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Abstract. A multiple scales analysis is used to construct a uniformly accurate ap-

proximation to water hammer pressure wave attenuation that is initiated by a sudden

valve opening. The method of analysis is well suited to the study of a water hammer

that possesses several time scales and is applied to a mild generalization of the classical

equations. It should prove useful for finding attenuation curves when effects such as

unsteady friction and fluid-structure interaction are added. The analytical results are

numerically verified using the method of characteristics.

1. Introduction. The nonlinearity of the classical water hammer model and its vari-

ous generalizations has led to the development of increasingly sophisticated numerical and

semi-analytical methods of analysis that have proven useful in engineering applications.

However, it remains of interest to find uniformly accurate approximations whenever pos-

sible that are not simply ad hoc. The development of a multiple-scale decomposition

of the water hammer equations, one that may be capable of generalization to various

boundary and initial conditions and to features such as unsteady friction, is the focus of

this paper.

Numerical and semi-analytic studies have appeared for a wide range of water hammer

problems. A semi-analytic solution was developed in [17] based on the use of a wave-

tracking algorithm to describe hydraulic transients in thin-walled conduits. The analysis

of a limited number of 2-D unsteady velocity profiles is in [7], where flow stability is
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described with respect to the ‘spectrum’ of turbulence at certain times and locations

during the water hammer event. Other semi-analytic solutions include Adomian decom-

position, which was applied in [1] to the problem of shock-wave propagation through an

unconfined gas. Standard eigenfunction methods have also been used, and in [16] this

approach was applied to the pressure-wave transmission through a conduit between two

pressure-vessels. The method of characteristics has been useful to numerically investi-

gate the effects of including such specialized aspects as cavitation, column separation,

and leakage/blockage [4, 5]. It was found that Poisson-coupling, a very specific type of

fluid-structure interaction, can lead to a ‘beat’ phenomenon in certain cases. The effi-

ciency and accuracy of the outcomes of modelling hydraulic transients was compared in

[11] using a finite-volume Godunov shock-capturing scheme and a traditional fixed-grid

method of characteristics approach for both one- and two-phase flows. Good agreement

between observations and experimental results was found. Wavelet decomposition has

also been utilized in a standard Galerkin numerical scheme to solve the water hammer

equations, and the results compared well with those found via method of characteristics

[13].

In this paper, a generic multiple-scales analytical approach is developed for the clas-

sical water hammer equations. The method generalizes ad hoc results [10] through the

application of a structured approach, multiple-scales, that is well suited to the construc-

tion of uniformly accurate approximations to equations characterized by the presence

of several time scales. The structured approach followed here may also prove useful to

analyze generalizations of the classical equations to water hammer models presented in

[14] and to continue on from detailed discussions of time scales in unsteady flows that

appear in [2] and [3]. Standard assumptions made here include a constant pipe-wall

thickness, pipe supports that supply longitudinal restraint, and the presence of frequent

axial expansion joints. The results found here are for low Mach number, linearly elas-

tic conditions in which there is no cavitation, column separation, leakage, or blockage

within the non-tapered conduit. Darcy-Weisbach estimates of friction are assumed to

apply and other effects, including unsteady friction, are neglected. The above assump-

tions are common and the numerical analyses of such cases have been used in various

engineering applications [18].

The paper is organized as follows: (i) the water hammer equations and nomenclature

are given (Section 2), (ii) the problem is rescaled and dimensionless parameter sizes are

found (Section 3), (iii) a multiple-scales decomposition is used to describe attenuation of

pressure-wave amplitude for a water hammer initiated by valve opening. The analytical

results are verified by comparison with the same outcomes found via the method of

characteristics (Section 4).

2. Water hammer equations.

2.1. Quadratic head loss formulation. Figure 1 is a schematic of the Moody diagram

[12] governing steady flow in pressure conduits. It is essentially a summary of semi-

empirical results, obtained by others, from experiments done on pipes of different interior

roughnesses. The Moody diagram was originally designed to allow for the graphical

determination of such things as the friction-induced head loss associated with a given
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Fig. 1. Schematic representation of the Moody diagram governing
steady flow in pressure conduits. It illustrates three flow regimes: (i)
laminar (LAM), (ii) partially developed turbulence (PDT), and (iii)
fully developed turbulence (FDT). Parameters r and s in equation
(5) describe PDT flow between the points labelled f1 and f2. The
arrow indicates the path during flow establishment. Note that the
left-hand ordinate and the abcissa of the Moody diagram use log
scales.

flow rate. The Moody diagram in Figure 1 also usefully illustrates some important

phenomenology by visually separating the flow into three regimes. Its left-hand ordinate

is the Darcy-Weisbach friction factor; an historical development is in [8], defined as

f =
(Δh/L)Dc

v2∞/(2g)
, (1)

where v∞ is the steady flow velocity, Δh is the external head applied across the ends

of the pipe of length L and diameter Dc, and g is the acceleration due to gravity. The

Reynolds Number is given by

Re =
v∞Dc

ν
, (2)

where ν is the kinematic viscosity.

A given conduit has a relative roughness εc/Dc, where the absolute roughness εc is

dependent upon the nature and condition of the material that makes up the inner wall of

the pipe. The steady rate of flow through a given pipe is a point located on a given curve

within the Moody diagram and its location is dependent, for example, on the external

head applied across the ends of the pipe. A single ‘Moody PDT curve’ such as the one

passing through f1 and f2, associated with a given conduit, may be described by

f =
M1

Re
+M2, (3)
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where M1 and M2 are empirical quantities that are unique to a relative roughness εc/D

of interest. Elimination of f and Re in equations (1), (2), and (3) gives

Δh = M1
ν

g

L

D2
v +M2

L

gD
v2, (4)

which may be represented by

Δh = rv + sv2, (5)

a form first proposed in [6]. The values of r and s [9] are conveniently inferred using

regression analysis of a given Moody curve.

2.2. Momentum equation. The standard momentum equation is generalized here to

include the quadratic head loss form of (5):

ghx + vvx + vt′ +
g

L
(rv + sv2) = 0. (6)

The partial derivatives are conveniently written as subscripts and the quadratic head

loss component |v|v is written as v2 since the flow is assumed to be free of reversals, thus

ensuring that the shear stress will always oppose the motion [18]. Flow reversals are not

considered herein, but may be included by a piecewise analysis of the problem where

the flow is in one direction, forward or backward, within each portion of the problem

analyzed. Instead, the emphasis is placed on the presentation of a generic asymptotic

approach which, to the best of the authors’ knowledge, has only been considered before

in an ad hoc fashion [10].

2.3. Continuity equation. The continuity equation used here is

−∂Aρv

∂x
=

∂ρA

∂t′
(7)

with velocity v and conduit cross-sectional area A. Expanding (7) and noting that the

total derivative is (v∂/∂x+ ∂/∂t) = d/dt′ yields

1

ρ

dρ

dt′
+

1

A

dA

dt′
+

∂v

∂x
= 0. (8)

The continuity equation (8) is closed by relating changes in fluid density and in pipe

elasticity to pressure. Respectively, 1/ρ dρ/dt′ = 1/Evdp/dt
′ [18], where Ev is the volu-

metric bulk modulus of water, and 1/A dA/dt′ = ηD/(wE) dp/dt′, [18] where Young’s

modulus of the pipe material is E, pipe wall thickness is w [18], and η is the pipe-support-

condition coefficient. In [18], Poisson’s ratio and the application of other longitudinal

and/or radial restraint conditions can be used to compute appropriate values of η, which

typically vary between about 0.75 and unity. A choice of η = 1 is made here that implies

zero axial stresses so that the occurrence of strain is confined to the radial direction (full

details are in [18]). Pipe slope relates to pressure as p = ρg(h− z) with ∂z/∂t′ = 0 and

∂z/∂x = sin(θ). The celerity is

cp =

√
K

ρ
, (9)

where

K =
Ev

1 + ηEv

E
D
w

(10)
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Fig. 2. Schematic of physical setup before t′ = 0. Despite the pres-
ence of hydrostatic pressure along the conduit length before t′ = 0,
the conduit diameter Dc is assumed to be single-valued.

from which the final form of the continuity equation is

c2p
g
vx + vhx + ht′ + v sin(θ) = 0. (11)

Once again, the derivatives have been written as subscripts for convenience.

The water hammer is analyzed for the case of an instantaneous valve-opening, where

the initial velocity is zero and the initial head is constant after which the boundary

conditions x = 0, h = h1, x = L, h = h2 are suddenly imposed, causing the water

hammer. These conditions lead to a water hammer that repeatedly traverses the pipe,

for example, in a flow establishment initiated by a controlled centrifugal pump delivering

a constant head [15]. In contrast, the water hammer initiated in the more familiar

physical setup considered here in Figures 2 and 3 could only traverse the pipe once since

it would dissipate after returning to and entering the tank.

3. Dimensional analysis. The dimensional momentum (6) and continuity (11)

equations are rescaled for analysis. The head h and velocity v are rescaled using the

difference in applied head h12 = h1 − h2 and steady velocity v∞, respectively, giving

H = (h− h2)/h12 and V = v/v∞. The length scale is taken to be the conduit length L

so that X = x/L. The choice of time scaling for this problem is chosen to balance the

hx and vt′ in the momentum equation, which requires that

T =
Lv∞
gh12

, (12)
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Fig. 3. Schematic of physical setup at steady state. Entrance losses
at point “a” are neglected. (HGL = hydraulic grade line, EGL =

energy grade line.)

where dimensionless time is τ = t′/T . The time scale T is equal to the inertial time

scale, v∞/g, scaled by the hydraulic gradient h12/L, and is the time scale over which the

water hammer wave attenuates (Section 4.2). Note that, in the case of flow stoppage,

v∞ is replaced with a representative value of the flow before the stoppage.

The three dimensionless parameters, in order of their appearance in the momentum

equation, are

C1 =
v2∞
gh12

, C2 =
rv∞
h12

, C3 =
sv2∞
h12

. (13)

Similarly, those from the continuity equation are

C4 =

(
gh12

cpv∞

)2

, C5 =
gL sin θ

c2p
. (14)

The rescaled momentum and continuity equations are

HX + C1V VX + Vτ + C2V + C3V
2 = 0,

VX + C1C4V HX + C4Hτ + C5V = 0 (15)

with rescaled head, boundary, and initial conditions

X = 0, H = 1 (16)

X = 1, H = 0 (17)

with zero initial conditions, i.e. τ = 0, H = 0 and τ = 0, V = 0.

In the momentum and continuity equations in (15), the dimensionless parameters

represent the following:
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• The ‘Advection Effect’ is represented by C1 and including density, C1 =

(ρv2∞)/(ρgh12), we have C1 as the ratio of a velocity head to a hydraulic head.

• The ‘Viscous Effect’ is seen in C2. The parameter r has units of seconds, so that

C2 is a kinematic ‘viscous head’ relative to the applied hydraulic head h12.

• The ‘Inertial Effect’ is contained in C3 and is increasingly dominant as the level

of turbulence increases, since it represents the ratio of the equilibrium inertial

head to the applied hydraulic head difference.

• ‘Advective head’ is represented in C1C4. If this term is recast as [ρgh12/(ρc
2
p)],

then we have the ratio of hydraulic head difference (expressed as a pressure) to

the pressure from the propagating wave.

• A ‘Local’ velocity is represented by C4. If we introduce the density, then C4 =

[(ρgh12)/(ρcpv∞)]2 and
√
C4 is the ratio of the applied hydraulic head difference

to the ‘local’ pressure head.

• ‘Elevation head’ appears in C5 and this parameter shows the effect of the pipe

slope elevation head in relation to the head from the propagating wave, a celerity

head.

The dimensionless parameters from the momentum equation, C1, C2, and C3, are

treated as O(1). The convective term V VX is typically neglected (e.g. as reviewed in

[4]) but is retained here because C1 is O(1); this is also true for the steady velocity,

v2∞ = O(gh12), considered in the water main application in Section 4.3. The continuity

parameters C1C4, C4, and C5 are presumed to be small and inversely proportional to the

square of the celerity cp � 1, and C1 is order one. For convenience, these parameters are

defined in the analysis as the equally contributing parameters C1C4 = C1c4ε
2, C4 = c4ε

2

and C5 = c5ε
2 with C1, c4, and c5 being of order one. Once again, although the convective

term C1c4ε
2 is typically neglected, as in [4], it is retained here since it may have a

comparable magnitude to c4ε
2 and c5ε

2. A natural choice for the artificial scaling constant

ε used here is ε2 = O(1/cp). The final form of the momentum/continuity pair is then

HX + C1V VX + Vτ + C2V + C3V
2 = 0, (18)

VX + C1c4ε
2V HX + c4ε

2Hτ + c5ε
2V = 0. (19)

4. Multiple scales. The gross functional behaviour of the typical water hammer is

that of a fast wave superimposed on a slowly varying trend where the former appears to

attenuate at the same timescale as the trend evolution. This behaviour is quantified in

the following three sections: (i) the attenuating wave dimensionless timescale and scale

of variation of the velocity are found, (ii) the slowly evolving trend (not always visible

because water hammer dominates) is evaluated, and (iii) the full multiple-scale analysis

and numerical comparison are completed.

4.1. Attenuating wave. The water hammer wave requires a balance between the domi-

nant terms HX and Vτ in the momentum equation (18) and VX , ε2c4Hτ in the continuity

equation (19) and this leads to the first approximation

HX + Vτ = 0,

VX + c4ε
2Hτ = 0, (20)
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where friction and convection are neglected as lower-order phenomena. The mathematical

justification for the dominance of the terms in (20) and over other terms dropped into

the governing equations (18) and equation (19) will be apparent shortly.

The balance of terms in the reduced form (20) is established by assuming a uni-

directional wave where H = af(X − bτ ) and V = cf(X − bτ ), where a and c are

magnitude scales, independent of the wave direction. The functional dependence of H

and V on X − bτ is the same since they share the wave speed and period while the

constants b and c involve the parameter ε with a equal to order one. Substituting the

assumed form of head and velocity into the reduced set yields

a− bc = 0,

c− c4abε
2 = 0. (21)

Eliminating a = bc gives c(1− c4b
2ε2) = 0, which fixes b = 1/(ε

√
c4) and a = c/(ε

√
c4).

We choose, without loss of generality, a = 1 from which c = ε
√
c4. The resulting head

and velocity are then H = f(X − τ/(ε
√
c4)) and V = ε

√
c4g(X − τ/(ε

√
c4)). Both of

these functions share the short dimensionless time scale t = τ/ε, where τ = O(ε
√
c4). In

other words, the wave is of the form H = f(X − t/
√
c4) and V = ε

√
c4g(X − t/

√
c4),

where t is O(1) or τ is O(ε). The mathematical basis for the reduction in equation (20)

is now apparent since: (i) HX and Vτ are O(1) in equation (18) while other terms are

O(ε) and below, and (ii) VX and ε2Hτ are O(ε) with the remaining terms being O(ε3).

The reduced set in equation (20) is a first approximation to the attenuating wave

represented in the full equations (18) and (19). Our analysis of this section shows that

the head and velocity are dependent upon two timescales: (i) a wave oscillation timescale

t that corresponds to τ = O(ε) and (ii) a wave attenuation timescale at τ = O(1). Thus,

the head and velocity represented in the full equations (18) and (19) may be written as

H = H(X, t, τ ) and V = ε
√
c4V (X, t, τ ).

4.2. Slow trend. The slowly evolving trend is assumed dependent upon both X and τ

at order one. Its assumed independence of the fast wave component (that appears in the

full multiple-scales analysis in Section 4.3) is not general, but is convenient and correct

to the order of approximation considered here.

Since ε2 appears in the dimensionless momentum/continuity equations (18) and (19),

a regular perturbation is assumed for the head and velocity in even powers of the small

parameter ε. Defining the slow trend component asH(X, τ ) = H0(X, τ )+ε2H1(X, τ )+. . .

and V (X, τ ) = V0(X, τ ) + ε2V1(X, τ ) + . . . and substituting these into (18) and (19), we

find that the zeroth approximation satisfies

H0X + C1V0V0X + V0τ + C2V0 + C3V
2
0 = 0,

V0X = 0. (22)

The second equation in (22) requires V0 = V0(τ ) while

H0(X) = 1−X (23)

is independent of τ , so as to satisfy the inhomogeneous boundary condition at X = 0.

Substitution of V0(τ ) to the first equation of (22) gives the first-order separable equation

V0τ = 1− C2V0 − C3V
2
0 (24)
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with solution

V0(τ ) = atanh(aC3τ +D)− b, a =

√
1

C3
+ b2, b =

C2

2C3
, (25)

where D is a free constant, the choice of which is discussed at the end of the following

section. Note that this first approximation to the head and velocity is the rigid-column

response to a suddenly applied pressure gradient.

4.3. Multiple scales and wave attenuation. A multiple-scales expansion is built for the

head and velocity. Following the results of the previous section, the attenuated wave

and trending components from the previous two subsections are summed. Although the

governing equations in (18) and (19) are nonlinear, this summing is correct for small ε

since the zeroth head trending component (23) is independent of t and τ and the velocity

wave component is a lower-order correction to the zeroth velocity trending component

(25).

Based upon the previous section, we conjecture a complex form

H(X, t, τ ) = P (τ ) (1 + εQ(τ ) + . . .)
[
ei(X−t/

√
c4) + εF1(X − t/

√
c4) + . . .

]
+

H0(X) + ε2H1(X) + . . . (26)

V (X, t, τ ) =
√
c4εP (τ )

(
1 + εQ̃(τ ) + . . .

) [
ei(X−t/

√
c4) + εG1(X − t/

√
c4) + . . .

]
+

V0(τ ) + ε2V1(X, τ ) + . . . . (27)

In this form, the unidirectional wave component is a complex exponential that depends

upon the fast variable t, where the O(ε) components F1 and G1 are generically stated and

may also be complex. The wave attenuation component of the head, H, is taken to be

a multiplicative regular perturbation P (τ ) (1 + εQ(τ ) + . . .) that only depends upon the

slow variable τ , where P (τ ) conveniently represents the first attenuation approximation.

The two primary assumptions in the wave component are: (i) that the head dependence

on the two timescales t and τ is treatly separately and (ii) that only one direction needs to

be considered for the wave component since we conjecture the attenuation is independent

of the wave direction and thus boundary conditions. This assumption is tested below by

comparison of the analytic approximation with the numerical solution to the governing

equations satisfying the boundary conditions. A similar form appears in the velocity V .

Note that, in both cases, the second term is the trending component discussed in Section

4.2 and given in equations (23) and (25). All expansions are assumed to be in powers of

ε as indicated by the governing equations (18) and (19).

The definition of the form in (26) and (27) leads us to the primary goal of this paper:

“The discovery of the wave attenuation function P (τ )”.

Substitution of the full form to the dimensionless momentum equation in (18) yields

the complex first-order equation for the wave attenuation function P (τ ) as

√
c4
dP (τ )

dτ
+
√
c4 [C2 + 2C3V0(τ ) + C1V0(τ )i]P (τ ) + iP (τ )ΔQ(τ ) = 0, (28)
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Dimensional parameters

Conduit diameter Dc = 0.3 m

Conduit length L = 1000 m

Conduit roughness εc = 0.0003 m

Conduit wall thickness w = 0.005 m

Applied head change at t = 0, (h2 − h1) = 462 m; see Figure 3

Young’s modulus of iron E = 2.0 · 1011 Pa

Water bulk modulus Ev = 2.27 · 109 Pa

Kinematic viscosity ν = μ/ρ = 10−6 m2/s

Derived dimensional parameters

Steady velocity v∞ = 11.7 m/s (25)

Reynolds number Re∞ = 3.49 · 106, Celerity cp = 1.2 · 103 m/s

Viscous constant r = 0.55 s

Inertial constant s = 3.34 s2/m

Dimensionless parameters

C1 = 0.030, C2 = 0.014, C3 = 1.0 (Momentum equation (18))

C1c4 = 3.3, c4 = 110, c5 = −1.9, ε2 = 10−3 (Continuity equation (19))

Table 1. Parameters used for numerical simulations. Fundamental
dimensional parameters are shown along with their derived dimen-
sional and dimensionless counterparts.

where ΔQ(τ ) = Q(τ ) − Q̃(τ ). Proceeding similarly for the continuity equation in (19)

gives

c4
dP (τ )

dτ
+ C1c4V0(τ )P (τ )i−√

c4iP (τ )ΔQ(τ ) = 0. (29)

Eliminating ΔQ(τ ) from these last two equations yields

2
dP (τ )

dτ
+ [C2 + 2C3V0(τ ) + i (C1V0(τ ) + C1)]P (τ ) = 0. (30)

The last equation for the attenuation can be restated as

dP (τ )

dτ
+ λ(τ )P (τ ) = 0, (31)

where λ(τ ) = λR(τ ) + iλI(τ ) is the complex term with

λR(τ ) =
C2 + 2C3V0(τ )

2
,

λI(τ ) =
C1V0(τ ) + C1

2
, (32)

and the attenuation function is

P (τ ) = Ãe−
∫ τ
0

λ(z)dz, (33)

where Ã is a free constant.

The magnitude of the attenuation is |P (τ )| = |Ã| exp(
∫ τ

0
λR(z)dz). Two free con-

stants Ã in equation (33) and D in (25) remain unspecified. The free constant D from

(25) is chosen to satisfy the velocity initial condition and this is under the assumption
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Fig. 4. The solid, dashed, and dash-dot lines are the numerical ap-
proximation to the head H(X, τ) at dimensionless positions X = 0.1,
X = 0.5, and X = 0.9 respectively, depicted as a function of dimen-
sionless time τ . Note that as τ → ∞ the dimensionless head is

progressing to the steady state H0(X) = 1 − X (equation (23)) at
each X location. The method of characteristics numerical solution
follows the description in Chapter 4 of [18]. A dimensionless spatial
grid spacing of ΔX = 0.01 is used over 0 ≤ X ≤ 1.

that the multiple-scales form satisfies the initial condition. Given a zero initial condition

on velocity, we have D = artanh(b/a). Furthermore, since the magnitude of the oscil-

latory component of dimensionless head H(x, t, τ ) may not exceed unity, Ã = 1/P (0).

Substituting the trending component V0(τ ) of (25) and integrating yields

|P (τ )| = sech(aC3τ + artanh(b/a))√
1− b2/a2

. (34)

Note that the simpler form
√
1− b2/a2 has replaced sech(artanh(b/a)) in the denomi-

nator. The result in equation (34) generalizes ad hoc results found in [10] in two main

ways: (i) the wave attenuation function is found using a structured asymptotic approach

through a direct expansion of the water hammer equations and (ii) |P (τ )| is a uniformly

accurate approximation that applies for all times to the classical water hammer equations

since no assumptions were made, for example, about the time dependence of the velocity
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Fig. 5. The dots, crosses, and circles are the absolute difference
|H̃(X, τ) − H̃(X − 2ΔX, τ)| where H̃(x, τ) = H(X, τ) − (1 − X)
is the numerical solution in Figure 4 but with the steady-state trend
1 − X removed. Nearly constant values of head in Figure 4 yield

near zero values of absolute head difference and these are seen as a
heavier line along the bottom of this figure. Values of head in Fig-
ure 4 associated with sharp changes in head in Figure 4 at each X
location are the remaining values and these approximate the ‘wave
attenuation’ function |P (τ)| sought after in this work. The solid line
is the wave attenuation function P (τ) of equation (34) and there is
close agreement with the numerical results.

V0(τ ). The generality of the approach and its derivation directly from the mathematical

model may allow it to be used in the analysis of more difficult problems.

This first approximation to |P (τ )| is independent of C1 (13) since that parameter is

shown to influence the attenuation phase to first order, and is also independent of c5
(14) since the pipe slope elevation head is small in relation to the celerity head from the

propagating wave. Note also that, in the limit of c5 approaching zero, the wave speed

approaches infinity and rigid column motion results and the case C3 = 0 corresponds to

laminar flow.

The solid, dashed, and dash-dot lines in Figure 4 are the numerical approximation to

the head H(X, τ ) at dimensionless positions X = 0.1, X = 0.5, and X = 0.9 respectively,
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depicted as a function of dimensionless time τ . The method of characteristics numer-

ical solution follows the description in Chapter 4 of [18]. A dimensionless spatial grid

spacing of ΔX = 0.01 is used over 0 ≤ X ≤ 1. In Figure 5, the attenuation function

|P (τ )| is nearly superimposed on the differenced numerical solution of Figure 4, which

approximates the attenuation function as detailed in the caption.

The parameters used in the example are for a 1 km-long water main inclined upward

at an angle of θ = −15o (see Table 1). The pipe material properties and construction lead

to a celerity cp ≈ 1200 m/s making the artificial parameter ε2 = 0.001 (ε = 0.030). The

difference between the multiple scales and numerical results is uniformly below about

0.02, and this size approximates O(ε) = O(0.03) as expected.

5. Conclusions. The method of multiple scales was used to generate a uniformly

accurate approximation to the water hammer pressure-wave attenuation in the classical

water hammer equations. The method was applied to water hammer initiation for a

valve opening and is seen to apply to other forms of hammer initiation, including the

standard valve closure or flow stoppage problem. The approach presented here is generic

and should be useful for other generalizations of the classical water hammer equations

to include, for example, unsteady friction.
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