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Abstract

I explore the use of multiple regression on distance matrices (MRM), an extension of partial Mantel

analysis, in spatial analysis of ecological data. MRM involves a multiple regression of a response matrix on

any number of explanatory matrices, where each matrix contains distances or similarities (in terms of

ecological, spatial, or other attributes) between all pair-wise combinations of n objects (sample units); tests

of statistical significance are performed by permutation. The method is flexible in terms of the types of data

that may be analyzed (counts, presence –absence, continuous, categorical) and the shapes of response

curves. MRM offers several advantages over traditional partial Mantel analysis: (1) separating environ-

mental distances into distinct distance matrices allows inferences to be made at the level of individual

variables; (2) nonparametric or nonlinear multiple regression methods may be employed; and (3) spatial

autocorrelation may be quantified and tested at different spatial scales using a series of lag matrices, each

representing a geographic distance class. The MRM lag matrices model may be parameterized to yield very

similar inferences regarding spatial autocorrelation as the Mantel correlogram. Unlike the correlogram,

however, the lag matrices model may also include environmental distance matrices, so that spatial patterns

in species abundance distances (community similarity) may be quantified while controlling for the envi-

ronmental similarity between sites. Examples of spatial analyses with MRM are presented.

Introduction

Spatial patterns in species abundances reflect

spatial patterns in the environment and/or spatial

processes such as dispersal and disturbance

(Legendre 1993). Often, spatial processes are not

independent of the environment. For example,

seed dispersal may be directed towards particular

environments by animals (Wenny and Levey

1998), or biased by topographic effects on wind

currents . Similarly, the frequency and behavior of

disturbances such as wind-throw and fire are

strongly influenced by the physical environment

(Bergeron 1991; Johnson 1992; Everham and

Brokaw 1996). Nevertheless, species data typically

have some spatial structure that can not be ex-

plained by environmental variables (Borcard et al.

1992; Borcard and Legendre 1994; Lichstein et al.

2002). This nonenvironmental, or ‘pure,’ spatial

structure has two causes. First, it is difficult to

identify and measure all important aspects of the

environment, so that some spatially structured

environmental variation appears incorrectly in the

analysis as pure spatial structure (Legendre and

Legendre 1998:777). Secondly, most spatial pro-

cesses are at least partially independent of the
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environment. For example, seed dispersal by ani-

mals has both pure spatial (distance-limitation)

and environmental (habitat-preference) compo-

nents.

Correlograms, which quantify how inter-site

similarity varies with inter-site distance, are fre-

quently used in ecology to describe spatial pattern

in either univariate (single-species) or multivariate

(community) responses (Sokal and Oden 1978;

Oden and Sokal 1986; Rossi et al. 1992; Legendre

and Legendre 1998). However, correlograms alone

provide no insight into the cause of the spatial

pattern; i.e., it is impossible to tell from a corre-

logram how much of the spatial pattern is due to

the environment vs. spatial processes.

In this paper, I show that multiple regression on

distance matrices (MRM; Manly 1986; Smouse

et al. 1986; Legendre et al. 1994; Legendre and

Legendre 1998:559, 783) can be used to generate a

correlogram analogue that controls for environ-

mental variation. MRM, an extension of partial

Mantel analysis, is conceptually and mathemati-

cally simple and can accommodate all common

data types (i.e., presence –absence, counts, con-

tinuous, ordinal, categorical). The method can be

used to investigate linear, nonlinear, or nonpara-

metric relationships between a multivariate re-

sponse distance matrix and any number of

explanatory distance matrices. Although MRM

has been applied in a few ecological studies (Urban

et al. 2002; Tuomisto et al. 2003), spatial analysis

with MRM has not been discussed in detail.

I first briefly summarize simple and partial

Mantel tests and the Mantel correlogram (see

Legendre and Legendre 1998 for details on these

methods). I then describe MRM, focusing on its

application to spatial analysis. I show how MRM

can be used to incorporate the Mantel correlogram

into the multiple regression framework (Legendre

and Legendre 1998:783). Examples are presented

using data on tree, shrub, and liana abundance in

northwest Argentina.

Analysis of distance matrices

Simple Mantel test (2 matrices)

Mantel (1967) proposed a test for association be-

tween two n�n matrices whose entries are dis-

tances or similarities between all pair-wise

combinations of n objects (Figure 1A). The objects

may be plots, species, or any other type of sam-

pling unit, and the pair-wise measures may reflect

distance or similarity in terms of species abun-

dance(s), environmental conditions, or geographic

location (when the objects are plots); physiology,

behavior, morphology, or phylogeny (when

the objects are species); or any other uni- or

multivariate space.

A common use of the Mantel test is to quantify

the spatial structure in a species abundance dis-

tance matrix. Two n� n matrices are constructed:

DY, containing species abundance (e.g., Bray –

Curtis) distances between the site pairs; and

DSPACE, containing raw or transformed geo-

graphic (Euclidean) distances. Most distance

coefficients are symmetric (dij=dji), so the upper

right and lower left portions of the matrices

1 2 3 4 5

1 0 d 1,2 d 1,3 d 1,4 d 1,5 d 1,2

2 0 d 2,3 d 2,4 d 2,5 d 1,3

3 0 d 3,4 d 3,5 d 1,4

4 0 d 4,5 d 1,5

5 d 2,3

d 2,4

d 2,5

2 5 1 3 4 d 3,4

2 0 d 2,5 d 2,1 d 2,3 d 2,4 d 3,5

5 0 d 5,1 d 5,3 d 5,4 d 4,5

1 0 d 1,3 d 1,4

3 0 d 3,4

4

A

C

B

0

0

Figure 1. (A) Structure of a distance matrix with n=5 objects

(e.g., sample plots). Each value, dij, is the distance between

objects i and j in uni- or multivariate space. Self-distances (dii)

are, by definition, zero. For symmetrical distance coefficients

(dij=dji) the lower left portion of the matrix (not shown) con-

tains redundant values with the upper right portion. (B) The

n(n)1)/2 nontrivial distances are unfolded into a vector for

subsequent analysis. (C) The rows and associated columns of a

distance matrix are simultaneously permuted to perform sta-

tistical tests of association between the matrix and one or more

other distance matrices.
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contain redundant values (Figure 1A). After

removing the redundant values and the main

diagonal (which contain self-distances), there are

n(n)1)/2 values per matrix. Each matrix is un-

folded into a vector of distances (Figure 1B), and

rM (or a nonparametric coefficient) is calculated as

the correlation between the two vectors (Legendre

and Legendre 1998). A large positive value of rM
would indicate that plot pairs with similar species

abundances (small values in DY) are close in geo-

graphic space (small values in DSPACE), and that

plot pairs with very different species abundance

(large values in DY) are far apart (large values in

DSPACE).

Valid tests for rM may be performed by per-

mutation or by comparing a transformed version

of rM to a standard normal deviate (Mantel 1967;

Legendre and Legendre 1998:554). The permuta-

tion approach is the only method available for the

extensions to the Mantel test discussed below. Due

to the interdependence of the distances, it is the n

objects, not the distances, which must be per-

muted. For each permutation, the n objects and

their associated values for one set of attributes

(e.g., species abundances) in the original (raw)

data are randomly permuted and the distance

matrix recalculated, while the other set of attri-

butes (e.g., the spatial coordinates) is held con-

stant. An equivalent, more efficient procedure is to

simultaneously permute the rows and corre-

sponding columns in one of the distance matrices

(Figure 1C; Legendre and Legendre 1998:554;

Legendre 2000). Mantel tests are usually one-

tailed, because one expects objects that are similar

in one set of attributes (e.g., species abundances)

to also be similar in another set of attributes (e.g.,

space).

Partial Mantel test (3 matrices)

Partial Mantel analysis is partial correlation

analysis performed on distance matrices, each

unfolded into a vector (Figure 1B). The partial

correlation between two distance matrices is

computed while controlling for the effect of a third

matrix (Smouse et al. 1986). Partial Mantel anal-

ysis is one of several methods commonly used to

obtain the variance partitioning of Borcard et al.

(1992), in which variation in species data is parti-

tioned into environmental and spatial compo-

nents. However, distance and raw data matrices

have very different properties, and distance matrix

analysis should not be used for making inferences

about raw data (Legendre et al. 2005). For exam-

ple, it is possible to construct a multi-species raw

data matrix in which no two sites share the same

set of species abundances, but whose correspond-

ing distance matrix has zero variance (i.e., all inter-

site species abundance distances are the same;

Legendre et al. 2005).

Legendre (2000) used simulations to compare

permutation methods for partial Mantel tests. The

method described in Legendre and Legendre

(1998:558), in which DY is permuted (see simple

Mantel test, above; Figure 1C) and the two

explanatory distance matrices are held constant,

was valid except in the presence of extreme outliers

(Legendre 2000).

Mantel correlogram

Oden and Sokal (1986) and Sokal (1986) used the

Mantel test to compute a multivariate correlo-

gram, which, like univariate correlograms or

semivariograms, plots autocorrelation as a func-

tion of geographic distance. A Mantel correlo-

gram, which describes the spatial structure of a

distance matrix, DY, may be constructed as fol-

lows: (1) the geographic distances between the n

plots are divided into classes, or ‘lags’; (2) for each

lag, an n� n matrix is constructed containing

zeroes for site pairs whose geographic distances

fall within the lag class and ones otherwise; (3)

simple Mantel tests are calculated between DY and

each lag distance matrix, and rM is plotted as a

function of the lag mid-points. Each rM statistic is

tested for significance using the permutation pro-

cedure described above for the simple Mantel test.

Some correction (e.g., Bonferroni) is needed to

account for multiple testing in correlograms. Two-

tailed tests are often used, because negative auto-

correlation is not uncommon, particularly at the

farther lags.

MRM (�2 matrices)

MRM entails a multiple regression of a response

distance matrix, DY, on two or more environ-

mental, spatial, or other explanatory distance

119



matrices, each unfolded into a distance vector

(Figure 1B). The significance of an MRM model

and its regression coefficients are tested by per-

muting DY while holding the explanatory matrices

constant. When DY is an ordinary distance or

similarity matrix, its rows and columns are per-

muted as described above for the simple Mantel

test (Figure 1C; Legendre et al. 1994), and the

model R2 and regression coefficients are calculated

for each permutation to generate null distribu-

tions. Legendre et al. (1994) discuss permutation

procedures when DY contains distances repre-

senting a dendrogram or a phylogenetic tree.

MRM, like other distance matrix analyses, pro-

vides inferences about relationships between dis-

tances, not between raw data.

MRM offers two advantages over traditional

partial Mantel analysis:

(1) Polynomial, nonlinear, or nonparametric

regression methods, such as generalized addi-

tive models (Yee and Mitchell 1991), can be

used with MRM: Once the distance matrices

have been unfolded into vectors, the calcula-

tions for fitting an MRM model are no dif-

ferent than those for multiple regression with

raw data. The only computational difference

lies in significance testing, which is performed

by permuting the objects of the response dis-

tance matrix.

(2) Expanding the number of explanatory matri-

ces allows each environmental variable to be

represented by its own distance matrix. This

provides an improved species –environment

correlation (because the effects of important

variables are not diluted by unimportant

ones), and a convenient way to determine the

statistical significance and relative importance

of each environmental factor.

Expanding the number of explanatory distance

matrices also increases the flexibility of spatial

analysis. Noting that ecological (e.g., species

abundance) distances may be nonlinearly related

to geographic distance, Legendre and Legendre

(1998:783) proposed to use a series of geographic

distance matrices, each corresponding to a lag

distance class, as explanatory matrices in an MRM

model (hereafter, the ‘lag matrices model’). The

distance matrices in the lag matrices model could

be the same as those used in a Mantel correlogram.

The lag matrices model can fit complex nonlinear

patterns and provides a significance test for spatial

structure at each scale (lag distance).

If the lag matrices model is fully specified (i.e.,

all lags plus an intercept are included), then the

model has a linear dependency and must be repa-

rameterized. The model may be reparameterized in

such a way that the regression coefficients and

their P-values provide tests for autocorrelation at

each lag distance (see Appendix A). In general, it

may be undesirable to include all lags in the model,

because the farthest lags will only include site pairs

located on the periphery of the study area. In some

cases, however, it is of interest to compare the

most geographically distant sites (e.g., Condit

et al. 2002), which requires that all distance classes

be included in the analysis. When interpreting

spatial pattern at the farthest lags, it is important

to bear in mind that these patterns are more sus-

ceptible than the shorter lags to being influenced

by local anomalies near the edges of the study

area.

Application of MRM

I apply MRM to spatial analysis of species

abundance and environmental data from north-

west Argentina, Tucumán province. The study

aims to understand the relative roles of seed

dispersal and environmental factors on the

recruitment of native and exotic plants (Lichstein

et al. 2004).

Data

Sixty-four 20�20 m plots were located in second-

ary forest patches in a 2.2�0.65 km section of a

landscape (27�30¢ S, 65�40¢ W; 580 –710 m eleva-

tion) that was deforested for agriculture during the

first half of the 20th century. Presently, the land-

scape consists of a mosaic of agriculture, native

secondary forests, forests dominated by Ligustrum

lucidum W. T. Aiton (Oleaceae; an invasive tree

from Asia), and exotic tree plantations (Eucalyptus

and Pinus). Plots were arranged in clusters of two

to four adjacent plots, depending on the size of the

forest patch. Small inter-plot geographic distances

within clusters allowed for fine-scale resolution in

spatial analyses, while larger distances between
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clusters allowed for broad extent. In each plot, I

recorded the diameters and identities of all woody

plants (trees, shrubs, and lianas) with dbh �3 cm.

In the central 10�10 m of each plot, I counted and

identified all woody stems taller than 25 cm and

assigned stems with dbh<3 cm to one of three size

classes: 25 –50 cm tall, 50 –150 cm tall, and

>150 cm tall. I measured environmental variables

in each plot, including canopy cover and soil

moisture, chemistry, and texture. See Lichstein

et al. (2004) for details.

Analysis

Permutation tests for MRM models were per-

formed with the program Permute! (http://

www.fas.umontreal.ca/biol/casgrain/en/labo/per

mute/index.html). All other analyses were per-

formed with SPLUS (Insightful Corporation

2002). Mantel tests and Mantel correlograms may

also be computed with the R Package (http://

www.fas.umontreal.ca/biol/casgrain/en/labo/R/

v4/index.html). Here, I discuss general features of

the methods. I describe each analysis in more de-

tail in the examples below.

Separate DY matrices were constructed from

abundances (stem counts) within each stem size

class for three species groups: all species combined,

native trees, and shrubs. Each DY contained Bray –

Curtis distances between the 2016 plot pairs.

Abundances were log(y+1) transformed to

emphasize rare species.

I fit Mantel correlograms to describe spatial

patterns in DY. Sturge’s rule (Legendre and

Legendre 1998:717) determined that 12 lag classes

were appropriate for 2016 distances. The first lag

included all plot pairs with geographic distances

<50 m (n=94), and the second lag included pairs

with distances of 50 –100 m (n=132). Lags 3 –12

each contained 179 plot pairs and were of unequal

width. Plot pairs whose inter-plot distances fell

within a given lag class were assigned a value of

zero in the corresponding lag matrix, and a value

of one otherwise; thus, positive rM values in

Mantel correlograms imply positive autocorrela-

tion. The significance of each rM value in the

correlograms was assessed by permutation using

the progressive Bonferroni correction (Legendre

and Legendre 1998:671, 721): ai ¼ a=2i for the ith

lag, where a ¼ 0:05, and the two in the denomi-

nator yields a two-tailed test.

I fit MRM lag matrices models of DY using the

same lag distance classes as in the correlograms.

These models contained all 12 lags and were rep-

arameterized as in Appendix A. I fit MRM envi-

ronment models using 11 environmental distance

matrices containing the absolute values of inter-

plot differences for the following variables: stand

age; percent of plot basal area comprised by L.

lucidum; percent canopy cover; an index of canopy

gappiness; soil moisture; three principal compo-

nents (PCs) describing soil texture (soil PC1), fer-

tility (soil PC2), and pH (soil PC3); and three PCs

describing soil surface rockiness (surface PC1),

fine woody debris (surface PC2), and litter depth

(surface PC3). In all cases, partial residual plots

(Rawlings et al. 1998) indicated a linear relation-

ship (if any) between DY and the environmental

distances.

P-Values for MRM models were obtained with

the program Permute! by comparing each ob-

served regression coefficient to a distribution of

2000 values (observed+1999 permuted values;

Legendre and Legendre 1998:20 –22). Nonlinear

relationships between species and environment

distances may be modeled with Permute! by, for

example, using polynomials of the explanatory

distances, although this was not necessary in the

present study.

Fitting spatial patterns with MRM

A Mantel correlogram of the all species data

(stems 25 –50 cm tall) shows positive autocorrela-

tion at lags 1, 2, 3, and 5, and negative autocor-

relation at lags 6, 11, and 12 (Figure 2A). I use the

term ‘autocorrelation’ to refer to the presence of a

statistically significant spatial pattern, regardless

of whether the pattern is thought to be caused by

the environment or by an endogenous spatial

process.

Figure 3 shows the fit of three linear models

(Figuers 3A, C, and E) and the lag matrices model

(Figure 3G) to the 2016 Bray –Curtis�geographic

distances, and Mantel correlograms of the residu-

als from each model (Figure 3B, D, F, and H). A

simple linear model (simple Mantel test between

DY and a geographic distance matrix) explains

17% of the variation in DY (Figure 3A). This

model fails to capture the nonlinearity in the

data, and a correlogram of the residuals shows
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significant autocorrelation at the first and sixth

lags (Figure 3B). An alternative to the simple lin-

ear model is to assume a linear increase in Bray –

Curtis distance with geographic distance up to a

break point, and no spatial pattern beyond the

break. This can be achieved by re-assigning all

distances beyond the break point (set arbitrarily as

900 m) to 900 m and fitting a simple linear model

to the modified distances (Figure 3C inset). This

model (Figure 3C) explains 20% of the variation

in DY, but the residuals again show autocorrela-

tion at several lags (Figure 3D). The fit is further

improved by a multiple regression of DY on two

distance matrices (Figure 3E), the first containing

the geographic distances between all plots located

<1 km apart (with all other values in the matrix

set to zero), and the second containing the

geographic distances between all plots located

>1 km apart (and zeros elsewhere). This model

explains 24% of the variation in DY and appears

to capture the primary structure of the data, al-

though the residuals are still autocorrelated (Fig-

ure 3F).

The lag matrices model (Figure 3G) accounts

for 26% of the variation in DY. The correlogram

of the residuals shows that the model explains all

of the spatial pattern in DY (Figure 3H), which

follows from the fact that the model and the cor-

relogram both employ the same lag matrices. The

statement that ‘‘the model explains all of the spa-

tial pattern in DY’’ must be qualified: 74% of the

variation in DY is unexplained, but this variation

has no spatial structure at the resolution of the

lags in the correlogram. Finer subdivision into

more lag classes increases the strength of auto-

correlation detected in Mantel correlograms

(Fortin and Payette 2002) and, by analogy, in-

creases the amount of variation explained by the

lag matrices model. To avoid arbitrarily inflating

the explained spatial variation, an objective

method, such as Sturge’s rule (Legendre and

Legendre 1998:717), should be used to determine

the number of lags.

Finally, it is worthwhile to compare the lag

matrices model to some nonparametric alterna-

tives. Figure 4 shows generalized additive models

with spline functions of 4 and 8 degrees of free-

dom, which explain 25 and 28%, respectively, of

the variation in DY. In terms of fitting the Bray –
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Figure 3. Four parametric spatial models (A, C, E, and G) fit

to the all species data (gray dots are Bray –Curtis distances vs.

geographic distances; black lines are fitted values) and Mantel

correlograms (rM vs. lag mid-points) of the residuals from each

model (B, D, F, and H). Due to the arrangement of the plots,

no inter-plot geographic distances occur between �0.8 and

1.2 km. (A) Simple linear regression of Bray –Curtis distances

on geographic distances. (C) Simple linear regression with all

distances beyond a 900 m break-point re-assigned to 900 m.

(Modified data are shown in the inset; the large number of

points at 900 m have been randomly off-set slightly to show

overlapping points.) (E) Multiple regression on two geographic

distance matrices: one matrix for inter-plot distances <1 km,

and one for distances >1 km. (G) ‘Lag matrices model’: mul-

tiple regression on the 12 lag matrices used to construct the

correlograms. The fitted values for the seventh lag in (G) span
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Curtis distances, these nonparametric models

perform favorably compared to the fully specified

lag matrices model, which has 12 degrees of free-

dom (one for each parameter, or lag). The main

advantage of the lag matrices model is not its

superior performance in fitting nonlinearities, but,

the ability to test for autocorrelation at different

spatial scales (see below). In contrast, nonpara-

metric models, by definition, provide no such tests.

(Here, ‘nonparametric’ refers to the form of the

fitted curve, not the response distribution.)

The above analyses are all-directional: the inter-

plot distances, but not directions, are used to

construct the spatial matrices. There is no reason

why directionality cannot be incorporated into the

spatial matrices if there is thought to be a direc-

tional component to the spatial processes under

consideration. For example, for wind-dispersed

plants in a region with prevailing westerly winds, a

site pair might be included in a lag class only if, in

addition to their geographic distance falling within

the distance class, the sites are within 60� –120� or

240� –300� azimuth bands of each other. For

analyses that use the geographic distances, rather

than lag classes, directionality could be accounted

for by using a matrix of spatial similarities (e.g., 1/

distance), weighted by the appropriate sine or co-

sine of the inter-site azimuths.

Lag matrices model vs. Mantel correlogram

I reparameterized the lag matrices model (Fig-

ure 3G) as in Appendix A and tested the multiple

regression coefficients using Permute!. With

one exception (lag 7), the coefficients in the fully

specified lag matrices model (Table 1) were signif-

icant at the same lags that were significant in the

Mantel correlogram (Figure 2A). The signs are

reversed in the MRM model relative to the Mantel

correlogram because the former was parameterized

to estimate the difference between the mean Bray –

Curtis distance in the ith lag and the overall mean

Bray –Curtis distance (i.e., negative regression

coefficients imply positive autocorrelation),

whereas the later was coded so that positive auto-

correlation would result in positive values of rM.

After accounting for the difference in sign, the two

analyses lead to very similar inferences. To test the

generality of this result, I fit Mantel correlograms

and fully specified lag matrices models to 12

additional species abundance data sets, consisting

of different species groups and stem size classes.

The two approaches yielded nearly identical infer-

ences regarding autocorrelation (Table 2). The 13

data sets are not independent (e.g., the all species

data contains the smaller data sets); nevertheless,

the close correspondence between the two ap-

proaches suggests that the lag matrices model

incorporates the main features of the Mantel cor-

relogram. The key functional difference between

the two methods is that the correlogram simply

describes spatial pattern, whereas MRM allows the

lag matrices to be combined with environmental

distances in a multiple regression model.

MRM space/environment models

I searched over all possible combinations of the 11

environmental distance matrices to identify the set
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Figure 4. Nonparametric generalized additive models fit to the

all species data (gray dots are Bray –Curtis distances vs. geo-

graphic distances; black lines are fitted values). Models were fit

with a spline function with (A) 4 and (B) 8 degrees of freedom.

R2 was calculated as the percent deviance explained.
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that explained the most variation in DY (Bray –

Curtis distances for the all species data, stems 25 –

50 cm tall). I used a Bonferroni-corrected a of

0.05/11=0.0045 (one-tailed test for positive cor-

relation). The best environment model included

distance matrices for stand age, soil PC1, and soil

PC2, and explained 19% of the variation in DY

(Table 3). A space/environment model, including

the three significant environmental matrices and

the 12 lag matrices, explained 33% of the species

data, compared to 26% for the pure space model

(Table 1; Figure 3G). Stand age and soil PC2 re-

mained significant, but soil PC1 was no longer

significant after controlling for the spatial struc-

ture in the data (Table 3). This is reflected in the

regression coefficients, which are very similar in

the two models for stand age and soil PC2, but

much smaller in the space/environment model

compared to the environment model for soil PC1

(Table 3).

Partitioning the variation in DY into pure envi-

ronment (7%), shared space/environment (14%),

and pure space components (12%; Figure 5) sug-

gests that dispersal limitation or other spatial

processes are more important than environmental

factors in determining community similarity. A

Mantel correlogram of the residuals from the pure

environment model described above shows signif-

icant autocorrelation at lags 1, 2, 3, 6, 7, and 12

(Figure 2B), reflecting the substantial pure spatial

structure in DY.

A useful way to visualize the extent of overlap

between the spatial and environmental structure

in DY is to plot the lag coefficients from fully

Table 1. Fully specified lag matrices model for all species data

(Figure 3G).

Lag class Mean/max lag distance (m) Coefficienta Meanb

1 26/50 )0.109* 0.316

2 78/100 )0.058* 0.367

3 146/195 )0.055* 0.370

4 286/392 )0.014 0.411

5 475/539 )0.032* 0.392

6 659/775 0.042* 0.467

7 1216/1499 0.032* 0.456

8 1571/1623 0.023 0.447

9 1669/1727 0.027 0.451

10 1810/1895 0.016 0.440

11 1976/2030 0.048* 0.472

12 2069/2157 0.080* 0.504

aMultiple regression coefficients are differences between the

mean Bray –Curtis distance in the ith lag and the overall mean

Bray –Curtis distance (see Appendix A). For a given lag, a

negative coefficient indicates positive autocorrelation; i.e.,

species composition within that lag is more similar (smaller

Bray –Curtis distance) than the mean similarity among all plot

pairs.bMean Bray –Curtis distance for lagi=intercept+coeffi-

cienti, where intercept from reparameterization of Appendix A

is 0.424. Means are fitted values shown in Figure 3G.*Signifi-

cant at progressive Bonferroni adjusted ai=0.05/2i for ith lag

(two-tailed test; Legendre and Legendre 1998:671, 721).

Table 2. Lags with significant positive (+) and negative ()) autocorrelation in Mantel correlograms (left) and fully specified MRM lag

matrices models (right).a

Size classb Lag

1 2 3 4 5 6 7 8 9 10 11 12

All species 1 +/+ +/+ +/+ +/+ )/) /) )/) )/)

2 +/+ +/+ +/+ )/) )/) )/)

3 +/+ +/+ +/+ )/) /) /)

4 +/+ +/+ +/+ )/ )/)

Native trees 1 +/+ +/+ +/+ /) )/)

2 +/+ +/+ +/+ )/) )/)

3 +/+ +/+ +/+ +/ )/)

4 +/+ +/+ +/+ )/) /)

Lianas 1 –2 +/+ +/+ +/+ )/) )/)

3 –4 +/+ +/+ )/) )/)

Shrubs 1 +/+ +/+ +/ +/+ +/+ )/) )/) )/)

2 +/+ +/+

3–4 +/+ /) +/

aMRMmodels included all 12 lags and no environmental variables, and were parameterized as in Appendix A. For both MRMmodels

and Mantel correlograms, autocorrelation at each lag was tested at the progressive Bonferroni adjusted ai ¼ 0:05=2i for ith lag (two-

tailed test; Legendre and Legendre 1998:671, 721).bSize classes: (1) 25 –50 cm tall; (2) 50 –150 cm tall; (3) >150 cm tall and <3 cm dbh;

(4) 3 –10 cm dbh.
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specified lag matrices models with and without

environmental variables. To illustrate, I fit fully

specified pure space and space/environment lag

matrices models to Bray –Curtis distances calcu-

lated from the native tree data (25 –50 cm tall

stems) and the shrub data (25 –50 cm tall stems).

Environment models were selected using the pro-

cedure described above for the all species data.

Only one environmental distance, stand age,

was significantly correlated with native tree Bray –

Curtis distances, explaining 5% of the variation in

DY (Figure 5). The coefficients and significance

tests for the lags in the pure space and space/

environment models were nearly identical to each

other (Figure 6A). Likewise, Mantel correlograms

of the native tree distances and of the residuals

from the native tree environment model were also

very similar (Figure 6C); i.e., the environmental

distances explained so little of the variation in DY

that the spatial pattern in the environment model

residuals is almost the same as the spatial pattern

in the original Bray –Curtis distances.

In contrast, the environment model for shrubs

included three distance matrices (stand age, soil

PC1, and soil PC2), explaining 26% of the varia-

tion in DY. Because much of this variation was

spatially structured (Figure 5), the coefficients and

significance tests for the lags in fully specified

space and space/environment models differed

considerably (Figure 6B); i.e., there was much less

spatial pattern for the lag matrices to explain in the

presence of the environmental distances than in

their absence. Accordingly, the correlogram of

environment model residuals showed much less

spatial pattern than the correlogram of the Bray –

Curtis distances (Figure 6D).

Discussion

MRM extends partial Mantel analysis of three dis-

tance matrices to any number of explanatory

matrices that may be related to the response (e.g.,

species) matrix by any multiple regression proce-

dure (e.g., linear, nonlinear, or nonparametric).

Although MRM is conceptually similar to partial

Mantel analysis, moving from the partial correla-

Table 3. MRM environment and space/environment models

for all species data.

Variable Coefficienta Pb

Environment model: R2=0.19

Stand age 0.024 0.0005*

Soil PC1 0.019 0.0005*

Soil PC2 0.019 0.0005*

Space/environment model: R2=0.33

Stand age 0.018 0.0005*

Soil PC1 0.002 0.63

Soil PC2 0.018 0.0005*

Lag1 )0.081 0.0005*

Lag2 )0.052 0.0005*

Lag3 )0.054 0.0005*

Lag4 )0.016 0.061

Lag5 )0.027 0.0035*

Lag6 0.036 0.0005*

Lag7 0.043 0.0005*

Lag8 0.024 0.0035

Lag9 0.029 0.0025*

Lag10 0.008 0.45

Lag11 0.038 0.0005*

Lag12 0.053 0.0005*

aEnvironmental distances were standardized to zero mean and

unit variance, so their coefficients refer to a common scale. Lag

matrices were not standardized (see Appendix A). Interpreta-

tion of lag matrix coefficients as in Table 1.bP-values were

calculated from a distribution of 2000 values (observed+1999

permuted values); thus, the minimum possible P is

0.0005.*Significant at Bonferroni adjusted a ¼ 0:05=11 (envi-

ronmental variables; one-tailed test) or progressive Bonferroni

adjusted ai ¼ 0:05=2i for ith lag (two-tailed test; Legendre and

Legendre 1998:671, 721).
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tioned by MRM into pure environment, spatially structured

environment (‘shared’), and pure space components (Borcard

et al. 1992). The total variation explained by environment

models is equal to the pure environment plus shared compo-

nents. The total variation explained by spatial (lag matrices)

models is equal to the pure space plus shared components.
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tion to the multiple regression framework has sig-

nificant advantages. First, in a space/environment

partial Mantel analysis, different environmental

variables must be combined into a single multivar-

iate distance, which precludes inferences on the

importance of individual environmental factors. In

contrast, MRM allows the relationship between

species abundance distances and each environ-

mental factor to be assessed separately. Second,

unlike partial Mantel analysis, which has tradi-

tionally investigated linear correlations, MRM

provides a convenient means for modeling nonlin-

ear species responses (e.g., Tuomisto et al. 2003).

Finally, MRM allows for a special type of spatial

model with lag distance matrices (Legendre and

Legendre 1998:783). Although nonparametric

(Figure 4) or other nonlinear MRM models with

fewer parameters may fit the spatial pattern in the

species data as well as, or better than, a lag matrices

model (Figure 3G), only the latter provides auto-

correlation indices and significance tests for par-

ticular spatial scales.

The MRM lag matrices model yields similar

inferences regarding spatial autocorrelation as the

Mantel correlogram (Table 2). Unlike the corre-

logram, however, the lag matrices model may also

include environmental distance matrices, allowing

autocorrelation to be quantified at different scales

while controlling for the environmental similarity

among sites. Condit et al. (2002) suggested that

tree community similarity declines more rapidly

with geographic distance in Panama than in wes-

tern Amazonia due to steeper environmental gra-

dients in Panama. MRM could be used to test this

hypothesis directly. More generally, MRM could

be used to test hypotheses regarding distance-decay

in community similarity (Nekola and White 1999)

while controlling for environmental similarity.
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Figure 6. (A and B) Fully specified lag matrices models (parameterized as in Appendix A) for 25 –50 cm tall native trees (A) and

shrubs (B). For native trees (A), lag matrices had very similar coefficients in pure space (solid line, circles) and space/environment

(broken line, triangles) models, because the environmental distances explained little of the variation (5%) in the Bray –Curtis distances

(Figure 5). In contrast, for shrubs (B), the lag matrix coefficients diverged in pure space vs. space environment models, because the

environmental distances explained a substantial amount (26%) of the variation in the Bray –Curtis distances. (C and D) Mantel

correlograms of Bray –Curtis distances (solid line, circles) and residuals from environment models (broken line, triangles) for 25 –50 cm

tall native trees and shrubs. All four panels show positive autocorrelation at shortest lags and negative autocorrelation at the farthest

lags; i.e., the difference in sign between the lag matrices models and the correlograms simply reflects the way the in which the spatial

matrices are coded in the two methods.
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The lag matrices MRM model, like other forms

of distance matrix analysis, can also be used to

partition the explained variation in community

similarity (species abundance distances) into spa-

tial and environmental components (Borcard et al.

1992). This variation in community similarity is

distinct from the variation in species abundances

(Legendre et al. 2005): community similarity may

differ little among site-pairs (in which case there

could be little spatial or environmental structure in

community similarity), despite low similarity (high

species turnover) between sites. Inferences about

correlations between distances may be invalid for

raw data. For example, the Mantel test has low

power to detect correlations between raw data

vectors (see Table 2 of Legendre 2000), and, in

some cases, distance matrices calculated from

univariate data may be correlated even when the

raw data vectors are not (Dutilleul et al. 2000).

Although partial Mantel analysis is often used by

ecologists to partition variation in species abun-

dances into spatial and environmental compo-

nents, this practice should be abandoned in favor

of canonical ordination (Legendre et al. 2005),

particularly in light of recent improvements to

ordination methods (Legendre and Gallagher

2001; Borcard et al. 2004).

In addition to providing weak, or misleading,

inferences about raw data, another limitation of

Mantel analysis is inflated type I error in the

presence of spatial autocorrelation, even when a

geographic distance matrix is included in the

analysis (Oden and Sokal 1992; Raufaste and

Rousset 2001). Determining if this is also prob-

lematic in more flexible MRM models is an

important topic for future work. Regardless, there

are known valid methods to account for autocor-

relation in raw data regression of univariate re-

sponses (Augustin et al. 1996; Selmi and Boulinier

2001; Lichstein et al. 2002), and, in general, there

is no reason to use distance matrices when more

direct univariate regression and correlogram

methods are available. The lag matrices approach

could be incorporated into univariate regression

by defining a series of spatial neighborhood

matrices, one for each lag, in autoregressive

models (Augustin et al. 1996; Lichstein et al.

2002).

Finally, while MRM should capture much of

the spatial pattern generated by distance-limited

processes (e.g., seed dispersal), MRM and other

distance methods will be ineffective at perceiving

many spatial patterns generated by the environ-

ment, such as gradients on a two-dimensional

sampling design (as opposed to a linear transect;

Legendre et al. 2005) or patches of variable size

and shape. Problems with all-directional correlo-

grams (Legendre and Legendre 1998:724) also

apply to distance matrix analysis unless direc-

tionality is accounted for in the spatial matrices.

Despite its limitations, MRM is a useful tool for

studying the spatial structure of multivariate dis-

tances. In particular MRM is well-suited for

quantifying the strength and scales of autocorre-

lation in community similarity while controlling

for the environmental similarity among sites. In

providing inferences about the importance of

individual environmental factors and in fitting

complex environmental and spatial responses,

MRM offers significant advantages over tradi-

tional partial Mantel analysis.
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Appendix A

Reparameterizing the fully specified lag matrices

model

If the lag matrices model is fully specified (con-

tains all lags), interpreting and reparameterizing

the model are most straight-forward when the

values in the lag matrices are coded as one for

plot pairs that fall within a given lag class and

zero otherwise. Consider a MRM model with (1)

dependent ecological distance matrix Y unfolded

into a vector of length n(n)1)/2; (2) an intercept
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(mean) vector of ones of length n(n)1)/2; and (3)

a series of lag distance matrices unfolded into

their corresponding distance vectors, each of

length n(n)1)/2. (For simplicity, I have excluded

environmental variables, but the reparameteriza-

tion derived below is unchanged if other explan-

atory distance matrices are also included.)

Consider n=5 sites (as in Figure 1) and five lag

classes, each containing two of the n(n)1)/2=10

inter-site pairs (in reality, each lag class should

contain at least 30 pairs). In matrix notation, the

model is Y ¼ Xbþ e:
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ðA:1Þ

where l is the overall mean response, si is the mean

departure of y in the ith lag from l, and e is the

vector of errors. Y is expressed in two different

notations above because in regards to the param-

eterization of the multiple regression model, the

n(n)1)/2 inter-site distances (d1,2, d1,3,..., d4,5)

should be thought of as yij: the jth replicate within

the ith treatment group (lag class). (In this exam-

ple, two of the 10 distances, dab, were arbitrarily

assigned to each of the five lags; in a real analysis

the geographic distances would determine these

assignments.) The fully specified lag matrices

model, then, is equivalent to a one-way ANOVA

design, and differs from ANOVA only in that

significance tests must be performed by permuta-

tion (Legendre et al. 1994). Like ANOVA models,

the fully specified lag matrices model is not full

rank; i.e., there is a linear dependency between the

lag vectors (which sum to a vector of ones) and the

intercept. Thus, the model has no unique solution

and must be reparameterized to a full rank model

(Rawlings et al. 1998, Chapter 9).
There are several common reparameterizations,

each leading to the identical R2 but allowing dif-

ferent hypotheses to be tested. In particular, we

wish to test the hypotheses that the si are different

from their mean (i.e., si � �s 6¼ 0), where si � �s is an

autocorrelation index for the ith lag. Eliminating

the intercept from the model leads to a reparam-

eterization in which, rather than estimating l and

each si, we estimate each li ¼ lþ si (Rawlings

et al. 1998:274). This reparameterization does not

yield useful hypothesis tests: the li (e.g., the pre-

dicted values in Figure 4G) may all be significantly

different from zero, but not different from each

other (in which case there would be no spatial

pattern in the data).

To test the hypotheses of interest ( si � �s 6¼ 0),

we impose the constraint that Rsi ¼ 0. Thus, for

the model above with five lags, we have

s5 ¼ �ðs1 þ s2 þ s3 þ s4Þ: ðA:2Þ

The model for the distances (y) in the fifth lag class

(y51=d3,5 and y52=d4,5 in our example),

y5j ¼ lþ s5 þ e5j; ðA:3Þ

can now be re-written as

y5j ¼ lþ ð�s1 � s2 � s3 � s4Þ þ e5j: ðA:4Þ

The parameter s5 may now be eliminated and the

model re-defined as Y ¼ X�b� þ e (Rawlings et al.

1998:278):
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ðA:5Þ

Note that the linear dependency has been re-

moved, so the reparameterized model has a un-

ique solution. In terms of the original model

parameters, the expectation of the ordinary least

squares estimate of b� is (Rawlings et al.

1998:278):

129



Eðb̂�Þ ¼

lþ �s
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Thus, the coefficients ŝ
�
1; ŝ

�
2; ŝ

�
3, and ŝ

�
4 in b̂

�
pro-

vide autocorrelation indices (si � �s) for lags 1 –4;

significance tests for the coefficients are performed

using the MRM permutation method described in

this paper and in Legendre et al. (1994).

All that remains now is to estimate s5 � �s and

determine if the estimator is significantly different

than zero. An unbiased estimator for s5 � �s is

(Rawlings et al. 1998:279):

ŝ
�
5 ¼ �ðŝ�1 þ ŝ

�
2 þ ŝ

�
3 þ ŝ

�
4Þ: ðA:7Þ

In order to implement a permutation test for the

hypothesis s
�
5 6¼ 0 (i.e., s5 � �s 6¼ 0), it is necessary

to reparameterize the model in the identical man-

ner as before, but retaining s5 and eliminating in-

stead any one of the other si. For example, we

could eliminate s1, in which case Eq. (A.5) would

become:
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:

ðA:8Þ

The estimated coefficients ŝ�i for the model in Eq.

(A.8) should be identical to those for the model in

Eq. (A.5), and the permutation tests for the two

models should yield the same results.

In summary, the fully specified lag matrices

model is reparameterized and tested as follows:

(a) Eliminate any one of the lags (si) from the

model by removing its column from X and, for

the rows in X corresponding to the removed

lag, replace each zero in the X columns of the

retained lags with negative one. For example,

Eq. (A.5) is the reparameterization of Eq.

(A.1) after removing the fifth lag.

(b) For the lags retained in the reparameterized

model, the ordinary least squares multiple

regression coefficients provide autocorrelation

indices (si � �s), and the MRM permutation

method provides tests of the null hypotheses

si � �s ¼ 0.

(c) To obtain the autocorrelation index and sig-

nificance test for the lag eliminated in step (a),

repeat steps (a) and (b), but this time elimi-

nating one of the other si instead. For exam-

ple, Eq. (A.8) is the reparameterization of Eq.

(A.1) after removing the first lag.

Finally, two notes of caution are in order:

(1) Standardizing the unfolded distance vectors

to mean zero and unit variance, which references

the regression coefficients for different explanatory

variables to a common scale, is often desirable.

However, the coefficients of the fully specified lag

matrices model are not interpretable in terms of

the original response (e.g., Bray –Curtis distances)

if the columns of X are standardized. Therefore,

the X matrix for the fully specified lag matrices

model should be coded with ones and zeros as in

Eq. (A.1), and the re-defined X* matrices with

ones, zeros, and negative ones as in Eqs. (A.5) and

(A.8). Note that the program Permute! (Casgrain

2002) reports standardized regression coefficients.

This standardization affects the values of the

coefficients, but not their P-values. Nonstandard-

ized coefficients (which reflect the original coding

of the variables) may be obtained from any stan-

dard regression software.

Another reason not to standardize the X matrix

in the fully specified lag matrices model is the

following: If there are unequal numbers of plot

pairs in the different lag classes, then standardi-

zation will cause the columns in X to have different

codings, and Eqs. (A.2) –(A.8) will no longer hold.

(2) Reparameterizing the lag matrices model is

neither necessary nor desirable if only some of the

lags are included in the model. For example, if the

Mantel correlogram is used to determine at which

lags there is significant autocorrelation, and only

these lags are included in an MRM model, then

there is no reason to reparameterize the lag
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matrices: The linear dependency between the

intercept and the lag matrices only arises only if all

lag matrices are included in the model, and the

interpretation of the reparameterization discussed

above only holds for the fully specified model.
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