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Multiple roles of the transcription factor
AtMYBR1/AtMYB44 in ABA signaling, stress
responses, and leaf senescence
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Abstract

Background: The transcription factor AtMYBR1 (MYB44) is a member of the MYB family of transcription factors and

is expressed throughout the plant life cycle and especially in senescing and wounded leaves. It has previously been

shown to be involved in responses to abiotic stress and is regulated by phosphorylation.

Results: When MYBR1 was over-expressed under the control of the constitutive 35S promoter in Arabidopsis thaliana

(OxMYBR1), leaf senescence was delayed. In contrast loss-of-function mybr1 plants showed more rapid chlorophyll loss

and senescence. The MYBR1 promoter strongly drove β-GLUCURONIDASE reporter gene expression in tissues

immediately after wounding and many wounding/pathogenesis genes were downregulated in OxMYBR1.

OxMYBR1 plants were more susceptible to injury under water stress than wildtype, which was correlated with

suppression of many ABA inducible stress genes in OxMYBR1. Conversely, mybr1 plants were more tolerant of water

stress and exhibited reduced rates of water loss from leaves. MYBR1 physically interacted with ABA receptor PYR1-LIKE8

(PYL8) suggesting a direct involvement of MYBR1 in early ABA signaling. MYBR1 appears to exhibit partially redundant

functions with AtMYBR2 (MYB77) and double mybr1 X mybr2 mutants exhibited stronger senescence and stress related

phenotypes than single mybr1 and mybr2 mutants.

Conclusions: MYBR1 is a negative regulator of ABA, stress, wounding responses and blocks senescence. It appears to

have a homeostatic function to maintain growth processes in the event of physical damage or stress.
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Background
In order to acclimate and protect themselves, plants

translate environmental challenges such as drought,

waterlogging, extreme temperatures, soil salinity, wound-

ing, and pathogen attack into internal signals through

hormones, second messengers, and transcription factors

(TFs). The phytohormone abscisic acid (ABA) regulates

abiotic stress responses and other vital processes in plant

growth and development, especially during seed matur-

ation reviewed in [1]. Mutant plants with altered ABA

biosynthesis, perception or response have been cru-

cial in deciphering the various components involved in

ABA responses.

Recently, a family of 14 novel START domain proteins,

named as PYR/PYL/RCARs (PYRABACTIN RESIST-

ANCE/PYR1 LIKE/REGULATORY COMPONENT OF

ABA RECEPTOR) has been identified as intracellular

ABA receptors that interact with and inhibit several pro-

tein phosphatase 2Cs (PP2Cs) including ABA INSEN-

SITIVE1 and 2 (ABI1, ABI2), HOMOLOGY TO ABI1

(HAB1), and PP2CA [2-4]. Such phosphatases are nega-

tive regulators of ABA signaling. A recent model for

ABA signaling, based on several independent crystallo-

graphic studies for example [5], proposes that in the

presence of ABA, receptors of the PYR/PYL/RCAR

family bind to PP2Cs which in turn release inhibition

on a subfamily of SNF1-RELATED PROTEIN KINASE2

(SnRK2) kinases. These kinases then phosphorylate and

subsequently activate transcription factors including ABA
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(AREB)-type bZIP TFs. ABFs in turn bind to ABA-

responsive promoter elements (ABRE) to activate ABA-

responsive gene expression.

The molecular basis of adaptive responses to abi-

otic stresses such as low temperature, desiccation and

salinity, has been elucidated by identifying genes such

as RESPONSIVE TO DEHYDRATION (RD), KYKNA-

INDUSOITU (KIN; Finnish for cold-induced), RESPON-

SIVE TO ABA (RAB), COLD-REGULATED (COR),

LOW-TEMPERATURE-INDUCED (LTI), and DROUGHT-

INDUCED (DI). Manipulation of many of these genes

resulted in plants with improved tolerance to drought,

salt, cold and freezing reviewed in [6]. Molecular and

genetic studies suggest that ABA-dependent and –inde-

pendent pathways operate in abiotic stresses and ABA-

dependent pathways are predominant in drought stress

responses [7,8].

Environmental factors such as drought, extreme temp-

erature and pathogen infection as well as endogenous

factors including age affect the onset and progression of

leaf senescence reviewed in [9]. Unlike abscission and

dehiscence, leaf senescence is a specialized form of pro-

grammed cell death, which is a genetically regulated

process of slow cell death of the entire leaf and is pre-

ceded by the reallocation of nitrogen, phosphorus, and

metals to other parts of the plant. An early manifestation

of senescence in leaves is loss of chlorophyll. Leaf meso-

phyll cells start to senesce first, followed by other cell

types, and exhibit an incoherent pattern of localized cell

death, which eventually spreads to the whole leaf. Senes-

cence is accelerated by ABA, ethylene, jasmonates (JAs),

and salicylic acid (SA), and is delayed by cytokinins (CKs)

and auxin reviewed in [9]. However, extensive cross talk

among these signaling pathways during senescence com-

plicates understanding of the initiation and progression of

senescence. Therefore, key components in senescence sig-

naling remain largely unknown.

Senescence is an important aspect of drought re-

sponses. Accelerated leaf senescence followed by leaf ab-

scission is triggered by prolonged stress to reduce water

loss, remobilize nutrients to young leaves and to enable

survival of the plant [10,11].

The MYB family TFs comprises around 180 genes in

Arabidopsis and is the largest TF gene family reviewed

in [12]. MYB proteins contain a conserved DNA-binding

MYB domain of about 52 amino acids, and are classified

into three subfamilies based on the presence of one, two

or three MYB domains reviewed in [13]. The plant spe-

cific and largest MYB family consists of R2R3-type fac-

tors which contain two repeats and comprise 125 genes

in Arabidopsis. R2R3-MYB genes are involved in various

plant-specific processes such as regulation of secondary

metabolism, modulation of development, determination

of cell fate and identity and responses to environmental

factors and hormone. The gene further characterized in

this paper, AtMYBR1/MYB44 (R2R3 MYB) was weakly

induced by 24 h treatment with ABA but strongly in-

duced by the hyperactive ABA analog (+)-8′ acetylene

ABA (PBI425) [14]. Most ABA-regulated genes are simi-

larly regulated by water stress, however MYBR1 was se-

lected for further functional characterization because its

expression was paradoxically repressed by drought and

elevated by re-watering [8] suggesting a novel role in ABA

signaling. Jung et al. [15] reported that over-expression of

MYBR1 increased stress tolerance but unexpectedly re-

pressed many known stress-related genes. Subsequent

studies have revealed that this gene is regulated by a

Mitogen-Activated Protein Kinase (MAPK) cascade. Fol-

lowing stress treatment, MITOGEN-ACTIVATED PRO-

TEIN KINASE (MPK3) is activated and phosphorylates

the bZIP TF VirE2-INTERACTING PROTEIN 1 (VIP1),

which then rapidly activates the expression of MYBR1 and

other stress genes through promoter binding [16]. Further

studies have shown that MYBR1 interacts directly with,

and is phosphorylated by, MPK3 at ser145 [17] and pos-

sibly ser53 [18] and that the ser145 phosphorylation is

required for MYBR1 function [17]. In this study, we func-

tionally characterized the AtMYBR1 TF by studying an

Arabidopsis T-DNA insertion mutant mybr1 and overex-

pression lines of AtMYBR1 (OxMYBR1). We show that

MYBR1 down regulates many ABA responsive genes in-

cluding those involved in abiotic stresses and negatively

regulates drought responses and senescence. Moreover,

direct involvement of MYBR1 in early ABA signaling is

suggested by our observation that MYBR1 protein interacts

with PYL8, an ABA receptor.

Results
AtMYBR1 represses genes induced by a hyperactive

ABA analog

We showed in a previous study that AtMYBR1 was

induced weakly by (+)-ABA and more strongly by 24 h

treatment with a hyperactive ABA analog PBI425 ((+)-8′

acetylene ABA) indicating MYBR1 is likely a component

of the ABA signaling pathway [14]. It has been shown

previously that PBI425 induces ABA responsive genes al-

most identically to the natural enantiomer S-(+)-ABA.

However, because PBI425 is catabolized much less rap-

idly than (+)-ABA and accumulates to higher levels in

plant tissue [14] it is an effective tool to study weak and

transiently expressed ABA-responsive genes such as ABI1,

ABI2, LTI30, KNAT4 and MYBR1 itself [8,14,19]. There-

fore we used PBI425 to define the role of MYBR1 in ABA

signaling.

In addition to using PBI425 to study the function of

AtMYBR1, we generated transgenic Arabidopsis 35Spro:

MYBR1 plants (OxMYBR1). After kanamycin selection,

three lines with single inserts were selected and their
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homozygous progeny plants were grown as experimental

materials. The level of overexpression of MYBR1 was

23-fold in gain-of-function OxMYBR1 line 42–6, 12-fold

in line 31–3 and 11-fold in line 1–7 and was undetect-

able by qPCR in loss-of-function mybr1 [14]. To reduce

the likelihood of identifying phenotypic artifacts due to

mis-expression, the phenotypes of all the overexpression

lines were compared for qualitative consistency through-

out the experiments.

We compared gene expression in different genotypes

using Arabidopsis oligoarrays representing a comprehen-

sive set of approximately 26,000 expressed genes. The

comparisons were: (i) genotype comparisons of un-

treated plants: OxMYBR1 (42–6) or mybr1 versus WT,

(ii) genotype comparisons after PBI425 treatment:

OxMYBR1 (42–6) or mybr1 versus WT, and (iii) effect

of PBI425 treatments on each genotype: OxMYBR1,

mybr1 and WT treated with PBI425 versus the same

genotype without the treatment. The experimental de-

sign is illustrated in Additional file 1: Figure S1 online.

Samples were treated with PBI425 for 24 h on the basis

that the accumulation and effects of PBI425 on gene ex-

pression was maximum at 24 h [8]. The total numbers of

differentially expressed genes are listed in Table 1 and the

gene lists and data may be found in Additional file 2:

Table S1. There were a total of 1507 differentially regu-

lated genes from all comparisons. In the absence of

PBI425 treatment, comparisons of OxMYBR1 or mybr1

vs. WT yielded a very small number of differentially regu-

lated genes (Table 1). Treatment with PBI425 greatly in-

creased numbers of differentially expressed genes and

revealed differences between genotypes. Analysis of the

direct effect of PBI425 on gene expression showed that

MYBR1 represses expression of many genes induced by

PBI425 in WT (and mybr1) in terms of both total num-

bers (Table 1) and expression ratios (Figure 1, Additional

file 2: Table S1).

It is noteworthy that there were very few differentially

regulated genes from comparisons of mybr1 versus

WT both with (12 genes) and without (2 genes) PBI425

treatment. This suggests the likelihood that MYBR1 is

functionally redundant with at least one other closely re-

lated gene. MYBR2 (MYB77) is reported as the closest

homolog of MYBR1 based on sequence similarities in the

C-terminal regions of the respective proteins and lack of

homology with other MYB-type proteins [20]. MYBR2 has

been reported to be involved in auxin signal transduction.

MYBR2 over-expression results in reduced root and shoot

growth, and root phenotypes in loss-function mybr2 lines

varied with application of auxin [21]. However, its role in

ABA responses and stress signaling or whether it acts co-

operatively with MYBR1 remains unclear.

To investigate possible redundant functions of MYBR1

(MYB44) and MYBR2 (MYB77), gene expression analysis

was performed using Agilent microarrays containing

44,000 Arabidopsis thaliana reporter sequences. Gene

expression was compared between pairs of genotypes

treated with PBI425 i) mybr1 versus mybr2 and ii) mybr1

versus mybr1xmybr2. The number of differentially ex-

pressed genes was 56 for mybr1 vs mybr2 and 411 for

mybr1 vs mybr1 x mybr2 (Additional file 2: Table S1).

The increase in differentially expressed genes in the

double mutant comparison suggests that MYBR1 and

MYBR2 act in a synergistic manner However, only six

out of 56 genes in the first comparison and 45 out of 411

genes in the second comparison were present in the above

Table 1 Number of significantly up- and down regulated

genes using a threshold change in expression of 1.5 Fold

and a P-value cut-off: ≤ 0.05

Hybridization Up Down Unchanged

mybr1(PBI425) vs. mybr1 448 452 607

WT(PBI425) vs. WT 417 438 652

OxMYBR1(PBI425) vs. OxMYBR1 180 246 1081

OxMYBR1(PBI425) vs. WT(PBI425) 88 420 999

OxMYBR1 vs. WT 35 86 1386

mybr1(PBI425) vs. WT(PBI425) 11 1 1495

mybr1 vs. WT 0 2 1505

Figure 1 Gain of AtMYBR1 function results in suppression of

ABA induced changes in gene expression. The effects of PBI425

on gene expression (obtained from microarray comparisons) are

compared in the three genetic backgrounds. Changes induced by

PBI425 (both induction and repression) in WT and mybr1 backgrounds

are reduced in the OxMYBR1 background.
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mentioned list of 1507 genes differentially expressed in

all comparisons.

AtMYBR1 represses many ABA inducible stress genes

Many stress genes that are highly induced by ABA, are

repressed by MYBR1 (Figure 2). However, since MYBR1

did not appear to repress all PBI425 induced genes, we

examined more closely the gene expression patterns af-

fected by MYBR1 and PBI425. In this analysis, we added

32 statistically significant genes to the total gene list of

Table 1 for detailed analysis and interpretation. These 32

genes were not listed in Table 1 since their fold change

was below the 1.5 ratio threshold. However, changes in

expression of these genes were either verified by qPCR

and direct spot visualization in BASE or were present in

our comparative analysis of our microarray data with

data published by van der Graaff et al. [22].

Several distinct gene regulation patterns (classes A - H)

were identified by comparing PBI425 treatment and

MYBR1 overexpression (Table 2) and the gene lists and ex-

pression data may be found in Additional file 3: Table S4.

We excluded the comparison of mybr1 vs. WT from

Table 2 because of the small number of differentially

expressed genes. Similarly, we also excluded microarray

data of mybr2 from comparisons mybr1(PBI425) versus

mybr2(PBI425) and mybr1(PBI425) versus mybr1xmybr2

(PBI425). Many well-characterized abiotic stress responsive

genes were grouped in classes A, F and G, of which 278

genes (class A, representing repression of ABA responses

by MYBR1) were repressed by MYBR1, 112 genes (class F,

ABA-like activation) were activated by MYBR1 and 254

genes (class G, representing ABA-specific activation) were

unaffected by MYBR1. Therefore, MYBR1 represses a sub-

set of about 43% of ABA-responsive genes. It has been sug-

gested that stress responsive genes are under regulation by

both ABA-dependent and ABA-independent pathways For

a review see [7]. There are four DEHYDRATION RE-

SPONSIVE ELEMENT BINDING PROTEIN1 (DREB1)/

C-REPEAT BINDING FACTOR (CBF) transcription factor

genes that have been suggested to mediate ABA independ-

ent cold stress responses. Here, DREB1A/CBF3 was in-

duced by PBI425 and repressed by MYBR1 suggesting that

DREB1A/CBF3 is ABA-dependent.

Many senescence associated genes including SAG12/

13/21/29/102, EARLY RESPONSIVE TO DEHYDRA-

TION1 (ERD1) and APG8a are also grouped in class A

(downregulated by MYBR1 but upregulated by PBI425).

There were a total of 498 genes that were either upregu-

lated (class F) or down regulated (class B) by MYBR1 in

the same direction as ABA (PBI425). Among the downreg-

ulated genes were many associated with photosynthesis

and biotic stresses. A total of 198 genes (classes D and H)

were regulated by MYBR1, but unaffected by PBI425.

Among these, several genes involved in jasmonate and

auxin action were repressed.

Promoters of many genes associated with drought,

cold stress and salinity contain ABA-responsive element

(ABRE), ABRE binding factor (ABF) and dehydration re-

sponsive element (DRE) [23]. A search for statistically

over-represented cis-acting motifs present in the pro-

moters of classified genes sets in Table 2 was carried out

against AGRIS and PLACE databases using the analysis

tools in Athena [24] and the results are summarized in

Additional file 1: Table S2. These promoter motifs mainly

consisted of four groups. The majority of motifs are asso-

ciated with ABA. Other motifs are related to stress, light

regulation, gibberellins (GA) and circadian clock, suggest-

ing cross talk between these pathways as was also ob-

served previously [14]. There was a general similarity in

Figure 2 Expression pattern of 24 stress responsive genes in

WT and gain- and loss of AtMYBR1 function mutant genotypes

with and without PBI425. Comparisons are relative to (i) WT

without PBI425 treatment for columns 1, 2 and 4 and (ii) WT with

PBI425 treatment for columns 3 and 5 from left to right.
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Table 2 Combined effects of ABA (PBI425) treatment and MYBR1 overexpression on ABA-related gene expression

Class Classification of gene
regulation type

Net effect measured Differentially
expressed
genes No

Examples of pathways (bold) / genes (italic)

ABA in
WT bk

ABA in
mybr1 bk

ABA in
Ox bk

MYBR1 Ox in
ABA/WT bk

MYBR1 Ox in
WT bk

A Repression of ABA
response

↑ ↓ ↑ but lowered ↓ ↓ 278 1o metabolism (SUS3; BMY7; GOLS2; SIP2; ALDH7B4; AOX1A; LP1; LTP3/4; PLDδ;
POP2; LKR; CORI3) 2o metabolism (4CL1; CCoAOMT1; OMT1; ELI3-1(CAD);
CPISCA; CUT1; PAP1); ABA (NCED4; ABF3; ABI1; HVA22D; PP2C); ethylene (ACO
putative; MBF1C; EBF1); jasmonates (VSP1; VSP2); redox (CAT2; FSD1); abiotic
stress (P5CS1; COR15a/15b; FL3-5A3; COR413-PM1; USPs; RCI2B; ERD4/10; COR47;
XERO2; KIN2(COR6.6); DREB1A(CBF3); RD29B; RD29A(COR78/LTI78); RCI2A/2B; DI21;
RD2/22; RAB18); GPX6; BGAL6; senescence (SAG12/13/21/29/102; ERD1; APG8a/8e);
cell wall (XTH7; AGP12; EXLA1); GSTZ1; GSTU7/16; CYP89A5/A6; ACP5; VIF1; TFs
(DREB1A; STO; STH3/LZF1; HAP5C; HB1/7/12; AGL20(SOC1); MYB73; GT2; NFYC3);
HAB1/2; LEA14; ACD1; RD26; COR413-PM2; COR414-TM1; COR314-TM2; signaling
(ROP2; GDI1);

B ABA-like repression ↓ ↓ ↓ ↓ ↓ 386 Photosynthesis (PSI; PSII; RBCS-1A/1B); GAPA-2; cell wall (CSLD5; FLA8; AGP11/
13/16/20/21; EXPA1/8/10/15; XTH6); lipid (ACP1/3/4; NMT3; CLS; SLD1); NIA2; auxin
(ILL2; responsive genes); DWF1; 40S and 60S ribosomal protein genes; biotic
stress (DAD1/2; PDF1.1/1.2/1.2b/1.2c/1.3/2.2/2.3; TIR); senescence (SEN1); TFs
(RAP2.4; COL5/15; GATA5; KNAT6; WUS; BET9); SNG1; cytokinin (ARR4); signaling
(CAM3; CDPK6; CPK7; MKK5; GRF6);

C MYBR1 independent
ABA repression

↓ ↓ ↓ — — 399 Photosynthesis (PSII; RBCS-3B); cell wall (CSLC4; FLA9; EXPA3/5/6/11; PME1/3);
lipid (FAD3/5/7; NMT2; ATS1); auxin (PIN4; IAA4; responsive genes); cytokinin
(ARR5/7; IPT2); GA (GASA4); 30S, 40S, 50S and 60S ribosomal protein genes;
abiotic/biotic stress (ERD3; PR5); tetrapyrrole biosynthesis; TFs (BEE2; PRE1;
HB5); TCH3; ERD6; TIP2

D ABA independent
repression

— — — ↓ ↓ 171 myo-Inositol (MIPS1); cell wall (CESA1; AGP1/4/7/15/17; FLA1/2; PRP1; EXPA7;
EXPB3; XTH9); lipid (FAD6; CER10); auxin (NIT1; ILL1; SHY2 (IAA3); ARF8);
jasmonates (LOX2); abiotic stress (ERD4); TFs (NGA1; TRY; MYBL2); protein
degradation (SCPL2; PREP1; MMZ1(UEV1A); UBC1; RHA2B; PAB2; PAC1; PAA1);
signaling (GLR3.3; RAN3; ROP4; GRF12); transport (PIP3B; PIP2A; AAP2; CAX1;
TGD1; PATL1); PSII (PSBO-2; LHCB2.2/4.2);

E Constitutive activation of
ABA-repressed responses

↓ ↓ ↓ ↑ ↑ 20 30S and 50S ribosomal protein genes; ethylene (EIL1; EFE/ACO); UBQ1; CAM7;

F ABA-like activation ↑ ↑ ↑ ↑ ↑ 112 FAD2; SEX1; HMG1; NIT2; γ-VPE; senescence (SEN2 (CAT3)); abiotic/biotic stress
(ERD14/15; HSP15.7-CI; ERDJ2A; wound-responsive gene; PCC1); signaling (RD20;
TCH2; CAM1; RAB2; ELF4); PP2A-4;

G MYBR1 independent
ABA activation

↑ ↑ ↑ — — 254 myo-Inositol (MIOX1); major carbohydrate metabolism (APL3; SUS1; RCP1);
fermentation (ADH; ALDH2B4); cell wall (FLA11; MERI5B; XTR3; EXT3); lipid
(DGK1; LTP2; ACX1; MFP2; CUT1; CER1); abiotic stress (SEP2; KIN1; J8/20; ACD32.1;
DI19; AOC1; RD22/26; ERD7); ABA (ABA1; CYP707A2); ethylene (ERF4); TFs (HAT2;
HAP3; GBF3; KNAT4); protein degradation (RD21A; SCPL11; CLPX/C; L1D; UBQ10;
UBC28/30/32); signaling (RAB7B; RAN-1; MKK9; RAFL32; PAT1); DRM1; β-VPE;
transport (AHA3; TMT2; SUC2; AAP1; NTP3; KUP11; GCN5; AATP1);

H ABA independent
activation

— — — ↑ ↑ 27 SON1; SFP1; TGG1; TGG2; WAK2; β-amylase; CSLG3; ACD6; CAM6;

Bk: background; mybr1: loss-of-function of MYBR1; Ox: overexpressed; Gene regulation symbols– ↑: upregulation; ↓: downregulation; —: either ‘not differentially expressed’ or ‘undetectable’.
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the presence of ABA and stress motifs in genes that were

regulated specifically by ABA and those that were regu-

lated in the opposite direction by MYBR1. No significant

enrichment was detected in genes that were regulated spe-

cifically by MYBR1.

AtMYBR1 reduces drought tolerance

To define the function of MYBR1 during drought stress,

plants were treated with 10% and 15% polyethylene gly-

col (PEG) for 5 d. Consistent with the down regulation

of the stress responsive genes (Figure 2), OxMYBR1

plants showed the highest degree of stress (leaf curling,

bleaching) following PEG treatment and homozygous

mybr1xmybr2 plants showed the least damage (Figure 3A).

Subsequently, we found that OxMYBR1 rosettes lost water

and chlorophyll faster than WT and loss-of-function

mutants (Figure 3B and 3C). Therefore, consistent with

the down regulation of stress responsive genes, the data

suggests that OxMYBR1 plants transpired water faster and

are consequently less drought tolerant than WT plants.

Drought stress was also imposed by withholding water

for 18 d on seedlings from all available genotypes. Sur-

prisingly, we recorded a 100% survival in all 10 repli-

cates of OxMYBR1 (42–6) (Additional file 1: Figures S2A

and S2B). Results obtained when drought stress was im-

posed by withholding water were opposite to what was

observed following PEG mediated drought stress.

When performing the soil drying experiments above it

was observed that, when plants from each genotype were

provided with equal volumes of water, the OxMYBR1

soil dried more slowly than other genotypes. Therefore

to investigate the contradictory results obtained by PEG

and soil drying experiments, we conducted transpira-

tional water loss assays on whole plants (Additional file 1:

Figure S2C). In these experiments, soil water loss by evap-

oration was prevented so that plant water use could be

Figure 3 Gain of AtMYBR1 function results in reduced drought tolerance. (A) Reduced drought tolerance in the OxMYBR1 (35Spro:MYBR1)

plants – lines 31–3 and 42–6. PEG at 10% and 15% concentrations was applied to 35 d old plants of OxMYBR1, mybr1, mybr2 and mybr1xmybr2

and WT (Col-0). Eight plants were used for each treatment. Pictures were taken 5 d after PEG treatment. (B) Detached whole rosette leaf water-loss from

20 d old plants. Transpirational water loss and standard error was calculated at each time point (bar; n = 6). The P-value of two factor ANOVA is 4.7E-18.

(C) Rate of chlorophyll leakage from detached whole rosette leaf; standard error (bar; n = 6).
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monitored. The results showed that OxMYBR1 plants lost

water slower than WT and mutants, which is contrary

to what was observed in detached whole rosette leaves

(Figure 3B). In other words, OxMYBR1 plants extracted

and/or used less water from the soil than other geno-

types, even though the transpirational capacity of the

detached leaves was relatively higher. Therefore, we inves-

tigated the water conservation characteristic of OxMYBR1

further. We measured the soil water content after impos-

ing an 8 d drought. Results confirmed that water uptake

was less in OxMYBR1 than in WT and loss-of-function

mutants during drought (Additional file 1: Figure S2D).

Under normal (unstressed) growth conditions, OxMYBR1

plants grew more slowly than WT and loss-of-function

mutants (Additional file 1: Figure S2A) and we show later

that OxMYBR1 lines have shorter primary roots than

other genotypes. Therefore, with respect to MYBR1 func-

tion, we conclude that reduced water use in whole

OxMYBR1 plants in drying soil is not due to a genetically

determined reduction in transpiration but is rather a con-

sequence of lower biomass leading to slower depletion of

soil moisture. The reduced growth rate of OxMYBR1

lines was also noted by Jung et al. [15] and in soybean by

Seo et al. [25].

As an aside, we note that the residual water content of

mybr2 material was slightly higher than the other loss-

of-function lines (Additional file 1: Figure S2D). This

may be an indication that the functions of MYBR2 are

not identical with those of MYBR1, as discussed later.

MYBR1pro:GUS is expressed under abiotic stress and

during senescence, mechanical wounding and floral

organ abscission

A 2.7 kb promoter fragment of MYBR1 including the 5′

UTR was fused to the β-GLUCURONIDASE (GUS) re-

porter gene (MYBR1pro:GUS) and the expression of

MYBR1 was examined histochemically. GUS staining

was performed on homozygous T2 and T3 plants. In 13 d

old seedlings (Additional file 1: Figure S3A), GUS expres-

sion driven by the MYBR1 promoter was observed in coty-

ledons and true leaves. In contrast to very high GUS

expression in cotyledons, GUS expression was lower in

younger true leaves relative to older leaves and was absent

in the newly emerged leaves. Intriguingly, GUS expression

was observed in patches in younger leaves and was absent

around the vascular regions of both older and younger

leaves hinting that MYBR1 could be involved in senes-

cence since this pattern was reminiscent of the develop-

ment of visible senescence in leaves reviewed in [9].

Under normal conditions, expression of GUS was also ob-

served in hydathodes of all leaf margins as well as embryo,

suspensor, endosperm, root, stigma, sepal, petal and an-

ther filament but was absent in stem, cauline leaf, anther,

silique and testa (Figure 4A, C, D and E and Additional

file 1: Figure S3). GUS expression was observed in embryo

and endosperm dissected from siliques at develop-

mental stages from 6–18 DPA as well as from dry and

imbibed (30 min – 99 h) mature seeds (Additional file 1:

Figure S3B and S3C). The intensity of GUS staining in-

creased with development in embryos but remained con-

stant in endosperm except at 6 DPA when the GUS

expression was lower. GUS expression was high and

remained constant in embryos collected from dry seeds

and seeds imbibed up to 24 h but declined subsequently.

GUS expression in endosperm of dry and imbibed seeds

remained high.

Water stress significantly reduced GUS expression

driven by the MYBR1 promoter in leaves but not in

roots relative to control (Panel A in Figure 4). Drought

induced reduction of MYBR1 expression is consistent

with the reduced expression of MYBR1 under drought

treatment observed by Huang et al. [8].

GUS reporter activity was rapidly and strongly induced

immediately after mechanical wounding of leaves (Panel F

in Figure 4). Similar high MYBR1 expression was also ob-

served at the abscission zone (AZ) on the pedicel follow-

ing sepal, petal, and anther filament abscission (Figure 4D

and 4E). Prior to the abscission of floral organs (Figure 4B

and 4C), no GUS expression was visible on the pedi-

cel. However, we did not observe either accelerated-

or delayed/abolished floral organ shedding in MYBR1

loss-and gain-of-function mutants, suggesting that the

high GUS expression at the AZ is due to the wounding

response.

AtMYBR1 delays leaf senescence

Early in leaf senescence chloroplasts disassemble with

subsequent degradation of chlorophyll and visible leaf

yellowing. To further investigate the role of MYBR1 in

leaf longevity, detached rosette true leaves numbers 3–6

(counted by order of emergence), from 30 d old soil

grown plants were incubated in buffer as described [26]

in two different sets. Leaves were photographed and the

chlorophyll content was quantified on 0 d for one set

and after 6–7 d of dark-induced senescence treatment

for the other set. In freshly harvested leaves, the chloro-

phyll content was higher in one line of OxMYBR1 (#42-6)

and two reciprocal double mutants of mybr1 and mybr2

than the rest of the genotypes (Figure 5B). Following dark-

induced senescence, OxMYBR1 lines showed increased leaf

longevity and slowed chlorophyll degradation relative to

WT leaves (Figure 5A and 5C). Interestingly, increased leaf

longevity in OxMYBR1 lines was in contrast to that in

mybr1 and reciprocal mybr1 & mybr2 mutants which ex-

hibited early leaf senescence and accelerated chlorophyll

degradation relative to WT (Figure 5A and 5C) although

the chlorophyll content before treatment was relatively

high in mybr1 and mybr2 double mutants (Figure 5B).
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Indeed, among the eight genotypes, leaves of mybr1

& mybr2 were least green following senescence treat-

ment and showed the fastest chlorophyll breakdown

(Figure 5A and 5C).

To further investigate the role of MYBR1 in leaf senes-

cence, excised leaves of 37 d old transgenic MYBR1pro:

GUS were stained for GUS before and after dark in-

duced senescence (Figure 5D). In untreated plants,

GUS staining was strong in older leaves and was ab-

sent in younger leaves and in vascular region. GUS

staining became weaker overall in dark-treated leaves

relative to fresh leaves but among the dark treated

leaves, there was more GUS staining in senescent, yel-

low leaves (indicated by asterisks) than green ones, fur-

ther suggesting that MYBR1 plays a role during leaf

senescence.

AtMYBR1 regulates the expression of senescence genes

To investigate whether MYBR1 regulates the expression

of senescence genes, we compared the differentially

expressed gene lists of Table 2 with microarray data ob-

tained by van der Graaff et al. [22] on various stages and

types of leaf senescence (NS: developmental senescence;

DIS: darkening-induced senescence; DET: senescence

in dark-induced detached leaf ). The number of com-

mon genes between the two microarray analyses is 852

(Additional file 3: Table S4) which covers 52% of our differ-

ential gene list. The increase of MYBR1 induction with the

progression of senescence is high in NS, low in DIS and

DET whereas MYBR2 induction is slightly increased in

sink-to-source transition (5 week) stage of NS [22].

The regulation of these 852 common genes by ABA,

MYBR1 and senescence revealed the interaction between

Figure 4 AtMYBR1 promoter drives GUS expression during abiotic stress, floral organ abscission and mechanical wounding.

Histochemical localization of GUS activity was performed by staining with X-gluc for different time intervals as described below and in

Methods. Panel (A) Significant reduction of GUS expression in leaves after drought stress. However, intense GUS expression in roots was

similar to control. (B) A closed flower was opened manually by forceps before GUS staining was performed. (C) A fully opened flower.

(B) and (C) No GUS expression was found on pedicel at the point where the sepal, petal and anther join (shown by arrows). (D) and (E) In

contrast, intense GUS expression was observed at pedicel connecting sites of floral organs after abscission (arrowheads). (E) A silique fully

abscised with floral organs, was stained briefly (2 h) for GUS. Magnification of the connections between floral organs and pedicel shows

GUS expression only at attachment sites on pedicel. Panel (F) Leaves were wounded with hemostats. Intense MYBR1 promoter driven GUS

expression was observed around the wound relative to control.
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ABA and MYBR1 during senescence (Additional file 1:

Table S5 and Additional file 3: Table S4 online). Out of

165 genes in class A (Table 2, repression of ABA re-

sponse), 88% were induced by both ABA and NS but re-

pressed by MYBR1, clearly demonstrating that MYBR1 is

a suppressor and ABA is an activator of leaf senescence.

Furthermore, out of 261 genes in class C (MYBR1 inde-

pendent ABA repression), 95-96% genes are down-

regulated by NS, DIS and DET and from 146 genes in

class G (MYBR1 independent ABA activation), 86% are

Figure 5 Effect of MYBR1 on leaf senescence in a detached leaf assay. (A) True leaves numbers 3–6 were harvested from 30 d old soil

grown plants and incubated on filter paper wetted with 3 mM MES buffer (pH 5.7). Leaves 3 and 4 were photographed after 6 d treatment and

leaves 5 and 6 were photographed after 7 d treatment. Leaves from OxMYBR1 plants of three independent lines (#31-3, 1–7 and 42–6) showed

delayed senescence relative to other genotypes and leaves from mybr1 and double mutant plants exhibited premature leaf senescence relative

to leaves from WT (leaves 5 and 6) and OxMYBR1 plants (all leaves). Two sets of experiment were carried out as above (A) in four replicates and

12 plants in each replicate. Statistical significance was determined using one-way ANOVA with Tukey using the statistical software ‘R’ (P < 0.05).

(B) In one set of experiments, chlorophyll was extracted and measured on 0 d. The chlorophyll content was higher in one line of OxMYBR1

(#42-6) and reciprocal double mutants of mybr1 and mybr2 than other genotypes. (C) In another set, chlorophyll was extracted and measured on

6 d for leaves 3–4 and on 7d for leaves 5–6 and the percentage chlorophyll retention was calculated relative to 0 d from (B). Chlorophyll retention

was generally higher in OxMYBR1 genotypes. (D) Using three independent homozygous MYBR1pro:GUS lines (#5-1, 7–6 and X1-4), experiments

were carried out as above (A) in two replicates. All leaves from each plant were harvested. GUS staining was performed on 0 d (untreated) and

after 4 d of dark induced senescence. Asterisks indicate yellow leaves before and after GUS staining. After the treatment, GUS staining was higher

in senescent leaves, but in green leaves was lower than corresponding control leaves.
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upregulated by NS in the same direction as by ABA

showing a significant role of ABA in leaf senescence.

Of a large number of common genes (161; class B), 89-

93% are downregulated by ABA, MYBR1 and senes-

cence and many of these genes are involved in protein

synthesis (23 ribosomal protein genes), photosynthesis

(31 genes), auxin responses (6 genes) and biotic stress

(5 genes).

Furthermore, we performed QRT-PCR on senescence

marker genes in rosette leaves numbers 3 and 4 in

all the genotypes (primers for QRT-PCR are listed in

Additional file 1: Table S3). Consistent with our detached

leaf senescence analysis (Figure 5), accelerated leaf senes-

cence of mybr1xmybr2 was associated with upregulated

expression of SAG12, SAG29 and SENESCENCE4 (SEN4)

relative to all other genotypes (Figure 6). SAG29 expres-

sion was 70 (±8.5) fold higher in mybr1xmybr2 relative to

WT. The expression of SAG12, SAG29, SEN1 and SEN4

were downregulated in OxMYBR1 relative to WT, consist-

ent with the senescence-suppressing effect of MYBR1.

Changes in expression of these genes in the single mutants

mybr1 and mybr2 were generally small. However, expres-

sion of SAG21 and SEN1 did not show a reciprocal rela-

tionship between gain and loss of function genotypes.

Nevertheless, it is apparent that MYBR1 negatively regu-

lates senescence based on 3 of the 4 marker genes.

Protein degradation occurs during senescence via dif-

ferent pathways such as autophagy (APG) and the 26S

proteosome and components of both pathways were

transcriptionally activated during senescence [22,27]. Our

differential gene list contains 87 genes involved in protein

degradation pathways (Additional file 3: Table S4). Here

we report the repression of 44 genes by OxMYBR1, where

31 genes encode components of E2 (ubiquitin-conjugating

protein (UBC)), E3 ubiquitin-ligase complex and 20S core

particle of 26S proteosome and three genes are APG8a/

8f/8e. Interestingly, only three genes in the ubiquitin

pathway - PHD finger family, EARLY-RESPONSIVE TO

DEHYDRATION 16/UBIQUITIN ETENSION PROTEIN 1

(ERD16/UBQ1) and SUPPRESOR OF NIM1-11 (SON1)

were upregulated by OxMYBR1. SON1 is an F-box protein

component of E3-ubiquitin ligase complex which nega-

tively regulates, through the ubiquitin-proteosome path-

way, a novel defense response that is independent of

systemic acquired resistance [28]. On the other hand,

45 genes involved in protein degradation were activated by

ABA in both WT and mybr1, and many of them are also

upregulated by NS, DIS and DET [22].

Content of endogenous cytokinins and jasmonic acid

To investigate the role of MYBR1 in relation to hormonal

pathways, endogenous hormone levels were measured

quantitatively by LC-MS/MS in rosette leaves numbers 3

and 4 of three weeks old plants (Figure 7). trans-Zeatin

(t-Z) and N6-(Δ2-isopentenyl) adenine (iP) and their

sugar derivatives are the major cytokinins (CKs) in Arabi-

dopsis [29]. Levels of several CKs were significantly in-

creased in OxMYBR1 relative to other genotypes. On the

other hand, JA was significantly higher in mybr1 x mybr2

relative to other genotypes. This suggests that suppres-

sion of leaf senescence by MYBR1 is associated with in-

creases in CKs and conversely that increased senescence

is associated with higher JA.

In our microarray data, OxMYBR1 (comparison:

OxMYBR1 treated with PBI425 versus untreated OxMYR1)

downregulated ARR4 (Table 2), a transcriptional re-

pressor of CK signaling [30]. However, the down regu-

lation of ARR4 by ABA (Table 2) and senescence [22] is

Figure 6 MYBR1 and MYBR2 regulate expression of some senescence-related genes. QRT-PCR was performed on total RNA extracted from

rosette leaves numbers 3–5 of 21 d old soil grown plants of WT (Col-0), gain- and loss-of MYBR1 function as well as mybr2 and double mutant

mybr1xmybr2. Standard error (n = 2) of biological repeats are indicated.
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contradictory and may be due to a feedback effect. Fur-

thermore, we did not detect differential expression of

genes involved in CK metabolism but a posttranscriptional

regulatory effect of MYBR1 on expression of these genes

cannot be ruled out.

OxMYBR1 leaves contained similar levels of ABA and

its metabolite dihydrophaseic acid to those measured in

WT/mybr1 and mybr1xmybr2. Levels of SA and IAA

were also not significantly altered. It is surprising that

ABA levels remained constant despite the strong effect

of AtMYBR1 overexpression on ABA responses. To in-

vestigate further, we performed qRT-PCR (primers for

QRT-PCR are listed in Additional file 1: Table S3) on six

ABA downstream effectors; ABI5, EEL and ABF1/2/3/4 in

plants of OxMYBR1 (lines 42–6 and 31–3), WT, mybr1/2

and mybr1 x mybr2 (Additional file 1: Table S3). No signifi-

cant differences of expression of these genes were evident

among the genotypes tested.

MYBR1 mis-expression affects leaf and root morphology

We examined the roots of gain-and loss of MYBR1 func-

tion genotypes (Figure 8). Primary roots of OxMYBR1

lines were drastically shorter, whereas those of mybr1

were notably longer relative to WT. This shorter root

phenotype of OxMYBR1 may contribute toward re-

duced water uptake in the OxMYBR1 lines as noted

earlier, and may help explain the differences between

results of PEG treatments and soil drying experiments

described above.

The Arabidopsis mutant amp1, with a high level of en-

dogenous CKs, had increased numbers of rosette leaves

[31]. Conversely, plants overexpressing catabolic CK oxi-

dases had fewer leaves than WT plants [32]. We counted

rosette leaves in seedlings of two lines of OxMYBR1,

WT and mybr1. Seedlings of OxMYBR1 lines had con-

sistently more rosette leaves relative to other genotypes

and double mutant mybr1xmybr2 had fewer leaves relative

to all other genotypes (Figure 9). Differences between ge-

notypes are slightly enhanced by ACC treatment. Using

two way ANOVA, there is a consistent, statistically signifi-

cant difference in leaf number between mybr1 x mybr2

and the OxMYBR1 lines but no significant difference be-

tween control and ACC treatments.

MYBR1 physically interacts with PYL8 and INO

Further information on the mechanistic role of MYBR1

in signaling was obtained by identifying protein-protein

interactions using the yeast 2-hybrid system. Initially

PYR1-LIKE8 (PYL8) and INNER NO OUTER (INO)

proteins were identified as interacting with MYBR1 by

screening an Arabidopsis cDNA library made from dif-

ferent stages of vegetative and floral tissues with a full

length MYBR1 fused to the DNA-binding (BD) domain

of the yeast GAL4 protein. It has been shown by many

groups that the 14 members of the PYR/PYL/RCAR

family are intracellular ABA receptors that interact with

and inhibit several PP2C-type protein phosphatases in-

cluding ABI1, ABI2, HAB1 and PP2CA [2-4]. INO en-

codes a YABBY-type TF and is required for both polarity

determination and outer integument initiation in ovule

development [33].

Figure 7 Endogenous levels of CKs and JA in rosette leaves

numbers 3–5 of 25 d old soil grown plants of WT, gain- and

loss-of MYBR1 function and double mutant mybr1xmybr2.

Leaves were harvested from at least 8 plants per replicate per

compound measured. Standard error was calculated from each

hormone (n = 4). CKs measured include: c-ZOG, cis-zeatin-O-glucoside;

t-ZOG, trans-zeatin-O-glucoside; t-ZR, trans-zeatin riboside; c-ZR,

cis-zeatin riboside. JA*: Concentration was measured as ng g-1 FW.

Figure 8 Primary root lengths of MYBR1 genotypes. Primary roots

were measured in soil-grown 8 day old plants. The results are expressed

as the percentage of roots of each genotype that fell within the four

indicated length ranges. For each genotype, the total number of

measured roots and the total range of lengths in cm were: OxMYBR1

42–6, 380 (range 0.54-2.12); OxMYBR1 31–3, 203 (range 0.71-2.71);

Wild type, 270 (range 0.62-3.57); mybr1, 372 (range 1.22-3.59).
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MYBR1 interaction with PYL8 encouraged us to sub-

sequently fuse all 14 PYR/PYL/RCAR genes as well as INO

and MYBR2 to the transcription-activation (AD) domain

of the yeast GAL4 protein. Interestingly, only PYL8, INO

and MYBR2 interacted with MYBR1 (Figure 10). Inter-

action of MYBR1 and PYL8 was confirmed by three inde-

pendent experiments using a more stringent screening of

positive clones on four drop out media (SD/-Leu/-Trp/-

His/-Ade) in the presence of antibiotic Aureobasidin A.

Furthermore, we also fused the full length MYBR2 to the

BD-domain and found that it also interacts only with

PYL8 out of the 14 PYL family members. But MYBR2

showed no interaction with INO which suggests that, des-

pite their shared roles in stress response and senescence,

MYBR1 and MYBR2 have some non-redundant functions.

In Figure 10, yeast colonies resulting from interaction

of AD-pGADT7, -MYBR2, -PYL8, and -INO with BD-

MYBR1 were smaller compared to those with BD-

MYBR2 and BD-pGBT9. It should be noted that we

observed slight autoactivation and notable toxicity/re-

duced cell growth from high expression of MYBR1 using

the pGBKT7 plasmid and hence used the lower expressing

plasmid pGBT9.

Next, we examined whether the protein-protein inter-

actions described above are affected by phytohormones

(Additional file 1: Figure S4). In addition, MYBR2 is re-

ported to modulate auxin signaling [21] and therefore

we also tested inhibitors of auxin signaling (PCIB) and

transport (TIBA and NPA). However, the above interac-

tions were constitutive and not affected by phytohor-

mone additives.

We performed bimolecular fluorescence complemen-

tation (BiFC) assays in Nicotiana benthamiana leaf epi-

dermal cells to independently verify the interactions of

PYL8 with MYBR1 and MYBR2 and of MYBR1 with

MYBR2. It has been shown previously that PYL8 and

MYBR1 are localized in the nucleus [15,34] and inter-

action between MYBR2 and ARF7 occurs in the nucleus

[21]. All interactions of PYL8 with MYBR1 and MYBR2

and of MYBR1 with MYBR2 are high with consistent

fluorescent signal (Figure 9). Yeast two-hybrid and BiFC

approaches confirmed the interactions of PYL8 with

MYBR1 and MYBR2 and between MYBR1 and MYBR2

and showed that PYL8 may modulate the binding of

MYBR1 and MYBR2 to DNA and/or that both MYBR1

and MYBR2 may modulate PYL8 function. The inter-

action of MYBR1, 2 with only PYL8 but not with other

members of PYR/PYL/RCAR family suggests that these

interactions define very specific functional roles.

Discussion
We previously identified MYBR1 as a weakly ABA re-

sponsive gene [14] and here we provide evidence that it

is a repressor of ABA signaling during seedling growth,

drought and senescence. It is now clear that MYBR1 is

part of the ABA/abiotic stress response and wounding/

abscission response networks, both of which involve sen-

escence responses. MYBR1 acts as a negative regulator

(feedback repressor) of responses to stress, wounding and

abscission in favor of normal growth and development.

MYBR1 is by no means unique in its ability to negatively

regulate ABA and stress responses. Other examples in-

clude the AP2 domain TFs ABA REPRESSOR1 (ABR1)

[35] and ETHYLENE RESPONSE FACTOR7 (ERF7) [36]

and the homeodomain protein HB6 [37].

Our original observations that MYBR1 was induced by

PBI425, induced weakly by ABA, repressed by drought

and paradoxically induced by rewatering after drought

stress [8,14] have been confirmed and can now be ratio-

nalized. Under non-stressed conditions, ABA treatment

produces unnecessary stress responses and MYBR1 in-

duction blocks these responses to restore normal pat-

terns of gene expression. Under water stress conditions

MYBR1 is not expressed, allowing the full effects of ABA

to be manifested and allows adaptive responses to be main-

tained during drought stress. On recovery from stress,

MYBR1 expression leads to repression of ABA responses

Figure 9 Leaf number in MYBR1 genotypes. Seeds from WT, mybr1,

mybr1xmybr2 and three lines of OxMYBR1 (42–6, 31–3 and 1–7) were

germinated on MS plates and 8 d old seedlings were transferred to

fresh plates without and with 5 and 10 μM ACC. Leaf number was

counted 17 d after transfer. Control and ACC treated experiments were

conducted in four replicates and each replicate contained four

seedlings per genotype. The experiment was repeated three times.

Standard error was calculated at each time point (n = 12). Two-way

ANOVA resulted in significant differences between genotypes but no

significant difference between control and ACC treatments. There were

increased numbers of rosette leaves in OxMYBR1 lines relative to other

genotypes (especially line 42–6) and a significantly reduced number of

leaves in the mybr1 and mybr2 double mutant relative to most other

genotypes with and without ACC. However, ACC treatment qualitatively

enhanced differences between genotypes.
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that are no longer required. The regulation and effects of

MYBR1 are summarized in Figure 11.

Although induced senescence during prolonged drought

has survival value by conserving water and nutrients [11],

there are clearly finely balanced advantages and disad-

vantages to irreversible loss of vegetative matter. In

fact, by introducing a novel feedback mechanism to

suppress drought induced senescence in tobacco, Rivero

et al. [10] demonstrated striking beneficial effects, sug-

gesting that, in a crop plant context, induced senescence

can be disadvantageous. Therefore, it seems that MYBR1

is a component of an endogenous homoeostatic mechan-

ism to balance growth, high seed production and risk

of death versus senescence, survival and minimal seed

production. Given that senescence of older leaves is a

normal stage of leaf development, MYBR1 appears to

also play a role in determining the normal length of the leaf

adult phase.

Senescence induces protein degradation pathways

[22,27,38] and the effects of MYBR1 are associated with

reduced/delayed expression of ubiquitin- and autophagy

mediated protein degradation and increased produc-

tion of CKs. Previous studies have associated drought-

induced leaf senescence with reduced CKs [11] and

increased CK biosynthesis blocks leaf senescence [39].

Higher levels of CKs, reduced primary root growth and

more adult leaves in OxMYBR1 lines are also consistent

with increased CK effects. However, there are other hor-

monal interactions. MYBR1 appears to repress jasmonate

effects – which likely also contributes to suppression

of wounding responses. Jung et al. [40] demonstrated

that MYBR1 was induced by jasmonate and also showed

that jasmonate responses were repressed. More re-

cently Shim et al. [41] show that MYBR1 represses JA

defense responses and activates salicylic acid-mediated

defenses via WRK70 leading to enhanced responses to

Figure 10 Physical interaction of MYBR1 and MYBR2 with PYL8, MYBR2 and INO as determined by the yeast two-hybrid method and

BiFC. (A) Blue color from galactosidase activity indicates interaction between proteins produced from the bait (top row) and prey (vertical axis)

vectors. (B) BiFC of the interactions of PYL8 with MYBR1 and MYBR2 and of MYBR2 with MYBR1in N. benthamiana leaf epidermal cells. Top panel

shows the signal from eYFP, reconstituted from YFP1-174 aa -PYL8 and YFP175-end aa -MYBR1 & MYBR2 and from YFP1-174 aa -MYBR2 and

YFP175-end aa -MYBR1. Bottom panel presents eYFP and transmitted light detector signals.
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biotrophic pathogens and attenuated responses to necro-

trophic pathogens.

We propose a model of MYBR1-repression of ABA

signaling during drought and senescence (Figure 11). It has

been shown previously that PYL8 is localized in both cyto-

plasm and nucleus and the interaction between PP2C1 and

PYL8 takes place in the nucleus [34]. In addition, MYBR1

is also localized in the nucleus [15]. Therefore, the inter-

action of MYBR1 with PYL8 suggests a direct role of

MYBR1 in modulating ABA perception. The uniqueness of

the interaction with PYL8 (and with no other PYL) pro-

vides an example of receptor specificity - an ABA receptor

mediating a specific sub-network of responses. The exist-

ence of such effects was suggested by comparison of the ef-

fects of ABA analogs in Huang et al. [14]. Previous papers

have noted that binding of PYL8 to PP2Cs does not appear

to be dependent on ABA, so the regulatory significance of

the PYL8-ABA complex is not clear. Increased drought tol-

erance and ABA hypersensitivity in seed of 35Spro:PYL8

lines showed that PYL8 is an overall positive regulator of

ABA signaling [34]. Binding of MYBR1 to PYL8 may block

interaction with and inhibition of PP2Cs. Alternatively,

PYL8 may regulate MYBR1 binding to DNA. Since PYL8-

PP2C binding is independent of ABA, PYL8 may be

responsible for constitutive ABA signaling that is inde-

pendent of ABA itself or ABA may be required to fully

potentiate PYL8-PP2C interaction. Future studies will fur-

ther explore the MYBR1-PYL8 interaction in relation

to MYBR1 function.

The weak phenotypes of the mybr1 and mybr2 mutants

and the enhanced effects in the double mybr1 x mybr2

mutant strongly suggest that MYBR1 and MYBR2 are par-

tially redundant and the yeast two hybrid data indicates

that they may form heterodimers (Figure 11). However,

MYBR2 has mainly been associated with auxin signaling

and root development [21], shows differing MYBR2PRO::

GUS expression patterns compared to MYBR1PRO::GUS

[21], and has not been distinctly associated with ABA or

jasmonate response as our data and others suggest for

MYBR1 [14,15,17,40].The specific interaction of MYBR1

(and not MYBR2) with INO suggests that there are at least

some unique functions of MYBR1 not shared by MYBR2.

However, the significance of the MYBR1-INO interaction

is unknown at this time. INO encodes a YABBY-type tran-

scription factor and is only known to be involved in ovule

development [33] and there is no specific MYBR1 pheno-

type associated with flowers.

The effects of MYBR1 overexpression in Arabidopsis

were also studied by Jung et al. [15], but some of their

results were significantly different to those reported

here. Jung et al. [15] reported downregulation of stress

genes but increased stress tolerance and reduced water

loss from detached shoots in over-expression lines and ob-

tained similar results in soybean transgenics [25]. Simi-

larly, Persak and Pitzschke [17] reported delayed mortality

of an OxMYBR1 line relative to wild type when exposed

to toxic levels of salt. For this reason, we focused carefully

on identifying the most appropriate approach to measuring

Figure 11 Model of MYBR1 mechanism of action and effects.
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drought and water loss. We believe that our results dem-

onstrate that the reduced size of OxMYBR1 lines – due to

slower growth of above-ground tissues and shorter primary

roots – is associated with reduced water use and slower de-

pletion of soil moisture. This phenomenon produced an

apparent increase in drought tolerance because the differ-

ential size and water use of the MYBR1 genotypes were

not taken into account. To circumvent this issue, PEG

treatment (which maintains a specific soil water potential)

was used to reveal the increased sensitivity of OxMYBR1

lines to water stress (as shown in Figure 3A). Furthermore

our microarray results are consistent with reduced stress

responses in OxMYBR1 lines and careful analysis of micro-

array results in Table 1 in Jung et al. [15] suggests that

many well-known positive effectors or regulators of stress

responses (such as ERD1, KIN1, COR15a, COR15b,

RAB18, RESPONSIVE TO DESSICATION29A (RD29A),

COR47, RD29B, DELTA1-PYRROLINE-5-CARBOYLATE

SYNTHASE1 (P5CS), DREB2A) were similarly down-

regulated in overexpressing AtMYBR1 plants relative to

WT plants. However, Jung et al. did not perform experi-

ments that showed the effects of MYBR1 overexpression

on repressing ABA/PBI425-induced genes (as in Figure 1).

The differences between our results and Jung et al. [15] in

measuring drought tolerance provides a cautionary ex-

ample of the complexities and subtleties of performing

and interpreting drought and water use experiments. Un-

like Jung et al. [15] and Persak and Pitzschke [17], we did

not investigate salt-stress related phenotypes related to

MYBR1 expression. More recently, Jung et al. [40] sug-

gested thatMYBR1 was induced non-specifically by phyto-

hormones and suppressed jasmonate responses. Our data

also suggest an effect of MYBR1 on repressing JA re-

sponses, but show a direct and unambiguous link to ABA

signaling as described above.

Conclusions
In the last few years, considerable information has accu-

mulated on the involvement of MYBR1 in stress-related

MAPK signaling. However, the function of the gene in rela-

tion to stress responses has remained unclear. This study

reveals that MYBR1 is a component of ABA signaling and

appears to be involved in feedback maintenance of adult,

pre-senescent growth, especially under conditions of stress

and wounding. As such it provides an example of a tran-

scription factor that integrates, balances and co-ordinates

hormonal, developmental and environmental signals.

Methods
Plant materials, growth conditions and treatment

Arabidopsis thaliana plants were grown under long-day

conditions in a growth cabinet at 22°C and 40% humid-

ity with 16 h of 80 μE light and 8 h dark cycles. Seeds

were surface sterilized as follows: seeds were washed

aseptically; once with 70% ethanol for 30 sec and three

times with 20% bleach for 5 min followed by four washes

with sterile water. Water was removed after the final wash

and 0.2% agar solution was added to facilitate placing

seeds on Murashige-Skoog (MS) + 0.8% agar media with-

out sucrose. Seed stratification was performed at 4°C, in

the dark for 3 d. Since growth rates differ slightly between

genotypes, care was taken that observed differences be-

tween genotypes at specific times were consistent and not

artifacts of different developmental stages.

For microarray experiments, growth of plants, treatment

of 5 week old plants with 20 μM PBI425 for 24 h and

above ground tissue collection were done as described in

Huang et al. [14].

For root phenotyping of seedlings following seed

stratification, agar plates were transferred to a controlled

environment cabinet. Eight days after stratification, seed-

lings were photographed using a digital camera and root

lengths were measured using ImageJ software (version

1.37v, NIH, USA).

For generation of mybr1xmybr2 double mutant, T-

DNA insertion lines of (mybr2) SALK_67655 was obtained

from the Arabidopsis Stock Center (http://arabidopsis.org).

This loss-of-function mutation in this line is caused by T-

DNA insertion into an exon. mybr2 homozygous plants

were identified by PCR as described [42]. Homozygous

plants of mybr1 [14] and mybr2 were crossed reciprocally.

Homozygous double mutants mybr1♀ x mybr2 ♂ and

mybr2♀ x mybr1♂ were identified by PCR [42].

PEG treatment

Following stratification at 4°C, plants were grown in soil

(Sunshine 3 Mix from Sun Gro Horticulture Inc.) for 17

d in a growth chamber at 22°C and 64% humidity with

16 h of 150 μE light and 8 h dark cycles, then trans-

planted individually into 2″x 2.5″ pots filled with 90 ml

sand: soil (2:1) mix. Pots were watered with 30 ml Hoag-

land solution. We found that maintaining high humidity

is crucial in this experiment. Plants were watered as

needed and after 20 d, 50 ml of 10% or 15% PEG solutions

was added to each pot. After 30 min to allow drainage,

pots were transferred to fresh tray holders. Pictures were

taken 5 d after PEG treatment.

Transpirational water loss assays of detached whole

rosette leaf and whole plants

Plants were grown as described above. Whole rosette

leaves of 20 d old plants were excised, placed in a weigh-

ing boat and weighed at intervals for up to 9 h. Samples

were kept at 22°C between weighing intervals.

Chlorophyll assay

Freshly harvested leaves were weighed and chlorophyll was

extracted on 0 d (untreated) and after 6–7 d following dark
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induced senescence. Chlorophyll extraction and quantifica-

tion were carried out as described by [43]. Leaves or whole

rosettes of Arabidopsis were harvested and weighed.

Chlorophyll was extracted by placing the tissue in 90%

ethanol at 65°C for 3 h until all tissues became chlorophyll

free. The amount of total chlorophyll was determined by

measuring absorbance at 664 and 647 nm [44] with a Mi-

croplate Reader (Synergy H1) from Biotek and using the

formula: micromoles of chlorophyll per milliliter per gram

fresh weight = 7.93(A664) + 19.53(A647).

MYBR1pro:GUS plasmid construction, treatments

and GUS staining

A 2.7 kb fragment, including the 5′UTR, of the AtMYBR1

promoter was PCR amplified from Arabidopsis thaliana

(Col-0) WT genomic DNA using the primers 5′-attB1-

gtagtgcgtgtggatatatacatgca-3′ and 5′-attB2-tgattttggaatg

ttttatcaaactttag-3′ and cloned into pDONR221 using a

Gateway BP reaction (Invitrogen). Following sequence veri-

fication, the MYBR1 promoter was then cloned into the

GUS expression vector pMDC162 [45] with an LR reaction

(Invitrogen).

For GUS staining in seedling, flower and silique, homo-

zygous T2 and T3 seedlings were grown for 13 d on MS

medium in the presence of 1% sucrose and were stained

for GUS activity for 70 min. For drought stress, seedlings

were grown for 7 days and drought was imposed by over-

laying 10% and 20% PEG on an agar plate for 44 h

followed by GUS staining for 1 h. True leaves of control

plants were wounded aseptically with hemostats and

30 min GUS staining was performed at 0 h and after 1 h

of wounding. Floral tissues were stained for 16 h unless

otherwise stated. GUS staining was performed [46] with

X-gluc staining reagent ( 0.1 M NaPO4 pH7.0, 10 mM

Na2EDTA, 0.1% Triton X-100, 1.5 mM K3Fe(CN)6,

0.5 mM K4Fe(CN)6, and 2.0 mM X-gluc) at 37°C in the

dark after three vacuum infiltrations of 1 min each. After

staining, chlorophyll was removed completely by suc-

cessive washes with 50%, 70% and 80% ethanol with

gentle agitation and photographs were taken using a

Wild M3Z dissecting microscope equipped with a Leica

DFC320 camera.

For GUS staining in embryo and endosperm, plants

were grown in growth chambers as described above. Si-

liques were collected at 6, 9, 12, 15 and 18 days post

anthesis (DPA) and were fixed in 20% acetone for >24 h

at −20°C prior to embryo dissection followed by 30 min

GUS staining. Dry and imbibed seeds at different time

points were also fixed, dissected and then stained as de-

scribed above.

Detached leaf senescence assay

Plants were grown on soil. Rosette true leaves numbers

1–4 as counted by order of emergence (cotyledons were

excluded), were excised and incubated with their abaxial

sides down on two pieces of 3 MM paper wetted with

10 ml of 3 mM MES (pH 5.7) without or with different

concentration of (+)-ABA, 1-aminocyclopropane-1-

carboxylic acid (ACC), benzyl amino purine (BP), or MJA

at room temperature in the dark [26]. Leaves numbers 1

and 2 were incubated for 5d and juvenile leaves numbers 3

and 4 were incubated for 6–13 d. Leaf pictures were taken

after treatment and chlorophyll assay (described above)

was performed.

Quantification of ABA, cytokinins and their metabolites

and JA by LC-MS/MS

The plant hormone analysis was performed by high

performance liquid chromatography-electrospray tandem

mass spectrometry (HPLC-ES-MS/MS) using deuterated

internal standards, as described [47,48]. The analysis of free

salicylic and jasmonic acid using HPLC-ES-MS/MS with

deuterated internal standards will be presented elsewhere

(Han et al., unpublished).

RNA extraction and microarray labeling, hybridization

and data acquisition

Total RNA was extracted from frozen tissues of four in-

dependent biological replicates as described [49] with a

slight modification. Instead of extraction buffer RLT, a

mix containing 10 mM Tris–HCl pH 7.5; 0.1 M NaCl;

1 mM EDTA and 1% SDS was used. RNA quantification

was performed by measuring optical density at 260 nm.

Microarray labeling, hybridization, scanning and data ac-

quisition were done for oligonucleotide microarrays ob-

tained from the University of Arizona according to Huang

et al. [14]. However, microarray labeling, hybridization and

slide washing for Agilent Technologies Arabidopsis 4x44k

arrays (version 4, product# G2519F, design ID 021169)

were performed according to the manufacturer’s protocol

using low input Quick Amp Labeling Kit for two color

(Agilent Technologies; cat# 5190–2306) [50]. In short,

200 ng total RNA was used for cDNA synthesis and 2.5 h

for cRNA amplification. Two μg each of cyanine 3- and 5-

labeled amplified cRNA was hybridized to each array. After

washing, each slide was scanned using Axon 4000B scan-

ner with a resolution of 5 μm/pixel. Data acquisition was

done as described above.

Microarray data analysis

Signal intensity normalization (method: Print-tip loess), fil-

tering bad spots and control spots, filtering minimum chan-

nel intensity (intensity for both channel should be <500 in

most cases) and correlation coefficient among replicates

were performed in BASE [51]. Quality control on sample

data was performed in GeneSpring GX 10.0.2 (Agilent). To

obtain statistically differentially expressed gene sets, a t-test

against zero along with Benjamini-Hotchberg multiple
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testing correction and with a 0.05 p-value cut-off were

performed in GeneSpring. Furthermore, biologically sig-

nificant differentially expressed gene sets were obtained by

using a threshold fold change ≥ 1.5. The spot visualization

feature in BASE was employed for an additional quality

control for false positives/negatives. Afterward, log2

expression values for each sample type were uploaded

into MapMan ImageAnnotator version 3.0.0RC3. Analysis

for statistically significant enriched biological pathways, a

Wilcoxon rank sum t-test embedded in MapMan was per-

formed with a p-value cut-off of 0.05 and Benjamini

Hochberg multiple testing correction [52]. Gene annota-

tion was done based on TAIR database, MapMan and

PlantsUBQ (URL http://plantsubq.genomics.purdue.edu).

Quantitative RT-PCR

Gene-specific primers for QRT-PCR were designed using

PerlPrimer v1.1.14 [53]; http://perlprimer.sourceforge.net

and are listed in Additional file 1: Table S3. Total RNA

was isolated as described above, from rosette leaves 3 and

4 of three week old plants. Complementary DNA (cDNA)

was produced using 2 μg total RNA using QuantiTect

Reverse Transcription kit from Qiagen (catalog number

205311) according to the manufacturers instruction. Two

biological and two technical repeats were performed with

null-template control. Arabidopsis ACTIN2 was used as a

normalization control [14]. cDNAs were diluted 10 times

in QRT-PCR reactions for all genes (MYBR1, SAG29,

SEN1 and SEN4) except SAG12 cDNA which was used

without dilution. QRT-PCR was performed with SYBR

green SuperScript III Platinum Two-Step qRT-PCR Kit

(Invitrogen, 11735–032) according to the manufacturer

instructions, on a Stratagene Mx3000P real-time PCR

thermal cycler.

Construction of gene fusions for yeast two-hybrid assays

Open reading frames of MYBR1 and MYBR2 and 14

genes of PYR/PYL/RCARs family ABA receptors and the

GAL4 activation domain (AD) and DNA-binding do-

main (BD) were constructed in the pGADT7 and pGBT9

vectors, respectively (Clontech). The open reading frames

(ORF) of PYL1/2/3/5/6/7/8/9/10/11/12/13 were PCR amp-

lified from cDNA and the ORF of PYR1 from an ABRC

clone (accession number U15941) using PfuUltra II fusion

HS DNA polymerase (Agilent; catalog number 600670)

and primers are listed in Additional file 1: Table S3. PCR

products were gel purified with a gel extraction kit (QIA-

GEN; catalog number 28704), were cloned into Gateway

vector pDONR221 by a Gateway BP reaction (Invitrogen)

and were verified by sequencing using M13 forward and

reverse primers. ORFs of PYL4 and MYBR2 cloned in

pENTR223 were obtained from ABRC clones (accession

number G12806 and G14459, respectively) and were veri-

fied by sequencing using T7 and M13 forward primers.

These 15 different ORFs were then cloned in-frame with

the GAL4AD in pGADT7 by LR reactions (Invitrogen).

ORFs of MYBR1 and MYBR2 were cloned in-frame with

the GAL4BD in pGBT9 using In-Fusion Advantage PCR

Cloning kit (Clontech; catalog number 639619) as follows:

MYBR1 ORF was PCR amplified from cDNA and MYBR2

ORF from an ABRC clone G14459 using primers listed

in Additional file 1: Table S3. PCR products were gel

purified and verified by sequencing using forward 5′-

ttttcgttttaaaacctaagagtc-3′ and reverse 5′-tcatcggaaga

gagtagt-3′ primers. Plasmid pGBT9 was digested to com-

pletion with EcoRI and BamHI and column purified

(QIAGEN; catalog number 28106). In-fusion cloning reac-

tions between ORFs and linearized pGBT9 were performed

according to the manufacturer’s instruction.

Protein-protein interaction analyses

All gene fusions in pGADT7 and in pGBT9 were trans-

formed into the yeast cell lines Y187 and Y2H Gold, re-

spectively and were grown in the presence of 50 μg/μl

kanamycin on media SD/Leu and SD/Trp, respectively,

according to the manufacturer’s instructions (Clontech;

Matchmaker gold yeast two-hybrid system; catalog num-

ber 630489). Auto-activation and toxicity of pGBT9-

MYBR1 and pGBT9-MYBR2 were tested as described

by Clontech. For library screening, transformed yeast

Y2H Gold with pGBT9-MYBR1 was used to screen an

Arabidopsis normalized cDNA library; Mate and Plate

(Clontech; catalog number 630487) which was con-

structed from different stages of vegetative and floral tis-

sues, cloned in pGADT7-RecAB vector and transformed

into the yeast Y187. After 24 h mating, library screening

was performed on medium SD/-Leu/-Trp/-His/-Ade in

the presence of 20 μg/ml x-α-gal (Gold Biotechnology)

and 78 ng/ml Aureobasidin A (Clontech) (QDO/X/A)

and grown for 4 d at 30°C. Blue yeast colonies were

streaked onto fresh QDO/X/A. Following 3 d growth,

plasmids were isolated using the Easy Yeast Plasmid Isola-

tion Kit (Clontech) and cDNA inserts were PCR amplified

using LD-AD screening primers (Clontech) and verified by

sequencing using T7 primer. For individual clone screen-

ing, transformed yeast Y2H Gold with pGBT9-MYBR1and

pGBT9-MYBR2 and transformed yeast Y187 with each

PYR/PYL/RCARs/MYBR2-pGADT7 were mated for 1 d at

30°C and screened on media SD/-Leu/-Trp (DDO), DDO/

X/A and QDO/X/A as described by Clontech. Bimolecular

fluorescence complementation (BiFC), including prepar-

ation of constructs, was performed in N. benthamiana epi-

dermal cells according to [50].

Accession numbers

The Arabidopsis Genome Initiative (AGI) locus identifiers

for the genes from this article are as follows: MYBR1/

MYBR44 (At5g67300), MYBR2/MYBR77 (At3g50060),

Jaradat et al. BMC Plant Biology 2013, 13:192 Page 17 of 19

http://www.biomedcentral.com/1471-2229/13/192

http://plantsubq.genomics.purdue.edu
http://perlprimer.sourceforge.net


PYL8 (At5g53160), INO (At1g23420). SALK T-DNA inser-

tion mutant line of MYBR1 and MYBR2 are SALK_039074

and SALK_67655, respectively.

Additional files

Additional file 1: Figure S1. Experimental Designs of Two Color

Arabidopsis Microarray Experiments using Above-Ground Tissues of 5

Weeks Old Plants. Figure S2. Reduced Water Uptake by Gain of AtMYBR1

Function Leads to Apparent Drought Tolerance in Plants Overexpressing

AtMYBR1. Figure S3. Expression of MYBR1pro:GUS in Vegetative Tissues,

Embryos and Endosperm at Different Developmental Stages and after

Imbibition of Mature Seeds. Figure S4. Physical Interaction of MYBR1 and

MYBR2 with PYL8, MYBR2 and INO in the Presence of Various Hormones

and Inhibitors of Auxin Signaling and Transport. Table S2. Enriched TF

Sites (http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl).

Table S3. Primers for QRT-PCR and Gene Cloning for Yeast Two-Hybrid

Analysis. Table S5. MYBR1 represses genes associated with leaf senescence.

Additional Methods.

Additional file 2: Table S1. Significant Gene List Obtained from T-Test

P-Value Cut-Off ≤0.05 and Fold Change ≥1.5 (Excel File).

Additional file 3: Table S4. MYBR1 Represses Genes Induced by Natural

Leaf Senescence (Excel File).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AJC conceived the project. AJC and MRJ designed the experiments and JAF

and DH provided suggestions on experiments. MRJ performed the

experiments and analyzed data in the manuscript unless otherwise stated.

DH constructed p35Spro:AtMYBR1 plasmid and generated 35Spro:AtMYBR1

To seeds. JAF constructed pMYBR1pro:GUS plasmid and generated MYBR1pro:

GUS To seeds. YL and JAF screened yeast 2-hybrid library. MRJ, YL and JAF

verified the interaction of PYL8 with MYBR1. AJC, MRJ, JAF and DH contributed

to the interpretation of results. AJC and MRJ wrote and edited the manuscript.

All authors read and approved the final manuscript.

Acknowledgements

Phytohormone analysis was performed by the Plant Hormone Profiling

Technology Unit of the Plant Biotechnology Institute - National Research Council

of Canada http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/plant_hormone.html

by ultra performance liquid chromatography electrospray tandem mass

spectrometry (UPLC-ES-MS/MS) employing deuterated internal standards

for quantitation. We thank Mr. Chad Matsalla for help with Bioinformatics

and Dr. Prakash Venglat for advice in obtaining the images in Figure 11.

We thank Dr. Suzanne Abrams, for providing (+)-ABA and ABA analog

(+)-8′ acetylene ABA (PBI425). We thank Dr. Qing Lu and Dr. Yuhai Cui

(AAFC in London, Ontario) for providing a Gateway-compatible version of

vector pGADT7. We are grateful to Dr. Raju Datla and Dr. Ed Tsang for

helpful comments during the preparation of the manuscript. Funding for

some of this research was provided by Genome Canada and Genome

Prairie as part of the project ‘enhancing canola through genomics’. This paper is

NRCC number 50185.

Author details
1Plant Biotechnology Institute, National Research Council of Canada, 110

Gymnasium Place, Saskatoon S7N 0W9, Canada. 2Zhejiang Agriculture and

Forestry University, Hangzhou 311300, China.

Received: 9 September 2013 Accepted: 21 November 2013

Published: 28 November 2013

References

1. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR: Abscisic acid: Emergence

of a core signaling network. Annu Rev Plant Biol 2010, 61:651–679.

2. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E:

Regulators of PP2C phosphatase activity function as abscisic acid

sensors. Science 2009, 324:1064–1068.

3. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J,

Rodrigues A, Chow TF, et al: Abscisic acid inhibits type 2C protein

phosphatases via the PYR/PYL family of START proteins. Science 2009,

324:1068–1071.

4. Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY,

Márquez JA, Cutler SR, Rodriguez PL: Modulation of drought resistance by

the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs.

Plant J 2009, 60:575–588.

5. Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N:

Structural insights into the mechanism of abscisic acid signaling by PYL

proteins. Nat Struct Mol Biol 2009, 16:1230–1236.

6. Bartels D, Sunkar R: Drought and salt tolerance in plants. Crit Rev Plant Sci

2005, 24:23–58.

7. Yamaguchi-Shinozaki K, Shinozaki K: Transcriptional regulatory networks in

cellular responses and tolerance to dehydration and cold stresses.

Annu Rev Plant Biol 2006, 57:781–803.

8. Huang D, Wu W, Abrams SR, Cutler AJ: The relationship of drought-related

gene expression in Arabidopsis thaliana to hormonal and environmental

factors. J Exp Bot 2008, 59:2991–3007.

9. Lim PO, Kim HJ, Nam HG: Leaf senescence. Annu Rev Plant Biol 2007,

58:115–136.

10. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S,

Blumwald E: Delayed leaf senescence induces extreme drought tolerance

in a flowering plant. Proc Natl Acad Sci USA 2007, 104:19631–19636.

11. Munné-Bosch S, Alegre L: Die and let live: leaf senescence contributes to

plant survival under drought stress. Funct Plant Biol 2004, 31:203–216.

12. Riechmann JL, Ratcliffe OJ: A genomic perspective on plant transcription

factors. Curr Opin Plant Biol 2000, 3:423–434.

13. Stracke R, Werber M, Weisshaar B: The R2R3-MYB gene family in Arabidopsis

thaliana. Curr Opin Plant Biol 2001, 4:447–456.

14. Huang D, Jaradat MR, Wu W, Ambrose SJ, Ross AR, Abrams SR, Cutler AJ:

Structural analogs of ABA reveal novel features of ABA perception and

signaling in Arabidopsis. Plant J 2007, 50:414–428.

15. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD,

Cheong JJ: Overexpression of AtMYB44 enhances stomatal closure to

confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol

2008, 146:623–635.

16. Pitzschke A, Djamei A, Teige M, Hirt H: VIP1 response elements mediate

mitogen-activated protein kinase 3-induced stress gene expression.

Proc Natl Acad Sci 2009, 106:18414–18419.

17. Persak H, Pitzschke A: Tight Interconnection and Multi-Level Control of Arabi-

dopsis MYB44 in MAPK Cascade Signalling. PLoS ONE 2013, 8:e57547.

18. Nguyen XC, Hoang MHT, Kim HS, Lee K, Liu XM, Kim SH, Bahk S, Park HC,

Chung WS: Phosphorylation of the transcriptional regulator MYB44 by

mitogen activated protein kinase regulates Arabidopsis seed

germination. Biochem and Biophys Res Commun 2012, 423:703–708.

19. Cutler AJ, Rose PA, Squires TM, Loewen MK, Shaw AC, Quail JW, Krochko JE,

Abrams SR: Inhibitors of abscisic acid 8'-hydroxylase. Biochemistry 2000,

39:13614–13624.

20. Kirik V, Kolle K, Miséra S, Bäumlein H: Two novel MYB homologues with

changed expression in late embryogenesis-defective Arabidopsis

mutants. Plant Mol Biol 1998, 37:819–827.

21. Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ,

Schachtman DP: The Arabidopsis transcription factor MYB77 modulates

auxin signal transduction. Plant Cell 2007, 19:2440–2453.

22. van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge UI, Kunze R:

Transcription analysis of Arabidopsis membrane transporters and

hormone pathways during developmental and induced leaf senescence.

Plant Physiol 2006, 141:776–792.

23. Yamaguchi-Shinozaki K, Shinozaki K: Organization of cis-acting regulatory

elements in osmotic- and cold-stress-responsive promoters. Trends Plant

Sci 2005, 10:88–94.

24. O’Connor TR, Dyreson C, Wyrick JJ: Athena: a resource for rapid visualization

and systematic analysis of Arabidopsis promoter sequences. Bioinformatics

2005, 21:4411–4413.

25. Seo J, Sohn H, Noh K, Jung C, An J, Donovan C, Somers D, Kim D, Jeong SC,

Kim CG, et al: Expression of the Arabidopsis AtMYB44 gene confers drought/

salt-stress tolerance in transgenic soybean. Mol Breeding 2012, 29:601–608.

Jaradat et al. BMC Plant Biology 2013, 13:192 Page 18 of 19

http://www.biomedcentral.com/1471-2229/13/192

http://www.biomedcentral.com/content/supplementary/1471-2229-13-192-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2229-13-192-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2229-13-192-S3.xlsx
http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/plant_hormone.html


26. Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD: The

APG8/12-activating enzyme APG7 is required for proper nutrient

recycling and senescence in Arabidopsis thaliana. J Biol Chem 2002,

277:33105–33114.

27. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF,

Wu SH, Swidzinski J, Ishizaki K, et al: Comparative transcriptome analysis

reveals significant differences in gene expression and signalling pathways

between developmental and dark/starvation-induced senescence in

Arabidopsis. Plant J 2005, 42:567–585.

28. Kim HS, Delaney TP: Arabidopsis SON1 is an F-Box protein that regulates

a novel induced defense response independent of both salicylic acid

and systemic acquired resistance. Plant Cell 2002, 14:1469–1482.

29. Sakakibara H: Cytokinins: activity, biosynthesis, and translocation.

Annu Rev Plant Biol 2006, 57:431–449.

30. Hwang I, Sheen J: Two-component circuitry in Arabidopsis cytokinin

signal transduction. Nature 2001, 413:383–389.

31. Chaudhury AM, Letham S, Craig S, Dennis ES: amp1 - a mutant with high

cytokinin levels and altered embryonic pattern, faster vegetative growth,

constitutive photomorphogenesis and precocious flowering. Plant J 1993,

4:907–916.

32. Werner T, Motyka V, Strnad M, Schmülling T: Regulation of plant growth

by cytokinin. Proc Natl Acad Sci USA 2001, 98:10487–10492.

33. Villanueva JM, Broadhvest J, Hauser BA, Meister RJ, Schneitz K, Gasser CS:

INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis

ovules. Genes Dev 1999, 13:3160–3169.

34. Saavedra X, Modrego A, Rodríguez D, González-García MP, Sanz L, Nicolás G,

Lorenzo O: The nuclear interactor PYL8/RCAR3 of Fagus sylvatica

FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and

stress. Plant Physiol 2010, 152:133–150.

35. Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S: ABR1, an APETALA2-

domain transcription factor that functions as a repressor of ABA re-

sponse in Arabidopsis. Plant Physiol 2005, 139:1185–1193.

36. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK: Role of an

Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid

and drought stress responses. Plant Cell 2005, 17:2384–2396.

37. Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E: Homeodomain

protein ATHB6 is a target of the protein phosphatase ABI1 and regulates

hormone responses in Arabidopsis. EMBO J 2002, 21:3029–3038.

38. Allègre M, Daire X, Héloir MC, Trouvelot S, Mercier L, Adrian M, Pugin A:

Stomatal deregulation in Plasmopara viticola-infected grapevine leaves.

New Phytol 2007, 173:832–840.

39. Gan S, Amasino RM: Inhibition of leaf senescence by autoregulated

production of cytokinin. Science 1995, 270:1986–1988.

40. Jung C, Shim J, Seo J, Lee H, Kim C, Choi Y, Cheong JJ: Non-specific

phytohormonal induction of AtMYB44 and suppression of jasmonate-

responsive gene activation in Arabidopsis thaliana. Mol Cells 2010,

29:71–76.

41. Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD:

AtMYB44 regulates WRK70 expression and modulates antagonistic

interaction between salicylic acid and jasmonic acid signaling. Plant J 2013,

73:483–495.

42. Alonso JM, Stepanova AN, Leisse TJ, et al: Genome-wide insertional

mutagenesis of Arabidopsis thaliana. Science 2003, 301:653–657.

43. Lolle SJ, Berlyn GP, Engstrom EM, Krolikowski KA, Reiter WD, Pruitt RE:

Developmental regulation of cell interactions in the Arabidopsis

fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle.

Dev Biol 1997, 189:311–321.

44. Hiscox JD, Israelstam GF: A method for the extraction of chlorophyll from

leaf tissue without maceration. Can J Bot 1979, 57:1332–1334.

45. Curtis MD, Grossniklaus U: A gateway cloning vector set for high-throughput

functional analysis of genes in planta. Plant Physiol 2003, 133:462–469.

46. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a

sensitive and versatile gene fusion marker in higher plants. EMBO J 1987,

6:3901–3907.

47. Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS,

Kermode AR: A method for profiling classes of plant hormones and their

metabolites using liquid chromatography-electrospray ionization tandem

mass spectrometry: an analysis of hormone regulation of thermodor-

mancy of lettuce (Lactuca sativa L.) seeds. Plant J 2003, 35:405–417.

48. Kong L, Abrams SR, Owen SJ, Graham H, Von Aderkas P: Phytohormones

and their metabolites during long shoot development in Douglas-fir

following cone induction by gibberellin injection. Tree Physiol 2008,

28:1357–1364.

49. Fei H, Tsang E, Cutler AJ: Gene expression during seed maturation in

Brassica napus in relation to the induction of secondary dormancy.

Genomics 2007, 89:419–428.

50. Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EWT,

Cutler AJ: The Arabidopsis C2H2 Zinc Finger INDETERMINATE DOMAIN1/

ENHYDROUS Promotes the Transition to Germination by Regulating

Light and Hormonal Signaling during Seed Maturation. Plant Cell 2011,

23:1772–1794.

51. Saal LH, Troein C, Vallon-Christersson J, Gruvberger S, Borg A, Peterson C:

BioArray Software Environment (BASE): a platform for comprehensive

management and analysis of microarray data. Genome Biol 2002,

3:software0003.1–software0003.6.

52. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA,

Rhee SY, Stitt M: MAPMAN: a user-driven tool to display genomics data sets

onto diagrams of metabolic pathways and other biological processes. Plant J

2004, 37:914–939.

53. Marshall OJ: PerlPrimer: cross-platform, graphical primer design for

standard, bisulphite and real-time PCR. Bioinformatics 2004, 20:2471–2472.

doi:10.1186/1471-2229-13-192
Cite this article as: Jaradat et al.: Multiple roles of the transcription
factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf
senescence. BMC Plant Biology 2013 13:192.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Jaradat et al. BMC Plant Biology 2013, 13:192 Page 19 of 19

http://www.biomedcentral.com/1471-2229/13/192


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	AtMYBR1 represses genes induced by a hyperactive ABA analog
	AtMYBR1 represses many ABA inducible stress genes
	AtMYBR1 reduces drought tolerance
	MYBR1pro:GUS is expressed under abiotic stress and during senescence, mechanical wounding and floral organ abscission
	AtMYBR1 delays leaf senescence
	AtMYBR1 regulates the expression of senescence genes
	Content of endogenous cytokinins and jasmonic acid
	MYBR1 mis-expression affects leaf and root morphology
	MYBR1 physically interacts with PYL8 and INO

	Discussion
	Conclusions
	Methods
	Plant materials, growth conditions and treatment
	PEG treatment
	Transpirational water loss assays of detached whole rosette leaf and whole plants
	Chlorophyll assay
	MYBR1pro:GUS plasmid construction, treatments and GUS staining
	Detached leaf senescence assay
	Quantification of ABA, cytokinins and their metabolites and JA by LC-MS/MS
	RNA extraction and microarray labeling, hybridization and data acquisition
	Microarray data analysis
	Quantitative RT-PCR
	Construction of gene fusions for yeast two-hybrid assays
	Protein-protein interaction analyses
	Accession numbers

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

