcome (b) by the var iance of y increasing as x values become more extreme.
For cla rity, both graphs show a fairly uniform density of points over the region
of x values. However, in practice the density might vary (refl ecting the relative
scarcity of observations at various x values) and it is easy to misinterpret
density varying with x as variance varying with x .

Outcomes (c) and (d) are a reminder of other problems, nonlinearity and
outliers respectively. Again, each may be assessed with a graph, but
considerat ion of the nature of the readings is also importa nt . Existence of an
asymptote or a maximum (or minimum) value of y may invalidate the use of a
linear model, par ticularly when readings are taken near these limits.
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Assessment of the combination of values which the independent variables
actually take may suggest instability in the process or phenomenon being
stud ied which, as a consequence, might cause a wild  y  reading (an outlier).
Where several independent variables have been recorded, a plot of  y  aga inst
each  x  in turn, as suggested in Subsect ion 2.6.1, may arouse certain suspicions
which might be confi rmed by analysis of the residuals (see Section 4.3).

3.2.3 Tests of the assumptions

Only when the data consists of several values of  y ,  all with the same set of values
for the independent variables, will it be possible to apply any of the above tests
of the assumptions before. a regression analysis. Although this may occur in
simple linear regression, it is unlikely to happen in multiple regression.
However, it may be possible to form groups of  y  values with similar values for
the independent variables and , provided that not too much confi dence is placed
on the outcome of the tests of the assumptions, some useful information may
be gained from them .

If it is possible to form  n  group s of  y  values with  ri  in the ith group, then the
test of equality of var iances given in Subsection 1.3.2 may be applied to these
data , but note must be taken of the sensitivity of this test to non-normality.

There are many tests for assessing normality which use either just a single
sample of  y  values or several samples of  y  values. As non-normality ca n take
many forms, it is not a simple ma tter to recommend just one of these tests.

In the case where just a single sample of  y  values is tested for norma lity, the
values of  y  are denoted by y l , y2, . . . , y„ and y E,"= yi n.  A test to detect
asymmetry is based on the statistic

1 "
iE=  (Yr— 37)3

yn (Yi —.0 2

y

However , a test to detect deviation s from the 'normal' shape in symmetric
distribu tions is based on the statistic

1  "
-„ LE (yi-- . )4

b2 ( I „

j E= (Y, —. )2)

An alternative to the above is the sta tistic

E IY; — 371
i = 1

a —  n

These tests are designed to pick out distributions where tails are too long or
peaks are too fat .
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The distributions of  i r), , b2 and for a for no rma l samples (and hence the

sign ifi cance po ints) are given in Table 34, Pearson and Hartley ( 1972).

An alternative test which makes use of nor mal o rder sta tistics was propo sed

by Shapiro and Wilk . Details of this test and necessa ry tables are given in

Tables 15- 18, Pearson and Hart ley ( 1971). This test appears to ha ve good

pr opert ies and the pr ac tica l advantage tha t ta bles are ava ilable for its use with

samples of on ly three or more y values, whereas I T. is tabu lated for n > 25, b2

for n > 50 and a for n > 11.
Pearson and Hart ley ( 197 1) a lso give details of co mb ined tests of norma lity

using severa l sa mp les of y va lues.

Graphica l met hods may a lso be used for assessing normality. T he following

method requires the use of no rma l probab ility paper . The va lues y 1 ,

are arranged in increasing o rder of magnitud e, Y(I) )7(2) • • y , and the

quantity [(1—O n] is used as an estimate of the distribution function a t y to. The

sca les of nor mal pr obability pa per are arranged so tha t a plot o f y(,) aga inst

100 [(i —D M] (for i = 1, 2, . . . , n) will prod uce a set of po ints wh ich, ro ughly,

form a stra ight line whenever y l,y2, y „co me from a no rmal dist ribut ion .

2 5 10 20 30 40 50 60 70 80 90 95 95

Fig. 17. Use of normal probabil ity paper.

This is illustra ted in Figu re 17. T he po ints will ra rely fall exactly on a stra igh t

line but a visual impression of linea rity—nonlinea rity (norma lity—non-

no rma lity) may be formed from the graph . There is some cont roversy about

the use of [(i —i )/n ] and some sta tisticians prefer (i —0.3)/ (n + 0.4) bu t this is

only crucial when the plot is bein g used for estimation purpo ses. Table 9,

Pearson and Hart ley (197 1), may be used for a similar graphical assessmen t

when norma l pro ba bility pa pe r is not available .

Detecting an out lier in a sa mple of n va lues is equivalent to detect ing a

specia l type o f no n-normality. T hu s, not surp risingly, the tests for no n-

nor mality mentioned earlier in this subsection also tend to be used to detect the

presence of outliers . Another test worth mentioning is based on the stat istic

Y(n) — Y0)

(E  (Yi- .17)2)i -
i=,



where Y(n) and y(1)  are the largest and smallest y values respectively. Table 29c,
Pearson and Har tley (1972), gives the distr ibution of u from which signifi cance
points may be determined . One advantage of using this criterion is that it
points to a particular value as being the outlier .

If it is suspected that more than one value is grossly in error, i.e. there is more
than one outlier, then the above test may be re-applied to the sample with the
fi rst out lier omitted. However, it is quite possible that the presence of severa l
outliers will be missed by this method . A test which copes with this problem is
called G rubbs Test . It involves ordering the observations,  y(o < y(2)<
Y(3)  y oo,  and calculating the stat istic

where
n - k

Y k -
n —k Yffi

n - k
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E  (Y0,- .17)2

E 02,0- JD
2

i =  1

and
1

Y L Y(i)n 1=1

This quantity is designed to be used for testing whether the k largest values are
outliers p.nd tables of the distribution of L k are given in Tietjen and Moore
( 1972). A simple modifi cation allows for a test of whether the k smallest values
are outliers. In the same paper , a sta tistic is also given for testing whether the k
values fUrthest from the mean (above or below) are outliers.

A recent book which covers the topic of out liers from regression models as
well as outliers in general is Hawkins ( 1980).

3.3 Transformations

3.3.1 Variance stabilising transformations

M ost variance stabilising transformation s exploit a known or an observed
rela tionship between the mean and the variance of the dependent variable. As
already mentioned in Subsection 3.2.2, it may be possible, by considering the
nat ure of the variable, to anticipate a relationship between its mean and its
variance. Alternatively, plotting y aga inst x may give some empirical evidence
of a relat ionship .

If we are in the fortunate position of having repeated y values under similar
conditions, i.e. all with the same set of values for the independent variable(s) (as
described in Subsection 3.2.3), then we will be able to estimate the mean and the
variance of each group of data and plot these estimates against each other .
From the resulting grap h, we will be able to assess a possible relat ionship
between the mean and the variance. Thus, if we haven groups of y readings, the
readings in any one group being taken under similar conditions, and we denote
the readings in the ith group by y ip y 12, • • •  h .,' then we may calculate

_ vni
Y1= — L Yu

I i 1 = 1

and plot 4 against p i.

1  r i
and .2  E (vi•- .0 2si =

ri — 1 j = , '
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Alterna tively, as in Subsection 3.2.3, it ma y be possible to form gr ou ps of y

values with similar values for the independ en t variable(s) and , pro vided that

so me caution is exercised , to pr oceed as abo ve. A pa rt icu lar danger is tha t

an impo rtant variable may have been omitted from the ind ependent va riables

stud ied .
Thu s, we might be in the position to assume tha t the mean o fy , denoted by p,

and the va ria nce of y , denoted by  (7)2., a re related by

62= P O
(67)

where the form of f is known . For any transforma tion z = g(y),we have the

approximate re lationship

2
dg(p)12.

.10 2)
[  dp

where a ..2  is the va ria nce of z = g(y).We ma y no w cho ose the function g so

as to make a t.' independen t of p . This would be achieved by cho osing a funct ion

gwhich sa tisfi ed

g(p)
x  dp  

For example, if a plot of estimated stand ard devia tion siaga inst pi pr od uced a

stra ight line thr oug h the origin , then we might assume the form of relationship

(67) to be

u

„ . 2 ( b p ) 2

Y

Our cho ice of transforma tion to stabilise the varia nce wou ld have to satisfy

rip 1
g(p) cc = logep

Thus, by taking the transformation z = logey , the va ria nce of ou r tra nsformed

varia ble would be approximately

_ [ 1 2Eb = b 2

The table on page 84, taken from Bart lett (1949), summarises some of the more

usua l t ransforma tions .

3.3.2 Tra nsforma tions to no rma lity and linearising tra nsforma tion s

When the phenomeno n tha t we wish to stud y as the dependen t variable does

no t have a natura l under lying measurab le sca le, we may only be able to arra nge

d iff eren t states of the phenomen on in o rder . If there are n d iff erent states of the

phenomenon bein g studied , then t hese cou ld be arra nged in order and the

nu mbers 1, 2, 3, . . ., n (their rank) associa ted wit h the d iff erent states. For

exa mp le, the three weather cond it ion s, dry, d rizz le, heavy rain , might be

replaced by the numbers , 1, 2, 3. However , when y can on ly take three po ssible

values , the dist ribution will not bear much resembla nce to the no rma l

distribu tion .



where

The use of expected normal scores assumes an underlying normally
distributed measurement for the phenomenon. The n values of y (namely I ,  2,
3, . . n) correspond to n values of the underlying measurement, the sma llest of
the underlying measurements corresponding to y I , the next sma llest to
y = 2,  etc. Thus, if we replace y = 1 by the mean value of the smallest
observation in a sample of n values from a norma l population, then we will be
getting somewhere near to the underlying normal scale. The mean value of the
ith smallest observat ion in a sample of n values from a normal population is

n ! 1  

( I) ! (n —
X r e- ' 212  [0 (X )]'  - 1[1—(D(X )]" -" dx

x
(1)(X ) =  ." 27 t e- "2/2 du

A transformation to norma lity is to replace y = i by  21.  Tables of ; are readily
available, for example, Table 28, Pearson and Hartley ( 1972). The table below
sets out the transformation for n = 8.

2 3 4 5 6 7 8

Transformed  y —1.424  —0.852 —0.473 —0.153 0. 153 0.473 0.852 1.424
( =  z,)

A more comprehensive set of transformations to normality was suggested by
Johnson ( 1949). Use of these transformations usually requires a knowledge of
the mean and variance of y , together with \PT., and b2,  as defi ned in Subsection
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3.2.3. Thus, if we have n values of y , denot ed by y 1,y 2, . . . , y„, taken und er

similar condit ion s, then we would need to ca lculate the following qu an t ities :

_ 1 r"
Y = - L

n ,=1

1 "
5 2

=  E ( Y.
— 37) 2

n -  1 i=1 '

1  "
- E  (y1- 9)3

, ./ b =  n i=
1

1 C  n

(y - 2
) 3 / 2

- E  i .0
n i=i

—1 i (Yi m a i

b2 —
n i=1

( i  "

- E  (yi- .02)
2

n i=i

There are three transformation s which are as follows :

SB: z = y + S log (x/ (1 - x )) (0 < x < 1)

SU : z = y + sinh (x ) ( -  co < x < co )

SL : z = y + log (x ) (0 < x < co )

where x = (y - )1), and y, 3, and A are unknown .

These unkn own s are estimated using J.7, s2 , b , and 62, and the particu lar

transforma tion which best su its a pa rt icular p ro blem is chosen on the ba sis of

b and 62. The methods of estimating 7, 3, and A are given in Pea rson and

Hartley (197 1) and Tables 34 and 35 help wit h the calculation . Alterna tively, a

compu ter pro gram is given in Hill, Hill and Holder (1976).

A power tra nsformation which ach ieves symmetry, but not necessarily

norma lity, may be used when repeated y va lues, und er similar con-

dit ions , are ava ilable. The p and ( 1 - p) quant iles (tho se po ints such that

100p % and 100( 1 - p ) % respectively of sample values fall below them) are

determined and den oted by y ,p, and p)• T he median y„, is a lso determined .

The tra nsformation is y Awhere A is the solution of

e imp)) A ( Yu - p)  y = 2

Y,„

A suggested choice for p is 0.01. (It is usual to exclud e the solution A = 0.)

N ow, let us consider a situation in which a linearising transformation on the

depend ent variable might be app rop riate. If the dependent variable y is a

• pro port ion (or pe rcentage), then its va lues will be constra ined to lie between 0

and 1 (or 0 and 100). T hus, a rela tionship between y and any independ en t

variables is unlikely to be linear as a linear rela tionship wo uld not natu ra lly

give values constra ined to lie between two limits. Consequen t ly, either a
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nonlinear model mu st be used or the proportion must be transformed to a new
variable which, potentially, would be ab le to take values anywhere within the
range ( — co , co ). One such transfor mation , the probit transformation, replaces
y  by  z  where z is given by

(1)(z) , y

The original use of this tran sformation was in connection with toxicological
invest igations. A certain dosage was given to a set of animals and the
proportion killed was recorded. This was repeated at dosage levels

giving the propo rtion killed as /34 2, . . . , fi n.  A possible
theoretical model relat ing the proportion killed  p i  to the dosage  di  is

f a + bd,

  ep , = - 1/2u2du

Thus, if V(z1)  = j3 , i.e. the probit transformation is applied to the A s, then this
would suggest the model

z i = a  + bdi + ei  (68)

which is a linear regression relationship between the transformed proportions
and the dosages. Unfortunately , the transformed variables do not have
constant variance. The variance of ; is

M l

ri[ 1  e- 22/2
7 27r

where  r ,  is the number of animals which are given dosage  di.
The extension of equation  (68)  to a multiple regression model would be

achieved by measuring other var iables (besides dosage) which might aff ect the
response of the animal. For instance, weight  (w)  might be included to give the
rela tionship

z, = a  + bd1+ cw,  + ei

In general , the probit model may be used to transform any proportion which is
based on a count of the number of occurrences of a par ticular phenomenon
against the number of opportunities that phenomenon had to occur. However,
it is important that the outcome at each opportunity is independent of previous
outcomes.

An alternative to the probit transformation is the logit transformation . For
the logit transforma tion , the transformed variable  z  is given by

and the variance of ; is given by

z,  = loge

1

I3i

r im (l — p i)
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The logit tran sformation has the advantage over the probit transformation of

being, computat ionally, a simpler function to dea l with. Further more, the

model  zi = a +  bd; +  ei  implies the theoretical rela tionship

1

the logit model, which is mathematically easier to handle than the probit

model. A sketch of the logit model is given in Figure 18.

Fig. 18. Logistic curve.

With both the probit and logit transformations, the variance of the

transformed variable is a function of  pi  and , hence, of the unknown parameters

a  and  b.  Thus, it is not possible to calculate the weights  wo  as defi ned in

Subsect ion 1.3.3, withou t knowing  a  and  b.  Various approximate methods

exist for overcoming this problem, such as using fi rst estimates of  a  and  b  to

calculate the weights, then estimating  a  and  b  by using weighted linear

regression as described in Subsect ion 1.3.3, using these new estimates of  a  and  b

to recalculate the weights, and so on . However , in these circumstances, the

method of least squares diff ers from the more general method of estimation

called maximum likelihood estimation . Fitting a probit model by maximum

likelihood estimation is described in Finney (1964). However, the computer

package G LIM (Baker and Nelder ( 1978)) enables maximum likelihood

estimates to be computed for unknown parameters in logit models and probit

models, as well as many other linear models.

3.3.3 Box—Cox transformations

Box and Cox (1964) suggested the transformations

# 0)

z =  loge y ( . =  0)
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to help satisfy the requirements of normality, constant variance and additivity,
when fi tting linear models (such as model (33), for example). The suggested
procedure is to choose a particular value of 2 and to calculate the residual mean
square  62  (given by equation (39) for model (33)) using the transformed
variable  z  as the dependent variable. .Then, the quantity  Lb(A)  is calculated by

Lb(A) = (n — k — 1)( ( A log,  y , — 4 log e 6-2)
.1

By varying A and repeating the above procedure, a grap h of  Lb(A)  plotted
against A may be produced . An example of such a graph is shown in Figure 19.

LO U

n

-1 0

Fig . 19. Box—Cox transformation.

(A, # 0)
Ai

z  = log, (y + 2 2 ) ( A i = 0 )

(69)

The best choice of A is taken to be the value which maximises Lb(2).
However, if 2 = 0 is the best choice, then loge y  is taken to be the best
transformation .

There will be some trouble with these transformations whenever it is possible
for  y  to be negative. An alternat ive set of transformations

z —CY +
2 2 ) 111 -  

was suggested to cope with this problem. The procedure is again to calculate
the residual mean square  62  with specifi ed values of AI and 2 2 and then to
eva luate

— "
Lb(21, 2 2 ) = (n — k —  1)( ( 1 1) E (y 1 + 22) —1  loge 62)

n

The problem now is to choose 2, and 2 2 to maximise  Lb(AI,  22), but this may be
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achieved either graphically or by using some numerical algorithm of

maximisation .
It might be useful to be able to test the hypothesis A = 20; in particular,

testing the hypothesis A = 0 may well be informative. In the case of the simpler

one-parameter transformation, a 100a % signifi cance test would reject the

hypothesis A = 2 0whenever

2(Lb(A„,ea — Lk(20)) > (1, 1 — a)

where Amex is the value of A which maximises Lk(A).

Transformations need not only be used for the dependent variable. For

instance, it might be appropriate to transform x x „ , xk to x? , x7 , , x;, 

to achieve a strong relationship between dependent and independent variables.

Similar method s to those just described may be used but there is also a clever

iterat ive scheme which cuts out some computation .
Suppose that the correct transformation for x 1 is thought to be somewhere

near to  / IT  (r t could be 1 as a preliminary guess). Then , a Taylor series

expansion of x'1 would give

= x rit + (r —1194 loge x , +

Thus, if the variables xrit and f it loge x 1 are included in the regression model,

then the estimated regression coeffi cient s of those variables may be used to

calculate an estimate for the correct power of x l. This estimate of r, would be

given by

r* s estimated regression coeffi cient of x ',7 lo g e x 1

estimated regression coeffi cient of .4

This estimate of r, may then be substituted for rt and the regression may be

repeated to obtain an even better estimate of r ,, and so on .

Similar ly, including

xr) ,  , xict and f it loge x l , xr;  loge x2, . .  loge xk

in the regression equation would enable improved estimates of r 1, r2, rkto

be computed from preliminary guesses 4 , 4 , . . . , rt .

A similar technique may be used to determine an appropriate trans-

formation for the depend ent variable, but such an exercise should be

undert aken with extreme caution .

3.4 Autocorrelation in Multiple Regression

3.4.1 Possible causes and consequences

One of the assumptions made in Subsections 1.1.2 and 2.1.2 is that the errors,

e 1, e2, . . .,e„, are mutually independent. There are several types of dependent

variable for which it would not be immed iately apparent that this assumption

had any validity. For example, one such variable, of particular relevance in

hydrology, is the dependent variable which represents the state of a certain

phenomenon in time. The readings y1,y2, . . .,y„ may be daily, monthly,
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annual, etc. values of that pheno menon and it is quite likely that y2 (for
instance) will be strongly aff ected by y 1 . However , before we dismiss all time
phenomena as inappropriate for regression analysis, it is important to consider
the exact implications of the assumption being made.

The error terms  e  1, e2, . . . ,  e„ rep resent the deviations of the observed values
of  y  from their true or mod el (or expected) value. I t is these deviations which we
want to assume are independent from one reading to the next . We might
automatically assume that two successive  y  values are correlated because the
phenomenon being studied gives similar values from one day to the next, but
this does not necessarily violate the required independence assumption . Two
successive days read ings may be similar purely because their model values are
similar and they may still have ind ependent error terms. However, when , for
instance, a reading on day 1 which is above its true or model value means that
the reading on day 2 will also be above its model value, then the assumption of
ind ependence is invalid and the er rors are said to be autoco rrelated .

The joint use of the terms 'model' and 't rue' raises an important point . If we
do not get the model exact ly right (i.e. the model value is no longer the true
value), then the error terms will contain a component which is the part that the
model failed to explain . It is then quite likely that deviations from the model in
previous observations would give us some idea of the deviation to be expected
in the present observation . This would mean that our independence
assumption was invalid , but the real cause of this would be that the model was
incorrect . Thus, it is importan t to consider the deviation from the actual model
being fi tted and not from some idea l model that we would like to be fi tting but
which is unknown to us. In assessing this problem, it might be easiest to
consider whether we have been able to observe all causal variables and whether
they have been sensibly included in the model. If they have not been , then it is
likely that , unless those particular variables happen to remain constant over
the time period studied, the deviations from the model used will not be
ind ependent .

If the methods of Sect ions 1.2 and 2.2 are applied when the errors are not
independent , then the consequences are similar to those ar ising from unequal
error variances (see Subsection 3.2.1). In the case of positive correla tion
between successive  y  values (i.e. positive errors tending to be followed by
positive errors and negative errors tending to be followed by nega tive erro rs),
simple linear regression lead s to the variance of the regression coeffi cient being
underestimated and , to make matters worse, to the estimate of variance (given
by equation ( 10)) also underestimating  o' • These inaccuracies are refl ected in
the tests of signifi cance. Typically, with a serial correlation of 0.3 between
successive errors and a sample of  n =  11 pairs of  y  and x values, what should be
a 5 % signifi cance test will actually correspo nd to a real signifi cance of anything
between 1.4 % and 14.6 %. The only good result is that the estimates derived
using Section 1.2 or 2.2 are still unbiased when the errors are not independent .

3.4.2 Transformations

To overcome the problem of autocorrelated errors, we will need to assume
some model for these errors. Suppose that y l, y2,  y„ are arranged in order
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of time. Then, we might assume that

e, = per _  1 + ry, (for r = 2, 3, .

where n, —  N(0, 4 ) and the qs are mutually independent. Thus, each erro r is

directly associated with the preceding error. This is called a fi rst order

autoregressive process and p is called the fi rst order autocorrelation (or seria l

correlat ion) coeffi cient.
In  such a situation , it would be sensible to mod ify y 1, Y 2 5 • t o

y 17 1—p2 ,  y2 — Y 3 Py 2, , . Then, by rea rranging the

original model (33), we would have the model

y 1 1 1 p 2 = _ p 2 E 61)(1,17 1—

and

(for r = 2, 3, . . . , n)

By defi ning x , always to be l , we may eliminate the need to retain the separate

constant term a. The coeffi cient b , will serve the same purpose and we may now

omit terms involving a from the above equations.

If we now defi ne Y1, Y 2 , Y„ and X 1, X 2 , . X k to be

and

y r — py r _  =  a( 1 — p) + E (e, — per _  1)

Y, = Yr— PY, -

1= 1

1= I

= .Y17 1—P2 X 1,1 = x 1.17 1— p 2

p 2 _ p 2

X ij = Xi r PJCij _i (for r = 2, 3, . . . , n

and 1= 1, 2, . . ., k )

then our model will become
Ic

Y, = E byr i.1+ wi (for i = 1, 2, . . n)
I=1

where }Jr;—  N(0, a ). This latter step assumes that the phenomenon being

studied has been observed for a long period of time. If this is not the case, then

Y, should be ignored and only Y 2 , Y 3 , . . . , Y„ should be used .

The regression coeffi cients 6 1, 62, bk may now be estimated using the

standa rd methods of Section 2.2 because wl, w2, . w„ are independent .

Clearly, p plays a crucial part in this transformation and it may no t be

obvious what value it should be given. A value frequently chosen is p = 1, which

implies that the diff erences of successive values are included in the model and

that Y, disappears from the model. However, this does not necessarily confi rm

its use in every situat ion .
One suggested method for choosing p is to apply the basic method of Sect ion

2.2 to calculate the residua ls a l, i 2, . . en using equation (38). An estimate of p

is then given by
( I ni l ) / / . 2

e e + 1 afr? — 1  j=1

where 82 is given by equation (39).
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A more complicated model for the error s is

= pier_ + p,e,_2 ' • + P pe ,._ p qr

where again ;h. — N(0, a ) and the ry,.s are mutually independent .
If pi, p2, •. pr are known, then the previous method may be extended by

defi ning and Xt., to be

Yr =  Yr Pl Yr i  P2Y, - 2 — • • •  PpYr p
and

X = P i -Xis - i — P 2X is. - 2 — P

However , it is extremely unlikely that pi, p2,. . .,pr will be known.
A stra ight forward method which allows pi, p2, . . ., pi, to be estimated from

the data is, fi rst of all, to apply the basic method of Section 2.2 to the data and
to estimate the residuals 61, ê2, From our model, we know that

yr= a  + b1x 1,„+  b2x2m + • +  bkxk,„ +  en

= a  + b ix im+  b2x2m + • • +  bkx „,„

+ plen_, p2e„ _2 + • • ' ppen_p+ n„

y„_ = a  + b ,  b2x2,„_ + • • +

+ p le„_2 + p2e„_ 3 + • + P pn p _i +  tj etc .

Thus, by defi ning additional variables ,ck, I k + 2 , " • , Yk + p to be

X k + i l = e i - I

X k + 2 .1 = e i - 2

(for i = p + 1,p + 2, . . .

e i - p

and subst ituting  6;_r  for e,_, (for r = 1, 2, .  . . ,p  and  i = p + 1, p +2, . . . ,n) in
the previous formula, we may perform the basic method of Section 2.2 on the
n — p observations  y p+ I, . . ., y„ and the independent variables
x i , x2, . . . , p in ord er to estimate pi, 132, . . ., pr.Although this is not the best
of methods available, it has the advan tage that it is conceptually simple to
grasp and easy to implement .

Although strict ly out of place in this section, it is convenient to mention now
the problem frequent ly encountered in hydrology that some of the independent
variab les are previous y alues of the dependent variable. Thus, in these
circumstances, the model would really be

y; = a + b ,yi_, b 2y ,_ 2 ± • • • ± bpy i_p

+  b p + 0 7 1 1  +  b p + 2 , C 2 ;  +  b p + k x k i  e i

It may be shown that , for large samples (large n), the estimates of
a, b1, b2, . . . , bp+k,  derived by the application of the basic method of Section
2.2, have similar properties to those of the estimates of regression parameters
in the conventional model (33), provided that the errors e1,e2, . .  enare
independent . In small samples, these estimates of  a, b1, b2, . . . , bp+k  are biased.



BEFORE A MULTIPLE REGRESSION ANALYSIS 93

However, even for large samples, if the problem of autoco rrelation arises,
then the estimates of bi , b2, . . ., bp+k begin to become suspect . In particular,

they are no longer consistent or unbiased estimates . As the estimated residuals
are also inconsistent, there is little opportunity for using them to correct for

autocorrelation by the methods described previously. Also, in the case of a fi rst
order autoregressive process for the errors, the estimated residuals will show
less autocorrelation than is actually present . Thus, certain tests which are
discussed in Section 4.3 will underestimate the eff ect of autocorrelation , i.e.

they will be biased towards accepting the hypothesis of independent er rors.

References

Baker, R . J . and Nelder , J . A. ( 1978).  The GL IM System , Release  3. Numerica l

Algo rithms G roup, Oxfo rd .
Bart lett , M . S. ( 1947).  Biom et rics,  3, 39- 52.

Box , G . E. P . and Cox, D . R . (1964) .  J . R . S tat . S oc ., Ser ies B ,  26, 2 11-46.

Finney , D. J . ( 1964).  Probit Analysis.  Ca mb ridge University Press.

Hawkins, D . M . ( 1980).  Identifi cation  of  Outliers.  C ha pma n and Hall.

Hill, I. D ., Hill, R . and Holder, R . L. (1976).  J . R . S tat . Soc., S er ies C,  25, 180-9.

Johnson, N . L. ( 1949) .  Biometrik a ,  36, 149- 76.

Pearson, E. S. and Ha rtley, H . 0 . ( 1972).  Biometrika Tables f or S ta tist icians ,  Vol. 1.

Cambrid ge University Press .

Pearson , E . S. and Hartley, H . 0 . (1971).  Biom etrika Tables f or S tatist icians ,  Vol. 2.

Cambridge University Press .

Tietjen , G . L . and Moore, R. H. (1972).  Technometrics,  14 , 583- 97.



Chapter 4

AFT ER A M ULTIP LE REGRESSION
ANALYSIS

4 .1 Some Preliminary Checks

4.1.1 Examining the form of the regression equation

Before making use of the fi tted multiple regression model and before carrying
out any elaborate checks on residuals (see Sect ion 4.3), it is as well to apply a
few simple checks to the model it self.

The eff ect of some of the independent variables on the dependent variable
may be known. For examp le, it may be that a rise in the value of one of the
independent variables produces a rise in the value of the dependent variable. If
this is the case, then a check should be made that it is refl ected in the regression
equation by the regression coeffi cient associated with that independent
variable being positive. A negative regression coeffi cient would suggest that a
rise in the independent variable produces a fall in the dependent variable.

There will be exceptions to this pa ttern which will usually occur when there
are strong inter relationships between some of the independent variables.
Because of the nature of the phenomena being studied , a change in value of one
independent variable may imply a change in values of the other independent
variables. In this situation , the joint eff ect of the highly related variables on the
independent variable must be considered . Although this may be laborious, it is
part icularly important as the existence of highly correlated independent
variables may lead to problems and inaccuracies in inverting the ma trix Sn (see
equation (35)) which, consequently, might lead to a nonsensical fi tted regression
model (see Section 4.2).

If one of the variable selection methods outlined in Sect ion 2.3 has been
used , then it would be wise to consider whether a sensible set of independent
variables has been included in the fi nal fi tted regression model. Again, it is
possible that strong interrelationships in the independent variables may have
led to the surprise omission of a variable, but this omission should have been
balanced by the inclusion of certain variables with which it is highly correlated.

H owever , it is as well to approach the assessment of the fi tted model with
scept icism. A s well as the possibility that certain of the assumpt ions outlined in
Subsections 1.1.2 or 2.1.2 may have been violated, the actual recorded
data might be nonsensica l. For instance, the variables measured , or the
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observations taken of those variables, may not accurately refl ect the

phenomenon that they were intended to record . This may have been caused by

instrument inaccuracy, error in observation or simply the fact that the

phenomenon was not accura tely monitored by the equipment. Assessing the

actual physical meaning or implications of the fi tted model is one way of

assessing the credibility of the data and, hence, the model.

One fi nal possibility is that the calculations required to establish the fi tted

model may have been performed incorrectly. Even when an apparent ly

trustworthy computer program has been used, certain hidden restrictions (such

as ar ray space) may have been violated, certain operat ing instructions

misinterpreted or a hardware (or software) malfunction may have gone

undetected .

4.1.2 Examining the behaviou r of the regression model

Having carefully examined the fi tted regression model, the next step is to

consider how it behaves when in use.
If we put observed values of the independent variables into the fi tted model

(44), then we may calculate pred icted values of y using

)9 i = 14 +  M O (  11 2 ( )C2 i  + 11k( )Cki - '?k)

(for i 1, 2, . . n)

which correspond to the observed values of y (denoted by y 1 , y2, A

graph of )3i plotted against  y i  will then give an immediate visual impression of

the performance of the model. At the same time, it will give the opportunity to

detect gross errors in the fi tted model. Ideally, the graph should be exact ly a

straight line which passes through the origin and has a slope of 45 °, but ,

usually, the plotted points will scatter about this line. If the plotted points

scat ter about some other line (i.e. one which does not pass through the origin or

which has a slope other than 45 °), then some error in calculation must be

suspected . Calculating the quantity E7= (j ;—y 1)  gives a direct check on

previous calculations since this should always be zero (except for rounding

error). However , this is clear ly not a par ticularly powerful check.

Having considered the behaviour of the model for the observed values of the

independent variables, it is advisable to examine its performance over the range

of values for which it might be used . For this purpose, it is useful to have

available other data which have not been used in estimating the model (possibly

deliberately left out), but nevertheless consist of values of the dependent

variable together with associa ted values of the independen t variables. A graph

of predicted  y  plotted aga inst observed  y  for these new data will again give a

rapid visual impression of the performance of the model.

When examining the predictive ability of the model, consideration should be

given to any natura l constraints that there might be on the dependent variable.

For instance, many hydrological variables, such as river fl ow, by their nature

must be positive. Thus, a model which predicted negative values for riverflow

under unexceptional conditions of the independent variables must be treated

with extreme cau tion, if not completely discarded .
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4 .1.3 Stability of the model

Having derived a fi tted model for a particular set of data , the investigator ma y
be left with the unco mfortable feeling that , with another set of data from a
similar situation , quite a diff erent fi tted model might be generated. The concern
is that , for a particular set of data, the model only provides an approximation
to the dat a ra ther than an explanation of the data . In such a situation where the
model has no 'physical meaning' , it is helpful to see the possible fl uctuations
that might occur in the fi tted model in other ways than just in terms of the
variances of estimated coeffi cients.

Again , the technique of dividing the data (or 'data splitting') is of value. In
Subsection 3.1.2, it was suggested that the stability of the model may be
investigated by splitting the data into groups according to the value of one of
the independent variables. In Subsection 4.1.2, it was suggested that it may be
informative to split off some data and not use them in estimating the model, bu t
use them instead to compare values of y predicted by the model with observed
values of y . Another possibility is to split the data randomly into groups and fi t
the model separa tely to the diff eren t groups of data. From the variations in the
d iff erent fi tted models, an immediate idea may be gained of the stability of the
model and , in particular , of which are the most stable factors.

4 .2 Problems of Numerical Stability

4.2. 1 Numerical methods used in regression

In Subsection 2.2.1, the basic problem of estimating /31,  /32, . . . ,  /3k was
presented as the problem of solving the equat ion

Siy = Sxj 3

The solution that was suggested involved fi nd ing Si x' , the inverse of S . There
are a variety of numerical procedures available for achieving this, some notably
more successful than others. A popular method used in several regression
computer packages is the Gauss—Jordan elimination method .

However, there are alternat ive ways of determining /3 which have gained in
popularity in recent years . If we defi ne the column vector Y to be

y =

y l — y

y 2 m y

_

where y l , y 2, y „and 33 are as defi ned in Subsection 2.2.1 and, furthermore,
we defi ne the matrices X and e to be

X  =

x 1 1 — 1

.v12 —X I

X 1  n — 1

x 21— 2

x 2 2 —  1 .2

x 2  n — 2

X k 1 —

X k2

xk„  —

and e =

e

e,

_en_
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then the model

Y X# + e

is equivalent to model (34). The matrix So, is equal to X'Y and the matrix Sxx  is

equal to X'X. Hence, we can see from equation (36) that  P =  (X'X) - X'Y.

However, if we defi ne the matrix Z to be Z = XU where U is an upper

triangular matrix which is chosen so that the matrix Z satisfi es Z'Z = A where

A is a diagonal matrix, then # is given by

p (U'Z'ZU) X'Y = U ' A - 'Z'Y

The matrices U and Z may be determined by a numerical procedure called

'mod ifi ed Gram Schmidt orthogonalisation' . Also, we see from equation (37)

that Nip = a2S -; and , thus, Ni p, the variance covariance matrix of the estimates

P,  is given by

v s._ (7 2( u — I A — l ( r ) —1)

Hence, we have UVpU' =  a2A  and , since A is a diagonal matrix and U and U'

are upper and lower triangular matrices respectively, this allows the elements of

V to be found by back substitu tion.

An alternative approach makes use of a series of orthogonal transform-

ations on X to obtain the decomposition X = QR where the fi rst  k  rows of

R n „ k are upper triangular and the last n — k  rows contain all zeros, and

Q 'Q = 11 , the n x n ident ity matrix. From the equation X = Q R, we have

= Q'X = [os ] where S is a k x k matrix and is upper triangular.

Now, we have

where

ft =  (X'X) X'Y

=  (R'Q'QR) -  ̀R'Q'Y

= (R' R)- 1R'Q'Y

= (S'S)- ' [S'O'IQ 'Y

= S ,[S'O']Q'Y
= S- 1[11,„k0 1(TY

=  5 - iV i

[ VI
AT

]
Q =

V 2

and VI is a k x l matrix and V 2 is a  (n — k) x 1 matrix.

For further details of computat ional techniques associated with multiple

regression , the reader is referred to Seber ( 1977).

4.2.2 The rela tive merits of the various numerical methods

There have been severa l large scale numerical investigations which compare the

performance of the wide selection of computer packages that implement the

methods discussed in Subsection 4.2.1, as well as many other methods.
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Important papers in this area are Wampler (1970), Chambers (1973) and
Beaton , Rubin and Barone ( 1976).

Most investigations use 'worst cases' data so as to test the program to its
limit. The usual abuse is to make X'X nearly singular and this immediately
leads to problems for elimination methods which are attempting to fi nd its
inverse. A useful measure of the 'near singularity' of a matrix A is the P
co ndition which is defi ned by P(A) = A/p where A is the numerically largest
eigenvalue of A and p the smallest. Typical 'worst cases' data have P(A) 1014.
In these adverse conditions, the method s using Gram Schmidt orthogonalis-
ation or Householder transformations, that is, the last two methods of
Subsection 4.2.1, consistently turn out to be the best . One conclusion which
seems to be common to all methods is that scaling the x variables so as to
arrange for the diagonal terms of X'X to be unity does not appear to lead to any
improvement in performance. However, no one seems to question the
undoubt ed wisdom of 'subtracting the means' and , thus, of work ing with the
model in the form of model (34) (as shown in Subsection 2.2.1).

A necessary condition for the satisfactory performance of the two successful
methods mentioned above is that all inner products are accumulated using
double precision ar ithmetic.

4.2.3 Detecting the failure of the numerical method s

Having performed a regression analysis, the points ment ioned in Section 4.1
will help in detecting whether the 'correct' estimates of the regression
coeffi cients have been determined, i .e. whether the correct solution of equation
(35) has been found . There are a few additional precautions which might be
taken .

Assuming the ca lculations are to be performed using a computer , a fi rst step
might be to run some test problems where the regression coeffi cients are
known, so as to ensure that the computer program is working correctly. At the
same time, it may be ar ranged for the condition of X'X to be poor.
Alternatively, a set of data published by Longley (1967) appears to give troub le
to many of the weaker programs and this data may be tried instead .

A second step might be to monito r the condition of the matrix X'X and,
hence, to anticipate trouble with a particular regression analysis when P(X'X)
is large.

A third step might be to perform the regression analysis severa l times with
the scale of the x variables altered each time. Interchanging the identity of the x
variables (for example, interchanging x , and x3) is a useful device for detecting
both elementary mistakes and obscure ones which might otherwise go
undetected.

Another useful precautionary measure might be to ca lculate the vector of
residuals, e = 1, 2 . . . . . ê j ' = Y — Xft (where e 1, e2, . . . , en  are defi ned by
equation (38)), and then to check that X'i = 0 , as should obviously be the case.
In non-matrix terms, this is equiva lent to checking that E':= , (x n —  0
(for  r =  1, 2, 3, . . . , lc).

Finally, the numerical stability, as well as the ' logical' stability of the
ca lculations might be examined by perturbing the data and reperforming the
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regression analysis. Thus, for example, suppose that the variable x 1 can only be

recorded to one decimal accuracy giving readings of  12.1, 10.8, 6.9, etc . Then ,

these read ings may be altered to  12.05, 10.75, 6.85, etc . or  12.15, 10.85, 6.95,

etc . and the data re-ana lysed. If the resulting analysis is markedly diff erent

from the original analysis, then this may suggest numerical instability. At the

same time, this will give the analyst a good idea of the imprecision inheren t in

his conclusions which has resulted from the imprecision of his origina l data .

4.3 Analysis of Residuals

4.3.1  Plo tting the residuals

Use of the  n  residuals  61, e2, . . . , ê„  has already been described in Subsection

4.2.3. Their defi nition , which is given by equ ation  (38), shows that they are the

diff erences between the observed values of the dependent variable  y  and the

predicted values of  y  which have been obtained by using model  (34)  with

the least squares estimates of the unknown parameters inserted in place of the

corresponding parameters in the model.
The ma in benefi t to be gained from studying these residuals is a knowledge of

the adequ acy, or more likely the inadequacy, of the assumptions made in

multiple linear regression . The terms  e l, e2, . . e„  are assumed to have zero

mean and constan t variance  a ' ,  to be norma lly distributed and to be mutually

independent . Consequent ly, we will expect similar , if not identical, properties

for e l, 62, . . . , ek.
Thus, as a fi rst step in examining residuals, it will be helpful to form a

histogram of 61, . . . ,e„.Let us now consider the features that we would expect

to see, or not to see, in this histogram. U nless there has been an error in

calculation, the mean of el, . . ek will always be zero. The histogram should

be reasonably symmetric about zero ; in other words, there should be no

marked skewness and no strong evidence of bimodality. Also, there should be

few points noticeably detached from the rest of the histogram. Existence of

detached po ints may suggest the presence of outliers.

To investigate the shape of this histogram furt her , various stat istics may be

calculated from êl, . . e„ and these will be discussed in Subsect ion  4.3.2.

However, a further graphical aid is to use normal probability paper which was

mentioned in Subsection  3.2.3  to plot the cumulative distr ibution of el , . .  e„.

The resulting plot should give a nearly stra ight line when the assumption of

normality of  c.o . . . , e„  is valid.
The next step might be to plot the graph of e l, . . . , "e„ against ,  j;„  (as

defi ned in equation (44)). Ideally, this should produce a graph which is just a

horizontal band of points with possibly a slight bulging towards the midd le of

the graph . Var iations on this pattern might be : (1) a band of points of more or

less uniform width bu t which is not horizontal , i.e. it may be rising, falling or

curved, or  (2) a band of points of non-uniform width.

The fi rst pat tern variat ion usually suggests either an error in calculation or

that the model is not adequately representing changes in  y .  This problem might

be overcome by either transforming  y  or including some polynomial terms of

x l, xk in the model.
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The second pattern varia tion usually suggests that the variance of e l , . . . , e„
is not remaining constant . This may be caused by the variability in y increasing
(or decreasing) as y increases (although the problem of non-uniform density of
points which was mentioned in Subsection 3.2.2 should be considered in these
circumstances). Also, this pattern may be caused by increasing errors of
measurement , inclusion of certain 'bogus' , 'contaminated' or spurious results,
or the physical process studied being diff erent for diff erent values of y .
Rectifi cation may be achieved by transforming the dependent variable y ,
eliminating certain results or fi tting separate models to diff erent portions of the
data .

When there is some time sequence associated with y l , . . . ,y „, it is often
helpful to plot e l , ,  en against time or sequence number or, at least , to plot
them in the same order as the y s were measured or recorded. This is particularly
helpful when time is involved and it has not been included as an independent
variable. Again, a horizontal band of points should be expected from this
graph bu t deviations of the type described for the previous graph may occur .

The fi rst pattern variation might indicate that time should have been
included as an explanatory variable in the regression equation . The second
pattern variation might suggest tha t the variability of the dependent variable is
associated with time ; for example, it might suggest that results taken 50 years
ago are less precise than results taken nowadays .

Similar ly, plotting  1 . . ., en  against values of each of the independent
variables in turn should give a horizontal band of points. A non-hor izontal
band may suggest that the eff ect of the independent variable on  y  has not been
fully explained in the model and that, possibly, a polynomial term needs to be
included in the model. A widening band may suggest that the variance of the
dependent variable is not constant, but possibly related to the independent
variable plotted .

Finally, it might be helpful to p lot a graph of 61, . . .,  en  against either an
independ ent variable which has so far been omitted from the regression
analysis, or a variable that has been thought to be not worth including, or a
variable which has been omitted as a result of a stepwise regression calculation .
This will help to check for constant variance and that there is no association
between the variable plotted and the dependent variable y .

4.3.2 Some tests on the residuals

E x ac t tests of signifi cance on the residuals tend to be cumbersome because the
distribution of the residuals is not simple to deal with. Provided that the model
used (i.e. model (34)) is correct, the residualsei will follow a normal distribution
with zero mean. However, the residuals do not have constant variance and they
are not independent. In fact , using the notation of Sect ion 4.2, the variance
covariance matrix of e l, 62, . . ., e„ is a 2(l „ „ n — X(r X)  

Anscombe, (1961) describes sligh tly mod ifi ed versions of the coeffi cients of
skewness and kurtosis which enable an assessment to be made on the
'normality' of the residuals. However , it has been shown that the test of Shapiro
and Wilk mentioned in Subsection 3.2.3 may be applied to the residuals
Co . . . ,en for a test of normality of  e l ,  ,  e„.  Some of the other tests mentioned
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in Subsection 3.2.3 (for example, tests for ou tliers) may be applied to  'El , . . . ,  en,
although they are not strict ly valid and must be used with caution since

, , en are not independent and do not have con stant variance. However,
with a plot of e  1, . . .,  en showing a markedly detached point , a rough idea of its
signifi cance may be all that is requ ired .

For testing whether the variances of  e„ . . . , e„  are constant, a suggested
procedure is to divide the data into two groups with an equal number of
observations in each . The residual sum of squares is then calculated for each
group and their ra tio is formed . When the assumption of equal error variance
of observations in the two groups is valid, this ratio will follow the distribut ion

Thus, for example, to test for an increase in variance withFn1 2 — k — I ,n12 — k — 16

increasing  y ,  the smallest  nI2  values of  y  would form group 1 and the remain ing
nI2  values would form group 2. (When  n  is odd, the midd le observation would
be discarded.)

Restdual

New Sequence

0 Time
(or  independent var iable)

Fig . 20. Plo t of residuals and assoc ia ted signs.

There are several non-parametric tests for detecting changes from a
horizontal band in a plotted sequence of readings. The test which will probably
be most useful replaces the plotted sequence of points by their sign , as shown in
Figure 20.

When there is no trend in the residuals, there should be a random jumble of
+ s and — s. However , when a trend is evident, there will be a series of runs of
+ s and — s. The test involves counting the total number of these runs,  r.  (In the
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example above,  r  is equal to  3.)  If there are  n1 + s  and  n2 - s  in the whole
sequ ence, then the test stat istic  U  is given by

r -  1 -  2n1n2/(n1 + n2)

2n1n2(2n1n2- n1- n2)

(n1 + n2)2(n1+ n2- 1)

and  U -  N(0, 1), approximately, whenever the sequence is a random jumble of
+ s and - s.

Thus, for a  100a %  signifi cance test, the hypothesis of a random jumble of

+ s and - s would be rejected whenever I UI >  Z(a/2).  Rejection of the
hypothesis would suggest that the plot of point s did not form a horizontal
band .

U =

4.3.3  Other residuals

The residuals that have previously been used are correlated and have diff ering
variances. Consequently, several attempts have been made to derive pseudo
residuals which have better properties and this has led to the use of
standardised residuals, BLU S residuals, recursive residuals, etc.

If  Vi  is the ith diagonal term of the variance covariance matrix of the

residuals, then  ei11 11  will have variance equal to 1. Using the residua l mean

square to estimate  o' ,  the residuals eik fr i are called standardised residuals.
BL U S residuals require the matrix X (as defi ned in Subsection  4.2.1)  to be

par titioned into

X  =

X

where X0 is a k x k matrix and , hence, X1 is a  (n -  k) x k matrix. The h non-zero
eigenvalues of X0(X'X) - 1r 0 are denoted by 4 , A ..... A and the corres-

ponding normalised eigenvectors are denoted by zi , z2, zh. Thus,
X0(X'X) - ' r oz, = 2,2  for  r =  1, 2,  If the vector of residuals

- ; - - ;  -
e ,  e0

is par titioned into two parts

where i 0 contains  k  rows and , hence, e l contains  n- k  rows, then the BLU S

residuals are defi ned to be
h Ar

111 = e — 1L E  zrzd e0
=1 1 +

These residuals are intended to display the discrepancy between the last  (n- k)

observed  y  values and the fi tted model; in other word s, they have the same
purpose as el . The sum of squares of the  (n- k)BLU S residuals, 14 111,  is equal to
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the sum of squares of the original residuals, r i? However , the (n — k ) ELUS1= 1
residuals are uncorrelated and have constan t variance a2.

The problem in using these residuals is to decide on a partition of X. By
reordering the data , any  k  of the n readings may be ar ranged to correspond to
Xo. As the readings associated with X0  are eff ect ively ' lost' , i.e. no residuals
corresponding to these values are produced, some care must be exercised in the
selection of Xo.

When the intention is to use the Bu is residuals to investigate an increase in
variance with increasing y , it might be sensible to omit the midd le observations.
If the middle observat ions are omitted, leaving m readings at the beginning and
m at the end of the sequence of observed y values, then the ratio of the sum of
squares of BL U S residuals associated with the fi rst m readings and the sum of
squares of those associated with the last m readings should follow an  F
distribution with m and m degrees of freedom whenever the assumptions stated
in Subsection 2.1.2 are valid .

Alternatively, a plot of the n us residua ls may be informative provided that
the partition of X is performed sensibly.

4.3.4 Autocorrela tion

Possible causes of e i , , en being serially dependent were discussed in
Subsection 3.4.1 and some ways of overcoming the problem were suggested in
Subsection 3.4.2. However , fi rst of all, it will be necessary to detect whether
such a phenomeno n exists and , riot surprisingly, most procedures to achieve
this make use of the residuals, e  , en.

The non-parametric test described in Subsection 4.3.2 will help to examine
the serial dependence of the residuals. Obviously, it will only be sensible to
investigate the possibility of autoco rielat ion when y l , y2,  y „ represent a
series of readings, in some sense. For example, they may represent a sequence
of readings in times (such an annual rainfa lls) or y 1may have been recorded
fi rst of all, then y2, then y 3, etc. Suppose that the corresponding residuals

ez, i „are replaced by their signs (e.g. + + — — + — — + + — — etc .).
Then, autocorrelation between y . y „ might lead to a non-random
sequence of + s and — s from the residuals which would be detected by the
'runs' test mentioned in Subsection 4.3.2. However, it should be remembered
that there may be other causes of a non-random sequence of + s and — s from
the residuals, for example, by an incorrect model having been fi tted .

The most frequently used autocorrelation test is probably the
Durbin—Watson test . The test stat istic  d  is given by

d = E E e?

This stat istic exploits the fact that  F(e, — ê1_1) 2  = E(4 ) + Efrt —
2E(e1e1_ 1).

The right hand term refl ects the correlat ion between successive residuals.
Consequently,  d  will be small when residuals are consistently positively
autocorrelated, intermedia te when there is no autocorrela tion and high when
the residuals are negatively autocorrelated . However , the warning given in the
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previous paragraph for the runs test also applies to the Durbin—Watson test . If
all the assumptions made in fi tting a regression model are valid, then the
residuals should not display a notable autocorrelation . Thus, det ecting
au tocorrelation in the residuals ind icates that something is amiss. It does not
necessarily follow that the cause is autocorrelation in the y readings as an
incorrect or incomplete model may have been used.

The variance covariance matrix of the residuals given in Subsection 4.3.2
depends on X, the matrix of values of the independent variables. It is therefore

not surprising to learn that the distribution of  d  also depends on X. To

overcome this problem and provide a test which may be easily applied , Durbin
and Watson evalua ted b6unds  (di, du)  between which, for a given signifi cance
level, the appropriate signifi cance point must lie regardless of X. The suggested
test procedure is to reject the assumption of independence in favour of positive
autocorrelation when  d < di,  draw no conclusion when  di < d < du and accept
the assumpt ion of independence when  d >

This provides a one tailed test of positive autocorrelation versus
independence. To invest igate the existence of negative au tocor relat ion , the
procedure is to replace  d  by 4 — d in  the above and for 'positive autocorrelation'
read 'negative autocorrelation' . Tables for  di  and  du are given in Durbin and
Watson's original paper (1951) and are reprinted in several regression books,
for example, Theil ( 1971).

One of the diffi culties of applying this test is that the value of  d  frequently
falls in the region  (db du)  and thus the outcome of the test is inconclusive.
Durbin and Watson give some guidance for obtaining conclusive results in this
situation . However, other workers have shown that when the independent
variables are 'smooth' , the upper bound  du provides an approximation to the
true signifi cance point. (A 'smooth' variable is defi ned to be one whose
consecutive values show sma ll changes compared with the total range of the
variable). A summary of various approximat ions to the distribution of  d  which
may help when the test is inconclusive is given by Durbin and Watson ( 1971).

An alternative test of autocorrelation may be derived using the BL U S

residuals, ô1= fa , u1,2, . . . , 121, _ J . The test sta tistic  Q  is given by

(

—k —

.11 n - k I ( .1 1 ,2 .2

Q  n

where 6 2 is the usual residual mean square given by equation (39). The
distribution of  Q  is tabulated in Theil (1971). Alternat ively, for n —k >  60, a

satisfactory approximation is to assume that  Q  follows a normal distribution
with mean 2 and variance 4/(n — k ).

Phillips and Harvey (1974) derive an autocorrelation test which is simpler to
calculate than the n us residuals test but both of these tests have poorer power
than the Durbin—Watson test in which an approximate signifi cance point is
calculated when  di < d < d„.
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Chapter 5

SO ME EXAM P LES

5.1 An Example of Fitting and Comparing Several
Regression Lines

The source of the data used in this example is Report No . 73 of the Institute of
Hydrology by M . Robinson (1980). This report examined the eff ect of pre-
aff orestation drainage on the streamflow and water quality of a small upland
catchment, the Coalburn ca tchment, located approximately 40 km north-east
of Carlisle. Table 10 of the report gives rainfall (R ) and run-off (Q ) in
millimetres, for winter (Oct ober—March) and summer (April—September) over
a fi ve-year period prior to drainage work and over a similar period after
drainage.

T ab le 2 R ainfall and ru noff on the Coalburn ca tchment

W inter S um mer

Period R Q % Rune Period R Q % Runoff

Pre-dra in ing

1967- 8 926 729 78.7 1967 669 343 5 1.2

196 8- 9 494 455 92. 1 1968 632 310 49 .1

1969- 70 577 446 77.3 1969 579 259 44.7

1970- 1 652 599 91.9 1970 575 305 53.0

197 1- 2 542 465 85.8 197 1 457 196 42.8

M ean 638 539 84.5 Mean 582 283 48.6

Post-dra in ing

1973- 4 542 480 88.6 1974 497 235 47.3

1974- 5 794 636 80. 1 1975 642 370 57.6

1975- 6 546 478 87.5 1976 44 9 199 44.3

1976- 7 622 593 95,3 1977 584 315 53.9

1977- 8 763 704 92.3

M ea n 653 578 88.5 Mean 543 279 51.4
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Fig. 21. Coalburn ca tchment data .
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Figure 21 gives a plot of the whole data set. From this plot of the data we might
tentatively conclude that :

A linear regression model for relating  Q  and  R  seems reasonable for each
of the four groups of data .

There is a diff erence in position (but not slope) between the winter and
summer regression lines.

There is less scatter about the line for the summer dat a .

We would probably also observe that :

The winter data cover a larger span of values of  R .
There is a shorter series of values in the summer post-dra inage category

than in the other three categories.

Although not strictly necessary as a step in the analysis of this data set , let us start
by fi tting a straight line to just the winter pre-drainage data . Using the notation
of Section 1.2, we take rainfall to be the independent variable, x , and runoff to
be the dependent variable  y  for reasons similar to those advanced in Subsection
1.1.3. The table shown on page 108 gives the various necessary calculations.

Column 1 gives the values of the initial calculations made on the winter pre-
draining data . From these sta tistics, the useful intermediate sta tistics  Sxx,  etc .
are calculated and their values are given in column 2. The formulae for  Sxx,  etc .
are given at the end of Subsection 1.2.2. Finally, column 3 gives the most
pertinent stat istics in fi tting a stra ight line, namely the intercept and slope
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i=

together with their standard errors. These are calculated from equations (5),
(6), (7) and (8) respectively with the est imate of a 2 used in equations (7) and (8)
being ca lculated by equation (10). S.E .(d) denotes the estimated standard error
of a and is equal to the square root of equation (7) when the estimate for 0-2

given by equat ion ( 10) has been inserted . Thus we conclude that our fi tted
modd is

Runoff = 99.34 + 0.6886 x Rainfall

Testing the hypothesis  a =  0 assesses the evidence to support a 'straight line
through the origin' model to relate runoff and rainfall. Referring to the fi rst test
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in Subsection 1.2.3 the test stat istic given may, in fact, be writ ten as
6/ [] S.E.(ii)], the value of this expression is 1.21. Using a 5 % signifi cance test
gives  t(n — 2, 1 — a/2) = 3.18 and hence we cannot reject the hypothesis  a =  0.
Testing the hypothesis b = 0 assesses whether rainfall has any aff ect on runoff .
The second test statistic in Subsection 1.2.3 may also be written in the simpler
form  b/ [../ S.E.(b)] .  Its value is 5.5 and hence, using a 5 % signifi cance test , we
reject the hypothesis b = 0,  implying that there is some linear association
between rainfall and runoff values.

Figure 22 gives the 95 % confi dence intervals sta ted in equat ions (13) and
( 14). Thus, at a par ticular rainfall value, the outer curves give a 95 % confi dence
interval for a single reading of runoff and the inner curves give a 95 %
confi dence interval for the mean runoff at that rainfall value. All observations
lie comfortably within the outer curves which suggest no obvious outliers .
Indeed, with so few observations, it would have to be a quite exceptional
observation to show up as an outlier .

Fitting the linear regression model to each of the four sets of data separa tely
gives the following set of summary stat istics :

Table 3 Regression lines for the Coa lburn catc hment d ata

Pre-draining Post-draining

Examining the speculations we made earlier we see from these stat istics that it is
apparent that the intercept parameter ,  a,  diff ers between the winter and
summer data . Furthermore, there is less scatter about the line (6-2) in the
summer months . In addition , there is a slight suggestion of a higher slope
parameter (b) in the post-draining data . However, the most striking diff erence
of all, and the most inconvenient , is the very low value of 6-2 for the summer
post-draining data.

Forma lly, a test of signifi cance on the four (12 values, using the test of
equality of variance outlined in Subsection 1.3.2, gives  M =  8.94. With
x2(3, 0.95) = 7.81, this suggests that, using a 5 % signifi cance test, we should
reject the hypothesis of equal variance about the line for the four categories of
data . Reference to Figure 21 will confi rm just how unusually linear the summer
post-dra ining data are. If this eff ect were real then it might well be the most
interesting fi nding of the analysis, na mely that draining has led to runoff being
closely related to rainfall. However, with only four observat ions one must treat
any conclusions with caution and perhaps even scept icism.
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Computing the analysis of varia nce table given in Subsection 1.3.2 gives the

following table :

Formally, we would accept a hypothesis of equal slopes and reject a hypothesis

of equal intercepts, the latter being signifi can t at the 0.1 % level. Thus our

suspicion about the intercepts is confi rmed but the diff erence in slopes is not

signifi cant. Referring back to the table of slopes and intercepts we see that the

diff erence in intercept s rela tive to their sta ndard errors is much greater than the

diff erence in slopes relat ive to their standard errors. Any conclusions from the

analysis of variance table are made on the assumption of equal variance about

the line in the four sets of data bu t it would seem unlikely that the degree by

which this assumption is violated would great ly alter the conclusions.

Further comparisons would be of interest , in particular to establish whether

there is a change in slope between pre- and post-draining data . To take the

analysis further , it helps to see that the model for these data can be written as a

mu ltiple regression model similar to equ ation (34). The model used so far is

equation (23) in Subsection 1.3.2 and to keep the complexity to a minimum, let

us suppose that the data had only consisted of two groups with two pairs of

values in each group . Equation (23) becomes

is equivalent to model (34). Thus signifi cance tests on  a l, a2,  b 1 , b2 may be

conducted using the general linear hypothesis results of Subsect ion 2.3.1. In

general, provided that the model is linear in the unknown parameters and that

the error term is an additive component, it will usually be possible by using

dummy variables in conjunction with 'real' variables to write the model in

multiple regression form. However, because of the general nature of the test

stat istic (equation (48)), it is often unnecessary to actually derive the multiple

regression version of the model in question . This will be apparent from the

analysis in the remainder of this section. Let us now use this approach to

compare the values of  a  and  b  for pre-draining data with those for post-draining
but, at the same time retain the winter/ summer division in the data . This will
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allow us to focus on the pre/ post d ra ining d ivisio n in its eff ect on a and  b  bu t , at
the same time , acknowledge tha t there might be a diff erence (prob ably in a)
between the win ter and summer regression lines. We need to com pute two
residual sums of squares, the residua l sum of squares  R ,  fi tting a separate
regression line to each of the four group s of data ( = 13 010 from the previous
ana lysis of varia nce table) and the residual sum of squares R H com pu ted by
assuming the hypothesis to be true . The hypo thesis,  H ,  is that a and  b  are the
same for pre- and post-drain ing data (but possibly diff eren t fo r winter and
summer data) . Mergin g the pre- and po st-dra ining d ata prod uces a set of data
with just two ca tego ries, win ter and summer . App lying the same type of
ana lysis as we did with four categories gives an analysis of variance table wit h
residua l sum of squares, R H = 1 7 416.68  (RH must be >  R ).  The test sta tistic for
H ,  given by equ ation (48), is [( 17 416.68 — 13 0 10)/4]/ [13 0 10/0 9 — 8)] = 0.93
which shou ld follow  F4,11  if  H  is true . The 5 % point of F 4 , 1 1 is 3.36 and hence
we mu st accep t  H .

It is en lightening to appr oach the same test from a slightly diff eren t angle.
Let us analyse the win ter and summer data separately bu t with the sa me
objective as previously , to decide whether a and b are the same for pre- and
po st-draining data . F ro m Table 3, we know tha t the residual sum of squares,
fi tting separa te regression lines to winter pre- and post-dra in ing data , is
1832.4 x 3 + 2078.7 x 3 = 11 733.3 =  R .  Combining pr e- and post-dra ining
data and fi tting a single regression line to the win ter data give a residual sum of
squares of 13 972.3 = R H .

Our test sta tistic for  H  is now [(13 972 .3 — 11 733.3)/ 2]/ [11 733.3/(10 —,4 )]
= 0.57 which should follow F 2 ,6 . Again we accept  H .  Repea ting the
calculations for the summer data gives  R =  4 16.3 x 3 + 14.46 x 2 = 1277 .82
and R H = 3444.38. Our test statistic is now [(3444.38 — 1277.82)/2]/
[1277.82/(9 — 4)] = 4 .24 which sho uld follow F 2 , 5 . The 5 % point is 5.79 and
hence using a 5 % sign ifi cance test we mu st accept  H ,  but the 10 % point is 3.78
at which level we would reject  H .  Consequently we cann ot be ver y sure abou t
the validity of  H .  There migh t be some ground s for supposing tha t in the
summer mon ths , the pre- and post-draining regression lines diff er . T his
diff erence in conc lusions for summer and win ter is due to a large exten t to the
much smaller varia tion about the line in summer data  (R =  1277.82 for the
summer ,  R =  11 733.3 for the winter) .

Note tha t adding the two  R  va lues 1277.82 + 11 733.3 = 13 0 11.12 gives
(except for round ing er ror) the value of  R ( =  13 0 10) for the who le set of data
and add ing the va lues of R H , 13 972.3 + 344 4.38 = 17 416.68 gives the value of
R H for the who le data set . Thu s we can imagine combin ing the results of the
summer and win ter tests in to a single signifi cance test . However , in tu ition
should not be relied up on too heavily in this area as this add itive pr opert y on ly
occurs if certain cond itions abou t the ma trix X are satisfi ed , namely tha t
certain co lumns of X are mutually ort hogonal.

So far , we have on ly simultaneously tested whether bo th a and b diff er
between the pre- and post-d rainage data . To emphasise the extent to which
d iff erences in regression lines may be exa mined , suppose we pu rsued the hint of
a diff erence in pre- and post-dra ining regression line in the summer months . Is
the diff eren ce pr imarily in the intercept a, or the slope , b or bo th ? There are
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four hypotheses which we could investigate with the summer data and they are
listed below together with the residual sum of squares derived by assuming that
hypothesis to be true.

To test the hypothesis (H 3) that the pre- and post -drainage regression lines
have the same slope (but not necessarily the same intercept) we would compute
[(1850.30 — 1277.88)/ 11/0 277.82/5) = 2.24 which should follow F 1, 5 . The 5 %

point of F 1 , 5 is 6.61 and hence we accept this hypothesis using a 5 %
signifi cance test . A similar calculation would lead us to accept hypothesis H 2

that the regression lines have the same intercept (but not necessarily the same
slope). However the hypothesis 1/ 4 , that the regression lines have both the same
slope and the same intercept is the hypothesis we considered earlier which gave
a test statistic of 4.24 which should follow F 2 , 5 .

For this par ticular set of data , the conclusion to be drawn from examining
the three hypotheses H 2 , H 3 and H 4 is not clear cut, although in other

situ at ions it might be quite informative. From examining H 4 there is some

suggestion that the lines diff er but by examining H 2 and H 3 i t is not clear that

this diff erence is confi ned to either the slope alone or the intercept alone. It is
more that there is a marginal diff erence between the two sets of data which
can be accommodated by having one parameter diff erent in the two regression
lines and it does not matter great ly whether that parameter is the slope or the
intercept . There is a marginal preference for it being the slope.

A similar set of calculation s on the winter data produces the following table :

As we saw previou sly, the test statistic for H 4 is 0.57 which should follow F 2 ,6 .

Consequently there is very little reason to question the validity of H 4 . If there

were, then it wou ld aga in be the slope parameter that diff ered 'more' than the
intercept parameter .

A similar approach could be made to substantiate the  .tdiff erence in the
intercept parameter ,  a,  between winter and summer months. This time the
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division would be winter/ summer ra ther than pre/post dra ining and the
parameter of interest would be  a,  the intercept, rather than  b,  the slope.
Alternatively, a rough assessment of the signifi cance of the diff erence between
two estimates of  a  (and similar ly of  b)  may be gained by computing

62

[S.E.(ti + [S.E.(c22)12

where the suffi ces I and 2 refer to the two groups of data , winter/ summer. On
the null hypothesis of equal intercepts, the distr ibution of this quantity will
tend to a Normal distribution with increasing sample sizes. For an
approxima te 100 a % signifi cance test we would accept the null hypothesis if

a l 6 2

[S.E.(ii 1)]2 + [S.E.(a2)]2

Thus, comparing the two post-dra inage intercepts gives a test statistic of
[81.03 — ( — 205.04)]/ Y ( 126.75)2 + ( 13.89)2] = 2.24 and consequently we
should reject the null hypothesis of equal intercept s using a 5 % signifi cance
test . However, for this example, sample sizes are very small and it would be
foolish to place much weight on this conclusion. An exact test of signifi cance of
the same hypothesis would just fail to reject the hypothesis of equal intercepts,
but one advantage of the approximate test presented here is that it allows for
the possibility of diff erent variances in the diff erent groups which the exact test
does not.

In summa ry, to produce an overa ll model for the four groups of dat a it
would seem that we should allow for d iff erent intercepts for winter and summer
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dat a and either different intercepts or diff erent slopes for pre- and post-
drainage in the summer . Opting for three diff erent intercepts but a common
slope, Figure 23 shows the resulting three parallel regression lines. Q = (86.48,

— 143.08, — 117.13) + 0.7309R for winter , summer pre- and summer post-
drainage respectively. The 95 % confi dence interva l for a single value of Q is

also given ; for clar ity the intervals for the other two lines have been omitted .
The calculations may either be carried out by using dummy variables to
introduce the diff eren t intercepts, as already explained in this section , or by
making use of the general results usually referred to as analysis of covariance .
These lead to some economy of calculat ion for regression models which consist
of some dummy variables and some genuinely quantitat ive independent
variables.

The residual sum of squares from fi tting this model to the whole dat a set is
15 943 with 15 degrees of freedom. A test of the assumptions made about the
slope and intercept parameters (common slope for all four groups and
common intercept parameter for both winter groups) could be performed
using the general linear hypothesis approach of Subsection 2.3.1. The value of
R H will be 15 943 with 15 degrees of freedom and the value of R will be 13 010
with 11 degrees of freedom (the residual sum of squares from fi tting a model
with diff erent slope and intercept parameters for each group). Our test stat istic
will be [(15 943 — 13 010)/0 5 — 1 0 1/( 13 010/ 11) = 0.62 which should follow
F 4 , 1 1 . We cou ld clear ly not reject the hypothesis of common slope and
common winter intercept parameter .

5.2 Multiple Regression on Mean Annual Flood

5.2.1 In troduction

D ata were provided by the Institute of Hydrology on the annual maximum
fl ood and various catchment characteristics for 83 catchments distr ibuted over
the whole of England , Wales and Scotland . This data set will be referred to as
data set X. The catchment characteristics were area (AREA), stream frequency
(sTrAFRQ), stream slope (saw ), mainstream length (mst) , standard annual
average rainfall (sAAR), one day rainfall of 5 year return period less eff ect ive
mean soil moisture defi cit (Rsivo ), urban index (URBAN), lake index (LAKE) and
soil index (so lL). Detailed explanation of these cha racteristics is given in
Report No. 49 of the Institu te of Hydrology by J . V. Sutcliff e (1978). The length
of record varied considerably with as many as 43 annual maxima available in
one catchment and 2 in an other , giving a total of 905 readings of annual
maxima in all. Individual readings of annual maxima will be denoted by Qij
and the mean of all values of Q1., for a particular catchment by Q,.

The Flood Studies Report (1975) gave methods for assessing the sta tistical
distribu tion of fl oods suitable for a range of cases depending on the amount of
information available and relevan t to any given site. As part of this overall
scheme there was a requirement to be able to predict the mean annual
maximum fl ood (0 ) for sites at which no fl ow-gaugings at all are available. This
predicted mean value would then be used as an input by other procedures .
Objectively determined catchment characteristics such as those listed above
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were found for existing gauge sites together with values of 0 , which was

essentially just the average of the individua l yearly maximum instantaneous
fl ow rates for each site : however, for gauges with only short records, improved

estimates of mean annual fl ood were sometimes used . For the study here the
individual yearly maxima are available and so a somewhat more general
analysis can be made, looking at the relationship of the distribution of yearly
maxima with catchment characteristics. Data set X consists of the same
catchments as available for the Flood Studies Report except that only the 83
out of 643 catchments with areas of less than 72 km2 are included : the period of
data is also the same.

The Flood Studies Repo rt had suggested a countrywide equation rela ting

catchment cha racter istics and mean annual fl ood  Q which was linear in the logs
of the variables. It was suggested that the equation could be improved if
regional multipliers were used instead of a single countrywide constant . In

regression terms the countrywide equation with a single constant could be
derived by applying the multiple regression technique to the depend ent
variab le log  Q1 and independent variables log AR EA , log ST M FR Q etc . or to the

dependent variable log  Qij  and the same set of independent variables. The
diff erence between these two approaches will be discussed at the star t of

Subsection 5.2.2.
Table 4 gives the regression coeffi cients quoted in the Flood Studies Report

and those derived with equation (36) using dat a set X with log  Qu  as the
dependent variable.

Table  4  Regression coeffi cients for pred icting mea n annua l fl ood , 0

log log log log log log log log

AREA STM FRQ 5 1085 SAAR RS MD ( I + URBAN) ( I + L AKE) SOI L

Flood Studies 0.94 0.27 0.16 1.03 — —0.85 1.23

Report

D ata set X 0.79 0.23 0.13 0.85 2.44 1.29

The reason for tran sforming URBA N and LA K E is that both indices can be zero

and hence will give values of — co when logged. Many other transformations

cou ld of course be applied but 1 + UR BAN , 1 + LA K E have the advantage, in

interpretat ion , that they have no eff ect on the resultant prediction if the
catchment in question includes no urban or lake area.

In genera l there seems to be reasonable agreement between the two sets of

coeffi cients. The dat a sets diff er in tha t data set X is of a limited number of
smaller catchment s. Variables SAA R and RSM D have a correlation of 0.93 and

consequently it is no surprise to fi nd the one substituting for the other in the
equations. Data set X contains very few catchments with lakes and hence LA K E

is not useful for predicting  Q  for this data set . This small point illustrates the
dependency of any derived equation on the scope , quality and context of the

data set used to derive it .
To illustrate the theory given in Sections 2.2 and 2.3, we will give some

further deta ils of the calculations involved in the regression using d ata set X.
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Table 5 Regression coeffi cients and their sta ndard errors

Var iable Identi ty

Y log annua l maximum fl ood
x ,  log AR EA

x 2  log STM FRQ

x , log sioss
log ma .

x , log SAA R

x , lO g  RSMO

x ,  log ( I  + URBAN)

x , log  ( I  + LA K E)

x ,  log SOIL

T he regression coeffi cien ts have been de rived from equa tion (36) and their
standard errors from equation (37) using equation (39) to estima te a 2. In
Subsection 2.3.2 we suggest that a test of signifi cance of 11, = 0 (i = 1, 2, . . . , 9)
involves computing the ra tio of the regression coeffi cient and its stand ard erro r
(last column) and compa ring this with the t dist ribu tion with n —k — 1( = 895)
degrees o f freedom. T he va lue of t(895, 0.975) is 1.96 and thus we only accep t

= 0 fo r i = 4, 6 and 8 using a 5 % sign ifi cance test .
If we had wanted to test the hypothesis fl i = 112 = = /39 = 0 (y is not

linearly rela ted to x 1 , x 2, . . . , x9) we could have formed the ana lysis of va ria nce
table given below as described in Subsection 2.3.2 .

Source Sum  of  squares Degrees  of  Mean square
f reedom

T he ra tio of the two mea n squares is —233 which is certainly greater than
F(9, 895, 0.95) ( = 2.2 1) and hence we wou ld reject the hypo thesis of no linea r
associa tion between y and x i , x2, . , x9.

Having observed tha t the two data sets seem quite similar and tha t a
st ra ightforward applicat ion of the mu ltiple regression technique of Chapter 2
ca n establish a relationship between Q and ca tchment cha rac teristic, let us just
stand back for a moment and con sider wha t we have done . We cho se to work
with the logs of a ll va riables. On wha t gr ou nd s could this be j us tifi ed and were
the assu mp tions of multip le regression sat isfi ed ? Is there a bet ter tra nsfor-
mation than log ? Is it reasonable to assume a coun trywide equation , or to
allow a d ifferen t con sta n t term for d iff eren t areas, or shou ld there rea lly be a
d ifferent equation fo r d iff erent areas ?
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5.2.2 Transformations and weights on annual maximum fl ood

Confi ning our at tention from now on to data set X, the regression equation
given in Subsection 5.2.1 was calculated by co mputing the logs of all readings
of annual maximum fl ood (Qu) and regressing them on log catchment
characteristics. Because, within a given catchment the values of the
independent variable will be constant, this is in some ways practically
equivalent to regressing the mean of the logs of annual maximum fl ood on log
catchment characteristics. However the latter regression would need to be a
weighted regression (see Subsection 2.4.2) as there are more readings in some
catchments than others, and hence the means will have diff erent variances. The
weights should be equ al to the number of readings in each catchment . Either
method would then be 'valid' provided that the variance of log Qii remained
constant under all catchment conditions, although the degrees of freedom on
the residual sum of squares will be larger , and hence the tests of signifi cance will
be more sensitive, if the original 905 values of Qu, rat her than the 83 means, are
used. They will correspond to a regression on log Q if  -0 is interpreted as being
the geometric mean of annual maximum fl oods. However they will diff er
slightly from a regression in which 0 is taken to be the more usual estimate of
mean annual fl ood , the ar ithmetic mean of annua l maxima .

For examining the assumption of constant variance of log Ou it is
particularly useful that the data set has repeated readings of the dependent
variable at fi xed values of the independent variables (severa l readings of annual
maximum fl ood from each catchment). The test of homogeneity of variance
used in Subsection 1.3.2 may be slightly modifi ed to compare the 83 estimates
of variance obtained from the different catchments. Unfortuna tely this test
shows a signifi cant diff erence  (p <  0.001) in the variance of log Ou from
catchment to catchment.

An argument for using the logarithm of might have been that the
variance of Qij was not constant from catchment to catchment but varied with
the square of the mean (see Subsection 3.3.1). As mentioned there, by plotting
estimated mean and standard deviation of annual maximum fl ood aga inst each
other , such a possibility could easily be investigated. A straight line should
ensue from such a plot .

For this particular data set a stra ight line goes a long way to explaining the
relationship between mean and standard deviation but by no means
completely. This is confi rmed by the outcome of applying the Box—Cox
transformation (see Subsection 3.3.3) with Qii as dependent variable and log of
catchment characteristics as the independent variables. A value of A = 0. 115
gives the maximum value of L b(A) and the hypothesis 2 = 0 (implying a log
transformation) is rejected using a 0.1 % signifi cance test (2(Lb(2„,n ) —
Lb(20)) = 35.06 > x2(1, 0.999) = 10.83).

Thus it would unfortunately appear to be inva lid to apply multiple
regression as described in Subsection 5.2.1 to log Qu and log of catchment
characteristics. The appropriate transformation for this data set would be to
take (Q0)° -̀ 15when using the logs of the catchment variables. This would still
lead to a multiplicat ive model in the catchment variable but that model would
no longer be predicting year ly annual maximum fl ood but the function
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antilog (annual maxim fl ood)0.115. If it were felt, on physical ground s, or for
ma thema tical simplicity, to be sensible to use log annual maximum fl ood and
log catchment characterist ics then a weighted regression could be performed
with the mean values of log Qu for each catchment as the dependent variable
and with weights = (no . of read ings in the catchment)/(sample variance of
log  Qu  for that catchment) . A further variant might be to relieve the pa rameter
A in the Box—Cox transformation of the burden of equalising all the variances
and instead, incorporate the Box—Cox transformation into a weighted
regression of  (V  on ca tchment characteristics (logged or otherwise).

5.2.3 Regression of the standard deviation

There are several reasons for trying to predict the standard deviation of the
annual maximum fl ood . It would be interesting to see which catchment
characteristics infl uence variability, it would enable us to 'smooth' our weights
prior to a regression analysis of the type described above and it would allow
statements about precision of prediction of annual maximum fl ood to be given
in terms of value of certain catchment characteristics.

However , although with this data set , we can readily estimate the standard
deviation of annual maximum fl ood for each catchment , the variance of that
statistic will not be constant over all ca tchments. Thus, it would be inva lid to
use that sta tistic in an unweighted multiple regression . A weighted multiple
regression analysis could be performed making use of the fact that , for a
par ticular catchment, the estimate of standard deviation

1 "4
  E  (Qu -
n,— 1 J. ,

has variance approximately equal to  ol l n,  for a normal population where the
catchment standard devia tion is al. Other possibilities might also be considered
such as a transforma tion to sta bilise the variance using the technique of
Subsect ion 3.3.1 or a Box—Cox transformation . Because of the relationship
between the estimated standard deviation and its variance, the appropriate
variance stabilising transformation is log (estimated standa rd deviation).

A weighted multiple regression analysis of log (estimated standard
deviation) on catchment cha racteristics and mean annual fl ood with weights
equal to the number of readings in the catchment is only modera tely successful.
Two independent variables have regression coeffi cients which are signifi cant ly
diff erent from zero,  Q  and so u_ Applying the Box—Cox transformation
suggests a transformation (est imated standa rd deviation)0 46 and the
hypotheses A= 0 (log transformation) and A= 1 (no transformation) are both
rejected using 0.1 % level signifi cance tests . A combination of weighted
mu ltiple regression and a Box—Cox transformation suggests the trans-
formation (estimated standard deviation)0.42.

Using either of these transformations produces a much more successful
regression. Severa l regression coeffi cients are signifi cantly diff erent from zero ,
S1085, SAAR LAK E and  Q,  suggesting that each of these factors is associated with
variability in annual maximum fl ood , and there are very few outliers evident
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when observed and pred icted values are compared (see Figu re 24). There are,

of course, other more objective ways of comparing the rela tive success of

diff erent regressions. Chapter 12 of Seber (1977) gives details and references to

a selection of methods. There are only two 'signifi cantly' large residuals and in

both cases the regression model has underestimated the standard deviation . It

would be interesting to examine the particular features of these catchments

Observed 6 .0 / 10

X 10 1
2 .99

2 .69

2 .39

2 .09

1 .80

1 .50

1 .20

.90

.6 1

.3 1

ME

.0 1 Pred ic ted S .D ./ 10

.07 .86 1 .64 2 .43 3 .2 1 4 .00

We ig hted regress io n o f lo g S .D .

Observed S .D ./ 10

.07 .86 1 .64 2 .43 3 .2 1 4 .00

We ig hted regress io n us in g opt im a l Box Cox trans fo rmat io n o f S .D .

Fig. 24. Observed and predicted values of S.D.
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which apparently have more variability in an nual maximum fl ood than one
would expect ; the gauge numbers are 40 006 and 55008. The feature is that they
produce mostly relatively low annual maximum fl ood values except for a few
exceptionally high ones, thus the mean is low but the standard deviation is
relatively high.

Retu rning now to predicting Q from catchment characteristics a weighted
regression with the catchment standard deviations predicted from the multiple
regression on estimated standard deviation described above, proves to be much
more satisfactory than one using the sample standard deviation for each
ca tchment . More of the regression coeffi cient s are signifi cantly diff erent from
zero and there are very few outliers amongst the residua ls, in fact just two
again. These correspond to catchments 67 003 and 87 801 both of which are
predicted to have a higher value of  0  than they in fact achieve. The signifi cant
variables are AR EA, S1085, SAAR, URBAN and soa . A Box—Cox transformation of
Q could be considered within the weighted regression bu t the weights should be
altered to take account of the transformation of Q. The results of such
regressions should not be taken too seriously. Weighted linear regression as
described in Subsection 2.4.2 assumes the weights to be known exactly whereas
here they are estimated and furthermore that estimation involved using
variables that are then used as dependent and independent variables in the
weighted regression .

5.2.4 Comparisons between regions

Let us now examine the wisdom of using a single countrywide equation to
predict annual maximum fl ood . As was mentioned in Subsection 5.2.1, the
Flood Studies Report suggested using a single equation but with regional
mu ltipliers, but a further alternative (also considered in the Flood Stud ies
Report) would be to use a completely diff erent equation for each region.

Although intended to give some coherence to the data analysis, the main
purpose of this subsection is to illustrate the use of techniques described in
Subsection 2.4.1, the compar ison of several regression lines. Con sequently, we
shall no t concern ourselves further with the problems of transformation or
weighting but simply assume that a log transformation of all variab les
produces a set of data which satisfy the basic assumptions for a multiple
regression analysis. It would, of course, be more correct to pursue the
transformations examined in the previous subsections.

Data set X was drawn from nine regions (regions 1- 9 in Sutcliff e (1978)) but
there were insuffi cient catchments in each region to be able to treat them
separately in a multiple regression analysis. Consequently four composite
regions were formed, as follows :

Composite region Region

A (West of England) 4, 8, 9
B (East of England) 5, 6, 7
C (North England , South Scotland) 2, 3
D (Northern Scotland) 1



SOM E EXA M PL ES 121

Form ing the analysis of variance table as described in Subsectio n 2.4. 1 gives

the following results :

(Because for thi s data set we have repea ted ob servations of the depend ent

va ria ble for each set of valu es of the ind epend ent variab le, it wou ld have been

possible to split the residual sum of squa res into two com po nents, a systematic

depa rt ure from the regression lines comp onent and a new residual sum of

squares which would measure 'within ca tchmen t va ria tion ' . T he form of the

sums of squ ares would be similar to those given in Subsection 1.3. 1).

Testing fi rstly fo r pa ra llelism of the regression lines fo r the four composite

regions (13fl = i3j2 = fi i3 = for  j =  1, 2, . . . , 9) gives a test sta tist ic of

(76. 13 x 865)7(2 11.26 x 27) = 11.54 which shou ld follow an  F  distribution

with 27 and 865 degrees of freedom if the hypot hesis is t ru e . As

F(27, 865, 0.999) = 2.1 we stro ngly reject the hypothesis of pa ra llelism . T hu s it

would appear from the 83 ca tchmen ts stud ied , that using separa te regressio n

equations for each region will provide a much more accura te descript ion of the

data than a single regressio n equation wit h regional multipliers.

If we insisted on a single regression equation bu t were unsure abo ut the

merits of regional multipliers as opp osed to a single constant , then the secon d

test given at the end of Subsection 2.4.2 (a l = a 2 = a 3 = a4) wou ld give some

insight into this qu estion . The test sta tistic is (10.57 x 865)7(2 11.26 x 3) = 14.43

and F(3, 865, 0.999) = 5.4 and consequently we mu st a lso reject this

hypothesis. Thu s, if we insist on using a single regression equation , it is mu ch

bet ter to use regio na l multipliers tha n a single constant term .

Multiple regression compu ter pr ograms are readily availab le these days bu t

many on ly cope wit h a single set of data as described in Subsec tion 2.2. 1 and do

no t have the immedia te faci lity for handling severa l grou ps of data as described

in Subsection 2.4.1. However , by using dummy variables (see Subsection

2.5.4), noting the genera lity of the general linear hypothesis method of testing

(see Subsection 2.3. 1) and ru nnin g the pro gram several times, the ana lysis just

described can be performed . Three separa te groups of runs are req uired :

(a) a mu lt iple regression analysis separately on each compo site region' s set

of data ;

(b) a mu ltip le regression ana lysis on the who le da ta set bu t with fur ther

ind ependen t variables which are dum my va riables defi ning the

particu lar compo site region from which the data ca me ;

(c) a multiple regressio n analysis on the who le data set ignoring the

existence of compo site regions.
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For this data the set of runs under (a) produced the following residual sums
of squares :

Run (b) used three dummy variables which took the following values :

Table 6 Ind ivid ua l regr ession s on each region

Composite region Residual Degrees of f reedom

sum of squares

A 33.35 197

B 133. 17 28 1

C 27.29 207

D 17.45 180

(Tota l) 2 11.26 865

and produced a residual sum of squares of 287.39 with 892 degrees of freedom .
Run (c) produced a residual sum of squares of 297.96 with 895 degrees of
freedom (see Subsection 5.2.1) and a total sum of squares of 989.93 with 904
degrees of freedom.

The analysis of variance table given previously in this subsection is now
formed as follows.

Retu rning to the interpretation of the analysis, Table 7 gives the signifi cant
regression coeffi cients for the four composite regions ar ising from run (a)
mentioned above.

As the analysis of variance has suggested , there is considerable variation in
the regression coeffi cients between the four composite regions. Although AR EA
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and STMF RQ have a roughly similar role in regions A, B and C they are not

particularly relevant in region D . This probably refl ects the nature of dat a set

X, in that only catchments with small area were included , rather than that area

is not, in general, a signifi cant factor in predicting annual maximum fl ood .

Similar compar isons may be made with the coeffi cients of other variab les

although one must always bear in mind that intercorrelat ion between these

variables can lead to one regression coeffi cient being 't rad ed off ' against

an other and even to one variable being omit ted because of the inclusion of

another (see Subsect ion 5.2.1).

Table 7 Regression of log annual maximum fl ood on log catchment characteristics

Composite Constant log log log log log log log log log

region AREA STM FRO 5 1085 MSL SAAR RSMO + URBAN ) ( 1 + LA KE) SOIL

One fi nal diff erence to point ou t is the much larger residual sum of squares

associated with composite region B, evident in Table 6 and in the plot of

observed and predicted values given in Figure 25. This appears to suggest that

for the Eastern region of England , annual maximum fl ood is much more

diffi cult to predict from catchment characteristics than for ot her parts of the

country, bu t such a hypothesis would not be supported by physical

considerations.

5.2.5 Examination of assumption s

The various models outlined above for rela ting annual maximum fl oods to

catchments characteristics can be thought of as attempts to fi nd a regression-

like structure in which the residual errors have a constant variance—so that at

least this one of the basic assumptions of standard regression theory, would

hold . However , the extent of depar ture from the other assumptions also needs

considerat ion , together with the possible eff ect on any conclusions. For this

example, it is reasonable, on an intuitive basis at least , that fl ood events on

adjacent or neighbouring catchments will be correlated, so that residuals of

annual maximum fl ood in the same year will also be cor related. While it is

possible to account for correlated residuals within the overall analysis by using

genera lised least squares, in this case the estimation of these correlat ion s is

problematic in view of the small number of observa tions available to estimate

each correlation. It would probably be enough to note that the correlat ion

wou ld generally be positive and that only a relatively small number of pairs of

residuals are correlated , since residuals in diff erent years are assumed

independent . Thus the overall eff ect would be that the variances of the

estimated parameters would be underestimated by a small amount if the

analysis ignored the inter-correlation .
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Fig. 25. Regressio n of log Q11  on log ca tc hment cha racteristics for composite regions .

T he third assumption that would need to be checked is the Normality of the
resid ual er ror s, fo r exa mple, using the probab ility plo ts d iscussed in
Subsection 3.2.3. To some extent a cho ice between compet ing models might be
ba sed on the closeness to Normality of the residua ls, but this is po ssib ly less
impo rtant than othe r considera tions such as the simp licity of st ructure of the
fi na l form of model .
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5.3 Stepwise Regression—Choosing the Best Predictors

5.3.1 Introduction

Forecasts of monthly streamflow can be of use in a range of circumstances: in

the effi cient operat ion of dams for agriculture or hydropower, for example, or
simply as background information providing some advance warning of

whether fl ows will be high or low. The way in which such forecasts can best be

obtained obviously depends to a great extent on the type of data that would be

routinely available for making the forecasts, and on other general

considerations such as the size of the catchment concerned . The problem

examined in this section is the prediction of monthly streamflow in the Mekong
at Pakse in Laos. Since the catchment here is extremely large (545 000 km' ) and

is not all within one country, values for rainfall from an appropriate widely-

spread set of sites would be diffi cult to obtain . Values for fl ow in major

tributar ies and for points upstream on the main channel would be more easily

obtainable and more useful, but it might still not be possible to ar range to

receive these values within suffi cient time on a routine basis. Ideally such data

might be used in some form of fl ow-routing model, perhaps operat ing on a

daily time scale. The problem considered here will be that of predicting, in

some simple way, future monthly total fl ows on the basis of routinely-made
daily readings of fl ow at the same site. For this exploratory analysis the data

used consisted of 48 years of records of monthly total fl ow, fl ow on the last day

of the month and fl ow on the second last day.
Monthly fl ow varies considerably from month to month and within a given

month, as illustra ted by the means and estimated standard deviations given in

Table 8 and the histograms given in Figure 26.

Table 8 M onthly fl ow (mi llion cubic metres) in the M ekong at Pakse (A pri l 1934- M arch 1982)

M onth M ean S .D . M onth M ean S .D .

January 7 652 1 245 July 46 596 11 328

February 5 333 824 August 73 085 14 I I I

M arch 4 793 663 September 74 437 13 673

A pril 4 440 785 October 45 475 10 431

M ay 7 621 2 107 November 21 821 4 617

June 23 715 7 392 December 11 766 1 971

The eff ect of the monsoon rains is beginning to be evident in May, but notice

that the onset of the monsoon produces much more variability in fl ow (May

and June) than a similar level of fl ow at the end of the rainy season (November

and December). This fact and the suspicion that it will be unlikely that the fl ow

in March and April will predict the time of ar rival or magnitude of the

monsoon ra ins suggests, even at the early stage, that it will be diffi cult to predict

monthly fl ow in May or June.
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5.3.2 An example of stepwise regression

For a par ticular month, we wish to predict the fl ow, at a particular time, from
any information available before that time. Thus, for August 1942, we could
potentially draw on any values of monthly fl ow for months preceding that date
(100 values in this data set), any values of fl ow in the last day of the month for
mo nths preceding that date, etc. In a regression context , if we take the
dependent variable  y  to be monthly fl ow in August and the independent
variables, fl ows in previous months, we may state the objective to be to predict
monthly fl ow in August, but other features of the problem do not immediately
fi t into the regression mould

First of all the independent variables may well be previous values of the
dependent variable. Furthermore, the number of independent variables will
increase, as values of the dependent variable are taken from more and more
recent years . Problems ar ising from using previous (lagged) values of the
dependent variab le as independent variables were discussed at the end of
Subsect ion 3.4.2. Clear ly we should proceed with some caution . As far as the
problem of an increasing number of independent variables is concerned, one
approach, and it is not the only approach , would be to decide beforehand how
many years' previous information to use. Studying a correlation matrix of fl ow
for the month in question versus fl ows in previous months might suggest that
there is litt le point in using information from more than two years ago .

For this par ticular set of data , it would appear that there is litt le value in
information more than three years before the month in question . Adopting
that suggestion, the number of available sets of observations will be 45 but the
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potential number of independent variables is still very large. The number of

independent variables must be at least one less than the number of observations

for a solution to equation (35) to exist . Consequently, we must either exclude

further independent variables at this stage or use forward selection (Subsection

2.3.5) or stepwise regression (Subsection 2.3.7) to build up grad ually a

regression equation from the pool of available independent variables. In that

stepwise regression is a forward selection with additional safeguards, the

former is usually preferable.
To illustrate the technique let us apply stepwise regression to monthly fl ow in

January, with independent variables M r, L Dr, SDr, (r = 1, 2, 3, . . . , 12, 24, 36)

where M r, LDr and SDr indicate monthly fl ow, fl ow on the last day of the

month and fl ow on the second last day of the month for that month which is r

months before that of the dependent variable. Following the steps as outlined

in Subsection 2.3.5, Step 1 is to perform simple linear regression of  y  on each of

the independent variables. Testing the signifi cance of the hypothesis b = 0

(which is equivalent to testing the signifi cance of the correlation coeffi cient

between  y  and the relevant independent variable) gives the set of independent

variables which are signifi cantly associated (using, in this case, a  5 %

signifi cance level) with monthly fl ow in January. Starting with the most highly

signifi cant, they are : LD I , SD 1, M l , LD 11, SD 11, M I I , M IO, SD I2, M 12,

L D 12, M 9, L D 10, 5D 10, M 7, SD7, LD7, L D8, L D2, 5D9, SD8, SD2 and

L D9 . Consequently, we select L D I for inclusion in the regression equat ion .

Step 2 requires computing the partial correlation coeffi cients between

monthly fl ow in January and each independent variable conditional on L D I .

As an example, let us compute the partial correlation of monthly fl ow in January

(M ) with L D 12. The correlations we need for equation (49) are as follows:

Var iables Cor relati on

The partial correlat ion between M and L D I2 is, from equation (49), 0.415.

Repeating this calculation for each independent variable gives the set of

independent variables which might be added to the regression equation at this

stage. They are, in order of absolute value of partial correlation coeffi cient,

M9, M IO, SD I2, L D 12, SD IO, L D IO, M I2, 5D9, L D I I , SD 11, M I 1 and L D9.

Step 3 will mean including M9 in the regression equation . Testing the joint

signifi cance of L D I and M9 using the analysis of variance table given in

Subsection 2.3.2 gives a test sta tistic of 96.1 which means that we must strongly

reject the hypothesis of no linear association between M and the independent

variables, LD I and M9. As mentioned in Subsection 2.3.2, the merit of M9 in

addition to the variables already included in the model (L D I) may be judged by

comparing the ra tio of the regression coeffi cient of M9 and its standard error to

the appropriate I distribution . The rat io is 3.2 and consequently we strongly
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reject the hypothesis that M9 should be omitted from the model when LD I is
included .

Stepwise regression diff ers from forward selection in that it also examines the
possibility, at each stage, of exclud ing a variable already included in the model.
Thus, at this stage, we should also examine the value of LD 1once M9 has been
included in the model. Using the same test as for M9 gives a rat io of 12.3 which ,
again, strongly supports the inclusion of the variable (L D 1) in the model.

Step 4 examines the partia l correla tion between M and the other
independent variables, conditional on LD 1 and M9. The largest partial
correlation is between M and SD 12 ( = 0.30) and the next largest is between M
and LD 12 ( = 0.28). Including SD 12 in the model and repeating step 3 leads to a
signifi cant overall model, but the individual contribution of SD I2 is not
signifi cant, giving a ratio of 1.8. Thus the procedure stops with a fi tted model

M = 189.48 + 19.54 x L D 1 + 0.38 x M9

Tab le 9 summarises the outcome of applying the stepwise procedure to each
mo nth ind ividually:

Table 9 Stepwise regression for each monthly fl ow

Dep enden t var iable:

M onthly fl ow in—

Independent variables M ult ip le correla tion

(in order of se lect ion ) coeffi cien t

Ja nuary LD I, M9 0.9 1
Febru ary M I, LD2, 5 D7, L D6 0.95
March M I, LD I2, M 7 0.9 1
April LD I 0.83
M ay S D3, 5 D6 0.53
June LD I, L D8 0.5 1
July L D 1, M I2 0.63
August LD 1, LD 3, S D I, S D 11 0.73
September LD 1, L 0 24, M 4, LD 12, LD6, S D 1 0.77
Octo ber L D 1, S D I, L D2 0.86
November L D I, LD 3, 5 D3 0.82
December LD I, S D 10, S D4 0.84

There are severa l aspects of Table 9 on which to comment bu t the one most
frequently taken for granted is the tremendous 'data reduction' which stepwise
regression achieves. As can be seen from the detailed description of the analysis
of the Ja nuary data, the collection of variables correlated with monthly fl ow is
red uced to a small subset which contains most of the pertinent information . It
does not follow that the variables listed above are the 'correct' set or that they
describe the 't rue' relationship. In interpret ing such a table it is always worth
considering those variab les that just missed being included , perhaps because of
high cor relation with an already included variable. The best that can be
thought of the relationships set out in Table 9 is that within a certain
framework they best represent the da ta provided . They are only as good as the
data refl ects the nature and extent of the phenomenon being stud ied .
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Turning now to the independent variables selected by stepwise regression, it

is immediately apparent that , as would be expected for predicting monthly

fl ow, some feature of fl ow in the previous month is the most important variable,

amongst the variables considered. The one exception is the month of May

when , almost certainly, it is the timing of the onset of the monsoon which has

most infl uence on the monthly fl ow. Not ice, however, the strong preference for

the fl ow on the last or second last day, rather than monthly fl ow, as a predictor of

the following month's fl ow. The appearance of L D 12, M 12 or even LD24 in

certain months suggests a pattern from year to year for these months.

Long range dependencies such as seen here are not necessarily unrealistic,

since part of the fl ow of the Mekong derives from glaciers in the Himalayas and

glacier-fed rivers often exhibit fl uctuat ions in fl ow over periods of years related

to the extension and recession of the glaciers. However , the extent of any man-

made infl uences would also need to be checked but are likely to be small in

compar ison with the large natural fl ows.
Too literal an interpretat ion of the inclusion of some of the other variables

may be misleading. For instance, in November, L D3 would appear to be of

importance yet L D2 is not . However, the correlations of L D2 and LD 3 with M

are 0.13 and — 0.04 respectively, indicating that when judged on their own,

LD2 has a stronger association with M than has LD3. The reason for L D3being

included in preference to LD2 is that the partial correlations of L D2 and L D3

with M , after allowing for the eff ect of L D 1 , are — 0.17 and — 0.30 and thus

LD 3 provides the mo st additional information after L D I has been included .

However , there are some interesting patterns which are worth noting such as

the inclusion of SD I as well as LD I for the three consecutive months of August,

September and October . In each case LD I has a positive regression coeffi cient

whereas SD 1 has a negative regression coeffi cient which suggests that this

combination of variables may be detecting whether the peak fl ow following the

monsoon has been passed an d that fl ows are now decreasing, or whether fl ows

are still rising. A similar explanation might be the reason for the inclusion of

L D2 in addition to M I , in the independent variables for February. The

regression coeffi cient for LD2 is negative and thus the combination of M I and

LD2 may refl ect whether monthly fl ow is still falling in the preceding months

and , if so, how rapidly. Given these observations and the fact that LDr and SD r

are highly positively correla ted , one might consider replacing them by their

sums and diff erences in the set of independent variables.

Various other patterns would be worth exploring such as the inclusion of

L D2, SD3 and SD4 in October , November and December respectively, but the

purpose of this section is to illustrate the use of regression techniques as

opposed to a detailed analysis of the data set. However , it is perhaps important

to draw attention to one more obvious po int , namely that the months around

the onset of the monsoon rains prove to be the most diffi cult to predict. Values

of the mult iple correla tion coeffi cient are at their lowest in May and June bu t

then climb steadily therea fter to peak in the months of January to March where

fl ow is steadily falling in stable conditions. It is interesting to note that fl ow in

April is less easy to predict than fl ows in previous months perhaps part ly due to

the occasional early monsoon and partly because fl ows have reached their

lowest level and it is unexpected events which will alter that fl ow.
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In Subsection 4.3.1 it was suggested that forming a histogram of the
residuals and plotting the residuals against various other variables might be
informative in assessing the validity of the assumptions made in multiple
regression , as well as giving some further insight into the data . Figure 27 gives
hist ograms of the residuals on the far right of the graphs and a plot of  61, . . . , en
versus y i , . . ., y„ on the left . Notice that the months whose histogram of
residuals show the least spread do not correspond to months with the highest
multiple correlat ion coeffi cient in Table 9. The multiple correlat ion is
essentially a ra tio of residual variance to total variance. When this rat io is
small, and hence when pred iction is successful , the mult iple correlat ion will be
large. We can assess this ra tio by eye from the plots of e l, . .  ê against
y 1, . . ., y n by comparing the spread of points in the  'y  axis' direction with that in
the  ' x  axis' direction . Where this ra tio is smaller , for example in October ,
November and December , the multiple correlat ion will be high . However such
a plot should not be used to assess the validity of the model. It can be shown
that , under the usual assumptions for multiple regressions, e l, . . ., en and
y i , . . . , y„ will be correla ted and hence one might expect a trend of the type
evident in these plots even when all the assumptions of multiple regression
hold . Indeed in a variety of quite diff erent circumstances, described in Hoaglin
et at  (1983) one might expect the plot to follow a 45 ° line exactly.

It may also be demonstrated that  I, . . e„ and 9 1, . . . , ji„ are uncorrelated
and hence it is more usual to plot these two quantities, as in F igure 28. If we had
seen a trend in this graph of the type evident in Figure 27, we might have
concluded that the model was quite inadequate, overpredicting low values and
underpredicting high values. However, there is no such trend . There is some
evidence of unsatisfactory prediction in the July fi gures, as shown by a skewed
histogram of residuals and an uneven spread of points in the vertical direction ,
indicating that although a few values are not iceably underpredicted the
majority are overpredicted . A transformation of the dependent variable may
help in this situat ion .

5.3.3 Some further regressions

Wh ile scanning the dat a in the hope of spotting some patterns hitherto
undetected, it became apparent that there was the slight suspicion of a cyclical
trend over the years in a given month's values. Although such a trend would be
extremely hazardous to employ in any predictor, that is unless its physical
mechanism could be understood, it provided a nice opportunity to apply the
technique of periodic regression (see Subsection 2.5.3). Analysing each
month's result s separately, cosine and sine terms of periods ranging from 3 to
12 years were used as .the independent variables in a regression on monthly
fl ow. If the reader has access to a multiple regression program or package but
which does not contain per iodic regression, he may prefer to carry out the
calculations by running the regression program with the independent variables
as the cosines and sines of the required periods rat her than writ ing separate
cod e for the formulae given in Subsection 2.5.3. This may be extremely
ineffi cient in computer time as it will lead to the unnecessary inversion of a
2k x 2k matrix when terms of period  n, n/2, . . . , nlic  are used but it may be a
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more effi cient use of the individual's time if it is only intended to perform such
regressions occasionally. However, with a stepwise regression program, it
would be advisable to ensure that the pair of variables (cosine and sine) of the
same period are either included or excluded at each stage.

Table 10 sets out the periodicity of the terms which were signifi cant in this
analysis. Thus, for monthly fl ow in January, there is evidence of two cycles, the
stronger being a nine-year cycle and the weaker a fi ve-year cycle. To fi nd any
evidence of such a cycle is surprising but what is even more interesting is that a
nine-year cycle appears to be evident in consecutive months from December to
to May (excluding April). Adjacent months are strongly correlated and so
some similarity of year-to-year fl uctuat ions is to be expected, bu t this degree of
consistency does suggest that the nine-year cycle may be more than just an
artefact .

Table 10 Per iod ic regression in monthly fl ow

M onth Period icity of

signif icant terms

M ult ip le correlation

coeffi cien t

Janu ary 9 , 5 0.42

February 9 , 8 0.46

March 9 0.28

April —

M ay 9 0.30

June —

July 8 , 5 0.40

Augu st 11 , 3 0.42

Septe mber — —

Octo ber —

N ovember 12 0.35

D ecember 9 0.26

The suggestion to apply period ic regression to monthly fl ows came from
studying the original data and noticing some pat tern . In a similar way, when
studying the dat a and considering the problem of predicting monthly fl ow in
May, the main problem to emerge was to predict when the monsoon would
arrive. Monthly fl ows for months preceding May would seem to be of no grea t
value in predicting the onset of the monsoon except , per haps, in recording
when the previous rainy season fi nally ended. The highly tenuous hypothesis
would then be that when the previous rainy season is abnormally late, this may
be associated with a later ar rival of the next ra iny season . Again , from
inspecting the data , there did appear to be some suggestion of this
phenomenon, although it is all to easy to see what you want to see in a set of
data .

Pursuing this idea par tly out of interest and partly for illustra tive purposes,
we will need some indicator of when the rainy season end s. Such a variable
could then be included amongst the independent variables in a regression on
monthly fl ow in May. No such variable was observed directly in this data set
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but it may be possible to construct such a variable from those observed. There
is no reason why the independent variables used in a linear regression should
not be some function of those variables which might have been used as
ind ependent variables. The major eff ect of the rainy season on fl ow seems to be
coming to an end by December and thus an indicator of a late end to the rainy
season might be x 1 = (F low in December)/(F low in January). A high value for
this variable would indicate a later duration of the rainy season provided, that
is, that the eff ect of the rains did not continue unabated through December and
January. Perhaps the further inclusion of a variable x2 = (F low in January)/
(F low in Februar y) may be a safeguard against this unlikely alternative.

Taking an extremely simplistic view of predicting the fl ow in May, one might
include a variable which simply at tempts to make a proportionate change to
the monthly fl ow in the previous May, such as

( monthly fl ow in April of year x
x 3 =

monthly fl ow in April of year (x — 1)

x (monthly fl ow in May of year (x — 1))

The general point to be made is that it might be worth giving some thought to
constructing ar tifi cial independent variables which, per haps, more directly
refl ect the phenomenon being investigated . Not surprisingly there are many
pitfalls to such adventurous use of the data , especially in this context where
some of the independent variables are lagged values of the dependent variable.

The outcome of additionally using x 1, x2 and x3 described above in
pred icting  y =  monthly fl ow in May is quite interesting. The artifi cial variable
x3 is signifi cant ly correla ted with  y ,  but there is a larger correlat ion between
SD 3 and  y  and hence a stepwise regression includes SD3 as a fi rst step . After
including SD3, the importance of x3 falls and SD6 is, once aga in, the next most
important variable. However, it is at this po int that x 1 emerges as the next most
important factor with x3 no longer of much importance at all. As would be
expected , the regression coeffi cient of x 1 is negative thus supporting the
hypothesis that a late end to the previous rainy season (high value of x3) will
lead to a later onset of the next rainy season (lower fl ow in May). At no stage
does x2 appear to be of any importance. Using x 1in addition to SD3 and 3D6
increases the multiple correlation with monthly fl ow in May to 0.56.

5.3.4 A simple predictor for monthly fl ow

As was mentioned in Subsection 5.3.1, the particular problem in mind , which
led to this data set being collected, was to predict monthly streamflow in the
Mekong from measurements of previous fl ows. A further objective was that
this predictor should be as simple as possible, and it was for this reason that
transformations of the dependent and independent variables were not
considered . There is, of course, no one interpretat ion of the term 'simple
pred ictor' . It could be one that is easy to calculate, one whose required
measuremen ts are easy to collect or one whose form is similar from one month
to an other . Once aga in, our object ive will give the opportunity to demonstrate
a range of applications of multiple regression but the ensuing analysis should
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not, under any circu mstances, be regarded as a model analysis of the set of
dat a .

As our fi rst attempt, let us consider a single equat ion to predict all monthly
fl ows, but just as we used 'regional multipliers ' in Section 5.2, so here we will

include individual constants for the months by introducing eleven dummy
variables (as in Subsection 5.2.4). A stepwise regression produces a very neat

solution ; the selected subset of independent variables out of the set M r, L Dr,

SDr (r = 1, 2, 3, . . . , 12, 24, 36) consists of L D 1, LD2 and L D3 together with

dummy variables for months May, June, July, August, September and October .
Again, the last day fl ow appears to be more useful than the monthly fl ow.

Table 11 Cor i elation between observed and predicted mont hly flow

M on th S tep wise regress ion

f or each month

(equa tion A )

S ing le equation

with individual

m onth ly constan ts

(equat ion B)

Predictor using

periodic equat ion

f or LD 1 coeffi cient

(equat ion C)

Table 11 gives the multiple correlation coeffi cients for various at tempts at

predicting monthly fl ow. The fi rst column simply reproduces those values,
given in Table 9, derived from applying stepwise regression to each month
separately. To some extent this column will be taken as a reference level, as
amongst linear functions of the independent variables it should be close to the

best that can be achieved. However , within the context of a simple predictor , it

would be cumbersome to implement as it requires quite diff erent collections of
variables to predict diff erent monthly fl ows. We will refer to the predictors
given by applying stepwise regression in this manner as equation A. We see

from Table 11 that the single equation predictor described above (now refer red
to as equation B) is generally qu ite good , giving correlat ions which are qu ite

close to these achieved by equation A. Except for the diffi culty of predicting the
May monthly fl ow, it is August/September and December/January fl ows which

are noticeably less successful with equation B.

For our second at tempt at a simple predictor we might try to accommodate
the variation from month to month in the relat ionship of monthly fl ow with the
available independent variables. An approach to this objective might be to
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decide on a small collect ion of independent variables which appear in most of
the predictors given in Tab le 9, compute separa te regression equations for each
mo nth and then try to establish a fairly simple relat ionship to describe how the
regression coeffi cient s of a particular variable vary over the months. To
illustrate this approach, the collection of var iables L D 1 , L D3, L D6, L D9 and
L D 12 were selected, par tly because they cover the preceding twelve months in a
reasonably uniform way and partly because of their popularity (or that of a
nea r neighbour) in the regressions summa rised in Table 9. It is of some benefi t
in this context to scale both the dependent and the independent variables to
have zero mean and unit standard deviation across the data set studied. With
such a standardisation , the regression coeffi cient in a regression of y on x would
just be the correlation coeffi cient between y and x . Carrying out that
standardisat ion and computing separate regressions for each month of
monthly fl ow versus L D 1, L D3, LD6, LD9 and L D 12 gives the set of regression
coeffi cients for L D I given in the fi rst column of Table 12.

Table 12 Ca lcu lated and pred icted regression coeffi cients for  L D 1

M onth Calculated reg ression Predicted regression

coeffi cient coeffi cient

Janu ary 0.84 0.88
February 0.88 0.84

M arch 0.77 0.74
April 0.89 0.62
M ay 0 .20 0.5 1

June 0.39 0.44
July 0.55 0.42

August 0.53 0.47

September 0.44 0.56
Octo ber 0.79 0.68
N ovember 0.8 1 0.79

December 0.77 0.87

As might have been expected, there appears to be a cyclical trend in these
coeffi cients and hence a possible model to describe these values might be a
periodic regression with one sine and cosine term each of period 12 months.
Fitting such a model as described in Subsection 2.5.3 gives the fi tted model L D 1
regression coeffi cient = 0.653 + 0.215 cos (2nr/ 12) + 0.0911 sin (27u / 12) where
r = 1, 2, . . . , 12 for months January, February, etc ., respectively. Using this
equation to predict the regression coeffi cients of the standardised version of
L D I gives the set of values given in the second column of Table 12.

Ignoring the variables L D3, LD6, L 0 9 and L D 12 and just using the formula

F low in month r — mean

S.D .

It r  
= ( 0.653 + 0.215 cos ( 212 + 0.0911 sin ( 2

irrY L D I — mean L D 1)

12 S.D . of L D 1
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(now referred to as equation C) to predict the fl ow in each month gives the set of

correlat ions given in column 3 of Table 11. Notice that, because each mo nthly

fl ow has been standardised about its monthly mean , this regression is

equivalent to fi tting separate constant terms for each month and in that sense is

similar to equations A and B.

Compar ing columns 2 and 3 of Tab le I I , there is very little to choose between

the two predictors. They give almost equ ally good prediction for most months

but equation C has a margina lly bet ter performance in November—January.

Which of the predictors to recommend would depend largely on other factors

such as the purpose for which the predictor is to be used. Is it primarily for

monitoring the months with high fl ow, the months with low fl ow or fl ow in the

months at the beginning of the rainy season ? Equally, which formula is

actually most useful will depend on other factor s.

In principle, tables of month-by-mont h coeffi cients could readily be supplied

for any of the predictors to keep computation to a minimum. While a predictor

which uses only the single independent variable L D 1 is att ractive, there would

be little extra diffi culty in implementing predictors based on more variables,

particularly if hand calculators were used. There may be a preference for

predictors whose coeffi cients change smoothly over the year, since then one

would feel confi dent about interpolating the coeffi cients to produce forecasts of

total fl ow, from the middle of one month to the middle of the next, based on the

latest available day' s fl ow and on total fl ow over the previou s mid-month to

mid-month, and so on .
Our fi nal attempt at a simple predictor stems from regard ing equation C,

because it uses standardised variables, as predicting the departure from the long

run mean for a given month. This suggests predicting the long run monthly value

with one equation which makes use of previous fl ows for that month and then

predicting the departure from the long run value with an equation which makes

use of fl ows in the immediately preceding months. The predictors from such a

two-stage predictor cannot be better than that from a single equation

incorporat ing all of the variables (in a linear model context). However, a two-

stage predictor may be easier and more fl exible to administer and the equ ations

will probably be easier to interpret than the rather haphazard collection of

variables which stepwise regression produces.

Let us start, therefore, by con sidering the prediction of monthly fl ow from

previous fl ows for that month. Using the previous three years' monthly fl ows

and fl ow on the last day as independent variables, a separate regression for each

month gives a set of predictors referred to as equation D, whose multiple

correlation coeffi cients are given in the fi rst column of Table 13.

Not surprisingly, it is the immediately preceding year' s fl ow which fi gures

most prominently in these predictors and there are an equal number of cases in

which monthly fl ow and fl ow on the last day of the month are the preferred

variables. Also, not surprisingly, it is the more stable months of January to

April which are most amenable to a predictor of this type. The months of May

and June have proved diffi cult to predict in all of the approaches adopted so far

but we see here that fl ows in the ensuing months of August to December are not

easily predicted from long term historical data.

The second stage of this two-stage predictor is to incorpora te fl ows from the
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Tab le 13 Two stage predictor of monthly fl ow

immediately preceding months. Two examples are given of how this might be
accomplished . The fi rst involves using stepwise regression with a dependent
variable, the fl ow for the month in question, and with independent variables,
the predicted monthly fl ow using equation D for the month in question, and the
diff erence between the predicted monthly fl ow by equation D, and the observed
mo nthly fl ow for each other month, making twelve independent variables in
all. Thus our second stage is very much in the nature of a 'corrector' , using the
pred icted value for the month in question and the errors in prediction for the
previous months. Column 2 of Table 13 gives the multiple correlation
coeffi cient s for this set of regressions which compare reasonably well with those
for equations B and C given in Table 11. However, it is the set of variables

Table 14 Variables selected for the 'cor rector ' , fi rst example

Jan . Feb. M ar. Apr. M ay Jun. Jul. Aug . S ep . Oct. N ov. Dec.

Ja nuary p 13- 0 P- 0

Febr uary P- 0 P

March P- 0 P P- 0

Apr il P- 0 P- 0 P

May P- 0

Ju ne

Ju ly P- 0 P

August P- 0

September P- 0

October P- 0 P

November P- 0 P

December P- 0 P
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selected by this stepwise regression which is the more interesting result from
this analysis.

Table 14 summarises the variables selected . For a given month (row), a P in a

particular column indicates that the predicted value for that month (column)

using equation D was selected as an independent variable and a P- 0 indicates

that the diff erence between the predicted and observed values for that month

(column) was selected . Thus the dominant pattern is, in 8 out of 12 cases, the

selection of the predicted value using equ ation D for the month in question and

the diff erence between observed and predicted for the immediately previous

month as independent variables. This very simple structure may make this

particular two-stage procedure very easy to operate in practice.
As a second example, the set of independent variables used in the fi rst

example was augmented by including the variables LDr and SDr

(r = 1, 2, . . . , 12). Although this leads to a set of multiple correlat ions (column 3

of Table 13) which are very similar to those achieved with equation A (see Table

I I , column 1) the set of variables selected (Table 15) is a more confusing

mixture than in the fi rst example.

Table 15 Variables selected for the 'corrector ' , second example

Jan. Feb. M ar. Ap r. M ay Jun. Jul . A ug. S ep . Oct. N ov. Dec .

January S P- 0 L

February P- 0

March 3 P

Apr il L

May S

June P

Ju ly L

August L L, S S, P- 0

September P- 0 L P

October P- 0 L, S

November 1 P

December P- 0 L

The notation used in Table 15 is the same as in Table 14 with the addition of

symbols L and S to indicate fl ow on the last day and second to last day

respect ively. There is again a strong diagonal tendency in the table but the

pattern of the (P- 0 ) variables is very ha phazard . As one might expect , there is a

strong similarity in the months of the variab les selected and the months of the

variables selected for inclusion in equat ion A (see Table 9). However , although

this second example produces the better set of multiple correlations, for

simplicity of predictor, the approach in the fi rst example may be preferable. As

mentioned earlier, which predictor would actually be the simplest to use in

practice depends on many more factors than the mathema tical complexity of

the equation suggested . However , having the objective of simplicity has been a

convenient way of demonst rating a variety of ways of using multiple

regression .
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P O ST SCRIP T

Since this book was originally drafted, severa l computer packages of regression
programs have been introduced. The availability of these packages removes
many of the computat ional problems associated with the use of multiple
regression techniques. However , an understanding of the theoret ical basis of
multiple regression techniques is as important as ever . A short reference list is
given to some computer packages which contain a substantial number of
regression programs. The list is by no means exhaustive, nor is it intended to
single out the 'best' packages. In addition, a further reference list is given to
some currently available regression books which may be used to supplement or
extend the material presented in this text .

Finally, some references are given to a few recently published research
papers. These may help to give some idea of the direction of current thinking
although the reader can gain a more complete picture by refer ring to Sect ion
6.1 of recent issues of Sta tistical Theory and Methods abstracts, pub lished by
the Internat ional Statistical Institute.
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causes, 89ff
eff ect on analysis , 90

tests on residu als, 103
transformations, 90ff

Backwa rd select ion, 46

Bayesian me thod s, 26ff
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func tion al rela tion ship , 30- 1

sever a l straight lines, 17- 19
simple linea r regression, 8

weighted linear regression, 22



144 IN D EX
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simple linear regression , 6, 12ff

inva lid assum pt ions, 75- 6
Expected norm al scores, 84
Ext ra pola t ion haza rd s, 57, 72

F d ist ribu t ion, 13
re la tio n to t , 43

F urther read ing , 142

G auss Jord an elimination , 96
G enera l Linea r Hypothesis, 40ff , 110
G LI M , 87

G ra m Schmidt orthogona lisa t ion , 97, 98
G ra phical methods

a ssessing non no rmality , 8 1, 99, 124
est imatio n of a and b, 25
h istogra ms, 77- 8, 99, 126, 130- 1
mea n- variance plo t, 82, 117
represen t ing multivaria te d a ta , 64
residua l plots , 991T, 130- 1
x , y plo t to assess assu mptions, 23- 4, 63, 79

y ; ver sus 95, 119, 124
G rubbs test , 82

H eterogeneity of va ria nce
eff ect on est imates, 75
eff ect on residua ls, 100

Homogeneity of va riance test
severa l st ra igh t lines , 18, 109
severa l multiple regressions, 47

Householder transform ations , 98

Inconsistent est ima tes, 93
Incorrect mod el, 73- 4, 90
Independe nt variables

collinearity, 65
defi nition , 3, 4, 33
interactive eff ect , 75
omission, 73, 76
power t ra nsfo rma tion, 89
prediction, 14
previous va lues of the depend ent va riable,

92, 126
transformed variables, 74- 5, 115, 134
when subject to erro r, 29ff , 70ff
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assumptions, 75ff
equ ivalence with Bayesian est imation, 28
merits , 24

multiple regression, 36- 7
simple linear regression, 7- 8

Linea r func tio na l relationships, 29ff , 70ff
Logit transformation , 87

M axim um likelihood est imatio n
linear func tio na l re la tio nship , 30
pr obit and logit mod els, 87

Mean ann ua l fl ood , 114ff
M issing ob servations, 51
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linear functio nal re latio nships, 29 , 70
logit , 87
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sca led multiple regressio n , 66
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backward selectio n, 46
Bayesian method s, 70
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com pa rison of severa l regressions, 47

co mpu ter packages , 14 1
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on 7 and fl , 39
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correlatio n of pa ra meter est imates, 38

data split ting, 74- 5, 96

dummy variables , 62ff , 12 1- 2
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a and II , 37, 115- 16
07 , 38

exa mining :
the fi tted model, 94 - 6

the residua ls, 99ff

exa mples, 110, 114- 39

forward selection , 44
further read ing , 142

grou ping independent va riables, 74

hybr id mode ls, 62, 63

inclusion of an unrelated varia ble, 73

missing ob servations, 51

mod el, 33, 35
objectives, 32, 34, 72ff

omission of an impo rta nt variable, 73, 76

pred ict ion of y , 39ff , 125

residua ls, 35
selection of va riables, 43- 7, 72, 73

sign ifi ca nce tests, 40ff
singular Sn , 65ff , 98

stability of the regression equat ion, 96

stepwise regression, 46, 125ff

testing :
fi , = 0, 42, 116
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unequa l y variances, 50, 118- 19

variances of para meter est imates, 37- 8

weight ing, 50
Multiple regression by gr oup s, see Severa l

multip le regressions

N on para metric test of trend , 10 1

N ormal distributio n
dist ribut ion of the arithmetic mea n, 77

inva lid assumptio n, 76, 80- 1

nota tion , 9
pro ba bility plot, 8 1,•99 , 124

tr ansformation to , 83ff

N umerica l met hods, 96ff

Object ives :
multiple linear regression , 32, 34

simple linear regression , I , 2, 6
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defi nition , 53

examples , 54
Outliers, 64, 76, 8 1- 2, 119- 20

Per iodic regression , 57ff , 130- 4

ana lysis of variance , 60
est imatio n of .72, 6 1

genera l period icity, 6 1- 2
model, 58

pa rameter estim ates, 60

pred ict ion of y , 6 1

tests of sta ted period icity, 6 1

variances o f paramete r est imates , 60

Per tu rb ing the d a ta , 98

Polynomial regression , 5 Iff
analysis of variance, 55

equ ivalence with multiple regressio n, 51
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y , 56

extrapo lation , 57
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model :
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selection of model, 55- 6
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Posterior d ist ributio n , 27

Pred iction of :

x, 14
y , 4, 12ff , 39ff , 56, 6 1, 68, 125

Princ ipa l compo nents, 33, 65, 69 , 73
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analysis of variance, 68
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pa rameters, 66, 67
62, 68

in ter preta tion of eigenva lues, 67- 8

model, 66
prediction of y , 68

variance of pa ra meter est imates, 68

Pro bit transformatio n , 86

QR deco mposition, 97

Rainfa ll- ru no ff

Alwen ca tch ment, 1- 2
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Mekong , 125

multiple regression, 32, 34 - 5

Regression :
Bayesian method s, 26ff
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Regression :- contd.
empirica l Bayes met hod s, 28
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per iodic regression , 57ff , 130- 4
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principal components regressio n, 65ff

repeated ob servat ions, 14ff
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stepwise regression, 46 , 125ff
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mod el, 14, 15

test s of sign ifi ca nce, 16- 17
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a ll possib le regressions, 43
backwa rd selec tion , 46
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ana lysis of va ria nce , 49, 12 1
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parameters, 48
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example , 106ff
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pa ra llelism, 20, 110- 13
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(3= 0, 4 1, 116
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genera l linear hypothesis , 40ff , 110- 111
ho mogeneity of va riance, 18, 47

inva lid assumptio ns, 76

no n linea rity , 17, 23
no n nor mality , 80- 1

on residua ls, 100ff

ou t liers, 81- 2
pa ra llelism , 20, 49, 110- 13, 12 1

power transfo rmation parameter , 88,

117
principal com pon ents , 68

pu rpo se, simple linea r regression , 6

sta ted period icity, 6 1
Simple linear regression, DI
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17ff
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x, 14
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example , 107- 9, 127

mod el, 3, 7, 15, 17, 29
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residua ls, 9
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weighting , 2 1
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Box-C ox, 87ff , 117- 20

expected nor mal scores, 84

John so n SU , SB, SL, 85

log, 76, 83, 87, 88, 115, 116- 18

logit , 86
power transformation on :

x , 89
y , 85

prob it, 86
to remove autocorrelation , 90ff

variance stabilising, 76, 79, 821r , 100

T ru ncation , 78

Two stage pred icto r, 137- 9

Variance of :
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Variance of :—con td .

ci and /3
multiple regression , 37- 8, 68

periodic regression , 60

po lynomia l regression est imates , 55

multip le regression , 39

po lynomia l regression , 56

Variance sta bilising transformation s, 76, 79,
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Weigh ted multip le regression , 50

Weigh ted simple linear regression , 2 Iff
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