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Multiple Response Learning Automata 

Anastasios A. Economides 

/ 

Abshzct- Learning Automata update their action probabilites on 
the basis of the response they get from a random environment. They 
use a reward adaptation rate for a favorable environment's response 
and a penalty adaptation rate for an unfavorable environment's re- 
sponse. In this correspondence, we introduce Multiple Response learning 
automata by explicitly classifying the environment responses into a 
reward (favorable) set and a penalty (unfavorable) set. We derive a new 
reinforcement scheme which uses different reward or penalty rates for 
the corresponding reward (favorable) or penalty (unfavorable) responses. 
Well known learning automata, such as the LE-P, LR-I,  L R - ~ P  
are special cases of these Multiple Response learning automata. These 
automata are feasible at each step, nonabsorbing (when the penalty 
functions are positive), and strictly distance diminishing. Finally, we 
provide conditions in order that they are ergodic and expedient. 

I. INTRODUCTION 
Learning is defined as any relatively permanent change in behavior 

resulting from past experience, and a learning system is characterized 
by its ability to improve its behavior with time, in some sense tending 
toward an ultimate goal 151, 161. In mathematical psychology, learning 
systems have been developed to explain behavior patterns among 
living organizms. These mathematical models in turn have lately been 
adapted to synthesize engineering systems. 

Tsetlin [ 131 initially introduced the concept of learning automa- 
ton operating in an unknown random environment. He considered 
learning behaviors of finite deterministic automata under a stationary 
random environment. Varshavskii & Vorontsova [ 141 introduced 
variable structure stochastic automata in an unknown random en- 
vironment. A number of papers have appeared recently [l], [3], [4], 
[7], [8]-[12] that propose new reinforcement schemes for learning 
automata and investigate their properties. Thathachar and Sastry [12] 
introduce estimates of the environment reward characteristics into the 
learning automata algorithms. Oommen and Thathachar [ 101 prove 
necessary and sufficient conditions for ergodicity in the mean of 
learning automata. Oommen 171, [9] introduces discretized learning 
automata, where the action probability assumes one of a finite number 
of distinct values in [0, 11. He also [8] presents ergodic learning 
automata which can take into consideration a priori information about 
the action probabilities. Simha and Kurose [ l l ]  propose learning 
automata based on the relative reward strength of the environment 
response. Finally, we [l], [3], [4] introduce several learning automata 
algorithms for adaptively routing newly arriving calls in virtual circuit 
networks, as well in packet switched networks with error prone links. 

Previous studies on P-model learning automata algorithms assume 
only two possible updating schemes. If the environment response is 
favorable (success), then we reward the selected action, while if the 
environment response is unfavorable (failure), then we penalize the 
selected action. 

In this correspondence, we extend the general LR-P scheme 
to &-models by introducing different updating parameters for dif- 
ferent environment responses for the selected action. We reward 
(or penalize) the selected action according to how much favorable 
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(or unfavorable) the environment response was. If the environment 
response is very favorable, the selected action is rewarded very 
much. On the other hand, if the environment response is marginally 
favorable, the selected action is penalized very little. Similarly, if 
the environment response is very unfavorable, the selected action 
is heavily penalized, and if the environment response is marginally 
unfavorable, the selected action is marginally penalized. These con- 
cepts lead to a generalization of the traditional learning automata 
algorithms. 

11. MULTIPLE RESPONSE LEARNING AUTOMATA 

A learning automaton is a feedback system connecting a stochastic 
automaton and an environment. At each instant n, the automaton 
selects an action a ( n )  = a, (among actions a l ,  . . . , al ,~)  with prob- 
ability Pz(n) = P[a(n) = a,]. Let P(n) = [Pl(n),  . . . , qai(n)] 
be the vector of action probabilities. Action U(.) becomes input to 
the environment. If this results in a favorable environment response 
( X ( n )  --+ 0), then the probability Pz(n) is increased by AP,(n) 
and the P, (n) ,  j # i ,  are decreased by AP, (n) .  Otherwise, if an 
unfavorable environment response ( X ( n )  --+ 1) appears, then the 
Pt(?) is decreased by Apt(.) and the PJ (n), j # i are increased 
by AP, (n). By iteration of the algorithm, we achieve adaptation to 
varying environment conditions. 

In this correspondence, we introduce Multiple Response (MR) 
learning automata algorithms. The idea is to use different adaptation 
rates for different environment responses. Whenever the environment 
response is very good ( X ( n )  --+ 0) (reward response 1), we heavily 
reward the selected action by increasing its probability rapidly. When 
the environment response is marginally good (reward response R), 
we correspondingly reward the selected action by increasing its prob- 
ability slowly. Analogously, whenever the environment response is 
very bad ( X ( n )  --+ 1) (penalty response 1), then we heavily penalize 
the selected action by decreasing its probability very fast. When the 
cost of the environment response is not so bad (penalty response 
P) ,  we penalize the selected action less strictly by decreasing its 
probability slowly. 

Next, we introduce a Q-model Multiple Response (&-MR) learning 
automaton algorithm, for which the environment response takes 
discrete values, normalized to be in the [0, 11 interval. So, if action 
a, was selected at time n, the environment response is an element of 
the set {X,', . . . , X:, Xp, . . . , X,'}, i.e. 

Let a ( n )  = a, 
reward response 1 : 
reward response 2: 

reward response R: 
penalty response P: 
penalty response P - 1: ~ ( n )  = X,P-' 

penalty response I: 

X (n)  = X,' 
X (n)  = X :  

X ( n )  = Xp 
~ ( n )  = X p  

. . .  

... 
X ( n )  = X: 

where 

0 I: x,' < X ?  < ... < xp < m, 

< x p  < xp-1 < . . . < X,' I: 1. 

A possible sequence for the reward responses {X;'} could be 
a Fibonacci sequence (normalized to the [O,m,) interval). Also 
a possible sequence for the penalty responses { X p }  could be a 
Fibonacci sequence (normalized to the (m3, 11 interval). The m, is 
the threshold for a response to be considered as reward or penalty. 
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Responses below this threshold are considered as rewards, while 
responses above it are considered as penalties. 

If the selected action a; results in good environment response 
(0 5 X ( n )  < mi) ,  then we reward this action; Otherwise (mi < 
X ( n )  5 l ) ,  we penalize it. However, as opposed to traditional 
schemes, the reward (penalty) parameters depend on how good 
(bad) the environment response is. Therefore, for each of the above 
environment responses, we use different reward functions g: ( . ) ,  T = 
1 , .  . . , R and penalty functions hp(.), p = 1,. . . , P ,  with 1 > 
g:(.) > g?(.) > . . .  > g?(,) > 0, and 1 > hz!(.) > h?(.) > 
. . . > hr ( . )  > 0. These are functions of the environment state 
measurements X ( n ) .  

The above concepts lead us to formally defining the Q-MR algo- 
rithm: 

For the special case of gl(,) = 0 Y a: and hf(.)  = 6' * ,8:, with 
0 < 0 5 1 ,0  < a: < 1 , 0  < ,b'f < 1, we have the Q-model Multiple 
Response Linear (Q-MRL) algorithm: 

Letajn) = a, 

Forr = 1 to R 
IfX (n) = X :  , then 

Pz(n + 1) = Pz(n) + @aT[1 - Pz(n)]  
P,(n+ 1) = P3(n) - BOl:P,(n) v j  # i 

For p = 1 to P 
If X (n)  = X p  , then 

Pz(n + 1) = Pz(n) - BDzPPz(n) 

where the reward rates a:, T = 1,. . . , R and penalty rates pp, 
p = 1,. . . , P satisfy 1 > ai > a% > . . .  > a? > 0, and 

Define also the Q-MRLa=p algorithm, when R = P and a! = 8; 
k = 1,. . . ,R ,  the Q-MRLP,,~ algorithm, when R = P and 
p," = $ a t ,  < e," << 1 k = 1,. . . , R, and the Q-MRL, algorithm, 
when pp = 0 p = l , . .  . ,P .  Note that for the special cases of 
R = P = 1, we have the LR-P, L R - ~ P  and LR-I algorithms. 

In this section, we introduce the Multiple Response (MR) learning 
automata algorithms. In [I]  and [2],  we have simulated MR learning 
automata algorithms for routing in computer networks. Next, we will 
investinate the behavior of these algorithms. 

1 > p' > p,2 > ' . .  > pg > 0. 

111. NORMS OF BEHAVIOR 
In this section, we provide a quantitative basis for evaluating the 

performance of MR learning automata. We state the definitions of 
some useful norms of behavior, such as expediency, optimality, and 
e-optimality. The MR algorithms are feasible, and stricly distance 
diminishing. Finally, we state conditions in order to be ergodic and 
expedient. 

Let d l  = P [ X ( n )  = X l / a ( n )  = a,] E ( 0 , l )  be the unknown 
probability for reward response r ,  when action a ,  is selected, and < = P [ X ( n )  = X P / a ( n )  = a,] E ( 0 , l )  be the unknown 
probability for penalty response p ,  when action a, is selected, such 
that 

R P 

r=l  p = l  

If at a certain time instant n, the automaton selects action a(.) 
with probability P (n)  , then the average response received by the 
automaton conditioned on P (n) is 

M(n)  = E [ X ( n ) / P ( n ) ]  

i=l 
I ~ I  r R P 1 

the average reward received by the automaton conditioned on P ( a )  is 

i=l  r=l  

and the average penalty received by the automaton conditioned on 
P ( n )  is 

i=l p=l 

Thus, we can write iW(n) = M R ( n )  + M p ( n ) .  
Taking expectations and then the limit as n + 00, we have 

I Q I  r R P 1 

If no a priori information is available and the actions are chosen at 
random (PI (n) = . . . = Pial (n) = l / l a [ ) ,  then the average response 
received by the automaton conditioned on P ( n )  is 

la1 r R P 1 

(5) 

We shall use this pure-chance automaton as the standard for 
comparison. An automaton that performs better than the pure-chance 
automaton is said to be expedient. 

Definition I :  A MR learning automaton is called expedient iff 
l imn4mE[M(n)]  < MO. 

However, we are interested in automata that exhibit much better 
behavior. It would be desirable if limn-- E [ M ( n ) ]  could be mini- 
mized by a proper selection of the actions. We say that an automaton 
whose average response tends to its minimum value is optimal. 
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Definition 2: A MR learning automaton is called optimal iff 
I R  P 

The optimality implies that the action a, associated with the 
minimum c:=~ Xrdr + E,'=, X:< (average response to action 
a , )  is chosen asymptotically with probability one. However, there 
are environments where it is impossible to achieve optimality. In 
such cases, a suboptimal solution may be acceptable. E-optimality 
represents one such suboptimal behavior. 

Dejinition 3: A MR learning automaton is called e-optimal iff 
R P 

p=l 
12-00  

E-optimality implies that the performance of the automaton can be 
made as close to the optimal as desired. 

The Multiple Response learning automata algorithms have two 
useful properties. First of all, the Q-MR algorithm preserves the 
feasibility of the action probability space, i.e. at each iteration of the 
MR algorithm, the action probabilities are always nonnegative and 
sum to 1. The second result is that the Q-MR algorithm (with positive 
penalty functions) is nonabsorbing, i.e. it is not trapped in a specific 
action (no action is selected with probability 1). This is a desirable 
property for dynamic systems where the optimal action continuously 
changes over time. In this case, an action that was optimal at a given 
moment may not be optimal any more, and so we like to give a 
chance to the other actions. 

Furthermore, at each step, the Q-MR algorithm approach to 
the optimal action. In other words, successive applications of the 
algorithm on two different trajectories of the action probabilities bring 
them closer to each other and finally result in convergence to the 
asymptotic action probabilities. 

Theorem I :  The Q-MR algorithm is strictly distance diminishing. 
The proof of the Theorem 1 is similar to corresponding material in 

[5].  The above properties lead to the ergodic character of the Q-MR 
algorithm. Hence, the sequence {P(n)} converges in distribution to a 
random variable P".  The following theorem states this more formally. 

Theorem 2: The Q-MRL algorithm with E:=l a:d: + E,=, 
/3:< = constant Vi  is ergodic and P(n)  converges in distribution to 
a random variable with mean 

P 

independent of the initial probability P (0). 
Prooj? It is required to prove that the following equation holds 

E[P(n  + I)] = QTE[P(n)] 

where Q is a stochastic matrix with no absorbing barriers. The 
conditional expectation of Pz(n + 1) given P(n) is 

- w z  (n  + l)/P(n)l 
R 

= [Pz(n) + 0 4 [ 1  - Pz(n)]]Pt(n)d: 

[Pz (.) - @PPPZ (,)le (.)< 
r=l 

P 

+ 
p=l  

?? la1 

It is well known that even the special cases of the present 
algorithms (the traditional LR-P) has quadratic terms whenever 
a! # p. One cannot, of cource, expect it to be any simpler in this 
case. The expressions obtained are cumbersome and specialize only 
for the special case where the assumption of the Theorem holds. 

Taking expectations on both sides, we have 

- 0 2 E[P,(n)P,(n)]PjP< 
p=l j=l,j#, 

r 1 P  

P P 
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p=l  I 
P 

Observe that in general, E[P,(n+ l)] is not linea,in P. However, 
with the assumption 

R P 2 a id :  + 2 /3:< = constant Vi 3 
r=l p = l  

r R  P 1 

the quadratic terms disappear, yielding E[P(n+ I)] = Q T E [ P ( n ) ] ,  
where 

with qtz ,  qZ3 E [O, 1) V i , j  = 1,. . . , la1 and C ~ ~ l ~ q t 3  = 1 V i  
Q is a stochastic matrix with no absorbing bamer, hence ergodic. 

Thus, the limiting value of E [ P ( n ) ]  exists, is independent of P(0)  
and is given as the solution of the equation P* = QTP*.  

Then the limiting probabilities are 

E,‘=, P4c4 
lim E[Pi(n)] = 
n-00 E% C‘ l B p c p  

p=1 3 3 

Thus, if E,‘=, PpcP < xFXl/3;< V j  # i, then limn-- 
E[P;(n)]  > limn-- E[Pj(n)] V j  # i, i.e. if the sum of the penalty 
probability rates for action a; is smaller than that of any other action 
aj, then on the average, action a; is chosen asymptotically with a 
higher probability than any other action aj . 

The ergodicity condition 

R P 

$-=l p=l 

says that, the sum of the reward probability rates (a:d:) plus the 
sum of the penalty probability rates (Ppc:) should be the same for 
all actions. 

Thus, if C:=, aFd: > E:=’=, aIdjr V j  # i, then limn-- 
E[P,(n)] > limn-- E[Pj(n)] V j  # i, i.e. if the sum of the reward 
probability rates for action a, is larger than that of any other action 
a?, then on the average, action a, is chosen asymptotically with a 
higher probability than any other action al. 

For the simple case of two actions with R = P = 1, a,  = a and 
/3% = /3 Vi ,  the ergodicity condition becomes a = P ,  i.e. the reward 
rate equals the penalty rate. This is the case of the traditional LR-P 
learning automaton. 

Finally, the Q-MRL algorithm is expedient under more general 
conditions than the LR-P algorithm. 

Theorem 3: The Q-MRL algorithm with the conditions of Theo- 
rem 2 and (see the equation at the bottom of the previous page) is 
expedient. 

Proof: Using the asymptotic action probabilities from Theorem 
2 and the condition of Theorem 3, it is easy to show that 
limn+m E[M(n)]  < MO. 0 

IV. CONCLUSION 

In this correspondence, we suggested a generalization of the 
traditional learning automata algorithms. We introduce Multiple Re- 
sponse (MR) learning automata algorithms that use different adap- 
tation rates for different environment responses. The well known 
LR-I, LR-P, L R - ~ P  learning automata are special cases of this 
new class of learning automata. These MR algorithms are feasible 
at each step, nonabsorbing (when the penalty functions are positive) 
and strictly distance diminishing. Finally, we provide conditions in 
order that they are ergodic and expedient. For applications of these 
M R  algorithms to problems in distributed systems see [ l ]  and [2]. 
An open problem for future research is the proper selection of the 
reward and penalty rates to satisfy the ergodicity condiaon. 
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