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Abstract

Volumetric lung tumor segmentation and accurate longitudinal tracking of tumor volume changes 

from computed tomography (CT) images are essential for monitoring tumor response to therapy. 

Hence, we developed two multiple resolution residually connected network (MRRN) formulations 

called incremental-MRRN and dense-MRRN. Our networks simultaneously combine features 

across multiple image resolution and feature levels through residual connections to detect and 

segment lung tumors. We evaluated our method on a total of 1210 non-small cell (NSCLC) lung 

tumors and nodules from three datasets consisting of 377 tumors from the open-source Cancer 

Imaging Archive (TCIA), 304 advanced stage NSCLC treated with anti-PD-1 checkpoint 

immunotherapy from internal institution MSKCC dataset, and 529 lung nodules from the Lung 

Image Database Consortium (LIDC). The algorithm was trained using the 377 tumors from the 

TCIA dataset and validated on the MSKCC and tested on LIDC datasets. The segmentation 

accuracy compared to expert delineations was evaluated by computing the Dice Similarity 

Coefficient (DSC), Hausdorff distances, sensitivity and precision metrics. Our best performing 

incremental-MRRN method produced the highest DSC of 0.74±0.13 for TCIA, 0.75±0.12 for 

MSKCC and 0.68±0.23 for the LIDC datasets. There was no significant difference in the 

estimations of volumetric tumor changes computed using the incremental-MRRN method 

compared with expert segmentation. In summary, we have developed a multi-scale CNN approach 

for volumetrically segmenting lung tumors which enables accurate, automated identification of 

and serial measurement of tumor volumes in the lung.
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I. Introduction

Lung cancer is the most common cause of cancer death worldwide[1]. In patients with lung 

cancer treated with systemic therapy, the relative benefits of treatment are routinely 

determined by measurement of changes in size of tumor lesions, usually using uni-

dimensional measurement, such as RECIST v1.1[2]. The applications of automatic tumor 

segmentation are broad, including measuring treatment response, planning of radiation 

treatment, and to facilitate extraction of robust features for high-throughput radiomics. 

Manual delineation of tumor volumes is extremely laborious and prior studies [3] have 

shown that semi-automatic computer-generated segmentations are more repeatable than 

manual delineations especially for radiomics analysis [4]. Representative semi-automated 

tumor segmentation approaches applied to lung cancers include single-click ensemble 

methods[5] and marker controlled watershed method[6]. However, such methods when 

applied to lung nodule segmentation [7] produce varying results [8]. Interactive methods [9, 

10] that adapt their segmentation to user inputs suffer from inter-rater variability[11].

Reproducible segmentation is essential for longitudinal monitoring of tumor response to 

therapy. In prior studies, we showed that learning even on a tumor-by-tumor basis can lead 

to more reproducible tumor segmentations for multiple cancers [11, 12]. Fully automatic 

convolutional neural network (CNN)[13–15] based approaches such as AlexNet [15], VGG 

[16], GoogleNet [17] have shown remarkable success in a variety of computer vision and 

medical image analysis tasks (UNet[18], Vnet[19]). Residual networks (ResNet) [20] 

achieve fast and stable training irrespective of the network depth [21] and are robust to layer 

removal at training and inference time [22] due to learning through iterative feature 

refinement [23].

However, the residual connections alone used in ResNet do not eliminate the issue of poor 

localization and blurring resulting from successive pooling operations which is 

undesiderable for segmentation. Therefore, the full resolution residual neural network 

(FRRN) [24] extended ResNet by passing features at full image resolution to each layer. By 

concatenating features with lower resolution features, FRRN has demonstrated better 

segmentation performance compared with six different CNNs when using street images. Our 

work extends the FRRN by residually combining features computed at multiple image 

resolutions, whereby, a dense feature representation is computed by simultaneously 

combining feature maps at multiple image resolutions and feature levels. Such a dense 

feature representation increases the network capacity and ultimately enables the network to 

recover the input image spatial resolution better than the existing methods. Our contribution 

consists of two different multiple resolution residual network (MRRN) called the 

incremental and dense MRRN. Feature map input in each residual stream is produced 

through pooling (for dense MRRN) and followed by convolutions with residual connections 

(for the incremental MRRN). Additionally, the feature maps in each residual stream are 

refined as they are combined with subsequent layers.

The paper is organized as follows: background and motivation are in Section II, followed by 

the proposed method in Section III; our experiment design is in Section IV; the results and 
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discussion are in Section V and Section VI, respectively. Finally, we present conclusions 

based on our findings.

II. Background and Motivation

Fig.1 depicts the schematic of the various network used in this is work namely, the UNet, the 

FRRN, and the proposed incremental and dense MRRN methods. UNet (Fig.1 a) employs 

sequential long skip connections to concatenate features computed at different feature 

resolutions in the encoding path with those in the decoding path. Long skip connection 

restricts feature map combination to those produced at the same image resolution and leads 

to under-utilization of the rich feature representation in the image. ResNet [20] and highway 

networks [25] reduce feature under-utilization by connecting output from the previous layer 

to the input of a current layer through an element-wise summation that enables local feature 

combination with immediate higher resolution. The FRRN [24] (depicted in Fig.1b) extends 

ResNet by maintaining features maps computed at full image resolution that are combined 

with lower resolution feature maps in addition to residual concatenation with features of 

immediately higher resolution.

We propose two multiple resolution residual network (MRRN) for extracting dense feature 

representations using incremental MRRN (Fig.1 c) and dense MRRN (Fig.1d) that pass 

feature maps of different levels at varying image resolutions. Supplementary Table I depicts 

the comparison between the multiple networks.

III. Method

We first define the various components used in our networks. Then, we describe those 

components in detail.

• Residual streams carry feature maps computed at a particular image resolution 

and provide the residual inputs to residual connection units (RCU). For example, 

zero residual stream, shown by horizontal black arrow in Fig.1, carries feature 

maps at full image resolution (R). The Nth residual stream (N > 0) as used in 

MRRN is generated by N pooling operations and carries feature maps at R/2N 

resolution.

• CNN Block (Fig. 2) consists of 3×3 convolutions, batch normalization (BN) and 

ReLU activation and is used for feature extraction.

• Residual Unit or RU (Fig. 2) is a convolutional layer with residual connection 

placed at the beginning and at the end of the network similar to the FRRN[24].

• Residual Connection Unit (RCU) (Fig. 2) is the work horse for the network 

where the feature maps are computed through a sequence of convolutions using 

CNN blocks.

• Residual Connection Unit Block (RCUB) (Fig. 2) consists of sequentially 

connected RCUs.

The details of RCU and RCUB are described in III.A and III.B, respectively.
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A. Residual Connection Unit

The residual connection unit (RCU) constitutes the filters used in each layer. The structure 

of a RCU is shown in Fig. 2 (a). RCU has two inputs, namely, residual stream feature map 

and regular CNN feature map and two outputs, namely, the regular and residual feature 

maps. The residual stream input consists of feature maps from one of the preceding higher 

resolution residual streams. The residual feature map input is downsamped through pooling 

and then concatenated with the regular CNN feature map computed from the previous layer. 

A RCU is composed of one or more CNN blocks (Fig. 2). The CNN blocks output the 

processed regular feature map that is passed as input to the subsequent RCU block or the 

next CNN layer. The residual output is computed through a 1×1 convolution with 

upsampling of the regular output and passed back to the corresponding residual input 

stream. In summary, the RCU residually connects feature maps from residual streams and 

the feature maps at particular resolutions and jointly learns features between different 

residual streams to refine features computed at lower resolution [23].

B. RCU Block

The RCU block (RCUB) is composed of sequentially connected RCUs. We distinguish 

between two different RCU blocks, namely, the incremental RCU block and the dense RCU 

block (Fig.2 (a)) based on their inputs and the number of RCUs used in those blocks.

C. Incremental RCUB

An incremental RCUB consists of serially connected RCUs. Each RCU successively refines 

feature maps of increasing feature resolution starting from the nearest lower stream up to the 

0th stream. Fig. 2(a) depicts an example of incremental RCU block at 2nd residual stream. 

The dot-solid arrow (see legend in Fig.2) is an abstraction that represents a bidirectional 

connection between the residual stream and the current layer. RCU blocks are only placed in 

streams that can have input from at least one residual stream. Therefore, the 0th residual 

stream does not contain a RCU block. We used RCU×3 in the 1st residual stream similar to 

the FRRN. A residual stream produced using N (N>1) pooling operations contains (N+1) 

RCUs in its RCU block. The first RCU in a RCU block is residually connected to the 0th 

stream to use the full resolution information. The subsequent RCUs are sequentially 

connected to the residual streams of increasing spatial resolution starting from the 

immediately preceding residual stream.

D. Dense RCU Block

Unlike the incremental RCUB, every dense RCUB integrates information residually only 

from the immediate higher spatial resolution feature maps. The additional RCU blocks in a 

residual stream further refine the feature maps computed at that stream thereby, resulting in 

dense residual feature maps. Each RCUB has 2 RCUs to refine features from preceding 

residual stream with the feature maps at current resolution.

E. Incremental MRRN

Incremental MRRN is composed of multiple incremental RCUB and residual feature 

streams (Fig. 2(b)). The two ends of all residual streams except the 0th and the last stream 
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contain two RCUB to encode and decode the information. The 0th residual stream does not 

contain any RCUB while the last stream contains one RCUB. Feature integration from 

multiple resolutions obviates the need for additional unpooling following RCUBs as used in 

conventional encoder-decoder like the Unet. The incremental MRRN at a given layer n with 

multiple residual feature streams k (=0,1,… N), preceding n is defined as:

zn
k = zn − 1

k + H(y f (n, k) − 1
p(n − 1, k), zn − 1

k ; Wn
k)

y f (n, k)
p(n, k) = G(y f (n, k) − 1

p(n − 1, k), zn − 1
k ; Wn

k) k = 0, 1, …N,

(1)

where, N is the total number of residual feature streams at n; Z
n
kis the n-th residual 

connection of kth feature stream; y
f (n, k)
p(n, k) is the output produced by concatenating Z

n
k with 

p(n,k)-th residual feature stream after f(n,k) RCU connection (see Supplementary Table I 

(c)). Note that (1) is identical to the FRRN formulation following the first pooling operation 

when k=0. The number of residual connections to RCUB increase and decrease with 

addition of pooling and unpooling operations, respectively.

The backpropagated loss l is computed by taking the derivative with respect to the weights 

Wn-1 at layer n as:

∂l

∂Wn − 1
k

=
∂l

∂y f (n − 1, k)
p(n − 1, k)

∂y f (n − 1, k)
p(n − 1, k)

∂Wn − 1
k

+
∂l

∂zn − 1
k

∂zn − 1
k

∂Wn − 1
k

=
∂l

∂y f (n − 1, k)
p(n − 1, k)

∂y f (n − 1, k)
p(n − 1, k)

∂Wn − 1
k

+
∂zn

k

∂Wn
k

∂l

∂zn
k

∂zn
k

∂zn − 1
k

=
∂l

∂y f (n − 1, k)
p(n − 1, k)

∂y f (n − 1, k)
p(n − 1, k)

∂Wn − 1
k

+
∂zn

k

∂Wn
k

(
∂l

∂zn
k

+
∂l

∂zn
k

∂H(y f (n, k) − 1
p(n − 1, k), zn − 1

k ; Wn
k)

∂zn − 1
k

)

=
∂l

∂y f (n − 1, k)
p(n − 1, k)

∂y f (n − 1, k)
p(n − 1, k)

∂Wn − 1
k

+
∂zn

k

∂Wn
k

(
∂l

∂zn
k

+
∂l

∂zn
k

∂H y f (n − 1, k)
p(n − 1, k), zn − 1

k ; Wn
k

∂y f (n, k) − 1
p(n − 1, k)

⋅ ∏
i = f (n − 1, k)

f (n, k) − 1 ∂G yi

∂yi

×
∂y f (n − 1, k)

p(n − 1, k)

∂zn − 1
k

),

(2)

As seen, the gradient 
∂l

∂z
n
k
 is independent of depth similar to the FRRN formulation. 

However, our formulation adds an addition term ∏i = f(n − 1, k)
f(n, k) − 1

∂G y
i

∂y
i

 to further constrain 

weight update and regularize learning.

F. Dense MRRN

Dense MRRN uses down-sampled feature maps computed at image resolution as input to the 

first RCUB in all streams (Fig. 2(c)) to produce dense residual streams. Similar to 

incremental MRRN, the 0th residual stream does not contain RCUB. All other residual 
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streams have as many intermediate RCUBs corresponding to the number of following 

residual streams placed in between the end RCUBs. The feature maps are computed as:

zn
k = zn − 1

k + H(zn − 1
k , zn′

k + 1; Wn
k)

zn′
k + 1 = zn′ − 1

k + 1 + H(zn′ − 1
k + 1 , zn″

k + 2; Wn′
k + 1),

(3)

where W
n
k is the parameter of nth RCU output refined using residual stream k 

(Supplementary Table I (d)). The derivative of the loss l with respect to W
n − 1
k  is calculated 

as:

∂l

∂Wn − 1
k

=
∂l

∂zn − 1
k

∂zn − 1
k

∂Wn − 1
k

+
∂l

∂zn′ − 1
k

∂zn′ − 1
k

∂Wn − 1
k

=
∂l
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+
∂zn − 1
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k
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k

),

(4)

where, (1 +
∂H z

n′ − 1
k + 1 , z

n″
k + 2; W

n′
k + 1

∂z
n′ − 1
k

) results from the presence of intermediate RCUBs.

G. Implementation details

We trained the networks using the Tensorflow [26] library on Nvidia GTX 1080Ti with 12 

GB memory processor. A kernel size of 3×3 with 32 features was used to produce features 

following the 0th residual stream. The number of features was increased at a rate of 2k+5 

with each additional pooling ultimately resulting in 28,620,001 parameters for incremental 

MRRN and 25,542,241 parameters for dense MRRN. We used a batch size of 16 due to 

GPU memory constraints and employed the ADAM algorithm [27] with the initial learning 

rate of 1e−4. We employed early stopping with a maximum epoch number of 100 to prevent 

overfitting. We tried to reduce the impact of data imbalance during training by using the 

Dice loss [19], which is defined as:
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LDSC = 1 −
2∑i pigi

∑i pi + ∑i pi

, (5)

where pi ∈ [0,1] represents the ith output of the last layer and gi ∈ [0,1] is the ground truth 

label. Additionally, we implemented real-time data augmentation during training by using 

image flipping, shifting, elastic deformation, with Gaussian noise.

The final volumetric segmentation was obtained by combining the segmentations from the 

individual 2D slices using connected components extraction. No additional postprocessing 

of the segmentations was performed.

IV. Experimental setup

A. Datasets

We used three datasets for the analysis, namely, the open-source The Cancer Imaging 

Archive (TCIA) dataset [28] of 377 NSCLC scanned at the MAASTRO clinic, internal 

institution (MSKCC) dataset of 304 tumors from 50 NSCLC patients treated with PD-1 

inhibitor immunotherapy using pembrolizumab, and the Lung Image Database Consortium 

(LIDC)[29] dataset consisting of 2669 nodules from 1018 patients from seven different 

institutions.

The tumors in the TCIA and MSKCC were confirmed advanced stage malignant tumors 

while those from the LIDC were lung nodules (>3mm and confirmed by atleast 1 

radiologist) with varying degrees of malignancy. The MSKCC dataset also included 

longitudinal CT scans imaged before and every 9 week during therapy upto a maximum of 

17 weeks after treatment initiation. The training (TCIA) and validation set (MSKCC) 

consisted of contrast enhanced CT scans while the testing set from the LIDC included both 

regular dose and low-dose CT images. Tumor contours for the TCIA were verified and 

edited when necessary by radiologist (L.C.J). All ground truth tumor contours in the 

MSKCC dataset were confirmed by a chest radiologist (DH) with several years of 

experience reviewing chest CT images. The LIDC datasets were manually delineated by four 

radiologists who also assigned a malignancy score between 1–5 with 1 being low and 5 

being high malignancy. Out of 2669, 928 were confirmed and delineated by all four 

radiologists and were at least 3mm in diameter. As used in prior works [30, 31], we only 

analyzed 529 nodules of the 928 that were assigned an average malignancy score of > 3. 

This resulted in a total of 1210 analyzed tumors from all the three datasets.

There was a wide variation in the size and distribution of tumors between the datasets. The 

tumors in the TCIA dataset ranged in size from 1.88cc to 1033cc, MSKCC from 2.96cc to 

413.8cc, and the LIDC from 0.031cc to 19.18cc (all calculated according to radioligist 

delineation). The distribution of tumor sizes discretized by size are shown in Table I. Finally, 

predominant lesions in the TCIA and MSKCC dataset were located in the mediastinum or 

attached to chest wall while the tumors in LIDC were the most frequent in the lung 

parenchyma (Table II).
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B. Training and testing experiments

We used the TCIA dataset as the training cohort as it had the largest tumors and contained 

many difficult to detect tumors such as those attached to the mediastinum and the chest wall. 

The MSKCC dataset was used as validation set for selecting the best model. The LIDC 

dataset was used as an independent test set. Additionally, we performed K=5 fold cross-

validation on the TCIA dataset with part of the data withheld to evaluate and report accuracy 

on the data not used for training. Training was performed using patches of size 160×160 or 

region of interest (ROI) centered around the tumor. All ROIs were resized to the size of 

160×160 resulting in a total number of 57793 training image samples followed by data 

augmentation as described previously.

The absence of any fully connected layer enables evaluation of images of sizes other than 

the 160×160 used in training. The MSKCC and LIDC datasets consisted of 256×256 and 

160×160 images, respectively. Detections from individual slices were then stacked into full 

volumetric segmentation through connected components extraction.

C. Compared methods

1. Random forest with fully connected conditional random field (RF+fCRF): We 

implemented a random forest (RF) classifier with fully connected conditional 

random field (CRF) approach for the lung tumor segmentation as described in 

[32]. Similar to [33] we used maximum CT intensity, minimum CT intensity, 

mean minimum CT intensity, mean gradient, std gradient, entropy and Gabor 

edge features at angles (θ=0, π/4, π/2, 3π/4) at bandwidth of (γ = 0.1, 0.2, 0.3, 

0.4). The RF classifier was trained with (k=5) fold cross-validation using 50 trees 

and maximum depth of 30. Voxel-wise RF classifications were refined by a fully 

connected CRF as in [32].

2. Unet: Unet is a commonly used neural network for medical image segmentation 

and has been applied on a variety of medical image segmentation tasks including 

in liver[34], and breast[35]. We did not use the fully connected layer as propsed 

in [18] to enable application of the network for segmenting images of varying 

sizes.

3. SegNet: We used the SegNet [36] that combines an encoder and decoder 

structure. The encoder network consists of 13 convolutional layers as the first 13 

convolutional layers in the VGG16 network and a corresponding number of 

decoder layers.

4. FRRN: FRRN[24] can be considered as a special case of our proposed methods 

where the FRRN uses only the 0th residual stream (carrying full resolution 

feature).

D. Evaluation Metrics

We quantitatively evaluated the segmentation accuracy using Dice overlap coefficient 

(DSC), sensitivity, precision, and Hausdorff distance. The DSC calculates the overlap 

between the segmentation results and ground truth, and is defined as:
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DSC =
2TP

FP + 2TP + FN
, (6)

where, TP is the number of true positives, FP is the number of false positives and FN is the 

number of false negatives. Sensitivity and precision metrics were computed as,

Sensitivity =
TP

TP + FN
, (7)

Precision =
TP

TP + FP
, (8)

The Hausdorff distance is defined as:

Haus (P, T) = max{ sup
p ∈ S

P

inf
t ∈ S

T

d(p, t), sup
t ∈ S

T

inf
p ∈ S

P

d(t, p)}, (9)

where, P and T are ground truth and segmented volumes, and p,t are points on P and T, 

respectively. Sp and St correspond to the surface of P and T, respectively. We used Hausdorff 

Distance (95%) as suggested in [37] to remove undue influence of outliers.

E. Tumor detection rate

We evaluated the tumor detection rate of the analyzed methods by using segmentation 

overlap threshold determined using the DSC metric. Tumors were considered detected when 

the overlap between the segmentation and ground truth was at least τ, computed as

τ =
TP

N
, (10)

where, TP is the true positives and N is the total number of ground truth tumor pixels. 

Tumor detection rate is then

Rate =
Dtumor

Ntumor

, (11)

where, Dtumor is the detected tumor number and N tumor is the total tumor numbers.

F. Longitudinal tracking of tumor changes and relation to outcomes

Thirty six patients in the MSKCC dataset were imaged at multiple times (≥ 3) starting from 

baseline and during treatment (every 9 weeks) with immunotherapy. Only the best 
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performing segmentation method was used for this analysis. The relative volume with 

respect to the baseline volume (v0) was computed as:

vi′ =
vi

v0
, (12)

where, vi is the volume at the time t = i. Next, we computed the average slope of the relative 

volumes from baseline to the last available imaged time (t ranged from 3 to 13) for both the 

expert and the algorithm segmentations. The two trends were compared statistically using 

paired Student’s T-test.

G. Preliminary tests to study the influence of residual feature streams on segmentation 
performance

We evaluated the impact of features from the residual feature streams using weight sparsity 

with respect to layer depths for FRRN, incremental MRRN and dense MRRN. We only 

chose these three methods as these are the only ones that used residual streams. The weight 

sparsity was defined as:

Si =
Ni( |w | < T)

Ni

, (13)

where Ni(|w<T|) is the number of weights whose absolute value is less than a threshold T 

and Ni is the total number of weight in layer of depth i. Larger sparsification at a certain 

layer indicates that fewer features from that layer are used which in turn means that those 

features have lower impact on the performance of the network compared to another layer 

with smaller sparsification.

V. Results

A. Impact of training iterations on error

Fig. 3 shows the changes in the error for the training (TCIA) and the validation (MSKCC) 

data using the various networks. As shown, both incremental and dense MRRN lead to the 

largest decrease in the DSC loss for the validation dataset. On the other hand, the Unet and 

the SegNet are among the methods achieveing the largest validation error despite achieving 

the lowest training error earliest compared to the other networks. These results indicate that 

the same two methods potentially overfit compared to the proposed MRRN methods. The 

star (see Fig. 3) corresponds to the lowest validation error achieved during training. The 

models with lowest validation error of different methods were retained for testing on new 

datasets.

B. Incremental MRRN detected the largest number of tumors

Fig. 4 shows the detection rate and sensitivity computed by varying the segmentation 

overlap thresholds ranging from τ = 0.1 to 0.9 with increment of 0.1 when using the FRRN 

Jiang et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method to benchmark performance. The average DSC increases and the standard deviation 

decreases as the threshold for tumors to be considered detected increases. Correspondingly 

the number of detected tumors or the detection rate decreases. We note that the detection 

threshold does not influence the false positive rate but only the detected number of tumors or 

the true positive rate. We chose the threshold of 0.5 as used in prior work [38]. Table III 

shows the detection rate for the analyzed datasets and methods using a detection threshold of 

0.5. As shown, incremental MRRN achieved the highest detection rate while dense MRRN 

outperformed the previously proposed methods.

We computed segmentation accuracies from tumors that were detected by atleast one of the 

methods to assess clinical usability of the various methods. This resulted in 354, 299 and 

455 tumors detected for TCIA, MSKCC and LIDC for segmentation analysis.

C. Incremental and dense MRRN produced the most accurate segmentations.

Fig. 5 shows segmentation performance using the various methods for the TCIA, the 

MSKCC and the LIDC datasets for tumors attached to mediastinum in Fig. 5 (i,iii), to the 

chestwall in Fig. 5 (ii, iv, v) and for tumors enclosed within lung parenchyma in Fig. 5 (vi). 

The blue contour corresponds to expert delineation, while red contour corresponds to the 

algorithm segmentation results. The non-CNN based RF+CRF method yielded the least 

accurate segmentation in all three datasets across all analyzed performance metrics (see Fig.

5, Table IV). As shown in Fig. 5, Unet and SegNet produced worse segmentations including 

under and over-segmentation compared to the proposed methods. FRRN improved over both 

Unet and SegNet but still produced over-segmentation as shown in the case in Fig. 5 (ii, iii). 

On the other hand, both incremental MRRN and Dense MRRN produced close to expert 

segmentation in the presented cases.

Table IV shows the overall segmentation performance of all analyzed methods and the 

datasets using multiple metrics. Significant test results comparing the proposed MRRN 

methods with other methods are also shown. Both incremental and dense MRRNs achieved 

significantly higher DSC than the RF+CRF and Unet for all analyzed datasets, and 

significantly higher DSC compared to SegNet using internal and external validation datasets. 

Furthermore, both incremental and dense MRRNs achieved significantly lower Hasudorff 

distance (HD95) compared to all of the compared methods in all datasets. The sensitivity 

and precision metrics using either incremental or dense MRRN were slightly improved than 

the compared methods.

Tumor size: We evaluated the effect of tumor size (Fig. 6) and the location of the tumor 

(Fig. 7) on the performance using the various methods using DSC and HD95 metrics. The 

MRRN methods achieved lower HD95 values independent of the tumor size in all the 

datasets. Both incremental and dense MRRNs outperformed Unet and SegNet independent 

of the tumor size using DSC and HD95 metrics. The incremental MRRN produced slightly 

higher DSC compared with the FRRN in the TCIA and MSKCC datasets independent of 

tumor size and a markedly higher DSC for very small tumors in the LIDC dataset. 

Nevertheless, very small tumors are challenging to segment for all methods. The highest 

DSC accuracy for very small tumors on average for the incremental MRRN was (TCIA: 
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0.70 ± 0.06, MSKCC: 0.74 ± 0.11, LIDC: 0.68 ± 0.23) compared with the lowest accuracy 

achieved by the RF+fCRF (TCIA: 0.29 ± 0.20, MSKCC: 0.40 ± 0.22, LIDC: 0.35 ± 0.27).

Tumor location: As shown in Fig. 7, the proposed incremental and dense MRRNs and the 

original FRRN outperformed RF+CRF, Unet and Segnet on all three datasets using both 

DSC and HD95 metrics independent of tumor location. The overall DSC accuracy achieved 

by the best incremental MRRN for most difficult tumors, namely, those attached to the 

mediastinum was (MSKCC: 0.72±0.15, TCIA: 0.72±0.17, LIDC: 0.79 ± 0.10) when 

compared with the Unet (TCIA: 0.59± 0.15, MSKCC: 0.43±0.20, 0.58 ± 0.17) method.

D. All analyzed methods produced consistent accuracies when evaluated against 
multiple radiologists in LIDC

All methods produced consistent segmentation independent of radiologists (Fig.8). The 

segmentation concordance using the various performance metrics across the four radioligists 

as the reference was: DSC 0.76±0.12 and HD95: 1.75±1.37 mm. Example segmentations 

produced by incremental MRRN from 8 randomly chosen cases together with the 

radiologists segmentations are shown in Fig.9. Two cases in Fig.9 (b) and (d) are missing 

delineation from radiologist R2.

E. Incremental MRRN produced highly similar tumor volumes as radiologist for 
longitudinal monitoring of tumor response to immunotherapy

The best segmentation method, namely, incremental MRRN was used in the analysis which 

resulted in highly similar volumes changes (incremental MRRN 0.13± 0.12 and expert 0.09 

± 0.08) (Fig. 10). There was no significant difference trend in tumor volume changes 

between expert and algorithmic semgentations (p = 0.7). The average trend difference 

between the incremental MRRN and the expert delineation was 0.05 ± 0.05.

Fig. 10(a) shows two example patients, one with acquired resistance to treatment (no longer 

responding to immunotherapy) shown in red and the second with durable response (showing 

long term benefit from treatment) in blue. Solid lines correspond to the incremental MRRN 

segmentations whereas the dashed lines correspond to the expert delineation. Although the 

algorithm and the expert segmentation are not in perfect agreement (e.g. the algorithm 

results in over-segmentation since the tumor is difficult to differentiate from adjacent 

mediastinal pleura at the later time points in the patient with acquired resistance), the trends 

in volumetric changes are in agreement. The images and the segmentations are visualized for 

the same two patients in Fig. 10 (b) for acquired resistance and in Fig. 10 (c) for durable 

response for segmentations computed from baseline and the first and second on-treatment 

scans separated by 9 weeks each.

F. Deep features from incremental MRRN are preferentially used more than deep features 
in the FRRN for segmentation.

Using a weight sparsity threshold of T=0.01, incremental MRRN shows a consistently 

decreasing feature sparsity as network depth increases in Fig. 11. FRRN on the other hand 

shows no such trend with all layers getting more or less similar sparsity across network 

depth.
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VI. Discussion

We developed, implemented and tested two different multiple resolution residual deep neural 

network that simultaneously combine features at different resolutions for segmenting lung 

tumors. We evaluated our approach on segmenting the largest number of lung tumors from 

three different datasets consisting of an internal, and two external datasets from multiple 

institutions. Our approach showed significantly better performance compared with some of 

the existing deep neural network formulations typically used for medical image analysis and 

segmentation. We also benchmarked the performance of the CNN-based methods with a 

shallow learning-based RF+CRF method. Our results confirm prior studies that showed the 

improved performance of deep CNN methods over shallow learning methods. Our methods 

also achieved the best segmentation performance independent of tumor size and location. 

Furthermore, our best performing network, namely, the incremental-MRRN showed good 

concordance with expert delineation in longitudinally tracking tumor volumes in patients 

with advanced stage cancers and treated with immunotherapy. It is notable that tumors 

treated with immunotherapy undergo changes both in volume and appearance on CT images. 

Our approach shows that detection and tracking of such tumors is feasible. To our 

knowledge, this is the first study that has employed deep learning-based auto-segmentation 

for analyzing continuously changing tumors treated with immunotherapy.

Our results confirm the previous perspective that combining features from all levels[38] is 

useful for segmentation. Specifically, our method significantly outperformed traditional 

approaches like Unet that incrementally concatenate features of different resolution as the 

images and features are passed from layer to layer. Earlier works that employed multi-

resolution features include hypercolumn approach [38], RefineNet [39], and FRRN [24]. 

Our approach improves on the FRRN method and is somewhat similar to the RefineNet 

method where features from multiple resolutions are merged through a smooth incremental 

update such as in the incremental MRRN. However, both incremental and dense MRRNs 

add connections that enable passing features from all resolutions. Our approach does not add 

more computational effort as in the hypercolumn method and can be applied to generate 

segmentations from reasonably sized images; hypercolumn method was restricted to 50×50 

images. We used 160×160 images throughout the analysis. However, even larger sized 

images can be used.

Although our approaches demonstrated improved performance compared to existing 

methods, there is still room for improvement including for difficult to detect tumors such as 

those attached to the mediastinum. Another limitation is that we used slice-wise 

segmentation instead of 3D convolutions and employed a ROI-based training framework 

wherein, multiple ROIs containing different extent of tumor were generated from the same 

image to increase the training size. Nevertheless, this is one of the first studies that have 

developed and tested a deep learning network on large number of lung cancers using multi-

institutional datasets and applied the method for longitudinal segmentation and tracking of 

tumors that change in size and appearance due to treatment with immunotherapy. In 

summary, we presented a multiple resolution residual network-based deep convolutional 

neural network approach for generating automatic segmentation of lung tumors.
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VII. Conclusion

In this paper, we proposed two neural networks to segment lung tumors from CT images by 

adding multiple residual streams of varying resolutions. Our results clearly demonstrate the 

improvement in segmentation accuracy across multiple datasets. Our approach is applicable 

to longitudinal tracking of tumor volumes for cancers subjected to treatment with 

immunotherapy, which alters both the size and appearance of tumors on CT. Given the 

success for lung tumors, the method is promising for other sites as well. Both of our 

proposed MRRN outperform existing methods.
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Fig. 1. 

Schematic structure of Unet, FRRN and proposed incremental MRRN and dense MRRN.
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Fig. 2. 

Incremental and dense MRRN showing (a) the configuration of each component; (b) 

incremental MRRN; (c) dense MRRN
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Fig. 3. 

Changes in training and validation errors for the analyzed networks with training time.
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Fig. 4. 

Tumor detection rates with varying detection thresholds for FRRN.
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Fig. 5. 

Example segmentation results of different methods from the three datasets. The blue 

contours correspond to expert delineation and red is the algorithm generated segmentation.
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Fig. 6. 

Segmentation accuracy of analyzed methods using (a) TCIA, (b) MSKCC, and (c) LIDC 

with varying tumor sizes is shown for DSC and HD95 metrics. VS: very small tumor; S: 

small tumor; M: middle size tumor; L: large tumor; VL: very large tumor.
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Fig. 7. 

Segmentation accuracy using DSC and HD95 metrics of different methods for (a) TCIA, (b) 

MSKCC and (c) LIDC by tumor locations
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Fig. 8. 

Segmentation results of different methods compared to the four radiologists.
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Fig. 9. 

Segmentation results of incremental MRRN comparison to the four radiologists
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Fig. 10. 

Tumor response with respect measured times. The red solid line and red dot line show the 

acquired resistance (AR) tumor volume changing calculated by incremental MRRN and 

delineated by expert, respectively. The blue solid line and blue dot line show the durable 

resistance (DR) tumor volume changing calculated by incremental MRRN and delineated by 

expert, respectively. (b) and (c) show the segmentation performance at measurement point: 

baseline, #1 and #2 of the AR and DR in figure 10 (a), respectively. The blue contours show 

the delineation from expert while the red contour show the segmentation results.
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Fig. 11. 

Weights sparsity with increasing layer depth.
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TABLE I

Tumor sizes in three different datasets (TCIA, MSKCC and LIDC)

Group Tumor size range(cm3) TCIA MSKCC LIDC

Very small (VS) [0,1) 8 38 324

Small (S) [1,5) 57 75 164

Medium (M) [5,10) 41 56 38

Large (L) [10,20) 44 51 3

Very large (VL) >20 227 84 0
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TABLE II

Tumor location in three different datasets (TCIA, MSKCC and LIDC)

Tumor Location TCIA MSKCC LIDC

Within lung parenchyma 103 89 387

Abutting to mediastinum 157 104 6

Attached to chest wall 117 111 136
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TABLE III

detection rate under overlap threshold of 0.5 in three different datasets (TCIA, MSKCC and LIDC))

TCIA MSKCC LIDC

Unet 0.80 0.78 0.61

SegNet 0.83 0.80 0.67

FRRN 0.84 0.86 0.64

Incre MRRN 0.89 0.91 0.72

Dense MRRN 0.88 0.93 0.71
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