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Abstract

Simultaneous localization and mapping (SLAM) in unknown GPS-denied environments is a major

challenge for researchers in the field of mobile robotics. There exist many solutions for single-robot

SLAM; however, moving to a platform of multiple robots adds many challenges to the existing prob-

lems. This paper reviews state-of-the-art multiple-robot systems, with a major focus on multiple-

robot SLAM. Various issues and problems in multiple-robot SLAM are introduced, current solutions

for these problems are reviewed, and their advantages and disadvantages are discussed.

1 Introduction

An autonomous robot needs to address two critical problems to survive and navigate within its surroundings: mapping

the environment and finding its relative location within the map. Simultaneous localization and mapping (SLAM) is a

process which aims to localize an autonomous mobile robot in a previously unexplored environment while constructing

a consistent and incremental map of its environment. The interdependence of localization and mapping raises the

complexity of the problem and necessitate accurately solving these two problems at the same time.

While single-robot SLAM is challenging enough, moving to a platform of multiple robots adds another layer of

challenge. In a multiple-robot environment, robots must incorporate all available data to construct a consistent global

map, meanwhile localize themselves within the global map. Multiple-robot SLAM has benefits such as performing

missions faster and being robust to failure of any one of the robots; however, these benefits come at the price of having

a complex system which requires coordination and cooperation of the robots.

Various solutions have been proposed for SLAM (Whyte and Bailey, 2006). However, most of these solutions consider

single-robot SLAM; few of them have considered multiple-robot SLAM. In this work, the most recent developments

in multiple-robot SLAM are investigated. Potential problems in multiple-robot SLAM are listed and explained briefly.

Then the literature, addressing these problems, is presented. This paper is motivated by the fact that new researchers

have difficulties in appreciating all the various issues associated with multiple-robot SLAM. This paper provides a

literature review on the state-of-the-art solutions and techniques. This work provides a complete literature survey of

multiple-robot SLAM compared with the review provided in (Rone and Ben-Tzvi, 2013).
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1.1 Applications of Multiple-robot SLAM

Multiple-robot SLAM is motivated by the fact that exploration and mapping tasks can be done faster and more accu-

rately by multiple robots than by a single robot. In addition, in a distributed system, the whole team is more robust

since the failure of one of the robots does not halt the entire mission (Birk and Carpin, 2006). Many collaboration-

based operations need to be completed fast and autonomously and require localization and mapping. Some of these

applications include

• fire fighting in forested and urban areas,

• rescue operations in natural disasters,

• cleaning operations like removing marine oil spills,

• underwater and space exploration,

• security and surveillance, and

• maintenance investigations.

Modern robots have numerous applications in industrial, military, and domestic settings. For mobile robots, such

as cleaning robots, entertainment robots, and mine removal robots that are often deployed in large numbers, having

reliable perception is a key to achieving the desired tasks. Multiple-robot SLAM is a solution to the perception

problem.

Often we hear news about miners trapped in mines or workers losing their lives in petroleum refineries or power plants.

Using swarms of autonomous robots is an inexpensive alternative to having humans perform risky and hazardous tasks

in such environments. Similarly, extraterrestrial applications like space exploration are also highly risky for humans.

By deploying robots to conduct dangerous tasks, risks can be minimized.

1.2 Outline

The rest of this review paper has been organized in eight sections. Section 2 presents a very brief introduction to

SLAM. Section 3 explains the building blocks of SLAM algorithms. Section 4 introduces various SLAM algorithms

for a single robot. Section 5 presents a background on multiple-robot SLAM and lists all known problems in this

field. In Section 6, the available solutions for multiple-robot SLAM are reviewed. In Section 7, testbeds and datasets

for multiple-robot SLAM are presented. Section 8 outlines challenges and future directions. Lastly, in Section 9,

conclusions are presented.

2 Simultaneous Localization and Mapping: problem statement

Mobile robotic systems are developing very rapidly; however, real-world applications in GPS-denied environments

require robust mapping and perception techniques to enable mobile systems to autonomously navigate complex envi-

ronments. In this section, important concepts in relation to SLAM are explained briefly. For more information, see

(Thrun et al., 2005).

Assume that the pose of a robot from time 1 to time t is shown by the sequence {x1, x2, ..., xt}. This sequence

is shown in the compact form of x1:t. When multiple agents are involved, the identification number of each robot

appears as a superscript in the state variable. Therefore, the following sequence shows the state of the ith robot from

time 1 to time t.

xi1:t ≡ {x
i
1, x

i
2, ..., x

i
t}, (1)



where i = 1, ..., n and n is the number of robots. Respectively, the observations made by the ith robot and the control

signals which drive the robot at the same times are shown as

zi1:t ≡ {z
i
1, z

i
2, ..., z

i
t},

ui1:t ≡ {u
i
1, u

i
2, ..., u

i
t}. (2)

Note that for one robot, the superscript is dropped.

For one robot, the goal for SLAM is to calculate the posterior over the map, m, and the trajectory given the action

signals, measurement signals, and the initial pose of the robot:

p(m,x1:t|z1:t, u1:t, x0). (3)

Equation (3) shows that estimating the map and trajectory of the robot is a coupled problem, which means both must

be estimated at the same time. In the literature, this definition of SLAM is also referred to as full SLAM, where the

whole trajectory is estimated, whereas online SLAM involves estimating the posterior over the current pose, xt, and

the map m:

p(m,xt|z1:t, u1:t, x0). (4)

If the map of the environment is known, SLAM reduces to the localization problem. Localization seeks to calculate

the posterior over the trajectory of the robot, given the map, the action signals, measurement signals, and possibly the

initial pose of the robot:

p(x1:t|m, z1:t, u1:t, x0), (5)

If the trajectory of the robot is known, SLAM becomes a mapping problem, which is the problem of estimating the

map of the environment, given the pose of the robot and observations made by the robot from the environment:

p(m|z1:t, x1:t). (6)

m

xa0 xa1 xa2 xat

ua1 ua2 uat

za1 za2 zat

xb0 xb1 xb2 xbt

ub1 ub2 ubt

zb1 zb2 zbt

Figure 1: Bayes net for multiple-robot SLAM with two robots, a and b. Black lines correspond to the state transitions

of each robot. Dashed lines correspond to the line-of-sight observations between the robots and gray lines show the

relation of the map and observations.



The probabilistic definition of SLAM in equation (3) can readily be extended to multiple robots. For simplicity,

in the rest of the section, only two robots are considered and the robots’ identification numbers are represented by

alphabetical characters.

For two robots, a and b, multiple-robot SLAM seeks to calculate the posterior over poses of the robots and the map:

p(xa1:t, x
b
1:t,mt|z

a
1:t, z

b
1:t, u

a
1:t, u

b
1:t, x

a
0 , x

b
0), (7)

where the initial values of the poses are shown by xa0 and xb0, and m is the map of the environment. Fig. 1 shows a

simplified Bayes net for the two robots. In this figure, black lines show the transition of the state of each robot. Gray

lines show the relation of the map to observations. Dashed lines show the line-of-sight observations, by which the

robots can see and detect each other. Line-of-sight observations will be explained later.

3 Simultaneous Localization and Mapping: building blocks

This section presents a brief review of the main building blocks of SLAM algorithms. The motivation of the section is

to introduce the main elements of the various algorithms that make them unique. Any SLAM algorithm must deal with

three main issues: 1) sensors, 2) data processing, and 3) map representation. As shown in Fig. 2, ground, aerial, and

underwater vehicles share many common sensors. Once a robot captures the data by suitable sensors, data processing

may commence. Common data processing algorithms include filtering, smoothing, and artificial intelligence. In data

processing, different types of uncertainties, such as computational, algorithmic, and modelling uncertainties are taken

into account. Finally, in the map representation, a model of the environment along with the trajectory of the robot is

generated. Data processing and map representation interact with one other to provide reliable results. In the following

subsection, a brief overview of map representation is presented. For more information about filtering and smoothing

algorithms, please refer to (Thrun et al., 2005).
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Figure 2: A SLAM algorithm must deal with three main issues: 1) sensors, 2) data processing, and 3) map represen-

tation. For each of these issues, various solutions exist, but the choice of the proper solution depends on the vehicle

type, the environment, and the application of the SLAM algorithm.



Map representation is a fundamental issue with SLAM algorithms. Six types of maps commonly found in the literature

include: 1) grid maps, 2) feature maps, 3) topological maps, 4) semantic maps, 5) appearance maps, and 6) hybrid

maps.

Grid maps, also called location maps, represent the environment with a matrix of cells. Occupancy grid maps (Elfes,

1990) are the most popular maps, especially in 2D SLAM algorithms. In occupancy grid maps (Elfes, 1990), each cell

represents a small rectangular section of the world. The cell is modeled with a binary random variable which indicates

the probability of existence of an object in the cell. Also, occupancy grid maps handle dynamic and moving objects

of the environment efficiently (Thrun, 2003). Later this method is explained in more detail. Occupancy grid maps can

also be extended to 3D modeling. 3D grid maps are known as volumetric pixel (voxel) maps.

Feature maps, also called landmark maps, represent the world with global position of features, extracted from the

environment. Often, the position of the feature is accompanied with the signature of the feature. The signature of

a feature is the unique identifier which characterizes the feature. Various features, such as scale-invariant feature

transform (SIFT) and speeded up robust features (SURF), have been introduced in (Fraundorfer and Scaramuzza,

2012). A 3D point-cloud map is an example of feature maps.

Topological maps represent an abstract model of the environment in the form of compact and connected paths and

intersections (Kuipers and Byun, 1991). Humans and insects use topological maps to navigate, determine paths and

positions, and avoid obstacles (Hawkins and Blakeslee, 2004; Gould, 1990). As an example, pigeons have been shown

to use highways and their intersections as a topological map to navigate and fly over long distances (Guilford et al.,

2004). Topological approaches for perception or autonomy can also be interpreted as symbolic mapping (Beeson

et al., 2010). Symbolic approaches provide a concise representation for the structural alternatives which can be used

in path planning, place detection, and loop closure. Topological maps can be derived from metric maps. For instance,

a Voronoi graph (Davies, 2005) is a topological map that can be computed from an occupancy grid map. A metric-free

topological map, in the form of nerve complex (an abstract representation), is introduced in (Derenick et al., 2013).

Polygon maps are another example which assign planes to a set of features.

Semantic maps, which contain functionalities and relationships of the objects of the environment, are the most abstract

type (Nuchter and Hertzberg, 2008). For instance, in an indoor environment, a semantic map may include a 3D point-

cloud map in which specific objects such as humans, walls, doors, windows, and chairs are identified and labelled.

Semantic maps are very useful for high-level and goal-oriented behaviors which require real-time reasoning about

spatial and perspective ambiguities. Semantic maps are very similar to topological maps with the distinction that a

semantic map includes more detailed information about objects and places.

Figure 3: Examples of an occupancy grid map, a topological map, and a semantic map of Intel Labs: (left) an occu-

pancy grid map overlaid with Voronoi graph; (middle) a semantic map where different places in the map are labeled

with different colors: hallways in red, rooms in green, doorways in light blue, and junctions in dark blue; (right) a

hybrid topological-metric map. Image courtesy of Stephen Friedman, Hanna Pasula, and Dieter Fox (Friedman et al.,

2007) Copyright c© 2007, Association of Advancement of Artificial Intelligence.



Figure 4: An appearance map is composed of a graph, where each vertex of the graph represents a specific view of the

environment. Edges of the graph connect similar views to each other. Image courtesy of Gorkem Erinc and Stefano

Carpin (Erinc and Carpin, 2014).

Appearance maps are usually developed with a vision system and include different views associated with an undirected

weighted graph. In other words, an appearance map is a graph in which each vertex is tied to an image. The edges of

the graph connect sufficiently similar images to each other. The weight of each edge represents the similarity of the

images at the two ends of the edge (Erinc and Carpin, 2014; Fraundorfer et al., 2007). Fig. 4 shows an appearance

map with several edges connecting similar images to each other. Appearance maps are usually used when there is no

wheel odometry available.

Hybrid maps are combinations of different mapping methods. For instance, a hybrid metric-topological map is a map

which includes both topological and metric information. As an example, Tomatis et al. integrate topological and

metric maps to perform hybrid simultaneous localization and mapping (Tomatis et al., 2003).

Fig. 3 demonstrates a few sample maps, developed using laser ranger measurements: (left) occupancy grid map over-

laid with Voronoi graph, (middle) semantic map where the hallways, rooms, doorways, and junctions are highlighted

in different colors, (right) a hybrid metric-topological map, developed by the segmentation of the semantic map.

Table 1 summarizes the presented mapping methods with their advantages and disadvantages. For a review of appli-

cations of different maps in mobile robotics, see (Bonin-Font et al., 2008).

4 Single-robot SLAM: algorithms

This section presents a brief review of different algorithms in single-robot SLAM. The motivation of the section

is to categorize available solutions to better understand multiple-robot SLAM. Various SLAM algorithms can be

categorized based on the algorithm used for map representation and data processing. In this section, four popular

SLAM algorithms, categorized based on the map representation method, are presented. Then three main SLAM

algorithms, categorized based on the data processing algorithm, are briefly introduced. From the map representation

perspective, the four reviewed algorithms are:

• Feature-based SLAM,

• View-based SLAM,

• Appearance-based SLAM, and

• Polygon-based SLAM.

And, from the data processing perspective, the three reviewed algorithms are:



Table 1: Comparison of different mapping methods

Type of Map Description

Occupancy Grid Maps Map is defined as a grid, each cell of the grid holds a probability for occupancy

Pros: probabilistic, suitable for 2D mapping, suitable for dynamic environments

Cons: expensive on fine resolution, expensive for 3D mapping

Feature Maps Map is represented by features

Pros: efficient for localization, scales well

Cons: needs feature extraction, data association of features is difficult

Topological Maps Map is represented by abstract spatial information

Pros: well suited for high-level planning

Cons: needs map processing, limited in waypoint following

Semantic Maps Map is represented by semantic information

Pros: well suited for high-level and goal-oriented reasoning

Cons: needs training, object recognition, and classification

Appearance Maps Map is represented by a weighted graph and multiple views

Pros: very intuitive and useful for human and robot interaction

Cons: requires high storage capacity to record all views

Hybrid Maps Combination of different mapping methods

Pros: suitable for loop closure, can handle map inconsistency

Cons: needs map processing, requires coordination between maps

• Filtering SLAM,

• Smoothing SLAM, and

• AI SLAM.

Topological SLAM and semantic-based SLAM are reviewed under AI SLAM. At the end of the section, 2D and 3D

SLAM algorithms are discussed.

4.1 Feature-based SLAM

Feature-based SLAM was the first solution proposed for SLAM. This solution extracts features or landmarks in the

environment and keeps a list of them as a map (Smith et al., 1987; Guivant and Nebot, 2001). This method requires

feature extraction and is therefore limited to environments with features. Most feature-based solutions use vision

sensors (Davison and Murray, 2002), underwater sonar (Jaulin, 2009; Newman et al., 2005), or occasionally LIDAR

(Bailey, 2000). In feature-based SLAM, features from consecutive frames are extracted and cross-matched to calculate

the relative motion of the sensor. This process is referred to as visual odometry and is utilized in almost all feature-

based algorithms. A thorough review of the visual odometry algorithms is presented in (Scaramuzza and Fraundorfer,

2011; Fraundorfer and Scaramuzza, 2012).

While the feature-based paradigm has been shown to be efficient and effective in certain environments, in general it

is not. By extracting features, there is possible loss of data. Thrun et al. state that “a lot of information is sacrificed

by using features instead of full measurement vector. This lost information makes solving certain problems more

difficult, such as the data association problem of determining whether or not the robot just revisited a previously

explored location” (Thrun et al., 2005, p. 181). Since onboard processing has become so powerful, there is no longer a

need to extract features from sensor data and potentially lose useful information in the process. This applies especially

to dense range sensors such as laser rangers.



4.2 View-based SLAM

View-based SLAM, also called location-based SLAM, is based on raw sensor data processing techniques. View-based

SLAM usually requires a range/bearing sensor such as scanning laser ranger (Grisetti et al., 2007; Hahnel et al.,

2003a). The process of calculating the relative motion of the laser ranger from the consecutive scans is referred to as

scan matching or laser odometry (Lu and Milios, 1994; Nieto et al., 2007; Censi, 2008). In general, scan matching

algorithms are either based on the different variant of the iterative closest point (ICP) algorithm, for example (Segal

et al., 2009), or matching a scan with the most recent map of the environment, for instance (Kohlbrecher et al., 2011).

View-based SLAM differs from feature-based SLAM in that no features are explicitly extracted (Hahnel et al., 2003a).

Instead, entire scans are matched using scan matching algorithms (see Fig. 5) and the map is represented in occupancy

grid format (Thrun, 2003; Elfes, 1990). The state vector in view-based SLAM includes either the current pose of the

robot or the whole trajectory. A map also accompanies the trajectory. The most important advantage of view-based

SLAM over feature-based SLAM is that no information is lost, since no feature is extracted. Additionally, view-based

SLAM contains information not only about the occupied spaces and the objects in the environment, but also about the

object-free spaces; therefore, view-based SLAM can handle dynamic environments much better than feature-based

SLAM (Thrun et al., 2005, p. 152).

a b

L1
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L3

L4

L5

L6

L7

L8

L9

V1 V2

V3

V4

P1P1
P2P2

P3P3

P4P4

Figure 5: P1 to P4 are poses of a robot at four time instances. (a) Feature-based SLAM. L1 to L9 are detected features

used for localization. (b) View-based SLAM. V1 to V4 are corresponding views. No features are extracted, instead

views are matched for localization (Paull et al., 2014).

4.3 Appearance-based SLAM

Appearance-based SLAM is an effective method for the loop closure problem (Koenig et al., 2008; Cummins and

Newman, 2011). It can also be used in combination with feature-based or view-based SLAM; however, in the literature,

appearance-based SLAM is often performed with a camera (Ulrich and Nourbakhsh, 2000). In this method, new

observations, either features or views, are matched against available reference observations to identify a previously

observed location.

For instance, the ATLAS framework by Bosse et al. provides occupancy grid maps from outdoor urban environments

using a scanning laser ranger mounted on top of a car (Bosse and Zlot, 2008). In this method, salient characteristics of

maps are used to develop an appearance recognition system which recalls an already visited location. In (Kawewong

et al., 2010) position-invariant robust feature (PIRF) detection is used to detect features of images. These features are

matched against reference features and used to recall previous scenes. Generally, due to the necessity of matching a



large number of views with reference views, appearance-based SLAM creates high computational demand and often

requires a fast processor and relatively large memory to store all views.

4.4 Polygon-based SLAM

Polygon-based SLAM is used for 3D mapping (Hahnel et al., 2003b). In this method, planar segments, composed of

infinite planes, are associated with features of the environment. For example, Weingarten et al. perform 3D SLAM with

a robot equipped with a tilting scanning laser ranger (Weingarten and Siegwart, 2006). Using polygon sets, features

are represented with planar segments. Pathak et al. propose a 3D GraphSLAM (see Section 4.6) by registering large

planar segments, extracted from a 3D laser ranger (Pathak et al., 2010). Expectation maximization has also been

used for planar mapping (Thrun et al., 2004b). As explained in relation to the topological and semantic mapping,

the advantage of the polygon-based SLAM is that it produces highly detailed small-sized maps and well-suited for

higher-level tasks such as interacting with the environment; however, the process of fitting planar segments creates

extra computational demand.

4.5 Filtering SLAM

Particle filters, different variations of the Kalman filter, and the information filter are major filtering methods which

are derived from the Bayes filter. These techniques are used to estimate the current pose of the robot or to optimize

the whole trajectory of the robot. For a detailed explanation of various filtering algorithms and their applications in

SLAM, see (Thrun et al., 2005, Ch. 3-4). Popular and well-studied SLAM algorithms which are based on filtering

include: extended Kalman filter SLAM (EKF-SLAM), extended information filter SLAM (EIF-SLAM), and particle

filter SLAM (PF-SLAM). In recent years, many improvements have been made to these algorithms. For instance, the

distributed particle (DP) filter, proposed by Eliazar et. al, is a fast and reliable implementation of particle filtering for

SLAM (Eliazar and Parr, 2003) which optimizes memory requirements using an efficient data structure for maintaining

grid maps. Other examples including the improved grid mapping (Grisetti et al., 2007) and FastSLAM (Montemerlo

et al., 2002) reduce the complexity of the particle filter by reducing the number of particles.

The EKF-SLAM , EIF-SLAM, FastSLAM, and GraphSLAM (Section 4.6) algorithms are considered as vector-based

solutions, in which the map and the pose of the robot are estimated by a random vector. Typically in vector-based

feature-based SLAM algorithms, state estimation and data association (determining the correspondence between mea-

surements and landmarks) are considered as two separate problems. The data association problem is usually solved

using heuristics or advanced filtering methods such as the joint probabilistic data association (Dezert and Bar-Shalom,

1993). Additionally, determining the number of the features is also considered as a separate problem.

Set-based algorithms are emerging solutions which are based on the concept of the random finite set (RFS) (Mullane

et al., 2013) and finite set statistics (FISST) (Mahler, 2007). In a set-based SLAM algorithm, key problems, such as

the number of the features and data association, are formulated and incorporated to the Bayesian filter; thus, there is no

need to handle these problems outside the filtering algorithm separately. Set-based algorithms have better efficiency

under various measurement issues including inaccurate measurements (noise), false detections (clutter), and failure to

detect targets (missed detections).

Similar to the vector-based SLAM algorithms, there are various implementations for set-based SLAM. One approach

is based on the first-order moment of an RFS, known as the probability hypothesis density (PHD) or intensity function.

Intuitively, the PHD is the expected value of an RFS. Peaks of the PHD correspond to likely locations of the features,

and the integral of the PHD determines the expected number of the features. For example, Rao–Blackwellized (RB)

PHD-SLAM is proposed and tested in (Mullane et al., 2011; Adams et al., 2014; Leung et al., 2014). The results show

improvement over vector-based SLAM algorithms such as EKF-SLAM and FastSLAM.



4.6 Smoothing SLAM

Smoothing methods estimate the whole trajectory of the robot by minimizing the process and observation constraints.

Two general smoothing methods in SLAM are GraphSLAM and sub-map matching. Generally, in GraphSLAM, poses

of a robot are represented as nodes in a graph. The edges connecting nodes are modeled with motion and observation

constraints. Next, these constraints need to be optimized to calculate the spatial distribution of the nodes and their

uncertainties (Thrun et al., 2005, Ch. 11).

GraphSLAM was first formulated by Lu and Milios (Lu and Milios, 1997). They optimized a system of equations to

decrease the error caused by constraints. Since then, researchers have proposed different solutions for GraphSLAM

including (Gutmann and Konolige, 1999), relaxation on a mesh (Howard et al., 2001), multilevel relaxation (Frese

et al., 2005), iterative alignment (Olson et al., 2006), square root simultaneous location and mapping (SAM) (Frank

and Michael, 2006), incremental smoothing and mapping (iSAM) (Kaess et al., 2007), the finite element method

(FEM) (Takeuchi and Tsubouchi, 2008), g2o (Kummerle et al., 2011), and finally three works by G. Grisetti et. al in

(Grisetti et al., 2009), (Grisetti et al., 2010a), and hierarchical optimization for pose graphs on manifolds (HOGMAN)

(Grisetti et al., 2010b).

Sub-map matching is also related to GraphSLAM. Sub-map matching is an efficient method of mapping where small

local maps are matched with each other and mosaiced to produce a global map. This prevents global error accumulation

due to the odometry and measurement inaccuracies, and therefore is a good solution for large scale and outdoor

environments. Bailey’s work (Bailey, 2000), hierarchical SLAM (Estrada et al., 2005), the Atlas framework (Bosse

and Zlot, 2008), and Tectonic SAM (Ni et al., 2007) are examples of such a solution. In the Atlas framework (Bosse

and Zlot, 2008), a global map management solution is proposed which can close loops in structured environments.

Atlas provides view-based local maps using an EKF and attaches them together by comparing the normals of the

maps. In Bailey’s work (Bailey, 2000) a similar solution is proposed which is developed using a 2D feature-based

SLAM. A similar approach is proposed in Tectonic SAM (Ni et al., 2007) where optimization is performed to align

local maps. Local maps in this method are generated using square root information smoothing (Frank and Michael,

2006). Sub-map matching is very similar to an approach of multiple-robot SLAM which is called map merging (Birk

and Carpin, 2006; Saeedi et al., 2014a; Saeedi et al., 2014b), introduced in Section 6.8, with one notable difference.

In the case of map merging, we assume that there is no a priori knowledge of the transformation that relates the maps.

In single-robot sub-map matching, an initial estimate of the transformation is available, so it is feasible to perform an

exhaustive search for the best match within the neighborhood of the estimate.

4.7 Artificial Intelligence SLAM

Artificial intelligence (AI) has also been used to solve the SLAM problem. In these solutions, filtering or smoothing

are realized using AI algorithms. For instance, in (Chatterjee, 2009) a solution based on fuzzy logic is proposed to

tune covariance values of the measurement model. The ratSLAM algorithm is a technique that models a rodent’s brain

using neural networks (Wyeth and Milford, 2009). In fact, this method is a neural network-based data fusion using

a camera and an odometer. In (Saeedi et al., 2011b), self-organizing map (SOM), or Kohonen network, is used to

perform SLAM with multiple-robots. The SOM is a competitive neural network which is trained without supervision.

Abstract geometrical perception is a foundation for high-level reasoning. The abstract information facilitates faster

information processing. Semantic approaches to SLAM, such as SLAM++ (Salas-Moreno et al., 2013), and topolog-

ical methods, which are based on the abstract information, are also another form of the artificial intelligence SLAM,

where the abstract representation is used to perform localization and mapping. A common example of topological

representation is the generalized Voronoi diagram (GVD) (Bunke, 2000), which represents the skeleton of a map.

There are many topological solutions for single-robot SLAM such as the works by Choset et al. (Choset and Nagatani,

2001), (Choset et al., 2000), annotated generalize Voronoi graph (AGVG) (Wallgrum, 2010), the works in (Beeson

et al., 2004) and (Beeson et al., 2010), underground mines (Silver et al., 2004), Bayesian inference (Ranganathan

et al., 2006), and the semantic approach with place labelling (Friedman et al., 2007). Boal et al. present a thorough

and recent survey of topological approaches for SLAM in (Boal et al., 2014).



The presented methods in Section 4.5, 4.6, and 4.7 are summarized in Table 2. For each method, a few references with

various types of maps are presented. Main advantages and disadvantages of each method are also briefly listed.

Table 2: Comparison of some common SLAM techniques.

SLAM Method Map Description

EKF-SLAM

(Smith et al., 1987)

(Eustice et al., 2006)

(Newman et al., 2006)

(Weingarten and Sieg-

wart, 2006)

.

feature

view

appearance

polygon

• based on the extended Kalman filter

Pros: works well if features are distinct

Cons: adding a new feature to state space needs quadratic time, requires

feature extraction in feature-based SLAM, cannot identify absence of a

feature

F
il

te
ri

n
g

..
..

..
..

.. EIF-SLAM

(Thrun et al., 2004a)

(Hahnel et al., 2003c)

.

feature

view

• based on the extended information filter

Pros: measurement updates are performed in constant time, effective for

multiple-robot SLAM due to additivity of information

Cons: information matrix needs to be sparsified. Recovering map and

the pose requires large matrix inversion

PF-SLAM

(Montemerlo et al.,

2003)

(Grisetti et al., 2007)

.

feature

.

view

• based on particle filtering. FastSLAM is an efficient implementation

of particle filtering

Pros: effective for loop closure, performs full and online SLAM, loga-

rithmic complexity in number of features, no need for parametrization

Cons: quality of the estimation is dependent on the number of particles

DP-SLAM

(Eliazar and Parr, 2003)

.

view

• a fast implementation of particle filtering for SLAM

Pros: effective for large scale maps, optimizes memory requirements

Cons: requires processing to recover maps

Set-based SLAM

(Adams et al., 2014)

(Lee et al., 2012)

(Mullane et al., 2011)

.

feature

feature

feature

• based on random finite set (RFS) and finite set statistics (FISST)

Pros: number of features and data association are estimated with the

Bayesian filter

Cons: higher time complexity than vector-based solutions

S
m

o
o

th
in

g
..

..
..

..
.. GraphSLAM

(Kaess et al., 2007)

(Grisetti et al., 2010b)

(Pathak et al., 2010)

.

feature

view

polygon

• uses smoothing techniques to estimate the trajectory and the map

Pros: the whole trajectory is updated

Cons: computationally demanding, hard to recover covariances

Sub-map Matching

(Bosse and Zlot, 2008)

(Ni et al., 2007)

.

view

feature

• matches small local maps to make a large global map

Pros: the whole trajectory is updated, suitable for large scale environ-

ments

Cons: size of local maps should be adjusted

A
I.

..
..

..
..

. AI SLAM

(Wyeth and Milford,

2009)

(Chatterjee, 2009)

(Choset and Nagatani,

2001)

.

appearance

.

feature

feature

• based on artificial intelligence

Pros: efficient, usually no mathematical model is required

Cons: error-prone, requires training or parameter tuning, training can be

time-consuming

4.8 2D and 3D SLAM

Robotic environments are in general 3D, involving translation in three directions: x, y, and z; and rotation around three

axes: roll, pitch, and yaw. However in most cases, especially indoors, the robot has no change in the z direction and

has negligible roll and pitch angles. In these cases, the SLAM problem can be simplified to estimating only x, y, and

the yaw angle; this is referred to as 2D SLAM. However, in outdoor environments and when the robot demonstrates

changes in the z direction or it has considerable rotation for roll and pitch angles, 3D SLAM is required for pose

estimation.



The complexity of 3D SLAM is not as simple as estimating three more parameters. This is mainly because most

sensory information lacks full 3D perception and therefore it becomes challenging to estimate parameters which are

not observable directly. Moreover, if there exist sensors providing full 3D information, the complexity of processing

algorithms increases significantly. For instance, solving a nonlinear equation for n variable, requires an n× n matrix

inversion, which by the fastest implementation, is of the orderO(n2.373) (Virginia Vassilevska Williams, 2012).

Stereo or RGBD cameras, such as Kinect or Asus Xtion, and 3D laser rangers, such as Velodyne laser scanners, are

among the well-known sensors used for 3D SLAM. The core of a 3D SLAM algorithm is visual or laser odometry.

The odometry algorithm should run in real-time on robotic platforms. For RGBD and stereo cameras , KinectFusion

(Newcombe et al., 2011), ScaViSLAM (Strasdat et al., 2011), fast odometry (Dryanovski et al., 2013), fast odometry

from vision (FOVIS) (Huang et al., 2011), and dense tracking and mapping (Sturm et al., 2013) are examples of the 3D

visual odometry and SLAM algorithms. For laser rangers, generalized ICP is used in a 3D scan matching algorithm for

3D laser odometry (Segal et al., 2009). The structure of the filtering or smoothing algorithms for 2D and 3D SLAM is

very similar. For instance, in (Henry et al., 2010) and (Engelhard et al., 2011), a method called rgbdSLAM is proposed

to perform 3D SLAM using stereo and Kinect cameras. Their visual odometry is based on the ICP algorithm, and the

optimization over the poses is performed using HOGMAN GraphSLAM.

5 Background on Multiple-robot SLAM

This section first presents a brief description of multi-robot systems and multiple-robot SLAM. Generally, multiple-

robot SLAM algorithms are built on top of single-robot SLAM algorithms; therefore, data processing and map rep-

resentation are based on the approaches reviewed earlier; however, in multiple-robot SLAM, there are additional

challenging problems due to the increased number of robots. At the end of this section, ten major problems in multiple-

robot SLAM, together with some solutions for each are introduced.

5.1 Multiple-robot Systems

In addition to multiple-robot SLAM, other aspects of multiple-robot systems, such as task allocation, formation, and

coordination, are also interesting research topics. For a list of major areas of multiple-robot systems, See (Jennings

et al., 1998; Arai et al., 2002). One of the first initiatives on multiple-robot systems was the Autonomous Vehicle

Aerial Tracking and Reconnaissance (AVATAR) project, developed by Defence Advanced Research Project Agency

(DARPA). This project was targeting military surveillance and demonstrated the effectiveness of a multiple-robot

system in cooperative localization and surveillance (Sukhatme et al., 2001). In another project, named Perception

of Offroad Robotics (PerceptOR), DAPRPA focused on cooperation between an autonomous helicopter and an au-

tonomous ground vehicle. The autonomous helicopter was helping the ground robot to navigate autonomously in an

unknown environment (Kelly et al., 2006). The Mobile Autonomous Robot Software (MARS) program, is another

multiple-robot framework by DARPA, which addresses issues such as cooperative target localization and surveillance,

search and rescue, and maintaining connectivity during cooperative mapping (Chaimowicz et al., 2004; Grocholsky

et al., 2004). The Multi-Autonomous Ground-robotic International Challenge (MAGIC) is a multi-robot competition,

where the robotics teams were requested to explore and map large indoor and outdoor environments while identifying

and neutralizing threats. MAGIC was funded by the Australian Department of Defence and the U.S. Army, and the

robotic teams were pursuing more than $1 million in prize money (Olson et al., 2013).

Barca et al. present a thorough review on swarm robotics (Barca and Sekercioglu, 2013). Ren et al. (Ren et al., 2007;

Ren et al., 2005) and Olfati-Saber et al. (Olfati-Saber et al., 2007) review the consensus problems in the coordination

of multi-agent systems. Murray reviews cooperative control (Murray, 2007). Bullo has mathematically presented the

motion coordination problem in a book (Bullo et al., 2009). Olfati-Saber has presented and reviewed three flocking

algorithms (Olfati-Saber, 2006). Multiple-robot exploration (Rekleitis et al., 2001; Zlot et al., 2002; Burgard and

Schneider, 2002; Sheng et al., 2006; Burgard et al., 2005; Wurm et al., 2008) is also another interesting topic which is

tightly coupled with multiple-robot SLAM. A review of the exploration methods can be found in (Rone and Ben-Tzvi,

2013). Multiple-robot localization, a simpler form of multiple-robot SLAM, has been presented in (Roumeliotis and



Bekey, 2002; Hao and Nashashibi, 2013; Fox et al., 2000; Schneider and Wildermuth, 2012; Zhou and Roumeliotis,

2008) and in (Paull et al., 2014) for underwater environments.

5.2 Data for Multiple-robot SLAM

In a multi-agent system, there are a few key issues which need to be taken into account. The way these issues are

handled makes each solution unique. These issues are phrased in the form of the following four questions. First,

what type of data is shared among agents? Second, how is this data shared among agents? Third, where is this data

processed? Finally, how is the processing performed? In the next few subsections, each of these questions is answered

in the context of multiple-robot SLAM. Fig. 6 shows these different issues in multiple-robot SLAM.

Filtering
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Artificial Intelligence
Hybrid Map merging

Centralized

Decentralized

Distributed

Non-distributed

measurements Maps/poses

Bandwidth Coverage

Robot 1 Robot 2 Robot n
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Data Distribution

Data Sharing

Data Communication

Figure 6: Four major issues in multiple-robot SLAM are data communication, data sharing, data distribution, and data

processing. Choosing the right solutions for these issues depends on many factors, such as the robots, environment,

and applications.

5.2.1 Data Communication

Availability of a system to share data among robots is a key requirement in multiple-robot SLAM (Leung et al.,

2012; Bar-Shalom, 2002). Information between robots can be exchanged via communication channels which might

not be available at all times, in all places. Bandwidth and coverage of the communication network are two important

factors in the performance of SLAM.

5.2.2 Data Sharing

Sharing data among robots is a fundamental issue in multiple-robot SLAM. Past approaches to collaborative SLAM

can generally be categorized based on whether they share raw sensor data (Howard, 2006) or processed data (Birk and

Carpin, 2006). Raw sensor data means that sensed information such as laser ranger measurements and wheel odometry

readings are not processed. In processed data, such as a map or poses of robots, sensor readings are processed through

filtering or smoothing or other methods. Sharing raw sensor data results in more flexibility but requires high bandwidth

and reliable communication between robots as well as more processing power. In contrast, sharing maps uses less

bandwidth and there is no need to process raw data redundantly; however, the performance is dependent on the quality



of maps. The latter method is usually referred to as map merging or map fusion. The work by S. Thrun (Thrun,

2001) or Howard’s work (Howard, 2006) are examples of sharing raw laser and odometry data among robots. Works

by Carpin et al. (Carpin et al., 2005) and Birk et al. (Birk and Carpin, 2006) are examples of sharing processed

maps between robots. The choice of the method depends on several factors such as the application and the available

resources.

5.2.3 Data Distribution

Generally, multiple-robot SLAM can be centralized or decentralized, and distributed or non-distributed (Leung, 2012),

as follows:

• Centralized: In a centralized system, the computation for a task is performed by a predetermined robot

on the team or by an external agent. The central agent processes the incoming data and provides required

information and feedback to other agents. The work in (Kim et al., 2010) is an example of this solution.

• Decentralized: In a decentralized system, the computation for a task is performed by more than one robot

on the team. Obviously this structure requires that the robots have enough computational power to respond

to processing demands. The work in (Howard, 2006) is an example of this solution.

• Distributed: In a distributed system, the computation for a task is divided among the robots on the team.

By these definitions, a centralized or decentralized system can be distributed or non-distributed. For example, a system

might be distributed where a task is performed with collaboration of a few robots, but a central external agent integrates

all information to generate the final result. The collaborative mapping with multiple micro aerial vehicles is an example

of a distributed and centralized system (Forster et al., 2013). Moreover, hybrid solutions are also applicable, where

some robots process data and some use the results only. The work in (Howard et al., 2006a) is an example of such a

solution where 80 robots were cooperating at different levels to make a global map.

5.2.4 Data Processing

The choice of the method for estimating the poses of robots and the global map depends on many factors such as the

available memory, processing capability, and the type of the sensory information. Generally, the spectrum of SLAM

algorithms includes many different approaches each with remarkable capabilities. At the two extreme ends of the

spectrum lie two methods: EKF-SLAM and GraphSLAM (Thrun et al., 2005, p. 385). EKF-SLAM approximates the

nonlinearity of the system by linearizing the system model. Also, EKF-SLAM is computationally expensive; Each

time acquired information is resolved into a probability distribution which makes it proactive but slow. GraphSLAM

solutions such as iSAM (Kaess et al., 2007) and HOGMAN (Grisetti et al., 2010c) also depend on approximation by

Taylor expansion. Its difference with EKF-SLAM is that it accumulates information and therefore is considered to be

a lazy and an off-line algorithm (Thrun et al., 2005, p. 385). The particle filtering approaches are nonlinear filtering

solutions; therefore, the system models are not linearized. Although particle filtering is computationally expensive, it

is shown that a good implementation such as FastSLAM (Thrun et al., 2005, Ch. 13) and grid mapping (Grisetti et al.,

2007) can reduce the complexity of the algorithm.

5.3 Problems in Multiple-robot SLAM

In this section, problems for multiple-robot SLAM are listed and explained briefly. The list includes ten major prob-

lems, and a summary of the problems, with a few solutions for each problem, presented at the end of the section.



5.3.1 Relative Poses of Robots

In multiple-robot SLAM, the map provided by each robot in its own reference coordinates is called the local map.

Each local map is generated from coordinated measurements such as laser scans. Each robot tries to integrate all of

the local maps provided by the other robots to generate a global map of the environment. However, this is a difficult

task because the required alignments or transformation matrices which relate these maps to each other are in general

unknown. The problem of the relative pose of the robot is coupled with the multiple-robot data association problem.

Knowledge of one, renders the other one as a simple problem.

5.3.2 Uncertainty of the Relative Poses

Uncertainty, which according to Thrun et al., arises if the robot lacks critical information for carrying out its task, is

identified as having five main roots (Thrun et al., 2005, p. 3): environment, sensors, robots, models, and computations.

There is an uncertainty associated with the relative transformation matrix represented in the form of a covariance ma-

trix. This uncertainty is mainly because of modeling uncertainties, sensory noises and linearization effects. Updating

the maps and poses should be performed using the covariance matrix. Depending on the method used for finding the

relative transformation matrix, covariance matrix takes different values.

5.3.3 Updating Maps and Poses

Once the relative transformation is found, a procedure is required to fuse local maps. The resulting map should

integrate all information from given local maps. As a result of updating the maps, poses of the robots should also

be updated. This requires considering the trajectory of the robots and new information received from other maps.

Due to the nature of multiple-robot SLAM, updating poses and maps is a coupled problem. In feature-based SLAM,

data association and finding the correspondence between duplicate landmarks across the robots is an important part of

updating maps.

5.3.4 Line-of-sight Observations

On some occasions, robots can see and detect each other. Each robot might already have an estimate of the pose of other

robots. However, when robots can see each other through line-of-sight and direct observations, these estimates can be

improved. This fact can help robots to reduce mapping and localization error. In most applications and especially in

close range localization, line-of-sight observations are much more reliable than other indirect estimation techniques.

Fig. 7 shows an application where the line-of-sight observation is its key component. In this application, a rotary wing

UAV lands on a moving platform autonomously. The UAV is equipped with a camera which identifies a known target

pattern on the moving platform. Then the distance and orientation of the UAV with respect to the moving platform is

calculated. The results are used to control and land the UAV (Richardson et al., 2013).

5.3.5 Closing Loops

Loop closure, also called cycle detection, is defined as identifying a place observed previously but not very recently (re-

cently is defined in relation to the mission duration). Loop closure for a single robot is challenging enough. Extending

this problem for a team of multiple robots requires solving it using all resources of information from individual robots.

In multi-robot SLAM, various events can trigger loop closure, such as direct encounter of the robots or rendezvous

and indirect encounter, when the robots see the same area or features in the world.

5.3.6 Complexity

Robotics applications are usually realtime. Thus, it is very important to design an algorithm capable of solving the

above mentioned problems with minimum time and memory requirements. In multiple-robot SLAM, space complexity



Figure 7: Using line-of-sight observations, a rotary wing UAV lands on a moving platform autonomously. Image

courtesy of Thomas Richardson et al. (Richardson et al., 2013).

and time complexity are two important issues. The complexity of a multi robot algorithm directly affects its scalability.

5.3.7 Communications

Availability of a medium for data sharing among robots is an important requirement in multiple-robot SLAM. Infor-

mation between robots can be exchanged via communication channels. The quality of the communication channels is

dependent on the environment. For instance, communication issues are a challenging problem for a team of robots in

underwater environments, where the environment imposes limitations on the bandwidth and data rate.

5.3.8 Heterogeneous Vehicles and Sensors

An important advantage of team based mapping is that different types of robots, equipped with different sensors, can

provide a better model of the environment. For instance, a ground robot may see features that a quadrotor cannot,

and at the same time, a quadrotor may have access to different areas that a ground robot does not. However, this

advantage requires processing and integrating different types of information. For example, if a ground robot provides

an occupancy grid map and a quadrotor generates a feature map, then these maps must be combined to generate a global

and consistent map. (This issue has been studied in (Wurm et al., 2010)). Due to the variety of sensors and maps, this

problem can be presented in many different forms, such as integrating topological maps with grid maps, integrating

topological maps with feature maps, integrating scanning laser rangefinder measurements with camera measurements,

integrating satellite and aerial views with ground views (Hussein et al., 2013), and many more. Michael et al. present a

very good example of a team of heterogenous robots (see Fig. 8), including a quadrotor and two ground robots, which

map a multi-floor earthquake-damaged building collaboratively (Michael et al., 2012).

5.3.9 Synchronization

As a general rule, each acquired sensor reading should have a time stamp field, which shows the time of the acquisition

of the data. An important issue in a system of multiple agents and multiple sensors is the synchronization of the

clocks. Synchronization can be considered at two levels: first, local synchronization, which means the sensors of

each robot should be synchronized and second, global synchronization, which means all robots on the team must have

synchronized clocks.

To synchronize time on different robots, Chrony (Curnow, 2014) is a suitable choice, which is also used in robot

operating system (ROS) middleware. Chrony supports online and offline time adjustment by two different applications.

In the online case, a network time protocol (NTP) daemon runs in the background and synchronizes the time with time



Figure 8: Heterogeneous robots used to map an earthquake-damaged building: (left) Kenaf ground robot, (middle)

Quince ground robot and a Pelican quadrotor. Kenaf and Pelican are equipped with scanning laser rangers. Quince

transports Pelican from one site to another. (right) A sample 3D map of three floors, developed using scanning laser

rangers of Kenaf and Pelican. Image courtesy of Nathan Michael et al. (Michael et al., 2012).

servers. For an isolated machine, one might enter the time periodically. The synchronized time appears as a label in

the header of each acquired data. A similar approach is used by Leung et al. in (Leung et al., 2011).

5.3.10 Performance Measure

In multiple-robot SLAM, evaluating the accuracy of results is a challenging problem due to the lack of the model

of the environment and the actual trajectory of the robots. Additionally, evaluating the accuracy of SLAM becomes

more critical when the robots rely on the SLAM to perform autonomous behaviors. Therefore, performance measure

is always required to determine the reliability of multiple-robot SLAM.

Table 3 summarizes the reviewed problems in multiple-robot SLAM with a short description for each one and the

references addressing the problems. These references are explained in detail in the next section.

6 Current Solutions for Multiple-robot SLAM

In this section filtering, smoothing, and other solutions in the literature for multiple-robot SLAM are reviewed. In each

solution, it is mentioned that which problems in multiple-robot SLAM have been addressed.

6.1 EKF-SLAM

For multiple-robot SLAM, various solutions based on the EKF have been proposed, such as the cooperative EKF esti-

mator (Fenwick et al., 2002), outdoor elevation mapping (Madhavan et al., 2004), performance prediction (Mourikis

and Roumeliotis, 2006), robot rendezvous (Zhou and Roumeliotis, 2006), and distributed multi-robot SLAM (Jafri

and Chellali, 2013). Some other algorithms, such as heterogeneous sub-map matching (Vidal-Calleja et al., 2011) or

constrained local sub-map filter (Williams et al., 2002b), are a combination of the EKF and other techniques, which

are reviewed in the other sections of this paper.

Extension from a single robot to multiple robots using EKF is straightforward, and this motivates researchers to solve

various issues in multiple-robot SLAM using an EKF-based framework. Thus, most EKF-based approaches are very

similar. In the rest of this section, one of the many EKF-based solutions is reviewed in detail.

Robot rendezvous (Zhou and Roumeliotis, 2006) is feature-based SLAM and uses EKF for filtering robot poses and



Table 3: Problems in multiple-robot SLAM

no Problem Description Solutions

a Relative Poses of Robots Initial poses or transforma-

tion between poses

Rendezvous: (Howard, 2006),

(Zhou and Roumeliotis, 2006)

Map merging: (Birk and Carpin,

2006), (Saeedi et al., 2012b)

Relative localization: (Ko et al.,

2003), (Fox et al., 2006)

Known: (Gil et al., 2010),

(Thrun, 2001)

b Uncertainty of the Relative

Poses

Uncertainty of the rela-

tive poses should be prop-

agated to the maps and

poses of the robots

Linearized uncertainty propaga-

tion: (Saeedi et al., 2011c),

(Zhou and Roumeliotis, 2006)

c Updating Maps and Poses Once the relative poses are

known, past and future

poses and maps should be

updated

Particle filter:

(Howard et al., 2006b)

Batch update:

(Saeedi et al., 2014a)

Least squares: (Kim et al., 2010)

d Line-of-sight Observations Include line-of-sight obser-

vation to improve mapping

and localization

Manifold representation:

(Howard, 2004)

e Closing Loops Detect loop closure with

multiple robots

Filtering: (Howard, 2006),

(Zhou and Roumeliotis, 2006),

(Thrun, 2001)

Least squares: (Kim et al., 2010)

f Complexity Time and space complexity

with respect to the size of

the team

Information filter:

(Thrun and Liu, 2005)

g Communications Out-of-sequence measure-

ments and black-outs

Central equivalent:

(Leung et al., 2012)

Buffering: (Carlone et al., 2010)

h Heterogeneous Vehicles and

Sensors

Different types of robots

and sensors

Aerial and ground robots:

(Vidal-Calleja et al., 2011)

(Kim et al., 2010),

Different ground robots:

(Kim et al., 2010)

i Synchronization Synchronized clocks be-

tween robots

Network Time Protocol (NTP):

(Leung et al., 2011)

j Performance Measure Measuring the accuracy of

the model

(Erinc and Carpin, 2014)



landmark positions. In robot rendezvous, four main problems are addressed: unknown relative poses (problem a),

uncertainty of the relative poses (problem b), updating maps and poses (problem c), and complexity (problem f). The

state vector includes poses of the robots and positions of the landmarks. For example, for two robots a and b, and N

features in the map, the state vector is

xabt =
[

xat xbt xl1t yl1t . . . xlNt ylNt
]T

(8)

where xat and xbt are the poses of robots a and b at time t, and xlit and ylit , i = 1, ..N , are 2D coordinates of the ith

feature. The covariance of xabt is shown by Σabt .

In robot rendezvous, robots should meet either by random or by arrangement, at least once. The advantage of this

method is that it does not require overlaps between maps; however, the robots need to meet at a point. When robots

are in the line-of-sight, robot-to-robot measurements are used to calculate the transformation between maps. The un-

certainty of the relative transformation is calculated from the line-of-sight observations, by linearizing the observation

equations. The resulting uncertainty is presented as a covariance matrix.

Now that the relative poses are known, the maps are merged using the calculated transformation. During map merging,

it is highly possible that there are duplicates of the same landmark due to the uncertainty of the position of the

landmark. The so called Sequential Nearest Neighbor Test is proposed to detect these cases and combine duplicate

landmarks. The test is based on the Mahalanobis distance. If the distance of two landmarks in the fused map is smaller

than a threshold, they are considered to be duplicates. To update the map, state and covariance row and column of the

duplicate landmarks are deleted. If the landmarks’ error is bigger than the distance between them, then this method will

not be effective. Therefore, to avoid false duplicate detection, this process is performed in the vicinity of two robots,

where it is more likely to have less error in the position of the landmarks. This process is performed sequentially.

In Fig. 9-a two features are depicted. One of them is shown by a circle, the other one by a diamond. Assume

the diamond feature has been transformed from another map and the circle one was already existing in the current

map. For each pair of such features, their distance is calculated. If the distance is less than the threshold, then the

features are averaged to generate a new feature which represents both features. If weighted averaging is performed,

where the weights are proportional to the information matrices of the features, the information matrix of the fused

feature is the summation of the information matrices of the features. In this case, the fused feature has less uncertainty

than the original features (see Fig. 9-b, the blue ellipse). The weighted averaging requires matrix inversion and

is computationally demanding. An alternative approach is performing averaging with equal weights. In this case,

the covariance matrices are also averaged; however, the uncertainty of the resulting feature might be larger than the

uncertainty of the most certain feature (see Fig. 9-b, the red ellipse).

Algorithm 1 summarizes the pseudocode for EKF implementation of feature-based multiple-robot SLAM, assuming

the poses of the robots are known. Functions predict(·) and update(·) are standard procedures of the Kalman filter.

These functions are explained in (Thrun et al., 2005, Ch. 10). Function augment(·) adds new features to the state

vector, defined in equation (8). Finally, function merge(·) merges duplicate features as explained in the previous

paragraph.

To efficiently search for the nearest landmarks, a kd-tree is used, which reduces the computational complexity. More-

over, the EKF estimator works iteratively; thus, previous measurements do not need to be processed repeatedly. The

recursive operation reduces both memory and computational requirements. The simulated and real-world experiments

show the consistency of the final fused map.

6.2 EIF-SLAM

Nettleton et al. were the first who applied the information formulation to the multiple-robot SLAM problem (Nettleton

et al., 2000). Inherently, the EIF is more suitable for a multi-robot system than EKF, since the information has the

additivity property. The key discovery in this early work was the complexity of the EIF (problem f). They noticed that

updating maps is possible in time logarithmic in the number of the robots on the team. Later, Thrun et al. improved



a

x

y

2 4 6 8

2

4

6

8

-2

-2

-4

-4

-6

-6

-8

-8

b

x

y

2 4 6 8

2

4

6

8

-2

-2

-4

-4

-6

-6

-8

-8

Figure 9: Merging two features. a) Two features whose separation is smaller than a given threshold. b) The new

merged feature is shown in red. Features are merged by averaging their mean positions. If weighted averaging is used,

the uncertainty after fusion decreases (shown in blue). In this case the information matrices are added to generate the

information matrix of the fused feature. It is also possible to average the features with equal weights (shown in red).

Algorithm 1 EKF-based SLAM for two robots, a and b, with known relative poses.

Input: posterior at time t− 1: xabt−1, Σabt−1

control signals at time t: uat , u
b
t ,

observations at time t: zat , z
b
t .

Output: posterior at time t: xabt , Σabt .

1: for robot id = a→ b do

2: (x̄abt , Σ̄
ab
t )← predict(xabt−1,Σ

ab
t−1, u

id
t )

3: (xabt ,Σ
ab
t )← update(x̄abt , Σ̄

ab
t , z

id
t )

4: (xabt ,Σ
ab
t )← augment(xabt ,Σ

ab
t , z

id
t )

5: end for

6: (xabt ,Σ
ab
t )← merge(xabt ,Σ

ab
t )

7: return (xabt ,Σ
ab
t )

upon this work and proposed feature-based multiple-robot SLAM based on Sparse EIF (Thrun and Liu, 2005).

In SEIF, two main problems are addressed: finding the relative poses (problem a) and updating maps and poses

(problem c). The relative poses are calculated by matching the features of the maps. This can be done by a kd-tree or

similar algorithms. Once an estimate is calculated, it can be optimized by minimizing the quadratic displacement of

the features. After calculating the relative transformation, maps and poses, in the information domain, are transformed

to the global coordinates.

As mentioned, additivity is an interesting property of the information filter. Robots can integrate their information by

simply adding them. Also fusion of duplicate landmarks is straightforward. For instance, assume in the following

information matrix and vector of a map with four features, features 2 and 4 are duplicate features.









Ω11 Ω12 Ω13 Ω14

Ω21 Ω22 Ω23 Ω24

Ω31 Ω32 Ω33 Ω34

Ω41 Ω42 Ω43 Ω44









,









ζ1
ζ2
ζ3
ζ4









, (9)



In the EIF, these two features collapse to one feature as follows





Ω11 Ω12 + Ω14 Ω13

Ω21 +Ω41 Ω22 +Ω42 + Ω24 +Ω44 Ω23 +Ω43

Ω31 Ω32 + Ω34 Ω33



 ,





ζ1
ζ2 + ζ4
ζ3



 , (10)

The presented experimental results, with 108 features, demonstrate the effectiveness of this algorithm. Derivation and

detail algorithmic implementation of EIF-based multiple-robot SLAM is expliained in (Thrun et al., 2005, p. 424).

6.3 PF-SLAM

Multiple-robot SLAM using particle filtering was first proposed in 2001 by Thrun at Carnegie Mellon University

(Thrun, 2001). Later in 2006, his work was extended by Howard at the University of Southern California (Howard,

2006). These two works proposed view-based SLAM. Since then, many other researchers tried to extend boundaries

of multiple-robot SLAM. In this section, three key works in this area are explained.

Thrun, in his work, solves two key problems in multiple-robot SLAM: updating maps and poses (problem c) and clos-

ing loops (problem e). The core of Thrun’s work is “a statistical framework that combines an incremental maximum

likelihood estimator with a posterior pose estimator” (Thrun, 2001). This method combines maximum likelihood map-

ping with Monte-Carlo localization. In this method, the probabilistic motion model and the probabilistic measurement

model based on scan matching are used. For the measurement model, it is assumed that each scan constitutes a local

map, which is composed of three types of areas: free space, occupied space, and occluded (unknown) space. The same

type of areas are used to develop maps from scans.

Compared with the extended Kalman filter, Thrun’s work has the advantage that it can model multi-modal and non-

Gaussian distribution. This method is robust and can close loops. However, there are two main limitations. First, the

robots must begin their mapping in nearby locations to have overlaps in their range scans (to have large overlaps in

their initial maps). Second, the initial poses of the robots are assumed to be known approximately prior to the start of

the mission. In the next algorithm (Howard, 2006), more detail of this approach is explained.

Howard extends the work in (Thrun, 2001) and proposes a multiple-robot SLAM using Rao–Blackwellised particle

filter (Howard, 2006). Howard et al. also extend the work in (Howard, 2006) to include path planning and exploration

with a central agent and a team of 80 robots (Howard et al., 2006a).

The proposed method in (Howard, 2006) addresses three of the introduced key problems in multiple-robot SLAM:

relative poses of robots (problem a), updating maps and poses (problem c), and closing loops (problem e). Robots

without knowing their relative poses cannot generate a global map. In this work, this problem has been addressed

by line-of-sight observation, using cameras mounted on the robots. Moreover, updating past information, prior to the

knowledge of relative poses of the robots, is a key problem. If this problem is addressed properly, it may help to close

loops using the past information.

In this method, it is assumed that either robots’ relative poses are given or robots will meet each other at a point. At

the meeting point, which happens within the line-of-sight, robots identify their relative positions using cameras and

unique fiducials mounted on them. At the first meeting point a particle filter is applied to the data in reverse temporal

sequence to fuse all the data from the initial point. The future meetings are ignored. Assume that the pose of the robots

are known. Using Rao–Blackwellization for multiple robots, the desired posterior of multiple-robot SLAM for two

robots a and b, introduced in equation (7), is written as
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Algorithm 2 Particle filter for multiple robots with known relative poses and decoupled trajectories.

Input: set of particles representing posterior at time t− 1: St−1,

control signals at time t: uat , u
b
t ,

observations at time t: zat , z
b
t .

Output: set of particles representing posterior at time t: St.
1: St ← ∅
2: for i = 1→M do

3: < x
a(i)
t−1, x

b(i)
t−1,m

(i)
t−1, w

(i)
t−1 >← S

(i)
t−1

4: sample x
a(i)
t ∼ p(xat |x

a(i)
t−1 , u

a
t )

5: sample x
b(i)
t ∼ p(xbt |x

b(i)
t−1, u

b
t)

6: w
(i)
t ← p(zat |x

a(i)
t ,m

(i)
t−1) p(z

b
t |x

b(i)
t ,m

(i)
t−1)w

(i)
t−1

7: m
(i)
t ← map(m

(i)
t−1, z

a
t , z

b
t , x

a(i)
t , x

b(i)
t )

8: St ← St∪ < x
a(i)
t , x

b(i)
t ,m

(i)
t , w

(i)
t >

9: end for

10: resample(St)
11: return St

By ignoring line-of-sight observation and assuming that the trajectories of the robots are decoupled, the following

factorization can be written:
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b
0) is the mapping problem with known poses and is calculated using ray tracing (Thrun

et al., 2005, p. 154). The other two terms which are posteriors of poses of each robot can be calculated using a particle

filter.

The particle set for equation (12) is constructed as follows. The ith particle is given as

< x
a(i)
t , x

b(i)
t ,m

(i)
t , w

(i)
t > (13)

where x
a(i)
t and x

b(i)
t are poses of two robots at time t, m

(i)
t is the map, and w

(i)
t is the weight of the particle.

Algorithm 2 summarizes the particle filter implementation for equation (12). In lines 4-5 predictions based on the

motion models are performed. The sign ∼ denotes that the samples on the left-hand side are generated according

to the distribution given on the right-hand side. In line 6, weights of particles are updated. In line 7, the map of

each particle is updated given the pose and measurement of each robot. The map is updated by ray tracing explained

in (Thrun et al., 2005, p. 154), and function map(·) performs this operation. No matter how many pairs of poses and

measurements are in the argument of the function map(·), each pair is added to the map using ray tracing. In line 8,

the updated particle is added to the posterior particle set. Finally, in line 10, resampling is performed.

When the robots do not know their initial poses, they start SLAM independently and store all raw data until they meet

each other. Assume that the local coordinates of robot a is the global coordinates system of all robots. At the meeting

(at time s, 0 < s < t), where they can calculate their relative pose, the desired posterior of SLAM is defined as:
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where ∆s is the relative transformation of the poses of the robots at time s. by ignoring the uncertainty of the relative
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Figure 10: Bayes net for particle filter with a virtual robot. At time s, ∆s is known, shown in red. Past data, shown in

green, is updated using the virtual robot. Future data, shown in blue, is updated using a particle filter (Howard, 2006).

transformation, this posterior is calculated in two steps using the concept of the virtual robot. For time 0 : s, a filter is

constructed that processes all data from time s to time 0 in reverse temporal order, which is named as the virtual robot.

Once all past data is processed, for time s : t, algorithm 2 is applied. Fig. 10 shows the Bayes net of this approach. At

time s, ∆s is known, shown in red. Past data, shown in green, is updated using the virtual robot. Future data, shown

in blue, is updated using a particle filter.

This approach is effective and the maps and poses are updated in real-time, but it cannot be applied when robots cannot

see each other or they do not know their relative poses initially. Also, no uncertainty for relative poses is considered.

When the robots have mutual observations, mutual laser observation which are induced by other robots are excluded.

This approach has been tested on a team of four robots.

Carlone et al. also apply a particle filter for multiple-robot SLAM (Carlone et al., 2010), extending Howard’s method

(Howard, 2006). Their contribution includes considering the uncertainty of the relative transformation (problem b) in

the mapping, using grid mapping (Grisetti et al., 2007) for particle filtering. Also, they consider a mild assumption

on wireless communication (problem g). The work by Carlone et al. is motivated by the fact that incorporating

the uncertainty of the relative transformation, which is calculated using line-of-sight observation, can improve the

accuracy of mapping and localization.

Based on the work in (Carlone et al., 2010), assume two robots, a and b, can see each other. ρab and θab are the

line-of-sight range and bearing of b, measured by robot a. The uncertainties associated with these measurements are

σρab and σθab . ρba and θba are the same, but measured by robot b. Similarly, the uncertainties of the measurements

are σρba and σθba . Since there are two sources for the range measurements, they are averaged using the following

relations:

ρ =
σ2
ρba

σ2
ρab + σ2

ρba

ρab +
σ2
ρab

σ2
ρab + σ2

ρba

ρba, (15)

1

σ2
ρ

=
1

σ2
ρab

+
1

σ2
ρba

, (16)

where ρ is the averaged range measurement, and σ2
ρ is its uncertainty. The weights of the averaging is determined

from the uncertainty of the measurements. Now the relative pose can be describe as

[

ρ cos θab ρ sin θab π + θab − θba
]

. (17)
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Figure 11: Two robots, a and b, detect each other using line-of-sight observations. The relative poses and the uncer-

tainty of the relative pose is calculated from the line-of-sight observations (Carlone et al., 2010).

The first-order approximation of the corresponding uncertainty is given according to the following matrix

Σ =





σxx σxy σxθ
σxy σyy σyθ
σxθ σyθ σθθ



 , (18)

where

σxx = σ2
ρ cos

2 θab + σ2
θabρ

2 sin2 θab (19)

σyy = σ2
ρ sin

2 θab + σ2
θabρ

2 cos2 θab (20)

σxy = 1
2 (σ

2
ρ − σ

2
θabρ

2) sin(2θab) (21)

σxθ = −ρσ
2
θab sin θ

ab (22)

σyθ = ρσ2
θab cos θ

ab (23)

σθθ = σ2
θab + σ2

θba . (24)

If [xa ya θa] is the pose of robot a in the global coordinates, and [x̂b ŷb θ̂b] is the pose of robot b in its own local

coordinates, the following relation calculates the pose of robot b in the global coordinates (δθ = θab − θba):

[

xb

yb

]

=

[

cos δθ − sin δθ
sin δθ cos δθ

] [

x̂b

ŷb

]

+

[

xa

ya

]

+

[

ρ cos(θa + θab)
ρ sin(θa + θab)

]

(25)

θb = θa − θ̂b + π + δθ. (26)

To apply the calculated uncertainty to the particles, in the prediction step of the particle filter, instead of using odometry

measurements, the Guassian distribution given in (17) and (18) is used.

The work by Carlone et al. does not hold a joint posterior for trajectories and relative poses of the robots. In the

proposed solution, robots exchange data only in encounters. This way, having access to a communication channel is

not required at all times, but it can cause buffer overflow or it can occupy all processing resources for processing all

buffered data. Also, in this work all encounters are taken into account to improve relative poses, unlike the work by

A. Howard which only takes into account the first encounter (Howard, 2006). In this work one experiment with two

robots is presented. This work also has exponential space complexity.

Gil et al. propose a feature-based multiple-robot SLAM (Gil et al., 2010). This algorithm extends FASTSLAM1.0

(Montemerlo et al., 2002) to multiple robots in a feature-based environment. The proposed method addresses updating

maps and poses problem (problem c), which is managing the data association of visual features, assuming the visual



 

 

robot a
robot a and b
robot a, b, and c

Figure 12: In a team, as the number of the robots increases, the number of the particles increases. For instance, for

only one robot, robot a, 15 particles are required. For two robots, a and b, 15× 15 particles are required, and for three

robots 15× 15× 15 particles are needed.

descriptors have been affected by noise. The extension to FASTSLAM1.0 is done by adding poses of all robots to the

particles (similar to (13), where in this case the map is composed of the locations of the features). Consequently, to

better model the multi-variate distribution of the poses, number of particles should be increased exponentially with

respect to the number of the robots. Fig. 12 shows the growth of the number of the particles with respects to the

number of the robots. The pose of only one robot, robot a, has been modelled with n1 = 15 particles, shown with red

stars. For two robots, a and b, the proper size to account for all possible cases is n2 = 15 × 15, shown with black

crosses. For three robots, n3 = 15× 15× 15 particles are used, shown in blue dots.

When a feature is observed multiple times, or observed at the same time by multiple robots, the feature either already

exists in the map or is a new feature. This decision is not easy, since the features position and its descriptor (signature)

are affected by noise. To account for this problem, two distance criteria are defined: a Mahalanobis distance (D) for

the position of the feature and a Euclidean distance (E) for the descriptor of the feature:

D = (v − v̂)TΣ−1(v − v̂) (27)

E = (s− ŝ)T (s− ŝ) (28)

where Σ is the uncertainty of the measurements and v and s are position and descriptor of an associated landmark

with corresponding measurements v̂ and ŝ. If D and E are smaller than given thresholds, then the data association is

correct, otherwise, the feature is considered as a new feature. The proposed algorithm by Gil et al. has been verified

in simulated environments, where robots can send their information to a central agent. Moreover, it is assumed that

initial relative poses of the robots are approximately known and the direct encounters between the robots are ignored.

6.4 GraphSLAM

GraphSLAM is a smoothing approach (see Section 4.6) which is considered as a least squares error problem. Although

there are other approaches for smoothing, such as the work in (Pillonetto et al., 2013), in general, most smoothing

approaches are based on least squares. GraphSLAM has been used for multiple-robots, for instance, C-SAM, a batch

algorithm for feature-based map merging (Andersson and Nygards, 2008), decentralized SLAM (Cunningham and

Dellaert, 2012), (Cunningham et al., 2010), (Cunningham et al., 2012), (Indelman et al., 2014), and the work proposed

in (Kim et al., 2010).

Kim et al. extend iSAM for multiple robots based on multiple pose graphs in which the relationship between multiple
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Figure 13: GraphSLAM for two robots, a and b. Anchor nodes for initial poses (pa and pb) and relative poses between

two robots (∆ab
0 and ∆ab

1 ) are defined. In GraphSLAM for multiple robots, the optimization is performed on the

motion and observation constraints of each robot (black lines) and also on the observations between the robots (red

lines). Node p is the anchor node that connects all robots to the global coordinates (Kim et al., 2010).

pose graphs are formulated and optimized to generate a consistent solution (Kim et al., 2010). The proposed solution

addresses the unknown relative poses (problem a) using direct encounters and updating maps and poses (problem c)

using GraphSLAM. Moreover, this paper applies the algorithm to a team of heterogeneous robots which includes a

ground robot and a quadrotor (problem h).

Encounters are defined to be direct, when the robots can see each other, or indirect, when the robots see the same

environment. Direct encounters, used to calculate the relative poses of the robots, are determined using a camera on

the quadrotor to detect a checkerboard pattern on the ground robot. When an encounter occurs, the relative poses can

be further refined using scan matching.

Kim et al. consider constraints between the robots, when they see each other (direct encounter), and constraints

due to observing the same environment (indirect encounter). In Fig. 13, the graph corresponding to the poses and

observations of two robots a and b are shown. The blue dots are poses of the robots, connected to each other by

control actions (black small dots). For simplicity, observations, except encounters, are not shown. The encounters

between the robots are shown by red lines. c1 is a direct encounter, but c2 is an indirect encounter, since it happens at

different times. The trajectory of each robot is anchored by priors, pa and pb, on its first pose and is chosen arbitrarily.

∆a and ∆b are anchors of the trajectories that specify the offset of each trajectory with respect to a common global

frame.

The GraphSLAM solution is a least squares solution and corresponds to the maximum a posteriori (MAP) estimate of

the trajectories of the robots (X⋆). Assume there are two robots, r = a, b and there exist Mr pose for each robot, Nr
observations for each one, andC encounters, defined as a set {ck}

C
k=1. The optimization problem is defined as follows
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(29)

In this formulation, f(·) is the motion model, h(·) is the observation model that each robot makes from the world,

and g(·) is the observation model that models the encounters. As this formulation shows, to extend iSAM for multiple

robots, direct and indirect encounters are considered as constraints in the optimization process. Therefore, the same

solution and factorization which is used for single-robot SLAM is easily applied to multiple-robot SLAM. The opti-

mization is performed by linearizing equation (29) and is an efficient solution. However, the optimization is performed

over all trajectories of the robots. Therefore, for very long trajectories high computational processing is required.

Nagatani et al. present a 3D GraphSLAM for cooperative mapping by multiple robots (Nagatani et al., 2011). Their

work has been developed for autonomous navigation in rescue missions and has been presented in RoboCupRescue

2009. The main focus of the work is addressing the problem of updating maps and poses (problem c). The work



Algorithm 3 GraphSLAM for two robots, a and b, with known relative poses.

Input: control signals: ua1:t, u
b
1:t,

observations: za1:t, z
b
1:t.

Output: posterior: xab1:t, Σ
ab
1:t.

1: repeat

2: (x̃ab1:t, Σ̃
ab
1:t)← linearize(ua1:t, u

b
1:t, z

a
1:t, z

b
1:t)

3: (xab1:t,Σ
ab
1:t)← solve(x̃ab1:t, Σ̃

ab
1:t)

4: until convergence

5: return (xab1:t,Σ
ab
1:t)

by Nagatani et al. is an extension to the method proposed in (Takeuchi and Tsubouchi, 2008). For the cooperative

mapping, digital elevation maps are built, and by applying odometric and scan matching constraints, optimization in

the global perspective is performed. Fig. 14 shows a sample 3D map developed using laser ranger measurements

(Nagatani et al., 2011).

The underlying idea for GraphSLAM solutions are the same: an optimization is performed over nonlinear motion

and observation constraints. However, their difference is the approach chosen for the optimization. Kim et al. use

QR factorization combined with the variable reordering method (Kim et al., 2010), but Nagatani et al. use the sky-

line method, a popular analysis approach in finite element method (FEM), and the Cuthill-Mckee reordering method

(Nagatani et al., 2011).

Algorithm 3 summarizes the pseudocode of GraphSLAM implementation for two robots, with known relative poses.

Function linearize(·) linearizes the system model given in equation (29). Then the linearized equations are solved

in the next line. As explained, all GraphSLAM algorithms are similar; however, the approach taken to solve the

linearized equations makes the algorithms different. The cycle of linearization and solving for the results continues

until the solution converges.

Indelman et. al also present a GraphSLAM algorithm that addresses unknown relative poses and the multiple-robot

data association problem (problem a) (Indelman et al., 2014). The key idea in the algorithm is to distinguish between

inliers and outliers in multiple-robot data association using the fact that while each multi-robot correspondence can

be used to determine the transformation between the poses of the robots, only inlier correspondences will generate

similar results. This key idea is used to identify the inliers (overlaps) and calculate the relative poses of the robots.

As explained in Section 4.6, sub-map matching and GraphSLAM are two major types of smoothing approaches for

SLAM. While there are many algorithms for multiple-robot GraghSLAM, there are few methods for multiple-robot

sub-map matching. Vidal-Calleja et al. develop a heterogeneous multiple-robot SLAM using sub-map matching

Figure 14: A 3D map developed by laser ranger measurements using GraphSLAM. Image courtesy of Keiji Nagatani

et al. (Nagatani et al., 2011).



Figure 15: Three aerial (top) and ground (bottom) images. The aerial images are captured at about 40 m altitude.

The pose of the ground robot in the aerial images is shown by red lines. A key problem in multiple robot SLAM is

updating maps by images captured from different view. Image courtesy of Teresa Vidal-Calleja et al. (Vidal-Calleja

et al., 2011).

(Vidal-Calleja et al., 2011). The proposed solution addresses unknown relative poses (problem a), updating maps and

poses (problem c), and heterogenous robots (problem h).

The team of the robots is composed of one ground robot and one helicopter. The proposed approach develops a het-

erogenous map where the map features are composed of points and line segments. On the helicopter, a monocular

camera, which provides bearing-only observations, is used to identify features. To estimate 3D points, inverse-depth

parametrization is used. To estimate 3D line segments, anchored Plucker coordinates are extended by adding end-

points. Updating maps and poses with different views from the ground and the aerial vehicle is a challenging problem.

For example, Fig. 15 shows an example of two views, captured at the same time, from the ground and the aerial

vehicles. The optimization is an extension to hierarchical SLAM by Estrada et. al, in which each robot builds lo-

cal maps using an EKF, and then the spatial consistency of the maps of the robots is achieved by an optimization

process (Estrada et al., 2005). The algorithm has been tested with a helicopter and a ground vehicle in a large-scale

semi-structured terrain.

6.5 Cooperative Positioning System

In 1994, Kurazume et al. proposed the cooperative positioning system (CPS) (Kurazume et al., 1994). Tobata et al.

extend CPS to develop a 3D cooperative mapping system for a team of heterogeneous ground robots (Tobata et al.,

2012). CPS, as will be explained, is a simple algorithm, and Tobata et al. use it to address the line-of-sight observations

(problem d) and update maps and poses (problem c). Also, the robots on the team do not need to be homogenous, and

usually one robot, called the parent robot, has all the main sensors such as the scanning laser ranger. The other robots,

called child robots, act as moving landmarks, helping the parent robot to perform better localization.

As mentioned, the cooperative mapping is based on the concept of the cooperative positioning system. Using CPS,

robots know their locations accurately and therefore the cooperative mapping problem is reduced to the mapping

problem with known poses. In CPS, robots are divided into two groups: parent and child. One group stays still and

acts as stationary landmarks while the other group moves. Then the moving group stops, and the stationary group

starts to move. This alternating behavior continues until the team reaches the target position. This procedure allows

the robots to perform accurate relative localization using portable landmarks.

Fig. 16 shows this procedure. The parent robot is shown in blue and the child robots are shown in red. Algorithm 4

summarizes the pseudocode of CPS implementation for the parent and child robots. As shown in Fig. 16-a, the parent

robot is still, and the child robots move. Then child robots stop (line 1). Now the parent robot measures their poses

(line 2, where z1 is the first measurement of the parent robot). In the next step, the child robots stay still and the parent

robot moves and stops (line 3). Then the parent robot measures the poses of the child robots (line 4, where z2 is the

second measurement of the parent robot). Using triangulation, the pose of all robots are calculated (line 5). Once the

poses of the robots are known, mapping with known poses is performed. To minimize error accumulation, Tobata et



Algorithm 4 CPS implementation for a parent and child robots.

1: Child robots move and stop

2: z1 ← the parent robot identifies child robots

3: The parent robot moves and stops

4: z2 ← the parent robot identifies child robots

5: triangulate z1 and z2 to find poses

a b

pp

c1

c1

c2

c2

Figure 16: In cooperative positioning systems, robots are divided into two groups: parent (the blue triangle, marked

with p) and child (the red triangles, marked with c1 and c2). These two groups move alternatively. Child robots move

and stop, then the parent robots measures their poses. Next the parent robot moves, stops, and measures the poses of

the child robots.

al. perform GraphSLAM over the history of the poses. The major advantage of CPS-based mapping is that it can be

used in unknown environments easily; however, it requires coordination between the agents to alternate the landmark

role consistently. Fig. 17 shows two 3D maps developed using the CPS algorithm in outdoor environments. A similar

algorithm, called intrinsic localization and mapping (ILM), is proposed in (Dellaert et al., 2003); however, in ILM, the

restriction of having stationary robots is not imposed on the robots. It is also shown that by having stationary robots,

the global accuracy of the solution is improved (Dellaert et al., 2003).

6.6 Sub-map Matching: Constrained Local Sub-map Filter

In 2002, Williams et al. proposed a solution for multiple-robot SLAM in feature-based environment using sub-map

matching (Williams et al., 2002b). The proposed solution is called constrained local sub-map filter (CLSF). CLSF

was first proposed by Williams et al. for single-robot SLAM and tested in underwater environments (Williams et al.,

2002a). In fact CLSF is a sub-map matching approach in which local maps are built using an EKF. As mentioned in

Section 3, Single-robot SLAM, sub-map matching is very efficient for large scale mapping. The main reason for this

efficiency is that the accumulated estimation error is set to zero when a new sub-map is constructed. The same concept

can easily be extended to multiple robots.

The proposed CLSF for multiple-robot SLAM addresses three main problems: unknown relative poses (problems

a), complexity (problem h), and updating maps (problem c). It is motivated by the fact that processing sub-maps,

in regular intervals, saves computational resources compared with processing each measurement separately. In other

words, CLSF reduces the complexity of multiple-robot SLAM by periodically fusing the local sub-map of the features,

generated from features nearby the robot, to the global map. This way, every observation is not fused directly into the

global map, and therefore the complexity decreases.

Fig. 18 illustrates the key concepts of the solution. Two robots, a and b, are shown in red and blue. The global

coordinate frame is marked with G. When the robots build new local maps, shown by frames La and Lb, the global

coordinates of the robots are used to initialize the coordinates of the local maps. The local frames are centered at the



Figure 17: Examples of 3D maps of outdoor environments using the cooperative positioning system. Image courtesy

of Yukihiro Tobata et al. (Tobata et al., 2012).

current estimated pose of the robots. The state of the system is defined as follows





Xt
LaXa

t
LbXb

t



 . (30)

Note the pre-superscript of a variable denotes the coordinate frame of the variable. For example LaXt means that Xt

is measured in frame La. GXt, or simply Xt, means that Xt is measured in the global frame, G. The elements of the

state vector are defined as follows

• Xt: coordinates of local frames, La and Lb, in the global frame and the global map,

• LaXa
t : pose and map of robot a in local frame La,

• LbXb
t : pose and map of robot b in local frame Lb.

These elements are given as

Xt =





xLa

t

xLb

t

mt



 , LaXa
t =

(

Laxat
Lama

t

)

, LbXb
t =

(

Lbxbt
Lbmb

t

)

, (31)

where xLa

t and xLb

t are the global poses of frames La and Lb, and mt is the global map. Laxat and Lama
t are the pose

and sub-map of robot a in its local frame, La. Similarly, Lbxbt and Lamb
t are defined for robot b. Once these local

maps are created, the covariance between each of these element; Xt,
LaXa

t , and LbXb
t ; is zero. Moreover, since the

uncertainty of the pose and features in the local map is usually small, the data association problem is also improved.

Additionally, data association can even be deferred until an improved local map is generated. Note that in CLSF, the

relative pose of the robots is determined by matching their map features. Also, uncertainties associated with poses

and maps are maintained by the covariance matrix. The pseudocode of the CLSF algorithm is similar to algorithm 1,

except that the state vector is defined according to equation (30).
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Figure 18: Two robots, a and b, develop two local maps. These maps are used to generate a global map. Robot a and

its sub-map is shown in blue. Robot b and its sub-map is shown in red. The black dots are features.

6.7 Manifold Representation

Howard et al. propose a manifold representation for multiple-robot SLAM (Howard et al., 2006b). The proposed

algorithm is designed for 2D environments. In conventional mapping methods, the map is represented in a 2D plane;

however, in the propose method, the map is represented as a manifold.

In a manifold map, while the robot develops a map, the trajectory and map of the robot form a spiral in the 3D space.

Fig. 19-a shows a 2D map developed by a robot, overlaid on the blueprint of the environment. Fig. 19-b shows

the manifold map of the same environment. The manifold representation has two main properties. The first property

is self-consistency. As shown in Fig. 19-a, due to error accumulation, the map is not consistent. However, on the

manifold, the map is self-consistent. In other words, the inconsistency in the 2D map is not shown in the manifold

representation. The second property is the lazy loop closure. It is obvious that in the manifold representation, one point

in the world, might be represented by multiple points on the manifold. This many-to-one correspondence is useful for

loop closure. In general, to perform loop closure, two points in the map which correspond to the same point in the

world must be identified. It is important to know when to check for the correspondence between the points. Often this

process might fail due to lack of enough information. On the other hand, if the loop closure is missed, the map will

be inconsistent. In the manifold representation, the decision of the making correspondence between the points can be

delayed until the robots acquire enough information to establish the correspondence conclusively.

Manifold representation for multiple-robot SLAM addresses three main problems: unknown relative poses (problem

a), line-of-sight observations (problem d), and loop closure (problem e). The unknown relative poses are determined

using line-of-sight observations. The loop closure problem is performed using the manifold. For example, if two

robots arrange a rendezvous at two points on the manifold, if the robots meet, the loop closure happens; otherwise, the

points are distinct points and there is no loop closure.

In manifold representation, multiple-robot SLAM is composed of three steps: incremental localization and mapping,

loop closure, and island merging. Algorithm 1 summarizes the pseudocode of these steps. Incremental localization

and mapping is the process of exploring the unknown environment while incrementally making a map as a manifold

(line 1). This step is similar to other mapping approaches, except the map is represented as a manifold. Incremental

mapping and localization is accompanied with two other events: loop closure and island merging. Both events are

triggered by line-of-sight observations between the robots and are used to make a global map. Loop closure occurs

when two largely separated parts of a manifold map are brought together using line-of-sight observations between

the robots (line 3). Island merging occurs when two unconnected parts of the manifold are fused together into a

single representation (line 4). Island merging is also determined by line-of-sight observations, and it is similar to map

merging, explained in Section 6.8. Island merging in multiple-robot SLAM is used when robots with unknown initial

poses see each other. This process fuses local maps of the robots into a global map. This algorithm handles mutual



Algorithm 5 Manifold algorithm for multiple-robot SLAM.

1: Make incremental manifold

2: if line-of-sight observation occurs then

3: try loop closure

4: try island merging

5: end if

a b

Figure 19: Manifold representation of a map. a) An inconsistent map due to error accumulation, b) Manifold repre-

sentation of the same map. The manifold representation does not show up the self-inconsistency of the map.

observations and loop closure; however, because of the complexity of the algorithm it poorly scales with the size of

the team.

6.8 Map Merging

Map merging or map fusion is a solution to the multiple-robot SLAM, in which map data from robots are fused to

generate a global map. This approach has many applications, such as in cooperative exploration (Fox et al., 2006),

where the decision on the next exploration frontier requires a global map built by all robots. Map merging can be solved

in two steps: 1) finding the required alignment between the maps, and 2) merging maps by integrating information

from the aligned maps into one map. Generally, the alignment between the maps can be determined from two sources:

maps and poses. Therefore, if the relative poses are known or the common areas in the maps are determined, it is

possible to calculate the transformation between the maps. The map merging problem can be studied in four different

cases (Rone and Ben-Tzvi, 2013):

• Known initial poses: This is the simplest case of map merging. In this case, since the initial poses are

known, the relative poses of the robots can be estimated at any time. Therefore, maps at any time can easily

be merged. The assumption of knowledge of the initial poses is very limiting, and in most applications does

not hold true.

• Rendezvous: In rendezvous (Zhou and Roumeliotis, 2006), robots meet at a point. At the meeting point, the

relative poses can be calculated through the line-of-sight measurements. Once the relative poses are known,

maps can be merged. This approach adds another layer of the challenge to the problem, which is coordination

for meeting.

• Relative localization: A simpler form of the rendezvous is relative localization. In this case, one robot

localizes other robots in its own map (Ko et al., 2003); therefore, without rendezvous, the relative poses of

the robots can be calculated. The challenge with this approach is that the other robots have to be present

in the map of the localizing robot, otherwise the localization would fail. This approach might provide false

results; therefore, it is important to have a verification procedure to reject false hypotheses. For instance,

rendezvous is a good approach to verify the results (Fox et al., 2006). Fig. 20 shows an example of relative

localization. Two robots, a and b, have mapped different parts of an unknown environment. Robot a and its

laser ranger measurements are shown in blue. The true pose of robot b and its laser ranger measurements are

shown in red. Robot a uses its own map to localize robot b. To perform the localization, the measurement

acquired by robot b is used. In reality, robot b is not located inside the map of robot a. Thus, performing

relative localization fails to determine the true pose of robot b. In other words, due to the self-similarity of

the environment, robot b is localized incorrectly, as shown by the green robot.
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Figure 20: Relative localization. The measurement by robot b, shown in red, is used by robot a to localize robot

b inside the map developed by robot a. Due to the self-similarity of the environment, robot b has been localized

incorrectly, shown in green.

• Relying on Overlaps: In this approach, overlaps between the maps are used to calculate the relative transfor-

mation between the maps (Birk and Carpin, 2006). The challenge with this approach is finding the overlaps;

however, this method does not need rendezvous and also robots can be out of each others’ maps at any time.

In the rest of the section, map merging based on the overlaps of the maps is presented in detail for 2D SLAM. To the

best of the authors’ knowledge, there is no solution in the literature addressing 3D volumetric map merging. Let a

transformation be composed of a 2× 2 rotation matrix Rψ and a 2× 1 translation vector T as follows:

Rψ =

[

cosψ − sinψ
sinψ cosψ

]

, T =

[

δx
δy

]

, (32)

Let m1 and m2 be two occupancy grid maps. Assuming that m2 is merged into m1, the map merging problem is

defined as: find a rotation matrix, Rψ and a translation vector, T which transforms m2 such that the overlaps of m1

and the transformed m2, m′
2, fall squarely on top of each other. To do this it is required to maximize a verification

index defined on the merged map:

(Rψ, T ) = argmax
ψ,δx,δy

V (m1,m
′
2), (33)

where m′
2 means that the m2 is transformed according to Rψ and T . V (·) is a criterion, such as a similarity index

(Birk and Carpin, 2006), that evaluates the merging process. This optimization is not easy to solve analytically and

some methods like (Carpin et al., 2005) uses an exhaustive search to find a transformation matrix and then checks (33)

to see if it is satisfied.

Fig. 21 depicts an example of map merging with three maps. The overlap between map1 and map2 is shown with

a dashed ellipse and the overlap between map1 and map3 is shown by a solid line ellipse. To find the required

transformation, the first step is to identify overlaps, then use the overlaps to calculate the alignment and finally verify

the results using (33). The map merging problem can be interpreted as a special case of image registration in computer

vision where images are maps with special geometry. However, the problem is that in multiple-robot map merging,

the percentage of overlap between maps is usually low. If it is guaranteed that the overlaps between the images are

large, then image registration techniques can be used for mapping. This concept is very similar to visual odometry, in

which the consecutive image frames are matched to determine the relative motion between the frames. For instance,

Elibol et al. apply a feature-based image registration to map an underwater environment with multiple robots (Elibol

et al., 2014). Fig. 22 shows a map of the underwater environment developed by two robots.
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Figure 21: An example of map merging. Three maps are merged to form a complete map of the environment. The

overlap betweenmap1 andmap2 is shown with a dashed ellipse. The overlap betweenmap1 andmap3 is shown with

a solid line ellipse (Saeedi et al., 2014b).

As mentioned, merging the aligned maps is the second step of map merging. This is not a challenging problem and

can be considered as an extension of mapping by a single robot.

Assume map ma, developed by robot a, is an occupancy grid map with N grid cells, each with an associated binary

random variable, representing its occupancy:

ma = {ma
i }, i = 1, ..., N. (34)

The binary random variable specifies whether a cell is occupied (‘1’) or free (‘0’), then p(ma
i = 1) or p(ma

i ) represents

the probability that the cell is occupied.

Assuming initially a cell i has unknown occupancy, p(ma
i ) = 0.5, at time t; if the cell is in the perception field of the

range sensor, its value is calculated using the following recursive relation:

lat,i = lat−1,i + log
p(ma

i |z
a
t , x

a
t )

1− p(ma
i |z

a
t , x

a
t )
, (35)

where lat,i is referred to as the log odds and is defined as

lat,i = log
p(ma

i |z
a
1:t, x

a
1:t)

1− p(ma
i |z

a
1:t, x

a
1:t)

. (36)

For the occupancy grid maps, After finding the relative transformation between two maps,ma andmb, the probabilities

are combined to produce the final map. The data that is received from the transformed map, m
′b is akin to a batch

of sensor data and should be incorporated by using the additive property of the log odds representation of occupancy

originally defined in (36):

l
fused
t,i = lat,i + l

′b
t,i, (37)



Figure 22: Map of an underwater environment, developed by two robots using feature-based image registration. Image

courtesy of Armagan Elibol et al. (Elibol et al., 2014).

for all i = 1..N . The superindices are used to identify the maps, la is for ma and l′b is for m′b. lfused represents the

fused map, mfused. Once l
fused
t,i is calculated, the probability of the fused map is recovered from equation (36).

It should be mentioned that the accuracy of a multiple robot SLAM algorithm based on the map merging is dependent

on the accuracy of the individual local maps developed by the robots. Thus to have a consistent global map, it is

important to use a reliable and robust SLAM algorithm to generate the local maps. For instance, Fig. 23-a and b

show two local maps developed by two robots. These two maps are generated using a well-known dataset presented

in (Howard, 2006). This dataset, known as Fort AP Hill, is commonly used as a benchmark dataset. In these two

figures, the maps are generated using FastSLAM1.0 for dense scanning laser ranger mapping. Compared with an

implementation of FastSLAM2.0 for dense scanning laser, such as improved grid mapping (Grisetti et al., 2007),

FastSLAM1.0 for dense scanning laser ranger mapping requires at least ten times more particles to produce good

quality maps. In other words, if the number of the particles is insufficiently high, the maps will not be of good quality.

To generate these maps, 50 particles, a relatively small number, are used. The fused map is shown in Fig. 23-c. The

area enclosed inside the ellipse shows a mismatch due to the distortion in the original map. This supports the claim that

if the original maps, used for map merging, are of insufficient quality, the resulting fused map will also be distorted.

This fact is one of the main limitations of map merging. In order to tackle this problem, it is very important to develop

the individual maps of the robots using a consistent and reliable algorithm.

Blanco et al. propose a map merging solution that takes into account the uncertainty and ambiguity arising from the

matching maps (Blanco et al., 2013). This method mainly addresses two problems: unknown relative poses (problem

a) and the uncertainty of the relative poses (problem b). In this method, a dual representation of local maps is used,

where both point and occupancy grid maps are maintained. First, the grid maps are matched; then the corresponding

point maps are matched. The point map matching helps to remove false matches. The matching process starts with

removing high frequency noises and extracting the Harris (Harris and Stephens, 1988) or Kanade Lucas Tomasi (KLT)

(Shi and Tomasi, 1994) detectors. The transformation is determined from these detectors. Often multiple candidates

exist; the number of the candidates are reduced by a customized RANSAC algorithm which is based on the sum of

Gaussian (SOG) distributions. Using SOG, uncertainty of the detectors are taken into account. Further refinement is

performed by matching the point maps. This method is effective in rejecting ambiguity results.



Figure 23: A major limitation of map merging is its dependency on good quality maps. If the maps of the robots are

distorted, the fused map will also be distorted. a and b show two maps developed by two robots, and c shows the fused

map. The area shown by the red ellipse is distorted due to low quality of the original maps at these areas.

As an important part of the unknown relative poses problem (problem a), knowing the right time for map merging,

to avoid failures or false matches, increases the efficiency of map merging. Dinnissen et al. proposes a method that

solves this problem (Dinnissen et al., 2012). In this approach, robots are trained by reinforcement learning to find the

best time for map merging. The efficiency of the proposed solution is verified using simulated datasets. Determining

the right time for map merging is a challenging problem, and efficient and thorough training is needed to verify the

effectiveness of the proposed solution.

To address the unknown relative pose problem (problem a), Saeedi et al. propose an occupancy grid map merging

solution which finds the relative transformation between the robots by comparing featured sections of the maps (Saeedi

et al., 2011a). These sections are smoothed and their suitability for map merging is determined by a histogram filter.

This approach is tested with three robots in different indoor environments.

An algorithm based on the artificial intelligence is used in (Saeedi et al., 2011c) to address the unknown relative

pose problem (problem a) and the complexity problem (problem f). In this algorithm, map merging is achieved

by clustering the occupancy grid maps using neural networks self-organizing maps (SOM) or the Kohonen network

(Kohonen, 1987). SOM can reduce the dimensionality of the metric space; therefore an occupancy grid map with

thousands of cells are represented by a reduced number of neurons (or clusters). The clusters represent the spatial

geometry of the map in an abstract form. Thus, processing the clusters reduce the computational demand. Then norms

of the clusters are used to find the relative transformation between the maps. Although this approach scales down the

maps to clusters and therefore is relatively fast, some useful information may be lost by clustering the maps.

Similarly, to address the relative poses problem (problem a) for vehicles in outdoor environments, Li et al. use genetic

algorithms (GA) to determine when the best match between the two maps occurs (Li et al., 2014). The experiments

demonstrate that the maps have large overlaps which guarantee success in map merging using GA.

Finding overlaps in the Euclidean space is difficult. Thus, by transforming the map into a different space, certain

properties can be exploited to make the problem easier. The Hough transform turns out to have many such properties.

For example, line segments, which are common in most structured environments, are modeled as an intensity point

in the Hough space. Relative relations of line segments are represented by the distances between intensity points.

Additionally, since the Hough transform is generated over an angle range of 360◦, all views in the Hough space are

included and the problem of partial views can be eliminated. In robotic applications, the Hough transform has also

been used in scan matching (Censi et al., 2005) and localization (Yun et al., 1998; Iocchi et al., 2001; Iocchi and Nardi,

2002; Grisetti et al., 2002).

There are a variety of methods to extract geometric information like line segments from maps or laser ranger mea-

surements (Nguyen et al., 2005; Harati and Siegwart, 2007). The Hough transform (Davies, 2005) and the Radon

transform (Radon, 1986) are two classical methods for line extraction which have different applications. The results

of the Hough and the Radon transforms on a map are almost identical, although the approach of these two methods are



different. The Radon transform is the projection of the image intensity along a radial line oriented at a specific angle,

while the Hough transform is a parametric model of each non-background point. Other methods like Split-Merge are

fast and effective for line extracting.

Carpin proposes map merging algorithm using the Hough spectrum (Carpin, 2008). This algorithm addresses the

unknown relative poses problem (problem a). The Hough spectrum approach is based on correlation of Hough images

and there is no assessment on overlaps between maps. In this method, a spectrum function, originally proposed in

(Censi et al., 2005), is defined on the Hough image. The function is applied to both of Hough images of maps, then

the correlation of the results is used to find potential rotations. There are multiple candidates which all are processed

to find the translation. For each candidate a translation is calculated and at the end, only one rotation and translation

are accepted. Carrying over all rotation candidates requires more processing time and computational power and makes

the algorithm slow. For each rotation, the translation is found using correlation of projections of the Hough images

along x and y directions. For example, if projections of the Hough image of map m1 are shown by Px1
and Py1 and

for the rotated map m2 by Px2
and Py2 , then the peak of correlation of Px1

and Px2
results in the translation along x

and the peak of correlation of Py1 and Py2 generates the translation along y. This approach is effective if projections

have enough similar patterns, and this similarity happens only when there is a significant amount of overlap between

maps. Therefore, finding the translation fails in maps with less overlaps.

Saeedi et al. propose a map merging for occupancy grid maps in the Hough space, using Hough peak matching (Saeedi

et al., 2014b; Saeedi et al., 2012b). The proposed algorithm addresses the unknown relative poses problem (problem

a) and the uncertainty of the relative poses (problem b). In this method, map fusion is achieved by transforming

individual maps into the Hough space where they are represented in an abstract form. Using peak points of the Hough

images and properties of the Hough transform, common regions in the maps are determined. These regions are then

used to calculate the unknown transformation between the maps. The rotation in the Euclidean space is a nonlinear

function, composed of trigonometric functions. An interesting property of the Hough space is that the rotation in the

Hough space is a linear function. Fig 24 shows this property. Fig 24-a shows a map with five line segments. Fig 24-b

shows the same map rotated 15◦ and translated 50 cells along both axes. Fig 24-c and Fig 24-d show the Hough images

of the two maps. Peak points are marked with white squares, and each peak point corresponds to a line-segment. The

rotation in the Euclidean space is equivalent to a shift in the Hough images.

In indoor and structured environments, it is very common to have multiple hypothesis for the rotation, due to the shape

of the environment. In the proposed algorithm, the true hypothesis is selected using cross correlation of the Hough

images. The simulated and real-world experiments show the effectiveness of the proposed algorithm.

As reviewed in the previous sections, the concept of map merging also applies to feature maps, where overlaps need

to be identified (Zhou and Roumeliotis, 2006; Konolige et al., 2003). Once two feature maps are aligned by a transfor-

mation, they must be merged to generate a global map. Merging maps can be done by copying all features from one

map to another; however, due to noise and uncertainty of the position of the features, duplicate features might exist.

These duplicates should be merged to avoid incorrect mapping. To do this, if the distance between two features from

aligned maps is less than a predefined threshold, then they should be merged and considered as one feature. This has

been shown for two features in Fig. 9.

6.9 Topological Approaches

When multiple robots are supposed to explore and map an unknown environment cooperatively, there is a need to

provide a logical infrastructure so that robots can share their spatial perception and decide about how to use the shared

knowledge. If the salient information from maps is extracted and shared among robots, the speed and accuracy of the

mutual perception will improve and communication channels will not be burdened with large amounts of unprocessed

data. Topological approaches to multiple-robot SLAM is often used in map merging, which was explained in the

previous section.

Topological approaches have also many applications in map merging. Most topological methods address two main

problems: unknown relative poses (problem a) and complexity (problem f). For instance, multi-robot SLAM based
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Figure 24: Effect of the transformation of maps on the Hough images a) An example occupancy grid map. b) The map

is rotated 15◦ and translated 50 cells along both axes. c) Hough image of the map over 180 degrees. Labeled points

correspond to the line segments. d) Hough image of the transformed map over 180 degrees (Saeedi et al., 2014b).

on topological map merging using both structural and geometrical characteristics of the Voronoi graph is proposed in

(Huang and Beevers, 2005). The assumption in this work is that a robot will be able to recognize areas of the map

that correspond to vertices. In this case the topological map is built on the occupied space as opposed to the free

space. The method in (Huang and Beevers, 2005) is claimed to be fast; however, a limitation is that the maps are

not updated. Chang et al. proposes a hybrid topological/metric multiple-robot SLAM method (Chang et al., 2007),

in which graph-like topological representation of the maps is used to find the relative alignment of the maps. These

methods, as reported, need to be improved for scalability.

Erinc et al. propose a multiple-robot topological map merging for appearance maps (Erinc and Carpin, 2014). In

their approach, appearance maps are matched by maximizing an algebraic connectivity metric, defined for the merged

graph. The same metric is used to evaluate the quality of the merged map. The main novelty of their work is putting

forward the algebraic metric to assess the quality of the map. This is very important as in the research community,

measuring the performance of the appearance maps is still an open problem. Another important issue, which is left as

future work, is that the redundant images in both original maps are not removed from the merged map.

A probabilistic topological representation is proposed in (Saeedi et al., 2014a; Saeedi et al., 2012a). In addition

to problems a and f, unknown relative pose and complexity, the proposed algorithm addresses the uncertainty of

the relative poses (problem b). The key idea is to extend the generalized Voronoi diagram to include probabilistic

information of the occupancy grid maps. The extended diagram, called probabilistic generalized Voronoi diagram

(PGVD), is used to preferentially match parts of the maps which are more certain. Also to address the uncertainty

of the relative poses, an algorithm is proposed to transform a map with an uncertain transformation matrix. This
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Figure 25: Two partial maps of the same environment with their probabilistic GVDs. There is a displacement between

the maps. a) PGVD of the first map. b) PGVD of the second map (Saeedi et al., 2014a).

algorithm is important, since it helps to propagate the uncertainty of the transformation matrix to the transformed map.

The concept of probabilistic GVD is demonstrated in Fig 25-a-b. Fig. 25-a and Fig. 25-b show the probabilistic GVDs

for each map where short edges have been removed. The edges of each map are marked with numbers. The first map

has seven edges and the second map has eight edges. Fig. 26-a and Fig. 26-b show two enlarged edges of the first

map, number 3 and number 7. The grayscale intensity of each cell in these edges represents the probability of that cell

in the PGVD (The probability that it is a valid GVD cell). Edge number 3 is located in the area of the original map

which has high certainty, so the probability of the cells of this edge being in the GVD is high. However, edge number

7 is located at the end corner of the map which is less certain. Therefore, the probability of the cells in this edge is

lower. The proposed algorithm has a few advantages: first, it reflects the probabilities of the occupancy grid maps to

the GVDs of the maps. Therefore, the topological map is probabilistic. Second, it propagates the uncertainty of the

relative transformation to the map, and finally, based on the experiments, the complexity of the algorithm is low.

a

3

b

7

Figure 26: Two edges from Fig. 25-a a) edge number 3. b) edge number 7. The grayscale intensity of each cell in

these edges represents the probability of that cell in the PGVD (The probability that it is a valid GVD cell) (Saeedi

et al., 2014a).

Table 4 compares pros and cons of a few map merging algorithms, including topological and non-topological algo-

rithms, for occupancy grid map merging in 2D space. To the best of the authors’ knowledge, there is no solution

in the literature addressing map merging in 3D space. An important bottleneck in 3D map merging is dealing with

computational limitations.

6.10 Other Issues in Multiple-robot SLAM

In this section, other challenges in multiple-robot SLAM, such as communication issues and performance measure,

with available solutions are explained.

6.10.1 Communications Issues

Communications problem, such as black-outs, delays, and out-of-sequence packets, are major problems which affect

the performance of the real-time multiple-robot SLAM algorithms. Two important communication related issues

are cyclic update and out-of-sequence measurements. Cyclic update, or overconfidence, happens when robots use a

measurement repeatedly. This happens when one or multiple robots use the same information more than once. If



Table 4: Comparison of common map merging algorithms

No Method Pros and Cons

1 Adaptive Random Walk

(Birk and Carpin, 2006)

• Pros: easy to implement, works in unstructured settings

• Cons: slow

2 Hough Peak matching

(Saeedi et al., 2014b)

• Pros: fast, works with minimal overlaps

• Cons: requires preprocessing (Hough transform), works in structured settings

3 Probabilistic GVD

(Saeedi et al., 2014a)

• Pros: fast, works with minimal overlaps

• Cons: requires preprocessing (extracting GVD)

4 Hough Spectrum

(Carpin, 2008)

• Pros: fast, requires preprocessing (Hough transform)

• Cons: requires large overlaps

5 Fourier-Hough transform

(Chunhavittayatera et al., 2006)

• Pros: fast, requires preprocessing (Hough transform)

• Cons: requires very large overlaps, less accurate

a measurement arrives at its destination in the wrong order, for example if it is delayed, it is an out-of-sequence

measurement. This happens during buffering or communications latency problems. Dealing with these issues is an

important part of multiple-robot SLAM. Specifically, in environments such as underwater, low bandwidth and low

speed communications impose limitations on the accuracy and scalability of a team-based operation.

Leung et al. studied communication problems in multiple-robot localization (Leung et al., 2010) and multiple-robot

SLAM (Leung et al., 2012). In their approach, a centralized-equivalent estimate is obtained by all robots in a decen-

tralized manner, assuming the network is never fully connected. A centralized-equivalent estimate means that a robot

can find an estimate which is equivalent to the estimate generated by a centralized estimator. This solution enforces

delay on the state estimation; however, by applying the Markov property at certain times, a robot does not need to keep

track of what other robots know. Lazaro et al. utilize condensed measurements to exchange map information between

the robots (Lazaro et al., 2013). The condensed measurements address communications and computational problems

(problems g and f), with a very little decrease in accuracy of the results. In (Aragues et al., 2011) an algorithm for

merging feature-based maps with limited communication is introduced. Other aspects of communication issues, such

as out-of-sequence measurements, have been studied in (Bar-Shalom, 2002; Howard et al., 2003; Bar-Shalom et al.,

2004; Hollinger and Singh, 2012).

6.10.2 Performance Measure

Evaluating the accuracy of SLAM algorithms has always been a challenging problem in the SLAM research commu-

nity. There are few works that have studied and developed a performance measure for single-robot SLAM (Burgard

et al., 2009; Kümmerle et al., 2009; Schwertfeger and Birk, 2013). The most intuitive approaches are comparing the

robot trajectory with the ground truth trajectory, or comparing the robot-developed map with the ground truth map.

These approaches have limitations. For instance, in real-world environments, the ground truth trajectory requires a

motion capture system. Similarly, acquiring the ground truth map requires using cartography techniques or having

many accurate measurements from the environment.

Schwertfeger et al. propose a performance measure to compare a robot-built map with a ground truth map (Schwert-

feger and Birk, 2013). To calculate the performance measure, the topological structures of both maps are extracted

using generalized Voronoi diagram; then these graphs are matched to determine the similarity of the maps. The match-

ing can be based on specific attributes of the graphs such as the number of the edges connected to a vertex or the angles

between the edges of a vertex. Also the matching can be based on the structural similarity of the occupied cells in

the vicinity of vertices. This approach is based on the abstract and topological structures of the maps; therefore, the

matching is relatively fast. Moreover, the proposed matching techniques are invariant to the initial orientation of the

maps.

If the ground-truth information, such as blueprints of the environment, location of features, or the true pose of the



robots through a motion capture system, is available, the results of SLAM can be evaluated and verified; however,

this type of information is not available in all environments. When no ground truth information is available, the

self-consistency of the global map can be used to evaluate a SLAM algorithm. For instance, (Kümmerle et al., 2009)

propose a method that relies on the relative geometric relations between the poses of the robot. Although this approach

does not require the blueprint or ground truth trajectory, it needs some manual work, carried out by a human, to

determine the topology of the environment.

In multi-robot autonomous applications in which the localization of the robots is based on multiple-robot SLAM, each

robot on the team relies on the global map to perform autonomous tasks; thus, the accuracy and consistency of the

global map affects the decision of the robots and therefore the success of the mission. Few studies have been done

on measuring the performance for multiple-robot SLAM, and it is considered as a challenging and unsolved problem.

For appearance-based map merging, Erinc et al. propose a metric that measures how the local maps are interlaced in

the merged map (Erinc and Carpin, 2014). A similar metric is developed for occupancy grid map merging, where the

performance of map merging is based on counting the number of the known cells in the merged map that are either free

or occupied in both local maps (Birk and Carpin, 2006). These metrics do not rely on the ground truth information,

and may represent invalid results, especially when there is little overlap between the maps.

6.10.3 3D SLAM

As mentioned in Section 4.8, 3D SLAM is the ultimate goal for robotic perception. However, due to the complexity

of multiple-robot SLAM in 3D, most papers have focused on multiple-robot SLAM in 2D. In some of the papers,

since there is no change in the altitude and roll and pitch angles of the robots, multiple-robot SLAM is performed

using 2D SLAM, but the mapping is in 3D space. For instance, 2D SLAM with 3D mapping is performed in (Tobata

et al., 2012). Moreover, some papers make the assumption that the world is rectilinear and the scanning laser ranger

measurements are projected on to 2D space, in which 2D coordinates and the heading angle are calculated (Kim et al.,

2010). Among other works, the following papers, which were reviewed in the previous sections, perform 3D SLAM,

recovering full position and orientation: (Michael et al., 2012), (Vidal-Calleja et al., 2011), (McDonald et al., 2013).

The last paper is about multi-session SLAM, which is different from multiple-robot SLAM but shares similar concepts.

6.11 Summary of the Algorithms

Table 5 lists the presented algorithms for multiple-robot SLAM. Each algorithm in the table addresses one or more

of the following problems explained in Table 3: (a) relative poses of robots, (b) uncertainty of the relative poses, (c)

updating maps and poses, (d) line-of-sight observations, (e) closing loops, (f) complexity, (g) communications, (h)

heterogeneous vehicles and sensors, (i) synchronization, and (j) performance measure.

7 Multi-robot Testbeds and Datasets

Developing a testbed and collecting experimental data often takes a lot of time and resources. The collected datasets

and developed testbeds can assist researchers to save their effort to develop efficient algorithms. Moreover, with a

known dataset, researchers can compare their results and efficiency of the algorithms. Michael et al. present an

experimental testbed for large teams of multiple robots (Michael et al., 2008). The testbed is composed of targets and

ground and aerial robots, called Scarab and Khepri robots, respectively. These robots can be used for applications such

as formation control and perception. Rocco et al. develop a fleet of differential-drive wheeled robots, called SAETTA,

for indoor applications (Di Rocco et al., 2013). SAETTA robots have several key advantages such as being low-cost,

easy to replicate, able to communicate on different wireless channels, and easy to program. Robotic simulators can also

be used to develop and test the multiple-robot SLAM algorithms efficiently. Robot operating system (ROS) (Willow

Garage, 2006) and Gazebo (Koenig and Howard, 2004), Microsoft Robotics Developer Studio (MRDS, 2006), virtual

robot experimentation platform (V-REP) (Coppelia Robotics, 2013) are just a few examples of such simulators.

There are many datasets for single-robot SLAM (Tong et al., 2013; Smith et al., 2009; Bastian Steder, 2013; Lee et al.,



Table 5: Multiple-robot SLAM algorithms. Each algorithm addresses one or more of the following problems explained

in Table 3: (a) relative poses of robots, (b) uncertainty of the relative poses, (c) updating maps and poses, (d) line-of-

sight observations, (e) closing loops, (f) complexity, (g) communications, (h) heterogeneous vehicles and sensors, (i)

synchronization, and (j) performance measure.

Algorithm Addressed

Problems

Algorithm Addressed

Problems

EKF-SLAM

(Fenwick et al., 2002) c (Madhavan et al., 2004) c

(Mourikis and Roumeliotis, 2006) d, j (Zhou and Roumeliotis, 2006) a, b, c, f

(Jafri and Chellali, 2013) a, d

EIF-SLAM

(Nettleton et al., 2000) c, f (Thrun and Liu, 2005) a, c, f

PF-SLAM

(Thrun, 2001) c, f (Howard, 2006) a, c, e

(Howard et al., 2006a) a, c, e, h (Carlone et al., 2010) b, d, g

(Gil et al., 2010) c

GraphSLAM

(Andersson and Nygards, 2008) a, b, c (Takeuchi and Tsubouchi, 2008) c, f

(Kim et al., 2010) a, c, h (Cunningham et al., 2010) c, g

(Nagatani et al., 2011) a, c (Cunningham et al., 2012) a, c

(Pillonetto et al., 2013) c (Indelman et al., 2014) a, b

Set-based SLAM

(Moratuwage et al., 2014) c, e

Sub-map Matching

(Williams et al., 2002b) a, c, h (Vidal-Calleja et al., 2011) a, c, h

Cooperative Positioning System

(Kurazume et al., 1994) d (Dellaert et al., 2003) d

(Tobata et al., 2012) d, c, h

Manifold Representation

(Howard et al., 2006b) a, d, e

Map Merging

(Konolige et al., 2003) a (Ko et al., 2003) a

(Zhou and Roumeliotis, 2006) a, b, c, f (Fox et al., 2006) a, c

(Birk and Carpin, 2006) a, j (Carpin, 2008) a

(Saeedi et al., 2011a) a (Saeedi et al., 2011c) a, f

(Dinnissen et al., 2012) a (Michael et al., 2012) a, h

(Blanco et al., 2013) a, b (Li et al., 2014) a

(Elibol et al., 2014) a, j (Saeedi et al., 2014b) a, b

Topological Approaches

(Huang and Beevers, 2005) a, f (Chang et al., 2007) a

(Erinc and Carpin, 2014) a, j (Saeedi et al., 2014a) a, b, f

Communication Issues

(Bar-Shalom, 2002) g (Howard et al., 2003) d, g

(Bar-Shalom et al., 2004) g (Hollinger and Singh, 2012) g

(Leung et al., 2010) g (Leung et al., 2012) g

(Lazaro et al., 2013) f, g (Leung et al., 2011) i



2010); however, for multiple-robot SLAM, and especially for heterogeneous robots, there are only a few datasets.

Leung et al. present a dataset collected by a team of ground robots for cooperative localization and mapping (Leung

et al., 2011). The dataset includes odometry and images from monocular cameras, observing artificial landmarks. The

robotics dataset repository (RADISH) hosts 41 well-known single-robot and multiple-robot datasets with different

sensors (Howard and Roy, 2003), but there is no dataset in RADISH which includes both flying and ground robots.

Majdik et al. present a dataset consisting of image data captured with a small quadrotor flying on the streets of Zurich,

along a path of 2 km long (Majdik et al., 2013). The dataset includes aerial quadrotor images, ground-level Google

Street View images, ground-truth confusion matrix, and GPS data.

8 Challenges, Future Directions, and Applications

In this section two topics are presented. First, challenges and future directions for multiple-robot SLAM are listed and

explained; then some general recommendations for various practical applications are presented.

8.1 Challenges

Mobile robots will have various applications in future and real-world situations. For the listed problems in Table 3,

the reviewed algorithms and solutions are not bulletproof. These solutions require more research to improve efficiency

and reliability of the robots in daily and regular applications. In addition to the reviewed problems, other potential

challenges and research directions are listed as follows:

• Large Scale Environments: Most of the current research focuses on relatively small environments, such as

indoor or urban environments. Extending the current research to extensive environments, such as exploring

and mapping oceans and large and crowded airports, are very interesting and challenging problems. Limited

processing and power resources, coordination of the robots, and communication issues are key challenges in

these environments.

• Dynamic Environments: Performing SLAM with one or more robots in dynamic environments is one of

the emerging fields in robotic perception. In these environments, SLAM is combined with detection and

tracking (Wang et al., 2003). Mapping and filtering in such environments are performed using the random

finite set (RFS) (Mullane et al., 2013). Very few works have been done for multiple-robot SLAM in dynamic

environments. For instance, Moratuwage et al. present an algorithm which tracks both static and dynamic

features (Moratuwage et al., 2013), (Moratuwage et al., 2014). RFS is a new emerging field in robotic

perception and has other applications such as multiple object detection (Granstrom et al., 2014).

• Human-robot Interaction: The assumption of static environments simplifies the multiple-robot SLAM

problem; however, this simplification creates a gap between research and real-world applications. A criti-

cal issue in dynamic and real-world applications is recognizing humans, either intruders or known people.

This problem is related to human interaction with robots and is far more complicated than identifying humans

as targets or obstacles.

• Semantic SLAM: To enable robots to reason and plan their actions, new algorithms are needed by which

robots can localize and map their environments using semantic concepts rather than a set of unrelated point

clouds or features. To move in this direction, robots should be able to learn actively. Creating semantic

databases of objects is the first step to address this problem. A team of robots can perform semantic SLAM

more efficiently, since they can argue about the validity of their understanding.

• Multi-session Mapping: Aligning partial maps of an environment, developed by a robot at different times,

is referred to as multi-session mapping. Multi-session mapping is closely related to SLAM in dynamic

environments and is used to detect various changes in the environment (McDonald et al., 2013). Another new

research field in multiple-robot SLAM is multi-session mapping with multiple robots, which requires dealing

with the challenges in both fields.



• Agent Scalability: Dedicating resources to manage and coordinate large number of robots is another research

direction. With a large team, missions can be done faster, but processing and making use of all information,

require a robust and efficient design.

• Dispatch Preparation: In practical applications, preparing and dispatching robots takes a lot of time and

resources. For instance, just synchronizing robots’s clocks, requires very careful and frequent check-ups.

Designing an optimal approach for robots’ preparation, for instance a proper check list, is an important step

which has very high impact on the efficiency and success of the robotic missions.

• Practical Applications: There are many practical multi-robot applications which require special hardware

and software design. Each of these applications is a potential future research direction. A non–exhaustive

list of these applications includes: mine explorations, service robotics, planetary exploration, search and res-

cue, military operation, border patrol, surveillance and detection, wildlife monitoring, nuclear and biohazard

discovery, assembly and construction, load transport, structural health monitoring, and sensor networks.

8.2 Recommendations for Applications

In GPS-denied environments, in which multiple robotic agents are performing autonomous tasks, coordination and

cooperation of the agents are critical requirements. In such applications, multiple-robot SLAM plays a key role in

providing perception for the robots. In these environments, the choice of the SLAM algorithm depends on many pa-

rameters including the cost of the hardware, the availability of the communication channels, and the importance of the

task in relation to the human and environment safety. Table 6 summarizes some of the applications of multiple-robot

SLAM which were reviewed in this paper. In this section, some general recommendations for various applications are

presented.

Table 6: Application of Multiple-robot SLAM

Application Description Reference

Exploration,

Intruder Detection

2D distributed particle filtering using 80 heterogenous

ground robots

(Howard et al., 2006a)

Search and

Rescue

3D GraphSLAM for cooperative mapping by multiple

ground robots

(Nagatani et al., 2011)

Disaster

Management

A ground robot and a quadrotor cooperatively map a multi-

floor earthquake-damaged building

(Michael et al., 2012)

Exploration and

Mapping

A team of 14 robots explore and map unknown environ-

ments with little human intervention

(Olson et al., 2013)

Underwater

Mapping

Large area visual mapping in underwater environments

using multiple underwater robots

(Elibol et al., 2014)

Defence applications are among the most important applications where the success of the missions rely on the accuracy

and precision of the localization and mapping techniques. In these applications, there is no room for failure; thus,

redundancy at all levels is required. Performing view-based, appearance-based, and feature-based SLAM in parallel

by all or a group of agents will help to ensure better estimates at the cost of equipping the robots with a variety

of sensors and faster processing units. One of the important bottlenecks of multiple-robot SLAM is the lack of

information about the relative poses of the robots. In some of the defence applications, a solution for this problem

is acquiring GPS coordinates prior to entry to the GPS-denied environment. For instance, if 10 robots are intended

to enter a large building, it is a plausible solution to start the mission by acquiring GPS signals first. This simple

solution provides the robots with initial estimates about the relative poses, which can be refined using the various

techniques explained in this work. Additionally, in defence applications, communication issues can be alleviated by

setting up ad-hoc networks where the wireless access points can move and relocate in such a way that all agents have

access to communication channels. Flying robots, such as quadrotors, are well-suited for these applications. These

robots are highly manoeuvrable, can fly over obstacles, and have access to vantage points that ground robots do not.

Accompanying the flying robots with a fleet of ground robots can help the flying agents with reliable and fast fuel or



battery recharging stations. Also small flying robots with limited processing units can only record data and deliver

them to well-equipped ground robots by directly contacting them, without using the communication channels. Such a

team of heterogenous robots could prove to be very efficient in search and rescue operations.

Border patrol is another application which requires high coordination among the robots to ensure a comprehensive

coverage of the borderlines. Again a team of ground and aerial robots can perform the mission more efficiently. In

these applications, the flying robots usually have access to the GPS signals; therefore, flying robots do not depend on

SLAM. But if the flying robots do not have access to GPS, the best option is performing feature-based or appearance-

based SLAM with vision sensors, combined with inertial systems. If the robots fly at low altitude, adding a laser ranger

and performing view-based SLAM can provide volumetric information about the environment. Depending on the type

of the environment, ground robots will face different challenges. In open areas like deserts, there is no structured

setting; therefore, view-based SLAM, which highly depends on the presence of the objects would fail. The best option

for these environments is using feature-based SLAM. In structured environment or among the woods, feature-based,

view-based, or appearance-based SLAM are all efficient approaches.

Another important application of multiple-robot SLAM is mining, specially in horizontal mine shafts. View-based

SLAM using scanning laser rangers is the best choice for these environments, as there is not sufficient light for vision-

based algorithms. A very useful application in mining is mapping the distribution and leakage points of hazardous

gases such carbon dioxide or methane. It is also possible to perform SLAM only using specific sensors that can detect

these types of gases, with the assumption that the leakage is stationary or has known or predictable flow patterns.

Extraterrestrial and planetary explorations are other interesting applications where there is no GPS signal available. In

some environments, such as the Moon, due to the lack of air, only ground robots can be deployed. In other environment,

such as Mars, unmanned aerial vehicles such as gliders or quadrotors can be deployed. For these environments, feature-

based or appearance-based SLAM are the best solutions. Due to lack of various features, line-of-sight observation can

greatly improve the localization. Cooperative positioning system (CPS) (Tobata et al., 2012) is a suitable solution

for these environments. Fig. 27 shows NASA’s Aerial Regional-scale Environmental Survey of Mars (ARES) (left).

While at the moment Curiosity, NASA’s ground robot, is navigating on Mars, ARES will be able to fly in Mars’s

atmosphere by 2016, which opens a new field in extraterrestrial heterogonous multi-robot systems. Deploying a fleet

of mining robots, called Swarmie robots, to explore Mars and other planets is NASA’s other multi-robot extraterrestrial

mission. Fig. 27 (right) shows four of the Swarmie robots.

Figure 27: (left) NASA’s ARES to be deployed on Mars in 2016, image courtesy of NASA 1. (right) NASA’s multiple-

robot extraterrestrial exploration team, image courtesy of NASA 2.

In underwater environments, feature-based SLAM using vision sensors is limited to clear waters. View-based SLAM

using SONAR sensors such as side-scan sonar is the best approach for many underwater applications. A major issue

in underwater environments is the limited communication bandwidth, with the maximum rate of 30 kbps in optimal

1http://marsairplane.larc.nasa.gov/multimedia.html
2http://www.nasa.gov/content/meet-the-swarmies-robotics-answer-to-bugs



conditions (Paull et al., 2014). In low-rate communication channels, it is recommended to share processed data such

as the maps or poses of the robots. Compared with sharing raw data, sharing processed data has the advantage that

it does not need higher bandwidth and also it does not require availability of the channels at all times. However, its

main drawback is overconfidence, due to the frequent use of one measurement. Depending on the application, spe-

cial precaution should be taken to avoid overconfidence. Generally, in underwater environments, the performance of

SLAM algorithms are lower compared with ground or aerial environments due to inherent limitations in these envi-

ronments; thus, using line-of-sight observation, through acoustic measurement, can greatly improve the performance

of multiple-robot SLAM. To the best of the authors’ knowledge, in the literature, there is no record of multiple-robot

appearance-based of polygon-based SLAM with sharing raw sensor data among the robots.

In nuclear and biohazard discovery applications, there is another source of information that can help the robots to

perform localization and mapping more efficiently. This secondary information source is the distribution or leakage

sources of the nuclear or biohazard materials. Nuclear and biohazard propagation have known patterns; therefore,

robots can rely on these propagation models to perform SLAM. Specially, nuclear leakage is usually very static and

does not change very fast over a short period of time. For these applications, all types of the SLAM algorithms are

suitable; however, if only the sources of the contamination are desired, multiple-robot feature-based SLAM using

nuclear or biohazard detectors is the best choice, where the contamination sources act as landmarks. If the distribution

of the contamination is desired, the best choice is developing a contamination grid map, similar to the concept of

the occupancy grid map. Similar concept applies to the contamination mapping in relatively stationary underwater

environments such as small lakes and lagoons.

For disaster management, due to the traversability problems, the best choice is deploying a team of heterogenous aerial

and ground robots, all performing various types of SLAM, such as view-based and feature-based SLAM. One of the

challenges is fusing different types of the maps.

Domestic service robots are in direct contact with humans; therefore, very reliable perception is required. Domestic

settings are structured; thus, all types of SLAM including feature-based or polygon-based may be used. Additionally,

semantic mapping in domestic settings enables robots to reason, plan, and react. To the best of the authors’ knowledge,

there is no semantic multiple-robot SLAM in the literature.

9 Conclusion and Future Work

This paper provides a review of the state-of-the-art for multiple-robot systems, with a major focus on multiple-robot

SLAM. Various algorithms were reviewed, and motivation, advantage, and disadvantage of each algorithm were briefly

described. The paper started with a brief review of single-robot SLAM, emphasizing the algorithms presented after

2005. Other single-robot SLAM algorithms, presented prior to 2005, are introduced in an outstanding text book in

(Thrun et al., 2005). For multiple-robot SLAM, first, ten major problems were introduced and defined. Then, the

literature in relation to these problems was reviewed. For each reference, it was mentioned which problems were

addressed. At the end, well-known datasets, simulation tools, future directions, and some general recommendations

for various applications were presented.

Multiple-robot SLAM is not as mature as single-robot SLAM is, and there is a long way to go and explore in this

field. From a general perspective, most of the current literature focuses on sharing raw data among robots. While this

method is very flexible due to the access to all past measurements, its weakness is the reliance on the availability of

delay-free communication channels. In contrast, the approach of sharing processed data among the robots, such as map

merging, is simple, effective, and resilient to communication delays and blackouts, but may cause overconfidence, due

to multiple use of a single measurement. Moreover, it lacks the flexibility of sharing raw data, since original raw data is

not available for reprocessing. Additionally its efficiency in 3D SLAM has not been studied in the robotics community

thoroughly. The authors believe that a combination of raw and processed data sharing, combining advantages of both

methods, will provide the solution for multiple-robot SLAM.

Single-robot SLAM in 2D environments is well-established, and most researchers consider it as a solved problem;



however, in 3D, and specially when using RGBD cameras, such as Microsoft Kinect or Asus Xtion, the research is

still ongoing. Current algorithms, such as KinectFusion rely on very powerful processing units which are not available

on robotic platforms. Moreover, the data rate of such sensors is very high, about 92 Mbps for QVGA quality (at 30

Hz, each RGB frame is 320×240×3×8 bits, and each depth frame is 320×240×16 bits). These limitations impose

many new processing and communication related challenges on small-sized robotic teams, let alone large teams. For

instance, at high rates, many measurements will be out-of-sequence, which means either the delayed measurement

should be discarded or some reprocessing should be performed, as explained for the out-of-sequence measurements.

In future work, the current research will be broadened to include more specific applications and the detailed require-

ments and criteria for the success of these team-based robotic applications. Additionally, the current paper will be

extended to include other aspects of multiple-robot autonomous applications, such as path planning, exploration, ac-

tive localization, and mission planning.
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