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Summary. In order to separate the scattering effect from the intrinsic attenua- 
tion, we need a multiple scattering model for seismic wave propagation in 
random heterogeneous media. In this paper, we apply radiative transfer 
theory to seismic wave propagation and formulate in the frequency domain 
the energy density distribution in space for a point source. We consider the 
cases of isotropic scattering and strong forward scattering. Some numerical 
examples are shown. It is seen that the energy density-distance curves have 
quite different shapes depending on the values of medium seismic albedo 
Bo = qs/(qs t q,), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvs is the scattering coefficient and va is the absorp- 
tion coefficient of the medium. For a high albedo ( B >  0.5) medium, the 
energy-distance curve is of arch shape and the position of the peak is a 
function of the extinction coefficient of the medium ve = qs + qa. Therefore 
it is possible to separate the scattering effect and the absorption based on the 
measured energy density distribution curves. 

1 Introduction 

Are the measured apparent attenuations for short-period seismic waves caused by anelasti- 
city of the media or by scattering of the heterogeneities in the media? Is the single back- 
scattering model a good approximation to the coda envelope decay or do we need a multiple 
scattering model which will have significant differences in describing the coda behaviour 
from the single backscattering theory? These are long-standing problems. In order to answer 
these questions, we need to develop a multiple scattering model for seismic waves and 
compare the predictions from it with those obtained from the single scattering theory. 
O’Doherty & Anstey (1971) derived a one-dimensional multiple scattering formula for a 
stack of thin layers as 
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58 R.S. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU’U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo is the angular frequency of the wave, t NT is the travel time of passing through 
the stack, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 is :he travel time for each layer and N is the number of the layers; T ( w )  is the 
transmission response and R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) is the power spectrum of the reflection coefficient series 
normalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbj: the travel time. The exponential form of (1 .l) itself exhibits the indiscrimin- 
ability of the multiple scattering effect from the intrinsic absorption, if we observe only the 
decay of the transmitted waves. Richards zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Menke (1983) did some numerical experiments 
on this model and discussed some possibilities of using the relation between amplitude 
spectra, the frequency contents of the coda and that of the main arrival etc. to distinguish 
the milltiple scattering effects of thin layers from the intrinsic attenuation. We note that the 
formulation of the problem by O’Doherty & Anstey is essentially that of the random slab 
problem (see Kay & Silverman 1958; Hoffman 1964). The results are presented as the 
relations of transmitted or reflected waves with the slab thickness, which do not necessarily 
represent the amplitude attenuation with distance or the envelope decay with time of 
seismic waves. 

Kopnichev (1977) formulated the double and triple scattering for 2-D and 3-D media in 
the case of isotropic scattering. Gao et al. (1983a,b) derived up  to seventh-order scatter- 
ing and then obtained the approximate formulae of multiple scattering in time domain for 
2-D and 3-D media using a curve-fitting technique. However, the formulae derived are for the 
case in which the source and sensor are located in the same point. On the other hand, the 
most prominent evidence of multiple scattering would be manifested if the sensor could be 
situated at some place between the source and the point apart from the source by one mean 
free path of scattering (this will be shown later). Therefore it may be difficult to  use these 
formulae for discriminating the scattering attenuation from the intrinsic attenuation, though 
the formulation may be very useful in other calculations. 

In this paper, we derive the formulation of seismic energy transfer under multiple scatter- 
ing by using the radiative transfer equation technique developed in the astrophysical optics 
and the neutron transport theory and explore the possibilities of using this approach to 
separate the scattering and intrinsic attenuation. 

Historically, multiple scattering theory has been developed along two independent 
approaches: the analytic theory and the transport theory (for review see Ishimaru 1977). 
Eoth are based on the statistical treatment of wave propagation in random media. Because 
the complex heterogeneities are modelled with a random medium, the wavefields propagating 
therein are also random wavefields. We are interested only in some statistical quantities of 
the wavefield, such as the mean intensity, phase and amplitude fluctuations, various correla- 
.tion functions, pulse spreading, angular broadening, etc. All of these quantities can be 
obtained from the moments of the random field. The analytic theory starts with basic 
differential equations such as wave equations and, by introducing the scattering and 
absorption characteristics of the random heterogeneities, derives the differential or integro- 
differential equations for the moments of the wavefields. There are basically two branches in 
the analytic theory: the renormalization method and the small-angle approximation method. 
In the first branch the renormalization procedure was used for the formal perturbation series 
and the exact equation for the first moment (the mean field), known as the Dyson equation, 
and for the second moment (the correlation function), the Bethe-Salpeter equations were 
derived. These equations are exact in the sense that the multiple scattering of all orders, as 
well as the diffraction and interference effects, are all included in the equations. However, 
since the operator involved in these equations is in the form of an infinite series, there is no 
solution available at present. Approximations have to be made to the operator before some 
practical solutions can be obtained. The most widely used approximation is the first-order 
smoothing approximation as called by Frisch (1968) (see also Jshimaru 1978a, vol. 2), in 
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which the local Born approximation of the fluctuating field (or equivalently the bilocal 
approximation to the mean field) is applied to the Dyson equation and the ladder approxi- 
mation is applied to the Bethe-Salpeter equation. These approximations can be obtained by 
either the Feynman diagram method or the Bogoliubov smoothing method in the operator 
form (Frisch 1968; Tatarskii 1971; Ishimaru 1978a; for the various names of the first-order 
smoothing approximation, see also Wu 1982b, footnote 2). The justification for the use of 
this approximation has been clarified by Frisch (1968) by introducing the generalized 
Reynolds number. The basic physical condition for the valid use of the approximation is the 
scattered field within a correlation length being weak compared with the incident field. In 
the case of large-scale inhomogeneities, Fante (1 982) has shown that a sufficient condition 
for applying the ladder approximation is the mean free path for multiple scattering being 
large in comparison with the correlation length of the medium. This condition is usually 
satisfied in the context of seismic wave scattering in the lithosphere. (On average the effective 
mean free path is greater than IOOkm, and the correlation length is considered to be less 
than lOkm for the coda problems, see Aki 1980, Sat0 1984 and Wu & Aki 1985b.) The 
first-order smoothing approximation to the Dyson equation and Bethe-Salpeter equation 
can be shown (Frisch 1968) to be equivalent to the Foldy-Twersky system of equations, 
which have been developed independently for discrete random media, i.e. the media with 
randomly distributed scatterers. There are still no general solutions for these equations and 
further approximations are needed to put them into practical use. For small size inhomo- 
geneities, there are some general solutions for the mean field, but no useful results for the 
second moments (Tatarskii 1971, section 61; Ishimaru 1978a, chapter 14). It has been 
shown that the first-order smoothing approximation of the Dyson and Bethe-Sapeter 
equations can lead to a radiative transfer equation for the specific intensity which is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D 
spatial Fourier transform of the spatial correlation function of the wavefield when the 
correlation function is a slowly varying function in space (Barabanenkov 1969, 1971; 
Tatarskii 1971, section 63, Ishimaru 1975, 1978a). Similarly, a generalized radiative transfer 
equation can be derived for the frequency correlation function (Ishimaru 1978a). Thereby 
the link has been established between the analytic theory and the transport theory. 

The second branch of the analytic theory includes all the small angle scattering methods. 
Because of the small scattering angle approximation or forward-scattering approximation, 
the basic starting point of the method is the parabolic wave equation. There are two 
approaches: parabolic equation approach and Feynman path integral approach. Tatarskii 
applies the Markov approximation to the parabolic wave equation, so the theory of Markov 
process can be used to study the problem (Tatarskii 1971). Uscinski, on the other hand, uses 
the plane wave decomposition and phase-screen technique to the parabolic wave equation 
(Uscinski 1977). At present, the parabolic equation methods can have only approximate 
solutions for up to the fourth moment equations. The path-integral approach starts with the 
Feynman path-integral representation of the parabolic wave equation and makes use of the 
small scattering angle approximation and Markov approximation (Dashen 1977; Flatte et al. 

1979). It can obtain solutions for any higher-order moments for the Gaussian statistics. 
Flatte et al. have applied this approach to the ocean acoustics and obtained the expressions 
for phase and intensity fluctuations, various correlations and pulse wandering and spreading 
etc. 

The transport theory (or radiative transfer theory) is a phenomenological approach. It 
does not start with the wave equation, but deals directly with the energy transport process. 
Therefore, only energy or intensity arithmetic appears in the theory and no wave inter- 
ference is considered. This treatment much simplifies the mathematics. Historically it 
appeared earlier than the analytic theory, and has its root from Boltzmann’s equations in the 
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kinetic theory of gases and in the neutron transport theory. It was introduced into astro- 
physical optics by Schuster (1 905), Chandrasekhar (1 950) and others and is now widely used in 
the multiple scattering treatment in the astrophysical optics, ocean acoustics, neutron trans- 
port theory, electromagnetic wave remote sensing, marine biology, etc. (Chandrasekhar 1950; 
Sobolev 1963; Menzel 1966; Davison 1957; Bell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Glasstone 1970; Flatte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1979; Kong, 
Tsang & Shin 1984; Jerlov 1976). This approach also has its shortcomings. It can only deal 
with the second moments, it does not account for the diffraction and interference pheno- 
mena. Neglecting interference may lead to some problems of energy unbalance in the local 
region by single scattering, but the overall energy conservation will be taken care of by the 
multiple scattering treatment. One example for impenetrable reflectors is given in the Appen- 
dix. However, there are some new developments, which incorporate some wave interference 
effects into the radiative transfer equation. For example, in deriving the transfer equations 
from the Bethe-Salpeter equation, beside the ladder terms (which alone will lead to the 
regular intensity transfer equation), the cyclical diagrams are also included, resulting in a 
modified radiative transfer equation, which can account for the backscattering enhance- 
ment due to the constructive interference effect caused by the double passage of the back- 
scattered waves (Zuniga, Kong & Tsang 1980). So-called ‘wave radiative transfer theory’ 
based on the second-order approximations to the Bethe-Salpeter equation is also under 
development (Tsang & Ishimaru 1985). 

For the coda envelopes or coda energy problems of local earthquakes, it is apparently a 
wide-angle scattering problem, so that the transport theory is probably the most effective 
method to treat it at present. In this paper we use the frequency domain formulation mainly 
from the neutron transport theory and the electromagnetic wave propagation (Davison 
1957; Liu & Ishimaru 1974; Fante 1973, Ishimaru 1978b) to the energy density decay with 
distance of the seismic waves from local earthquakes, and discuss the possibility of using the 
decay curves to evaluate the relative strengths of the intrinsic absorption and the scattering 
coefficient of the medium in the region studied. In the second part of the paper (in prepara- 
tion), we will apply the theory to the Hindu Kush data and discuss the results and their 
geophysical meaning. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Definitions and notations 

It is difficult to keep all the notations and terminology in radiative transfer theory without 
causing ambiguities and contradictions with the traditional notation and terminology in 
seismology when the theory is introduced into seismology. I will basically follow Ishimaru 
(1978a) and make some necessary changes to keep the notations self-consistent. 

I(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh): Specific intensity or directional intensity. It is the most fundamental quantity in 
transport theory. It gives the power flowing within a unit solid angle in the direction 6, here 
h is the unit vector, emanated from a unit area perpendicular to h, in a unit frequency 
band. The specific intensity is defined for a frequency w, which is omitted in the notation. 

In this paper we consider the S-wave and its coda for small local earthquakes. Since the 
P-wave energy is much smaller than the S-wave energy for a double-couple point source 
which is the source model for small earthquakes, we consider here Z(r, 6) as only the S-wave 
energy by neglecting the mode converted energy from P-waves. We assume here also that the 
wave energy described by Z(r, 6)  is depolarized, i.e. the energy is equally partitioned 
between the two orthogonal components of S-waves. This agrees generally with the observa- 
tions. Because of the free surface reflection and the scattering by heterogeneities, the 
S-waves from a double-couple source get quickly depolarized. From the results of this paper, 
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the energy density decay curves for the two orthogonal components are very similar to each 
other, which further validate the assumptions. 

In order to measure the specific intensity (or directional intensity), we need strongly 
directional sensors, which are not available in the seismological practice. Theretore the 
specific intensity is not the quantity measured in practice, but is the important concept and 
quantity for theoretical derivations. 

i (r):  Average intensity, defined by 

is the intensity at point r averaged over all directions. 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r): Energy density, defined by 

1 4n - 
E ( r ) = z  Ik ,Z(r ,  h ) d R = - I ( r )  

C 

where C is the wave velocity. This quantity can be measured in practice. In this paper, we 
will formulate equations for E (r) and obtain solutions for some cases. 

J (r):  Flux density vector, defined by 

J ( r ) =  I ( r , h ) h d R .  (2.3) s,, 
The net flux density in a particular direction ho is defined as ho- J(r),  It is the net power 
transferred along the Ro direction across a unit area perpendicular to no. In this paper, we 
also use the notation for the energy flux density, i.e. the power flux density divided by the 
wave velocity c. 

S(h, fro): Scattering intensity function of a random medium, which is related to the single 

scatteringamplitude f(6, ho) of an elementary volume d V of the inhomogeneous medium by 

where ( )  denotes taking ensemble average. S(h, h,) gives the scattered power in the h 
direction within a unit solid angle by a unit volume of the random medium for a unit power 
flux density of incident wave in the ho direction. 

In this paper we will give a unified treatment for both the discrete and the continuous 
random media. For a discrete random medium composed of randomly distributed scatterers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S(h, do) is defined by the scattering characteristics of individual scatterers; while in the 
case of random continua, we can choose the volume elements small enough so that we can 
derive the single scattering amplitude f(R, ho) by the Born approximation. 

g (h, ho): Directional scattering coefficient, defined by 

g ( h ,  ho) = 4nS(C!, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh0). (2.5) 

for the definition and the derivation for elastic random media, see Wu & Aki (1985b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q s  Eg: Scattering coefficient of the medium defined by 
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which gives the total power loss due to  scattering by a unit volume random medium per unit 
power flux density of incident wave under the single scattering assumption. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
77, 
a unit volume random medium per unit power flux density of incident wave. 

77,: Extinction coefficient of the medium, defined by 

b :  Absorption coefficient of the medium, which gives the power loss due absorption by 

77, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ta + Vs. 

1 = .  o - a .  Correlation length of the random medium. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L ,  = 1/77,: Extinction length of the medium. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
La = 1 /qa : Absorption length of the medium. 
L, = 1/77,: Scattering length or scattering mean free path of the medium. 

D,: Numerical extinction distance, which is called ‘optical distance’ in optics. 
D,: Numerical absorption distance. 

D, Numerical scattering distance, defined by 

De = r/Le3 

Da = r/La, 

D, = 

where.r is the travel distance. 

Bo: Medium seismic albedo, defined by 

D(fL,  h0): Scattering directivity, defined by 

D ( h ,  ho) = 
g ( Q ,  Q 0 ) -  - 4nS(Q2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa01 

rls 77s 

(2.10) 

(2.1 1) 

It is the normalized directional scattering coefficient, and satisfies 

(2.12) 
1 pi fLo)= 1, 

that means its average over all the directions is equal to unit. In the case of isotropic 
scattering 

D(h, ho) = 1. (2.13) 

Its relation with the ‘phase function’ in the radiative transfer theory (Chandrasekhar 1960; 
Ishimaru 1978b) is 

D ( h ,  ho) = Bop (h, h0). (2.14) 

p(h, ho): Phasefinction (see 2.14). 

in the case of a discrete random medium having statistically uniformly distributed random 
scatterers with number density n,  we have 

od (h, Go): Differential (or directional) scattering cross-section of the scatterers. 

s(h,szo) = nod(h ,h , ) .  (2.15) 
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Multiple scattering of seismic waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
us : Scattering cross-section of the scatterers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdefined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
us= J4n od(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60) d a .  

ua : Absorption cross-section of the scatterers. 

ut = us -t ua Total cross-section of the scatterers. 

7)h : Absorption coefficient of the host medium. 

vs = nu,, 

7 ) a = n u a t 7 ) h ,  

4nUd (b, 6,) 
D(6, 6,) = 

US zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B1 : Scatterer albedo, defined by 

0 s  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 s  

% + %  ut zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1 = ~ - -, 

Therefore, 

63 

(2.16) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

For a perfect scattering medium Bo = 1. 

3 Energy density distribution in the case of isotropic scattering 

Knowing the extinction coefficient and scattering coefficient of the medium ve ,  vS and the 
scattering directivity D(6, 6,) or the scattering intensity function of the medium S(k. 6,) 
defined by (2.6), (2.7), (2.1 1) and (2.4), we can obtain the differential equation for the 
specific intensity I (r, 6), the 'equation of transfer' (Chandrasekhar 1960; Ishimara 1978a, 
chapter 7): 

dZ(r, b) 
dl 

- qeZ(r, 6)  t S4nS(hl h0)Z(r, 6 o ) d a 0 +  W(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi) 

- 77s 
D ( 6 ,  fio)Z(rr h0)dS2,+ W(r, 6), 

where W(r, f&) is the source intensity function, which defines the amount of power emitted 
from the sources into the direction f& per unit solid angle. In (3.1), dl is the length of a 
cylindrical elementary volume of unit cross-section in the medium with the axis of the 
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cylinder in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl direction (Fig. 1). Therefore the left side of (3.1) represents the total 
change of the specific intensity for a unit travel distance. The first term in the right side of 
(3.1) is the loss of power in the fi direction due to absorption and scattering, whereas the 
second term gives the gain of power in that direction from the scattered waves for the 
incident intensity from all directions, and the third term is the energy supply from the 
sources. No general analytic solutions are available for (3.1). Some methods such as the 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. The derivation of the transfer equation for the specific intensity I(r, A). 

Gauss-quadrature can be used to obtain the numerical solutions for a general scattering 
function. Let us first consider the simplest case of isotropic scattering. In this case the 
scattering directivity D(fi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfro) 1. Integrating (3.1) over all directions fi, we obtain an 
equation for the average intensity i (r )  or the energy density E(r) (2.2) 

= - Qe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (r) + Q (0, ( 3 . 2 )  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is the wave velocity. Equation (3.2) is in a form of first-order differential equation, 
in which the second term in the right side is the source term 

Q ( Z ) =  [? I Z(r, f i o ) d f l 0 +  w(r, fi) dR. 
4n  4n 4n 1 (3.3) 

where A is a constant. Note that (3.4) is in fact an integral equation, since Q ( l )  has an 
unknown function Z(r, h0). In the following we will solve the equation. 

The energy density (3.4) is composed of two terms. The first term is a simple exponential 
decay with the extinction coefficient qe as its attenuation coefficient; this is the coherent 
energy density E, or ‘reduced energy density’ (Ishimaru 1978b). The second term is there- 
fore the diffuse energy density Ed which is produced by scattering. Applying the initial 
condition 
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In order to calculate the diffuse term (3.8), we need to know the intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(r, h o )  which is 
related to the total energy density. Therefore (3.8) is in the form of an integral equation. To 
carry out the integration with respect to h, we note that the intensity gain in the direction 
h within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdCl is contributed from the intensity of all the volume elements dVl at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 1  within 
the elementary solid angle, and 

dVl = dCl 1 r - r l  (3.9) 

Therefore (3.8) becomes 

(3.10) 

The integration is over the volume of the random medium. The integral equation for the 
total energy density becomes (see also Ishimaru 1978b, chapter 12). 

where 

is the source energy density function, and 

~ X P  (- VeR) - exp (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV e  I r - rl I) Go(r - rl) = - 
4nR’ 4.rr I r - rl l 2  

(3.1 1) 

(3.12) 

(3.13) 

Integral equation (3.1 1) can also be derived from the first-order smoothing appraxima- 
tion of the Dyson and Bethe-Salpeter equations (Liu & Ishimaru 1974). 

From (3.1 l), the energy density E (r) is totally defined by the incident field, the source 
function, and the volume of the random medium. For the problems of seismic coda waves of 
local earthquakes, the distances between the stations and the sources are short compared 
with the travel times of coda waves. As the first approximation, we consider the problem of 
a point source located in an infinite randomly inhomogeneous medium. The effect of the 
free surface is like a mirror reflecting the half random space to a whole random space with 
the upper half-space being the mirror image of the lower half-space. The limited thickness of 
the lithosphere, which is supposed to be more heterogeneous than the asthenosphere 
beneath, will have influence on the later part of the coda. Further discussion about the 
limitation of the model will be given later in this paper. 

3 
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In (3.11), suppose the incident field Ein= 0 and the point source is located at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 0 ,  
radiating the total power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo.  Then 

PO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C 

E ( r ) = - 6 ( r ) = E o 6 ( r )  

The equation (3.1 1) becomes 

(3.14) 

(3.15) 

This is a Faltung type or convolution type integral equation (Tricomi 1957; Carrier, Krook 
& Pearson 1966) and a Fourier transform method can be used for its solution. Assuming 
Eo= I ,  the solution can be written as (see Davison 1957; Liu & Ishimaru 1974; Ishimaru 
197Xa, equation 12-21)) 

4 n r  

qePd 
E (r) = - exp (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqe dor)  + f’(s, Bo) exp (- qe us) ds 

4nr  

= Ed ( r )  -t Ec (r), 

where 

2 d 3 l  - d2,) 
Pd = 

B0(& -t Bo - 1)’ 

and do is the diffuse multiplier determined by 

and 

f ( s , B o ) =  ( [ 1 - ~ t a n h - ’ ( ~ ) 1 ’ t ( 2 T )  n B o  ’ ) -’ . 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

The first term in (3.16) is the diffuse term Ed,  which is attributed to the pole residue in the 
complex spatial frequency plane, and the second coherent term E,, is from the branch cut 
integration. 

Fig. 2 shows the relation between the diffuse multiplier do and the medium albedo Bo. 

do is always less than 1.  When the distance r is large, especially for large B,. the diffuse term 
becomes dominant (see also Fig. 9), and E ( r )  will be approximately an exponential decay 
with an apparent attenuation coefficient dove, which is less than the extinction coefficient 
ve. The degree of reduction depends on the albedo Bo. The diffuse term can also be written 
as 

(3.20) 
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d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. The diffuse multipliers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo and d ,  as functions of B,, (the medium seismic albedo). 

Table 1. The diffuse multipliers d o  and d,. 

BO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 
d0 0.997 0.987 0.969 0.944 0.910 0.866 0.807 0.728 0.611 0.519 0.374 
d ,  0.97 0.94 0.90 0.86 0.82 0.78 0.72 0.66 0.57 0.49 0.37 

d, is a multiplier and d , ~ ,  gives the effective contributions of the scattering coefficient to 
the apparent attenuations. d, is also plotted in Fig. 2. Table 1 lists some values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo and d, 
versus Bo. 

The coherent term can also be written as 

(3.21) 

by setting $ = l/s for the convenience of computation. Fig. 3 shows the behaviour of the two 
factors of the integrand for different numerical extinction distances De = r),r and different 
medium albedo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABo. exp (- D,/$)/[’ has a. sharp peak for small D, when [ is small; whereas 
f ( [ ,  B,) is nearly singular for small B ,  when is close to 1. Therefore, in doing numerical 
integration, we used Romberger’s integration method for three separate segments to take 
care of the abrupt changes of the integrand at both ends of the interval. The Gauss-Legendre 
quadrature is also used to check the results. I t  turned out that the Gauss-Legendre 
quadrature of order 10 gives fairly good results. 

In the following we will show some numerical results of the energy density distribution 
along the travel path from the source point. In the case of homogeneous media, the decay of 
energy density with distance is only due to geometric spreading. For a isotropic point 
source, the decay is 1 /4nr2. Therefore, we normalize the distribution for inhomogeneous 
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tor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADc'I.2 

4l 3 

I 2 . 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.5 .6 7 8 .9 

€ 
Figure 3. The behaviour of the integrand of the integral for the coherent term. 

media (3.16) by the homogeneous distribution, i.e. multiply both sides of (3.16) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4nrz, 

(3.22) 

where En (r)  stands for the normalized energy density distribution. Fig. 4 gives the results for 
different medium albedo Bo. The diffuse term and the coherent term are also plotted in the 
figure for comparison. The coherent term has little changes for different Bo, whereas the 
diffuse term varies dramatically with Bo, especially when Bo> 0.5, i.e. when scattering is 
dominant. This gives the possibility of using the energy density decay curves to calculate the 
extinction coefficient ve and the medium albedo Bo, hence to separate the absorption coeffi- 
cient va and the scattering coefficient vs. In the case of Bo> 0.5, the diffuse term is 
dominant. There will be a peak on the E ( r )  curve, the position of the peak will depend on 
ve  and Bo of the medium. When Bo< 0.5, the coherent term is dominant for De< 2. There- 
fore the shape of the curve is not very sensitive to the change of Bo, so that the separation of 
scattering from absorption becomes difficult. 

By assuming a point source with Eo= 1, we get E(r )  around the peak with values greater 
than 1, that need some explanation. As shown in Fig. 5, the normalized energy density 
En ( r )  = 47rrZE(r) represents the energy received by the ring shell (hatched). In a homo- 
geneous medium, if there is no absorption, the energy received will be equal to the source 
energy. In a scattering medium, the wave energy can go outward and inward across the shell. 
We denote the outward energy flux by F: and the inward energy flux by F;. In the figure 
we sketched one possible path of multiple scattering. No matter how complicated the 
path is and how long the time delay is compared to the direct path, the closed ring shell will 
eventually receive all the energy emitted by the source. There is no escape! Therefore, in this 
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._ .. . ---_ ------ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
47rr2Ed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-dif fuse term ,,I@- 

/ / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 ~0.95 
/ 

/ 
/ 

2 

I 

0 
I 2 3 4 

I 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 3 4 
Do = Tr = r / L e  

477 r2E, -Coherent  term 

Do= r / L o  

Figure 4. The normalized energy density distribution curves 4 n r 2 E ( r ) ,  where r is the propagation distance 
from the point source. At the top are the curves of the diffuse term, at the bottom are those of the 
coherent term; in the middle are the curves of the sum of the two terms. Here D, is the numerical extinc- 
tion distance, L ,  = l/q, is the extinction length of the medium, q, = qs + qa is the extinction coefficient, 
where qs and qa are the scattering coefficient and the absorption coefficient respectively. B ,  = qs/(qs + qa) 
is the medium seismic albedo. 

case the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF: is equal to the total energy. However, the shell will also receive the inward 
scattered energy, so the total received energy F i  + F ;  is greater than Em Of course the net 
energy flux F l  - F;is always less than Em If there exists absorption, the amount of received 
energy will depend on the energy balance between the absorption loss and the inward- 
scattering gain. Near the source, r is small, the ring shell has a small surface area for receiving 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. The schematic diagram of a possible multiple scattering path compared with the direct path. The 
hatched shell of unit thickness will receive the energy 4nr'E ( r ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

De=r/Le 
1 2 3 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 6  7 8 9 10 11 

Figure 6. The normalized energy distribution curves 4 n r 2  E ( r )  in the semi-logarithmic scale. 

the inward-scattered energy, so En@) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEo. When r increases, the surface area of the shell 
also increases, so that more inward-scattered energy can be received, resulting in the growth 
of En@). However, the absorption loss also grows with r due to the increase of the path 
length. Up to some distance r, the growth rate of gain is equal to the growth rate of loss and 
the curve reaches its maximum. Beyond this distance, the absorption loss prevails. 

Fig. 6 replots the curves of Fig. 4 in a semi-logarithm coordinate system. Figs 7 and 8 plot 
some En (r )  curves for cases of constant absorption and constant scattering respectively. In 
this paper b = qa, g = qs. Fig. 7 shows the influence of different scattering coefficients on 
the energy density distribution curve of a constant absorption medium. The distance is 
normalized by the absorption length of the medium La = l /qa. It is seen from the figure that, 
for large distances compared with the absorption length of the medium, the decay of the 
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Multiple scattering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof seismic waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I 

Constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb (absorption Coeff ic ient)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b a  ?a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 

Do = r /La 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. The energy distribution curves with the numerical absorption distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, = r/La. where La = l /qa 
is the absorption length of the medium. b is the apparent attenuation coefficient obtained from the slope 
of the curve. B ,  is the medium albedo. 

Constan t  g ( S c a t t e r i n g  Coef f i c ien t  

. 

,ozf , , , \\' 
,001 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.5 I 
~~ \ I  I 

2 3 
D, = r / L s  

Figure 8. The energy distribution curves with the numerical scattering distance D, = r/Ls,  where L ,  = l/qs 
is the scattering length of the medium. B, is the medium albedo. 
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energy density is nearly exponential with an apparent attenuation coefficient different from 
both the extinctions coefficient and the absorption coefficient. In the figure, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb is the true 
absorption coefficient and b is the apparent attenuation coefficient measured from the slope 
of the curve. It can be seen that, for strong scattering (Bo> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO S ) ,  the apparent attenuation is 
much bigger than the absorption coefficient but much smaller than the extinction coeffi- 
cient (for Bo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.9, b =  4.5b = 0.45 77,). For weak scattering (Bo< 0.5), the influence of 
scattering to the apparent attenuation is less appreciable. When Bo = 0.5, b = 1.62b. On the 
other hand, for small absorption distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Dag l ) ,  the shape of the E ( r )  curve varies 
drastically depending on the values of Bo, which provides the basis for the separation of the 
scattering and absorption effects. Fig. 8 in a similar way shows the influence of absorption 
on the E(r )  curve of a constant scattering medium. 

In order to compare the relative contributions of the diffuse term and the coherent term, 
we plot them on Figs 9 and 10 with the distance normalized by the extinction length Le and 
scattering length L,  respectively. 

Now, we will derive the radial energy flux density J,  (r) .  We know the energy conservation 
relation (see Ishimaru 1978a, equation 7.28)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

“la 1 
div J (r) = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14, I(r, 6) dL2 + c j4, W(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi) dL2, (3.23) 

where J(r) is the energy flux density vector, Cis  the wave velocity and W(r, 6) is the source 
intensity. For isotropic scattering in the source-free region 

div J (r) = vaE(r ) .  (3.24) 

In view of the spherical symmetry, there is no transverse component of J(r), therefore 
(3.24) becomes 

i a  
div J (r) = - - (r2J,) = - 

r2 ar 

Then 

Normalizing J, by the homogeneous case, we get 

Jnr ( r )  = 4nr2.1, ( r )  = va 

Substituting (3.22) into (3.27) yields 

J,, (r)  = 4nr2 J, (r)  

4 n r 2 ~  (r) dr = va [- E, (r)  dr. R (3.27) 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
do do 

= (1 - Bo) (‘@. + -) exp (doll,) exp (-D,/[) d[ .  (3.28) 

Figs I 1 and 12 give some numerical results with the distance normalized by the extinction 
length and the absorption length respectively, together with the results for the forward 
scattering approximation (see next section). I t  can be seen that the radial net flux is always 
smaller than the source energy Eo. However, the radial energy flux is difficult. to measure in 
the practice of seismology. This is because of the difficulty of separating the inward and 
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Multiple scattering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof seismic waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.05- ,/ --- _------_ 
=O. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 -- 

,001 
.5 I 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

De r /Le  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 9. The relative strengths of the diffuse term Ed and the coherent term E ,  at different extinction 
distances D, = r /Le  for different medium albedo B , ,  where L ,  = l/qe is the extinction length of the 
medium. 

Ds = r / L S  

Figure 10. This is the same as Fig. 9,  at diffferent scattering distances D, = r/L,, where L ,  = l/q, is the 
medium scattering length. 
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0.01 

outward energy flows. Nevertheless, the comparison between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( r )  and J ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( v )  helps us to 
understand the multiple scattering process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 

4 Strong forward scattering: the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof large-scale inhomogeneities 

From the analysis of coda generations for local earthquakes, it seems that the lithosphere in 
tectonically active regions may be rich in small-scale heterogeneities (less than 1 km) (Aki 
1981; Wu & Aki 1985b). On the other hand, by measuring the phase and amplitude fluctua- 

- - - - - Forward Scattering 

~ Isotropic Scattering 

Figure 11. The normalized radial energy flux density 4 n r Z J r ( r )  for the isotropic scattering case and the 
strong forward scattering case. 

.5 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 
D, = r/L, 

Figure 12. This is the same as Fig. 1 1 .  The distance is the numerical absorption distance D, = r / L a ,  where 
La = l/qa is the absorption length of the medium. 
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S / -  

75 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Z 

Figure 13. The derivation for the case of the strong forward scattering approximation. z-is along the 
forward direction. I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the position vector, p is the position vector in the transverse plan; 0 is the unit 
vector in the scattering direction, and s is the projection of SL in the transverse plane. 

tions in large seismic arrays as LASA and NORSAR, large-scale velocity inhomogeneities 
(10-20 km) underneath the arrays were revealed (Aki 1973; Capon 1974; Berteusson er al. 

1975). Therefore, the lithosphere may have multi-scale inhomogeneities. For short-period 
seismic waves (around 1 Hz), the scattering by the small-scale heterogeneities may be in the 
Rayleigh and Mie scattering region. From the elastic scattering pattern (Wu & Aki 1985a, b), 
we may approximately use the isotropic scattering approximation. However, for the large- 
scale velocity inhomogeneities, the forward scattering is dominant. The energy density distri- 
bution with distance will be quite different from the case of isotropic scattering. Since most 
of the scattered energy is concentrated in the forward direction within a small cone, the 
focusing and defocusing, diffraction and interference phenomena become important. Most 
of the scattered energy arrives at the receiver point with much shorter travel paths, so that 
the energy delay due to scattering is much less severe than in the case of isotropic scattering. 
From a reasoning similar to that in Fig. 5 ,  we can see that the normalized energy density 
decay curve will not have a peak value greater than 1. Because the inward scattered energy is 
much less than the outward scattered energy, the energy density, which is J :  + J ; ,  where J:  
and J ;  are the outward and inward radial energy fluxes respectively, will not be too different 
from the net energy flux J , = J : - J ; .  In the following, let us examine what can be 
obtained from the theory available in transport theory. 

Fante (1 973) has solved the transport equation under the forward scattering approxima- 
tion, and Ishimaru (1978a, chapter 13) has a lucid derivation and discussion on it. Here we 
only draw some main threads for understanding it. Since 

dZ(r, 6) 
dl 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 - grad Z(r, 6), 

where dl is the length of an elementary segment in ,the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf2 direction (Fig. l), the transport 
equation (3.1) can be written as 

fL*ggradI(r,6)= D(6, 60) I ( r , i20)d i20+W(r ,  6). 

Because the scattered energy is mostly confined within a small cone in the forward direction, 
we choose the z-axis of the Cartesian coordinates as this direction, and approximate (4.2) 
through the following steps. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ii = 13 + rn9 + n i ,  (4.3) 

where 3, 3 and i are the unit vectors in the x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and z-axes respectively, and 1, m, n, the 
corresponding direction cosines. In the spherical coordinate system with the z-axis as its 
polar axis (Fig. 13) 

I = sin 8 cos 4, rn = sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 sin 4 n = cos 8. 
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Because the angle with the z-axis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is always small, we have approximations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= cos 0 = 1 

df2 = ndf2= dldm = ds, 

/4T d f2 = j:m dl/;- dm = jds ,  

6 *gradZ(r ,6)= -Z(z, p,s )+s*VtZ(z ,p ,s ) ,  

where 

r = x2 + y j  + z i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp + zi ,  

a 
az 

a a  
ax ay 

s = W + m $ ,  V t = - k +  -9. 

(4.5) 

Note that s is not a unit vector. Because 6 is a small angle, the magnitude of s is much 
smaller than 1. 

By these approximations (4.2) becomes 

m 

= - 17eZ(z, p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) + - D ( s  - d)Z(z, p, s')ds' + W(z, p, s). (4.7) 1: km 
here D(h, flo) is assumed only as a function of 6 - h0. Since most of the energy is con- 
fined within a small angle with the z-axis, the integration limits for 1 and m are extended to 
k 00 without introducing any significant change. 

Again (4.7) can be solved by the Fourier transform method (Fante 1973; Ishimaru 1978a, 
chapter 13), the general solution for W(z, p,  s) = 0 is 

I(z, p, s) = - /dkJ d q e x p ( - i k v p -  is-q)Zo(k,q+kz)K(z, k,q), 
(2Tl4 

where 

' Zo(k, q) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(j Zo(p, s) exp (ik * p + is  - q) dpds 

is the double Fourier transform of the incident intensity Zo (p ,  s) at z = 0, and 

where 

(4.9) 

(4.10) 

(4.1 1) 

There is no general explicit expression for (4.8) for a general scattering directivity D(s) .  If 
we approximate the strong forward scattering pattern by a Gaussian function, 

D ( s ) =  4 t e x p  ( - t s 2 )  (4.12) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is a parameter proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(lo/X)’, and lo  is correlation length of the random 
medium, X is the wavelength, substituting into (4.1 1) and (4.10) yields 

(4.13) 

(4.14) 

Since most of the energy is confined within a small cone along the z-axis, we consider the 
case of a plane incident wave 

(4.15) 

(4.16) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d q e x p ( - i k - p - i s . q ) 6 ( k ) e x p  

When the scattering distance is large, i.e. qsz s 1, the main contributions to the integral in 
(4.17) come from the integrands with small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4s. We can set 

Therefore 

E(z, p) = J(z, p )  = Z(z, p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) ds = lo exp ( - qaz). s 

(4.18) 

(4.19) 

(4.20) 

We see that, under forward scattering approximation, the energy density decay with distance 
is only due to the absorption. That is because, in the approximation, we neglect the back- 
scattering and the path length differences between the direct path and the multiple scatter- 

, ing paths by letting cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 1. In Figs 11 and 12 we plot the energy flux J ( r )  of strong 
forward scattering versus that of the isotropic scattering. If we consider the lengthening of 
travel paths by multiple forward scattering, the decay curve could be somewhere between 
these two extremes. 

Equation (4.19) gives the angle distribution of intensities. The incident wave only has 
intensity in the z-direction and, after scattering by the medium, the intensities with different 
directions have a Gaussian distribution and the width of the angle distribution broadens with 
distance. The loss due to the scattering of energy to other directions is compensated by the 
gain of scattered energy from other directions. Therefore there is no energy loss except 
absorption. However, in order to calculate the real energy attenuation, we have to take the 
backscattered energy into account. Wu (1982a) uses a simple renormalization procedure and 
sums up all the energy scattered into the back half-space as the energy loss. This procedure is 
similar to DeWolf s ‘cumulative forward-scatter single-backscatter approximation’ in calcu- 
lating the backscattering strength (DeWolf 197 1). Since the backscattered energy is much 
smaller than the forward scattered energy, the second backscattered energy (from the 
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backward direction into the forward direction) is one order smaller than the single back- 
scattered energy. Therefore the single backscattering loss with the renormalization of the 
total forward energy could be a reasonable approximation of the scattering attenuation for 
the harmonic wavefield. 

From the above analysis, in the case of strong forward scattering due to large-scale 
inhomogeneities, the shape of the energy density decay curve is insensitive to the medium 
albedo Bo and the separation of scattering attenuation from absorption becomes more 
difficult. However, because the scattering loss is much smaller than the isotropic case, we can 
have some constraint on the possible scattering attenuation from the strength of inhomo- 
geneities. The shape of the seismogram envelope in the time domain can also give constraints 
on the possible values of the albedo Bo. We will discuss this in part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 of this paper (in 
preparation, see also Wu 1984). 

5 Conclusion 

From the solutions of energy transfer equation for seismic waves we can see that the shape 
of the spatial distribution curve of seismic energy density depends strongly on the seismic 
albedo B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= qs/(qs + q,), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqs is the scattering coefficient and qa is the absorption coeffi- 
cient of the medium. For isotropic or nearly isotropic scattering, such as in the case of 
Rayleigh scattering, the energy-distance curve is of arch shape and the position of the peak 
is a function of the extinction coefficient of the medium qe = qs + q, for the case of Bo> 0.5. 
Therefore it is possible to calculate q, and qs from the value of Bo and qe, which can be 
determined from the measured energy-distance curve for a region using local earthquake data. 

For strong forward scattering, such as in the case of large-scale inhomogeneities for short- 
period seismic waves, the shape of the energy-distance curve is insensitive to the seismic 
albedo B,. In this case the separation of the scattering effect and the absorption becomes 
more difficult. However, since the scattering loss is much smaller than the case of isotropic 
scattering, we can have some constraint on the value of scattering attenuation. Also the time 
domain solution for the energy transfer equation can supply further information on the 
relative strength of scartering attenuation. This will be discussed in part I1 of the paper (see 
also Wu 1984). 
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Appendix: the problem of energy conservation for the scattering of impenetrable bodies 

The radiative transfer equations deal with the scattered energy and neglect the wave inter- 
ference effect. This can cause some local inbalance of energy due to single scattering. 
However, one of the salient features of the energy transfer approach is its conformity with 
the energy conservation law. The overall energy conservation will be taken care of by the 
multiple scattering process. 

For an impenetrable body, the total field can be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u= u,+ us, 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, is the incident field and Us the scattered field. The energy of the total field is 
proportional to 

I u IZ = I uo + us l 2  = I uo IZ + I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus l2 + G us + uo q ,  
where '*' stands for the complex conjugate. In the high-frequency limit there is a shadow in 
the forward direction due to the impenetrability of the target. Therefore the total field 
vanishes in the forward direction, which implies 

us= - uo 

in the forward direction. Substituting (A3) into (A2), we reach the expected result that 
there is no wave energy in the forward direction since all the incident energy was reflected 
back. However, if we consider only the scattered energy without taking into account the 
interference, the forward scattered energy will be the same amount as the incident energy. 
The total backscattered energy is obviously equal to the incident energy. Therefore the total 
scattered energy is twice the incident energy, that is why the high-frequency limit of the 
scattering cross-section of an impenetrable target is twice the geometric cross-section. The 
energy conservation law is violated here. However, it is a problem for the single scattering 
treatment. The radiative transfer equations, which deal with the multiple scattering process, 
will take care of the overall energy balance. In the forward direction, the calculated energy 
loss due to scattering is twice the reflected energy, but half the energy loss is the scattered 
energy in the forward direction, which is treated as energy gain in that direction, so the net 
energy loss 

net loss = total scattered energy - energy being scattered in (gain) 

is exactly the amount of the back reflected energy. Therefore the energy conservation law is 
observed in the radiative transfer treatment. 
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