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A fast, accurate, and general technique for solving Maxwell’s equations in the presence of a finite cluster of

arbitrarily disposed dielectric objects is presented. The electromagnetic field is first decomposed into multi-

poles with respect to centers close to each of the objects of the cluster and multiple scattering is carried out

until convergence is achieved. Radiation scattering cross sections are obtained using this method for clusters

formed by homogeneous spheres and coated spheres made of different materials ~Al, Si, and SiO2), including

magnetic ones. Near- and far-field distributions are offered as well. @S0163-1829~99!00531-7#

I. INTRODUCTION

The electromagnetic response of small structures to exter-

nal sources constitutes a field of intense research due to the

promising technological applications of photonic devices.1

These are in essence materials tailored on the micrometer

scale to exhibit unusual properties of transmission2 and

reflection3 of radiation that can be exploited in the design of

filters and mirrors for light. Special emphasis has been

placed in the study of periodic structures in connection to

photonic bands, which are formed in a similar way as elec-

tronic bands in solids.4–11,1,12,13 The photonic properties of

these materials have been tested in macroscopic structures

using radiation in the GHz regime, where absolute band gaps

have already been obtained.9,10 On the theory side, different

methods have been developed to solve Maxwell’s equations

in the presence of periodic arrays, including extensions of

those used in low-energy electron diffraction,4,5,13

plane-wave7 and Bloch wave8 expansions, and the transfer-

matrix approach.11,14

Actual photonic microstructures have been recently em-

ployed to confine light in a finite region of space,15,16 result-

ing in well-defined narrow modes that could be eventually

used in laser design. This opens the field of photonic chem-

istry, where arbitrarily distributed micrometer elements are

combined to confine, scatter, or emit light. Therefore, theo-

retical methods suited to solve the electromagnetic problem

near clusters of dielectric objects are needed to explore the

possibilities offered by these structures as they become in-
creasingly complex. The present work constitutes an attempt
to advance in this direction.

The solution of Maxwell’s equations finds application in a
number of spectroscopy techniques, including spontaneous
emission,17 light emission from scanning tunneling
microscopes,18 scanning near-field optical microscopy
~SNOM!,19,20 and electron-energy-loss spectroscopy
~EELS!.21,14 For instance, SNOM permits one to obtain spa-
tial resolution on a nanometer scale by using an external
probe to bring the light of a laser of much larger wavelength
to the area of the specimen under examination,19 posing the
problem of understanding the measured far-field induced by
local interaction of laser light with structures whose size is
much smaller than the wavelength. This technique combines

spatial localization and radiation of energy appropriate to
sample valence-band features.20

The simulation of EELS relies on the availability of meth-
ods to calculate the field induced by an external electron
interacting with complex nanostructures. Beyond some
nonrelativistic22–24 and relativistic25–27 analytical solutions
for simple geometries, numerical methods have been suc-
cessfully used in this respect.14 In particular, the relativistic
boundary element method28 consists of representing the in-
terfaces of a given heterostructure by means of charges and
currents that are solved self-consistently in the presence of
an external field.29 However, the magnitude of the numerical
problem becomes unaffordable for targets composed of a
large number of elements. In an attempt to circumvent this
issue, granular structures have been studied using effective-
medium theories, taking advantage of averaging over ran-
dom distributions of objects.30–34

The formalism introduced in this paper allows one to re-
duce the solution of Maxwell’s equations in the presence of
a cluster of arbitrarily distributed dielectric objects to the
knowledge of the individual scattering properties of each of
the objects. For that purpose, the electromagnetic field is first
decomposed into multipoles around each constituent of the
cluster, and multiple elastic scattering of the multipole ex-
pansions ~MESME! is carried out until convergence is
achieved. The time required to numerically solve this prob-
lem is proportional to the square of the number of objects in
the cluster. This permits one to compute radiation scattering
cross sections for a cluster formed by a large number of
objects within any desired degree of accuracy.35

The present formalism shares many features with other
theories employed to study electron diffraction in solids.36–42

This is a consequence of the fact that electrons moving in the
interstitial region between the atoms of a solid, where the
potential is nearly flat, are governed by the same Helmholtz
wave equation that rules the propagation of free photons, the
only difference lying in the matching conditions satisfied by
either the electron wave functions or the electromagnetic
fields.1

The theory of MESME is presented in Sec. II, where a
general, computationally efficient technique is derived that
allows us to solve Maxwell’s equations in clusters of arbi-
trarily disposed dielectrics. Section III describes further com-
putational details. The application to the simulation of radia-
tion scattering is given in Sec. IV. Some numerical examples
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are discussed in Sec. V for clusters of different sizes. Finally,
the main conclusions are summarized in Sec. VI. Gaussian
atomic units ~a.u., that is, e5m5\51) will be used from
now on, unless otherwise specified.

II. MULTIPLE ELASTIC SCATTERING APPROACH

TO THE ELECTROMAGNETIC PROBLEM

The electromagnetic field induced by interaction of an
external source with a cluster of dielectric objects will be
solved in terms of MESME around the objects of the cluster.
Some of the underlying ideas involved in this formalism
have been borrowed from cluster models for the simulation
of electron diffraction in solids,39–42 and adapted to deal with
the electromagnetic field rather than the electron wave func-
tion, exploiting the well-known analogy between electrons in

solids and light in nanostructures.1,12 A similar extension
from electrons to photons was carried out by Ohtaka and
co-workers4,5,13 allowing methods developed for the simula-
tion of low-energy electron diffraction to be employed in the
study of photonic band structures for periodic arrays of
spheres, and, more recently, for two-dimensional lattices of
cylinders.43,44 Instead, finite clusters of arbitrarily distributed
objects are considered here, and the photonic properties of a
variety of systems are investigated. A full curved-wave ~mul-
tipole! treatment of the electromagnetic field is used, in com-
bination with improved iterative multiple-scattering tech-
niques. The electron wave functions employed in the
electron-diffraction analogy are replaced here by scalar func-
tions that represent the electromagnetic field.45 The analysis
carried out in this section combines the following elements.35

~a! The external electromagnetic field ~e.g., the field set
up by incoming radiation or by an external fast electron! is
decomposed into multipoles around each object of the clus-
ter. This decomposition is reviewed in Sec. II A using a no-
tation appropriate for its application to MESME.

~b! The scattering on each individual dielectric object is
represented by complex scattering matrices, which permit
one to obtain the contribution of each object to the scattered
field, as discussed in Sec. II B.

~c! The field resulting from scattering on a given object
needs to be propagated to other objects of the cluster where
further scattering can take place. This involves nontrivial
translations of multipoles, which will be examined in Sec.
II C.

~d! Finally, the solution of Maxwell’s equations is ex-
pressed in terms of self-consistently-calculated scattered
fields. This leads to the MESME secular equation presented
in Sec. II D.

Therefore, this formalism permits one to express the so-
lution of Maxwell’s equations in the presence of a cluster of
arbitrarily disposed dielectric objects in terms of the indi-
vidual scattering properties of the constituents of the cluster.
Spherical objects, for which the scattering properties are col-
lected in analytical expressions given in Sec. II B, will be
considered here for simplicity. The details of the formalism
are given next and a more schematic picture is offered in Fig.
1 and its caption.

A. Electromagnetic multipoles and scalar functions

Let us start by expressing the electromagnetic field in
terms of multipoles with respect to a given origin ra within a

homogeneous region of space free of charges and currents.
The electric field E is by necessity transversal in that region,
and thus, it can be expressed in frequency space v as45,27

E5Laca
M

2

i

k
“3Laca

E , ~1!

where k5v/c , La52i(r2ra)3“ is the orbital angular

momentum operator relative to the position ra , and ca
M and

FIG. 1. Diagrammatic representation of the elements involved in

the solution of Maxwell’s equations in the presence of a cluster of

dielectric objects using multiple elastic scattering of multipole ex-

pansions @MESME; see Eq. ~18!, reproduced in this figure as well#.

The electromagnetic field is expressed in terms of scalar functions

ca , made up of multipoles relative to dielectric objects a , b , etc.

The external field acting on object a ~upper right corner of this

figure!, ca
ext , is a superposition of spherical plane waves with no net

energy flux around the object @double-arrow line; see Eq. ~6!#. Its

scattering at a , represented by the scattering matrix ta , gives rise

to a superposition of scattered outgoing waves @ taca
ext; see Eqs. ~7!

and ~8!# which adds to the induced part of the total field produced

by self-consistent scattering on object a , ca
ind . The remaining con-

tribution to ca
ind is provided by the scattering of the self-consistent

induced field coming from each other object bÞa . The latter is

calculated in various steps ~starting from the upper left corner!:

first, the system is rotated by means of a rotation matrix Rab such

that the bond vector ra2rb is made to point along the positive z

axis; the resulting rotated outgoing waves centered at rb (Rabcb
ind)

are then expressed in terms of spherical plane waves centered at ra

by linearly translating spherical harmonics (Gab
z is the operator for

translations along the z axis, as explained in Sec. II C!; an addi-

tional translation operator Tab
z is necessary to compensate for the

lack of invariance of multipoles under translation of the origin; the

result is then rotated back to the original position and scattered at

object a . Finally, summation over bÞa yields Eq. ~18!.
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ca
E are the so-called magnetic and electric scalar functions,

respectively. If the region under consideration is filled with
medium j and described by its frequency-dependent local
dielectric function e j and magnetic permeability m j , one
finds, upon insertion of Eq. ~1! into Maxwell’s equations,
that the scalar functions satisfy the wave equation

~¹2
1k j

2!c50, ~2!

where k j5kAe jm j ~the square root is chosen here to have a
non-negative imaginary part!. Besides, the magnetic field is
found to be

H52

i

km j

“3Laca
M

2e jLaca
E , ~3!

and the scalar functions can be determined from E using the
identities45,27

ca
M

5

1

La
2

La•E ~4!

and

ca
E
5

i

ke jm j

1

La
2

~La3“ !•E. ~5!

Notice that the longitudinal modes are explicitly left out of
this formalism,45,27 preventing from possible numerical prob-
lems.

Equation ~2! implies that the multipole expansion of the
electromagnetic field in the homogeneous region under con-
sideration can be constructed as a sum of free spherical
waves. The absence of sources in that region indicates that
these waves cannot lead to a net energy flux through any
closed surface contained within it, so that they can be termed
spherical plane waves by analogy to conventional plane
waves. In particular, the scalar functions that describe the
external field can be expanded in terms of spherical harmon-
ics Y L as

ca
ext~r!5(

L
jL@k j~r2ra!#ca ,L

ext , ~6!

where L5(l ,m), jL(u)5i l j l(uuu)Y L(û) represents one of
the noted spherical plane waves, j l is a spherical Bessel func-
tion, and

ca5Fca
M

ca
E G

groups both magnetic and electric components.

B. Single scattering on a dielectric object

Now let us focus on a dielectric object located near ra and
surrounded by a homogeneous medium j50 of dielectric
function e0 and magnetic permeability m0 , so that, for a
given frequency component v , the momentum of the elec-

tromagnetic field is k05kAe0m0 ~if j50 refers to the
vacuum, one has e05m051 and k05k5v/c).

The total electric field is the superposition of the external
field and the field induced by scattering on the object under

consideration, that is, E5Eext
1Eind. In addition, the electro-

magnetic field in the homogeneous medium j50 is a com-
bination of outgoing and incoming spherical waves, repre-

sented by spherical Hankel functions h l
(1)(k0r) and

h l
(2)(k0r), respectively.46 In particular, Eind finds its sources

in the charges and currents induced by the external field in
the dielectric object, and therefore, it has to be a combination
of only outgoing waves. In other words, the corresponding
scalar functions can be written

ca
ss~r!5(

L
hL

(1)@k0~r2ra!#ca ,L
ss , ~7!

where hL
(1)(u)5i lh l

(1)(uuu)Y L(û). The superscript ss refers

to the fact that the field induced in the presence of just one
object can be considered to be the result of single scattering
by comparison to the case of a cluster of several objects,
where multiple scattering becomes relevant, as shown latter
in this work. Equation ~7! is valid for r outside a sphere
centered at ra and fully containing the dielectric object ~i.e.,
containing the sources of the induced field!.

Within the linear-response approximation, the compo-
nents of the scattered field have to be proportional to those of
the external field. Therefore, one can write, in terms of the
coefficients of expressions ~6! and ~7!,

ca ,L
ss

5(
L8

ta ,LL8
ca ,L8

ext
, ~8!

where ta ,LL8
is the so-called scattering matrix. This is sche-

matically shown in the upper right corner of Fig. 1, where
the external field acting on a , represented by a double-arrow
line to emphasize the fact that it is made up of spherical

plane waves jL , gives rise to outgoing scattered waves hL
(1)

that generate ca
ss , represented by outgoing arrows.

The elements of the scattering matrix can be determined
for each L by solving Maxwell’s equations in the presence of
the dielectric object with the asymptotic condition

c~r!. jL@k0~r2ra!#1(
L8

ta ,L8Lh
L8

(1)
@k0~r2ra!# , r˜` ,

implicitly defining ta ,L8L , and the requirement that c be fi-
nite everywhere. If ra lies within a homogeneous region of
space j , possibly inside the dielectric object, the finiteness of
c means that only spherical plane waves jL9

@k j(r2ra)# con-
tribute at that point, since both outgoing and incoming
spherical waves diverge at their origin.

Although the formalism presented in this work can be
applied to arbitrarily shaped objects, whose scattering matri-
ces are generally dense and can be obtained numerically,29

we will only consider for simplicity spherically symmetric
objects, for which the matching conditions satisfied by the
fields ~i.e., the continuity of the normal displacement, the
tangential electric field, the normal magnetic induction, and
the tangential magnetic field! reduce, after using Eqs. ~1! and

~3!, to the continuity of ca
M , eca

E , (1/m)(11r]/]r)ca
M ,

and (11r]/]r)ca
E , where local response of the materials

involved in the system is assumed and e and m are the
frequency-dependent response functions that take values e j

and m j inside medium j . Thus magnetic and electric scalar
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functions are not coupled during scattering on a spherically
symmetric object. Furthermore, one can write ta ,LL8
5ta ,ldLL8

in this case.
In particular, for a homogeneous sphere of radius a made

of material j51 and surrounded by medium j50, one re-
covers expressions familiar from Mie’s scattering

theory.47,5,27 More precisely, the scattering matrices for mag-
netic and electric components read

t l
M ,E

5

2 j l~r0!a l
M ,E

1@r0 j l~r0!#8b l
M ,E

h l
(1)~r0!a l

M ,E
2@r0h l

(1)~r0!#8b l
M ,E

, ~9!

where a l
M

5m0@r1 j l(r1)#8, b l
M

5m1 j l(r1), a l
E

5e0@r1 j l(r1)#8, b l
E
5e1 j l(r1), r j5k ja , and the prime de-

notes differentiation with respect to r j . Equation ~9! repro-
duces the non-magnetic limit when m05m151.27

For a nonmagnetic coated sphere of radii a>b made of
materials j51 ~inner part! and j52 ~outer part!, and sur-
rounded by vacuum, Eq. ~9! is still valid if one sets

a l
M

5@r1 j l~r1!#8A l2 j l~r1!B l ,

b l
M

5@r1 j l~r1!#8C l2 j l~r1!D l ,

a l
E
5e2@r1 j l~r1!#8A l2e1 j l~r1!B l ,

b l
E
5e2$e2@r1 j l~r1!#8C l2e1 j l~r1!D l%,

A l5 j l~r2!@r3h l
(1)~r3!#82h l

(1)~r2!@r3 j l~r3!#8,

B l5@r2 j l~r2!#8@r3h l
(1)~r3!#82@r2h l

(1)~r2!#8@r3 j l~r3!#8,

C l5 j l~r2!h l
(1)~r3!2h l

(1)~r2! j l~r3!,

D l5@r2 j l~r2!#8h l
(1)~r3!2@r2h l

(1)~r2!#8 j l~r3!,

r15k1b , r25k2b , r35k2a , and r05ka . This expression
converges smoothly to the homogeneous sphere limit when
both b˜0 or a5b . It also reproduces the polarizability co-
efficients in the limit c˜` .48

Radiation scattering cross sections are presented for iso-
lated spheres in Figs. 2 and 3, and they are discussed in Sec.
V.

C. Translation of electromagnetic multipoles

When more that one dielectric object is considered, the
results of scattering from each object ~e.g., b) need to be
propagated to each of the rest of the objects of the cluster
~e.g., a), where further scattering events can take place. This
involves both ~i! translation of the spherical harmonics ap-
pearing in the multipole expansions discussed above, and ~ii!
translation of the origin of multipoles from rb to ra along the
bond vector dab5ra2rb .

~i! Translation of spherical harmonics. The spherical har-
monics and spherical Hankel functions that made up the mul-
tipole expansion of the results of scattering at rb are given in
coordinates relative to rb . They can be expressed with re-
spect to a new origin ra by using the formula for translation

of spherical harmonics,36–38

FIG. 2. Total radiation-scattering cross section for an isolated

sphere of SiO2 as a function of incoming photon energy for various

values of the sphere radius a , as indicated by means of labels. The

cross section, calculated by using Eq. ~30!, has been normalized to

the projected area pa2.

FIG. 3. Dependence of the elastic cross section on scattering

angle u for isolated SiO2 spheres of radius ~a! a520 nm and ~b!

a5160 nm, as given by the integral of Eq. ~29! over azimuthal

directions. The differential cross section has been multiplied by sinu
and it is given per degree and normalized to the projected area pa2.

The contour curves limiting white areas correspond to values of

0.001, 0.011, and 0.06 in the left part of figure ~a!, the right part of

figure ~a!, and figure ~b!, respectively. The distance between con-

secutive contour curves corresponds to fixed values of 0.0002,

0.001, and 0.005, respectively.
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h
L8

(1)
@k0~r2rb!#5(

L
jL@k0~r2ra!#Gab ,LL8

~10!

~valid provided that ur2rau,dab), where

Gab ,LL8
54p(

L9

h
L9

(1)
~k0dab!^L8uL9uL&

is the Green function of Eq. ~2!, written in the basis set of
spherical harmonics attached to ra and rb , and

^L8uL9uL&5E dV Y
L8
* ~V !Y L9

~V !Y L~V !

is a Gaunt integral. When dab is directed along the positive z

axis ~i.e., the quantization direction!, the Green function re-
duces to

Gab ,LL8

z
5dmm8

A4p (
l95ul2l8u

l1l8

A2l911i l9h
l9

(1)
~k0dab!

3^l8mul90ulm&. ~11!

A recurrence relation has been reported that permits us to

evaluate Gab ,LL8

z
efficiently.41 Notice that Gab propagates

magnetic and electric components separately.
~ii! Translation of the origin of multipoles. Unfortunately,

the scalar functions c are not invariant under translations of
the origin of coordinates. This comes from a lack of invari-
ance of the angular momentum operator involved in Eq. ~1!,
which transforms as

Lb5La2idab3“

when changing the origin from rb to ra . Therefore, the elec-
tric field induced by scattering at rb can be expressed as

Eb
ind

5Lbcb
M , ind

2

i

k
“3Lbcb

E , ind

5Lacb
M , ind

2

i

k
“3Lacb

E , ind

2idab3“cb
M , ind

2

1

k
“3~dab3“ !cb

E , ind ~12!

in terms of operators relative to ra . Following the discussion

of Sec. II A, Eb
ind can be written

Eb
ind

5Lacab
M , ind

2

i

k
“3Lacab

E , ind ,

where cab
ind accounts for the contribution to the induced field

coming from scattering at b and expressed in terms of
spherical plane waves around a . Now magnetic and electric

components of cab
ind can be obtained from Eqs. ~4! and ~5!

after substituting E by Eb
ind as given by Eq. ~12!, leading to

the following rule of transformation of the scalar functions
under translation of the origin along the vector dab :49

cab
M , ind

5cb
M , ind

1i
dab

La
2

•~La3“ !cb
M , ind

1

ke0m0

La
2

dab•Lacb
E , ind ~13!

and

cab
E , ind

5cb
E , ind

1i
dab

La
2

•(La3¹…cb
E , ind

2

k

La
2

dab•Lacb
M , ind ,

~14!

where the substitution ¹2˜2k0
2 has been performed. Now a

linear translation operator T can be defined to represent this
rule. T acts on the multipole components of the above scalar
functions and takes a particularly simple form when dab is
directed along the positive z axis. More explicitly,

Fcab ,L
M , ind

cab ,L
E , ind G5(

L8

Tab ,LL8

z Fcb ,L8

M , ind

cb ,L8

E , indG ,

where

Tab ,LL8

z
5FdLL8

0

0 dLL8

G

1dmm8
k0dabF p ll8m q ll8mAe0m0

2q ll8m

Ae0m0

p ll8m
G , ~15!

q ll8m5

md l ,l8

l~ l11 !
,

p ll8m5d l11,l8
D l11,m2d l21,l8

DL ,

and

DL5

i

l
A ~ l1m !~ l2m !

~2l21 !~2l11 !
, ~16!

as shown in the Appendix.

Notice that cb
ind is made up of spherical outgoing waves

(hL
(1)) centered at rb ~this is represented by outgoing arrows

centered around b in the upper left corner of Fig. 1!. The
translation of spherical harmonics discussed in point ~i!

above allows one to express cb
ind in terms of spherical plane

waves ( jL) centered at a new origin ra ~see the diagram on
the left part of Fig. 1!. On the other hand, the translation of

the origin of multiples discussed in point ~ii! operates on cb
ind

@already translated as explained in point ~i!# to produce cab
ind ,

which is also made up of spherical plane waves centered at
ra .

In brief, the combination of these two operators allows us

to obtain the coefficients of the multipole expansion of cb
ind

around a as TabGabc̃b
ind , where c̃b

ind represents the vector

formed by the coefficients cb ,L
ind of the multiple expansion of

cb
ind around b .
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D. Multiple scattering

Now let us focus on a cluster of dielectric objects labeled
by coordinate vectors ra . Our aim is to obtain the scalar
functions appropriate for the electromagnetic field that satis-
fies Maxwell’s equations in the presence of the cluster, and
to relate these functions to the scattering properties of each
individual component of the cluster.

The induced part of the self-consistent scattered field will
be expressed as the sum of contributions coming from the
different cluster components a , that is,

c ind~r!5(
a

ca
ind~r!.

Since ca
ind finds its origin in the charges and currents induced

in object a , it has to be a combination of spherical outgoing
waves centered around ra :

ca
ind~r!5(

L
hL

(1)@k0~r2ra!#ca ,L
ind . ~17!

Equation ~17! is valid for r outside a sphere centered at ra

and fully containing object a .

Within the single-scattering ~ss! approach, ca
ind is given

by the scattered field ca
ss discussed in Sec. II B. This results

from single scattering of the external field as expressed in
Eq. ~8!, conveniently written using matrix notation as

c̃a
ss

5tac̃a
ext ,

where the vector c̃a
ss(ext) has components ca ,L

ss(ext) and the ma-

trix ta has components ta ,LL8
.

The singly scattered field coming from a certain object b
can in turn suffer scattering on every other object of the

cluster aÞb . That is, ca
ind receives contributions coming

from previous scattering on every other object bÞa . This
leads to a self-consistent relation for the induced field that
can be written as

lc̃a
ind

5c̃a
ss

1ta (
bÞa

Habc̃b
ind , ~18!

where the first term on the right-hand side is the result of
direct single scattering of the external field at a; the second
term describes both the propagation of the self-consistently
scattered field originating in every other object bÞa from b
to a and the subsequent scattering of this field at a; l51 is
introduced for convenience; and the operator Hab accounts
for the propagation just noted. Hab can be conveniently con-
structed in four steps as follows ~see the left part of Fig. 1 for
a schematic representation of this procedure!.35

~i! Following previous work of electron diffraction in
solids,36,39 the bond vector dab is rotated onto the z axis by

using a rotation matrix Rab ,46 which acts on the spherical

harmonics of the multipole expansion of cb
ind . The Euler

angles corresponding to this rotation can be chosen (0,u ,p
2w) if (u ,w) are the polar angles of dab .

~ii! The resulting rotated scalar functions are then propa-
gated a distance dab along the positive direction of the z

axis. This is accomplished by multiplying by the Green func-

tion Gab
z given by Eq. ~11!.

~iii! The lack of invariance of multipoles under transla-
tions of the origin needs to be overcome by multiplying by

the linear translation operator Tab
z described in Sec. III C

@Eq. ~15!#.
~iv! Finally, the z axis has to be rotated back onto the dab

direction using Rab
21 , and one has

Hab5Rab
21Tab

z Gab
z Rab . ~19!

The analogy with electron diffraction in solids38,39 is com-
plete, except for the lack of invariance just pointed out.

The rotation matrices can be in turn decomposed into azi-
muthal and polar rotations as46

Rab ,LL8
5d ll8

R
mm8

(l)
~0,u ,0!~21 !m8e iwm8, ~20!

and this helps to soften the computational demand in the
evaluation of Eq. ~18!, as shown in Sec. III.

III. COMPUTATIONAL PROCEDURE

An efficient scheme is presented in this section that al-
lows us to solve Eq. ~18! within affordable limits in both
computation time and storage demand. The operators in-
volved in Eqs. ~18!–~20! are approximated by finite matrices
of dimension @(lmax11)2#2, where lmax is the maximum or-
bital angular momentum number under consideration ~this is
for each component, electric and magnetic; note that Green
functions and rotation matrices act independently on each of
these components!. In the calculations that follow, conver-
gence has been achieved for lmax<12 in most cases.

The direct inversion of Eq. ~18! is computationally pro-
hibitive for large clusters. A procedure for solving it that
mimics the multiple-scattering expansion consists in starting

with c̃a
ind,1

5c̃a
ss as a guess for c̃a

ind , and then calculating the

result of scattering up to an order n.2 by using the iterative
relation

c̃a
ind,n

5c̃a
ss

1ta (
bÞa

Habc̃b
ind,n21 . ~21!

This is nothing but the Taylor expansion of c̃a’s in powers
of ta’s. This procedure has been found computationally con-

venient in many cases where c̃a
ind,n˜c̃a

ind as n˜` , particu-

larly in electron diffraction in solids,39,42 but it may lead to
divergences when any of the eigenvalues of tH has a modu-
lus larger than 1.

Here Eq. ~18! has been solved by using the recursion

method,50,51 where l plays the same role as the energy in
former electronic band-structure calculations. Although one
is only interested in the value l51, the recursion method
results advantageous because it is fully convergent even in
situations where Eq. ~21! leads to divergences.38 This is the
case in many of the examples offered below, where strong
scatterers are placed relatively close to each other.

The computational costs of both the iteration procedure
and the recursion method is basically coming from the mul-

tiplications Habc̃b
ind . These two methods require the same

number of those multiplications per iteration, namely, N(N

21), where N is the number of objects in the cluster. The
factorization of Hab given in Eqs. ~19! and ~20! has the
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virtue of reducing both ~a! the storage capacity required to

evaluate those multiplications and ~b! the computational ef-

fort.

~a! A significant reduction in memory requirements can

be accomplished if the coefficients of each polar rotation

R
mm8

(l)
(0,u ,0) @see Eq. ~20!#, each azimuthal rotation

(21)m8e iwm8, each translation of spherical harmonics Gab
z ,

and each translation of the origin of multipoles Tab
z are com-

puted and stored only the first time that they are encountered

along the entire calculation. In addition, for any arbitrary

cluster, the points ra can be chosen in such a way that they

form a highly symmetrical mesh, where many bond distances

and angles are repeated ~this might require that the points ra

do not lie necessarily in the geometrical centers of the ob-

jects that they label!. If this is the case, the total number of

different bond distances and bond polar angles is consider-
ably smaller than the number of bond vectors dab . To illus-
trate this, let us put forward the example of a simple-cubic-
lattice cube of side p in units of the lattice constant; this
cluster contains p3 nodes and (2p21)3

21 different bond
vectors, a number that has to be compared with at most 3p2

bond distances, since the square of the distance between any
pair of nodes has to equal an integral number, and the dis-

tance between opposite corners is A3p ~a better estimate for
this case results in '1.8p2 different bond distances for large
p values!.

~b! For a given maximum value of the orbital angular-

momentum number lmax , the dimension of each vector c̃a is
(lmax11)2 ~for each component, electric and magnetic!, so

that every matrix-vector product Habc̃b involves 4(lmax

11)4 complex multiplications. However, all of the matrices
that appear on the right-hand side of Eq. ~19! are sparse, as
one can see from Eqs. ~11!, ~15!, and ~20!. A detailed inspec-
tion leads to the conclusion that only '(20/3)(lmax11)3

complex multiplications are needed to evaluate the product

Habc̃b when Hab is decomposed as shown in Eq. ~19!. This
is a factor of 'lmax/2 smaller than the direct matrix-vector
product.

Further reduction in computational and storage demand
can be achieved if symmetry relations for the Green func-

tions and the rotation matrices46 are used ~e.g., Gab ,lm ,l8m

z

5Gab ,l82m ,l2m

z
).

Notice that multiplications by scattering matrices ta do
not affect significantly the total computational costs for rela-
tively large clusters ~e.g., above ten objects!, since they take
place just outside the summation over cluster objects b in
Eq. ~18!, so that only N of those multiplications are needed
per interation.

A fully automated implementation of these ideas has been
performed, resulting in a new code ~MESME! that provides
the solution of Eq. ~18! for clusters of arbitrarily distributed
constituents by investing a computation time

CPU'AN2~ lmax11 !3,

where A is a constant (A;1024 s on a Pentium at 333
MHz!.

IV. APPLICATION TO THE SCATTERING

OF RADIATION

The formalism presented in Sec. II will be applied here to
the study of scattering of radiation in a cluster of arbitrarily
distributed dielectric objects. Section IV A will be devoted to
derive analytical expressions for the multipole expansion co-
efficients of an incoming plane wave. The far field produced
by the charges and currents induced in the cluster will be
discussed in Sec. IV B.

A. Multipoles of the incoming radiation

When the cluster is illuminated by a plane wave, the ex-
ternal electric field can be written52

Eext
5eWe iKi•r, ~22!

where eW is the ~complex! polarization vector, which is as-

sumed to be normalized as ueW u51, and Ki is the momentum
of the incoming light. Eext must satisfy the wave equation in
the surrounding medium j50, and therefore, uKiu5k0

5kAe0m0, where k5v/c .52

The multipole coefficients of the scalar functions intro-
duced in Sec. II A can be obtained by expanding Eq. ~22! in
spherical plane waves and inserting the resulting expression
into Eqs. ~4! and ~5!.45 One finds

Fca ,L
M ,ext

ca ,L
E ,ext G5

4pe iKi•ra

l~ l11 ! F zW L
*~V i!•eW

zW L
*~V i!•~eW3Ki!/~ke0m0!

G ,

~23!

where V i refers to the polar angles of Ki ,

zW L~V !5LY L~V !

5FC1

2
Y lm11~V !1

C2

2
Y lm21~V !,2

iC1

2
Y lm11~V !

1

iC2

2
Y lm21~V !, mY L~V !G , ~24!

and C65A(l6m11)(l7m).

B. Induced electromagnetic field in the far-field limit

and scattering cross section

The induced electric field can be obtained by inserting
into Eq. ~1! the self-consistently calculated induced part of
the scalar functions, made up of spherical outgoing waves

hL
(1)@k0(r2ra)# in the interstitial medium j50 just outside

the cluster objects. At very large distances from the cluster,
the spherical outgoing waves behave like

hL
(1)@k0~r2ra!#.

e ik0r

k0r
Y L~ r̂!e2iKf•ra, r˜` ,

where Kf5k0r̂. Furthermore, “ can be substituted by iKf in
Eq. ~1! ~this represents the leading term in the r˜` limit!.
Using Eqs. ~1!, ~3!, and ~17!, the induced electric and mag-
netic far fields are found to be

6092 PRB 60F. J. GARCÍA de ABAJO



Eind.f~V !
e ik0r

r
, r˜` , ~25!

and

Hind.Ae0 /m0 r̂3f~V !
e ik0r

r
, r˜` , ~26!

where

f~V !5(
a

e2iKf•ra(
L

@zW L~V ! ca ,L
M , ind/k0

1 r̂3zW L~V ! ca ,L
E , ind/k# , ~27!

is the scattering amplitude and V denotes the polar angles of
r.

The radiated energy associated to the induced far field can
be derived from the energy flux across an arbitrarily large
sphere of radius r centered at the cluster, and this flux can be
in turn calculated from the integral of the normal Poynting
vector as52

DE rad
5

c

4p
E dtE dV r2@Eind~r,t !3Hind~r,t !#• r̂,

where the integral over the time has been included. Express-
ing the fields in terms of their frequency components, one
finds

DE rad
5E

0

`

v dvE dV G rad~v ,V !,

where

G rad~v ,V !5

r2

4p2k
Re$@Eind~v !3Hind~2v !#• r̂% ~28!

can be interpreted as the probability of radiating a photon of
energy v per unit of energy range and unit of solid angle
around the direction V .

Inserting Eqs. ~25! and ~26! into Eq. ~28!, and noticing

that f–r̂50,53 one finds

G rad~v ,V !5

Ae0 /m0

4p2k

dsel~v !

dV
,

where

dsel~v !

dV
5uf~V !u2 ~29!

represents the differential cross section for elastically scat-
tered photons, which can be computed from the coefficients
of the induced scalar functions using Eqs. ~24! and ~27!.

The total interaction cross section can be divided as s tot

5sel
1s inel, where s inel accounts for inelastic losses, con-

nected to absorption of the incoming radiation by objects of
the cluster. The total cross section can be expressed in terms
of the imaginary part of the scattering factor f along the
forward direction by means of the optical theorem for radia-
tion, which reads52

s tot~v !5

4p

k0

Im$f~V i!•eW*%. ~30!

Total cross sections for various clusters of spheres are
represented in Figs. 2, 4, 6, and 12–15. Elastic cross sections
are shown in Figs. 3, 6–8, and 13. In addition, near-field
distributions are illustrated in Figs. 5 and 9–11.

V. RESULTS AND DISCUSSION

Clusters formed by spheres made of Al, SiO2 , and Si are
considered next. Their scattering matrices have been calcu-
lated using Eq. ~9!, where the frequency-dependent dielectric
functions of these materials are employed. In particular, the
response of Al has been approximated by a Drude dielectric
function with bulk plasma energy vp515 eV and damping
h51.06 eV. The dielectric functions of Si and SiO2 have
been taken from optical data.54

Figure 2 shows the total cross section of isolated SiO2

spheres, as calculated from Eq. ~30!. Different sphere radius
a have been considered and the results have been normalized
to the projected area pa2. Substantial variations in the cross
section can be observed in the region below 10 eV, where the
dielectric function has a smooth structure and is basically
real. As the sphere size increases, the low-energy peak in the
cross section shifts toward lower energies. This is connected
to retardation effects in the electromagnetic signal when the
sphere radius is comparable in size to the wavelength of the
radiation ~see the upper scale in Fig. 2!. In a simplified pic-
ture where one considers a frequency-independent dielectric
constant ~actually, this is nearly the case in SiO2 in the en-
ergy range 3–8 eV, where Re$e%'2.122.9@Im$e%), one

FIG. 4. Total radiation-scattering cross section for two touching

SiO2 spheres of radius a5160 nm as a function of incoming photon

energy for different orientations of the cluster ~see the inset!. The

incoming radiation is right circularly polarized ~RCP!. The cross

section has been normalized to the projected area of two spheres

2pa2. The result for an isolated sphere ~multiplied by a factor of 2!

is also shown for comparison. The wavelength of the radiation is

given on the upper scale, normalized to a .
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can argue that the frequency of the eigenmodes will scale

with a in such a way that va/c is a dimensionless constant

number, and hence, the larger the radius a , the smaller the
frequency v . For energies above 12 eV the normalized cross
section depends very weakly on a .

Angular distributions of elastically scattered photons are
represented in Fig. 3 for two different radii of SiO2 spheres,
as calculated from Eq. ~29!. The angular distribution of scat-
tered radiation has a marked anisotropic character. Notice in
particular that forward scattering appears to be dominant
over a wide energy range for the larger sphere under consid-
eration (a5160 nm!.

Actually, this anisotropy in scattering is translated into an
orientational dependence of the total cross section in the case
of the two-sphere SiO2 cluster of Fig. 4, where right circu-
larly polarized radiation52 ~RCP! has been considered. The
result derived from isolated spheres ~thick solid curve, mul-
tiplied by a factor of 2! is very close to the one obtained
when the dimer is oriented perpendicular to the direction of
the incoming radiation. If the dimer is aligned with the di-

rection of incidence of the radiation, forward scattering on

the lower sphere focuses scattered radiation on the second

sphere, and this contributes to enhance the role of multiple

scattering in this case ~thin solid curve!.55 It should be
pointed out that the single-scattering approach results in a
total cross section that equals the sum of cross sections of the
components of the cluster @see Eqs. ~27! and ~30!#.

In Fig. 5, the near field has been represented for the two
extreme orientations of the SiO2 dimer considered above,
and also for the isolated sphere. The magnitude represented
in the figure is the square of the induced electric field, which
is discontinuous on the sphere surfaces, represented by thick
circumferences. Notice that the variations of the field in each
sphere relative to the case of an isolated sphere are very
small. Nevertheless, the maximum of the induced field, lo-
cated on the side of the sphere opposite to the incoming
radiation, enhances the interaction between the two spheres
of the dimer when this is oriented along the direction of
incidence of the radiation.

Elastic and total cross sections, given by Eqs. ~29! and
~30!, respectively, have been compared in Fig. 6~a! for clus-
ters of Al spheres of radius a519 nm. Elastic-scattering
cross sections have been obtained by integrating the differ-
ential cross section over angles of scattering. The elastic
cross section lies always below the total one, and the differ-
ence between the two of them accounts for absorption of
photons by the spheres. The different features of the energy
dependence of the cross section for the isolated sphere are
shifted and split when one considers clusters of spheres. A
significant orientational dependence can be observed in the
case of the dimer, where low-energy modes of different en-
ergy are excited depending on the orientation of the cluster
relative to the incoming radiation. In particular, peak A stays
at nearly the same energy for clusters of three and four
spheres, indicating that this feature is connected to sphere-
sphere interaction in dimers oriented perpendicularly with
respect to the direction of the incoming beam. RCP radiation
is considered in Fig. 6~a!, but a strong dependence on the
polarization is observed for oriented clusters, like the dimer
of Fig. 6~b!. Only the electric-field component of the external
radiation parallel to the dimer axis contributes to excite the
low-energy peak at 5.2 eV. Notice the triple-crossing point
E , which occurs due to both the symmetry of the cluster,
implying that sRCP5sLCP ~i.e., right and left circularly po-
larized radiation lead to the same cross section!, and the
general identity sRCP1sLCP5sLPix1sp'x , where the nota-
tion of Fig. 6~b! has been adopted.

The scattering on Al spheres has a strong electric charac-
ter for the sphere radius under consideration. Actually, if one

sets t l
M

50 in the calculations presented in Fig. 6, the results

are nearly indistinguishable on the scale of the figure. This
was expected from previous results on the magnitude of the
magnetic components of the scattering matrix for Drude
spheres.27 However, for the SiO2 spheres of Figs. 2 and 4 the
magnetic components play a significant role even for the

smallest spheres (a520 nm!, so that t l
M cannot be dismissed

in that case.
The scattering-angle distributions of some of the elastic

cross sections discussed in Fig. 6~a! are analyzed in Fig. 7.
The dimer oriented along the direction of incidence of the
radiation @Fig. 7~b!# has a focusing effect on the scattered

FIG. 5. Contour maps of the square of the induced-electric-field

strength in the vicinity of SiO2 spheres of radius a5160 nm illu-

minated by RCP radiation of 5 eV in energy. The cases of ~a! an

isolated sphere and ~b! and ~c! a cluster of two touching spheres

with two different orientations relative to the incoming radiation

have been considered. The plane of representation is schematically

shown in the insets relative to the incoming beam direction and the

position of the spheres. The sphere surfaces are represented by thick

circumferences on the figures. Contour curves limiting white areas

correspond to a value of 2.2 a.u. The difference in value between

consecutive contour curves is 0.2 a.u. The strength of the external

field has been normalized to 1 a.u.
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radiation, enhancing forward scattering as compared to the
case of an isolated sphere55 @see Fig. 7~a!#. The two orienta-
tions of the dimer contemplated in Fig. 7 showed certain
similarities in the integrated cross section for v.7 eV @see
Fig. 6~a!#, but their angular distributions reveal notorious
differences. Lower-energy peaks are observed when the
dimer is oriented perpendicular to the radiation direction
@Fig. 7~c!#. Notice the symmetry between forward and back-
ward scattering in the low-energy region in this case. Instead,
the high-energy region has a dominant forward-scattering
character. When a third sphere is added to form a triangle
oriented normal to the incoming radiation @Fig. 7~d!#, there
are not substantial changes as compared to the dimer case.
However, a fourth sphere on top of the triangle @see Fig.
7~e!# and a fifth underneath @Fig. 7~f!# produce an effect
of focusing of the scattered radiation along the forward
direction.

Even more dramatic differences between different clusters
are observed in the doubly-differential angular distributions

FIG. 6. ~a! Total radiation scattering cross section ~solid curves!

and elastic scattering cross section ~broken curves! for clusters of

1–5 Al spheres of radius a519 nm. The separation between sphere

surfaces is 2 nm. The cross section has been normalized to the

number of spheres N in each case and the projected area of one

sphere pa2. The radiation is RCP, and is moving upwards, as

shown in the upper inset. The sphere clusters are disposed as illus-

trated in the rest of the insets. Consecutive curves have been shifted

a value of 3 upwards to improve readability. The wavelength of the

radiation is given on the upper scale, normalized to a . ~b! Depen-

dence of the total scattering cross section on the polarization of the

incoming radiation for the horizontal two-sphere cluster considered

in ~a!. The cases of linear polarization ~LP! parallel and perpendicu-

lar to the bond vector have been considered, as well as circular

polarization.

FIG. 7. Dependence of the elastic cross section on scattering

angle u for clusters of 1–5 Al spheres of radius a519 nm, disposed

as shown in the insets. The separation between sphere surfaces is 2

nm. The incoming radiation is RCP, and it is incident as shown by

white arrows. The differential cross section has been integrated over

azimuthal directions and multiplied by sinu and it is given per de-

gree and normalized to both the number of spheres in each case and

the projected area of one sphere pa2. Contour curves limiting white

areas correspond to values of 0.035 in ~a! and ~b!, 0.022 in ~c!–~e!,

and 0.026 in ~f!. Consecutive contour curves differ by a value of

0.005 in ~a! and ~b!, and 0.002 in ~c!–~f!.

PRB 60 6095MULTIPLE SCATTERING OF RADIATION IN . . .



represented in Fig. 8, where radiation of energy correspond-
ing to features A and B of Fig. 6~a! has been contemplated.
The figure illustrates how different polarizations of the in-
coming radiation lead also to very different diffraction pat-
terns. The symmetry of the cluster is reflected in that of the
far field, as one can see by comparing the two-sphere case
with the rest of the clusters. However, a rotation from the
directions of symmetry of the cluster is observed is the case
of circularly polarized radiation. The intensity of scattered
photons is maximum along the forward direction (u50) in
all cases.

Near-field distributions ~i.e., the square of the induced
electric field! have been represented in Fig. 9 for isolated Al
spheres and clusters formed by two and three Al spheres.
The parameters of the spheres are the same as in Fig. 6. The
energy of the radiation corresponds to the features marked in

Fig. 6~a!. Circularly polarized radiation has been considered.
Notice that the two modes illustrated in the figure for the
isolated sphere show very different distributions of induced
electric field, which can be ascribed to dipole and quadrupole
modes in Figs. 9~a! and 9~b!, respectively. For the dimer, a
large enhancement of the induced field can be observed in
the region between the two spheres in Figs. 9~c! and 9~d!,
indicating a strong sphere-sphere interaction. The lack of
specular symmetry in the plane normal to the radiation in
Fig. 9~d! can be attributed to the polarization of the radiation.
For the same energy but using radiation aligned with the
dimer, the 5.2-eV mode does not show up in the cross sec-
tion, as can be seen in Fig. 6~a!, and this is translated into the
very weak induced field shown in Fig. 9~e!. Finally, the case
of three spheres @Fig. 9~f!# shows a strong localization of the

FIG. 8. Distribution of the elastic cross section @Eq. ~29!# over

directions of scattering for various clusters of 2–4 Al spheres of

radius a519 nm whose surfaces are separated by 2 nm. Each row

represents results obtained from the same cluster ~see insets!, with

the radiation coming normal to the plane of representation from

underneath ~i.e., iz). Various polarizations of the incoming light

have been considered ~the polarization employed in each column is

indicated in the upper insets!. The energy of the radiation corre-

sponds to that of points A and B in Fig. 6~a! ~i.e., vA55.2 eV and

vB58.2 eV!. ~a!–~p! represent forward-scattering results ~i.e.,

angles of scattering u50290°, with u50 in the center of each

figure!, whereas ~q!–~t! correspond to backward scattering ~i.e.,

angles of scattering u590° – 180°, with u5180° in the center of

each figure!. The doubly differential cross section is given per ste-

reoradian, and normalized to both the number of spheres in each

case and the projected area of one sphere pa2. Contour curves

limiting white areas correspond to values of 0.3 in ~a! and ~d!, 0.6 in

~b!, 0.15 in ~c!, 0.4 in ~e!–~p!, and 0.09 in ~q!–~t!. Consecutive

contour curves differ by a value of 0.05 in ~a!, ~d!, and ~e!–~p!, 0.1

in ~b!, 0.025 in ~c!, and 0.01 in ~q!–~t!.

FIG. 9. Contour maps of the square of the induced-electric-field

strength in the vicinity of Al spheres of radius a519 nm illumi-

nated by RCP radiation of energy as indicated by labels @see corre-

sponding points in Fig. 6~a!#. The cases of an isolated sphere @~a!

and ~b!#, a two-sphere cluster with different orientations relative to

the incoming radiation @~c!–~e!#, and a three-sphere cluster ~f! have

been considered. The planes of representation are schematically

shown in the insets relative to both the incoming beam direction

and the position of the spheres. The sphere surfaces are represented

by thick circumferences on the figures. The separation between the

surfaces of the spheres is 2 nm in ~c!–~f!. Contour curves limiting

white areas correspond to a value of 5, 5.5, 8, 8, 3.5, and 9 a.u. in

~a!–~f!, respectively. The difference in value between consecutive

contour curves is 0.5 a.u. in all cases. The strength of the external

field has been normalized to 1 a.u.
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induced field in the interstitial region between the spheres, as

well as a certain asymmetry also connected to the polariza-

tion of the radiation.
The near field induced by linearly polarized light incident

along different angles with respect to the normal to a triangle
formed by three Al spheres of radius a519 nm, like those
considered in Fig. 9~f!, is represented in Fig. 10. When the
polarization vector is contained in the plane determined by
the normal to the triangle and the direction of incidence of
the radiation @s polarization; Figs. 10~a!–10~c!#, the near
field is very sensitive to the angle of incidence. For normal
incidence, the polarization direction has a large projection on
two of the bond vectors of the cluster, producing an intense
induced electric field in those regions. For in-plane inci-
dence, the polarization vector is normal to all bond vectors,
and, as a result, the induced field is very weak. This is in
qualitative agreement with the conclusions extracted from
Figs. 6~b! and 9~c!–9~e!, where it was shown that only the
electric field component parallel to the bond vector contrib-
utes to excite a mode at the energy vA55.2 eV under con-
sideration. For p polarization @Figs. 10~d!–10~f!# the near

field is rather insensitive to the incidence angle, and this can

be attributed to the fact that the projections of the polariza-

tion vector on the bond vectors of the cluster are independent

of the angle on incidence in this case. Also, the wavelength
of the radiation is over 17 times larger than the sphere radius
~see upper scales in Fig. 6!, and, hence, phase differences in
the interaction of external radiation with the spheres for vari-
ous incidence angles are small.

The evolution of the induced electric field on its way out
from the target is represented in Fig. 11. The near field is
shown on different planes parallel to the same three-Al-
sphere cluster considered above @Figs. 11~a!–11~f!#, and also
on concentric hemispheres centered at the cluster @Figs.
11~g!–11~j!#. The electric field evolves smoothly, forming
different patterns that cannot be directly identified with the
far field up to relatively large distances from the cluster. For
hemispheres at distances of 150 and 200 nm, like those con-
templated in Figs. 11~i! and 11~j!, the induced field starts
resembling the far field represented in Fig. 8~h! for the same
geometry. Upon inspection of Eq. ~17!, one concludes that
the far-field approximation is valid at distances R from the

FIG. 10. Contour maps of the square of the

induced-electric-field strength in the vicinity of a

cluster of three Al spheres of radius a519 nm

illuminated by linearly polarized radiation with

the polarization vector eW as shown in the insets

~the plots in each column are calculated using the

same polarization!. The energy of the radiation is

vA55.2 eV. The plane of representation is sche-

matically shown in the insets relative to both the

incoming beam direction and the position of the

spheres. The angle formed between the direction

of propagation of the radiation and the normal to

the plane of representation is u i . The sphere sur-

faces are represented by thick circumferences on

the figures. The separation between the surfaces

of the spheres is 2 nm. Contour curves limiting

white areas correspond to a value of 4 a.u. The

difference in value between consecutive contour

curves is 0.5 a.u. in all cases. The strength of the

external field has been normalized to 1 a.u.
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cluster much larger than the cluster size and such that k0R

!Almax. In the present case, this condition becomes R

!125 nm.
The maxima of the induced electric field are located just

outside the spheres in the case of Al ~see Figs. 9–11!,
whereas for SiO2 the induced field is larger inside
the spheres ~see Fig. 5!. This is related to the fact that the
wave equation ~2!, which rules the propagation of free scalar
functions in Al ~SiO2), is the same as the Schrödinger equa-
tion for free electrons moving in an repulsive ~attractive!
potential, since the real part of the dielectric constant is
negative ~positive! for the radiation energies under consider-
ation.

Single-scattering ~ss! results have been compared with
full multiple elastic scattering of multipole expansions
~MESME! in Fig. 12 for four-Al-sphere clusters of different
sizes. Multiple scattering effects are shown to be important,
and they lead to dramatic modifications in the cross section.
When the dimensions of the cluster are increased by scaling
its geometrical parameters, a general shift of the maxima in
the cross sections toward lower energies is observed as a
result of retardation effects similar to those discussed above
for SiO2 spheres.

A larger target has been considered in Fig. 13, where the
effect of multiple scattering of external radiation has been

studied for a cluster of 60 spheres with the same structure as

carbons in a C60 molecule. For SiO2 spheres @Fig. 13~a!#, the

total scattering cross section ~solid curves!, as calculated

from Eq. ~30!, follows quite closely the elastic-scattering

cross section ~dashed curves! in the region below '8.5 eV,

where SiO2 is transparent and absorption is negligible. For

Al spheres @Fig. 13~b!#, both cross sections are relatively
featureless. The cross section of the Al cluster lies below the
result of single scattering ~dotted curves, representing 60
times the total cross section of an isolated sphere! in most
of the energy range under consideration. In silica, the promi-
nent feature obtained for single scattering at around 9 eV
is converted into a dip when multiple scattering is switched
on.

The case of Si spheres coated with SiO2 has been illus-
trated in Fig. 14. Isolated spheres of radius a520 nm have
been considered in Fig. 14~a! for different radii of the inner
Si core, b . A prominent feature dominates the spectrum for
the case of pure Si ~i.e., b5a). The exciton of SiO2 shows
up at around 10.5 eV when the sphere is coated, and it re-
mains as a dominant feature for the case of pure SiO2 . For
three touching spheres, multiple scattering is observed to
play a significant role when the coating layer is thin. Notice
that a coating layer of just 2 nm of SiO2 is able to produce
sizable variations in the cross section. A shift of the modes

FIG. 11. Contour maps of the square of the

induced-electric-field strength in the vicinity of a

cluster of three Al spheres of radius a519 nm

illuminated by RCP radiation. The energy of the

radiation is vA55.2 eV. The surfaces of repre-

sentation are schematically shown in the insets

relative to both the incoming beam direction and

the position of the spheres. Different planes per-

pendicular to the direction of the radiation have

been considered in ~a!–~f!. The distance from the

planes to the centers of the spheres is 5

@15# 30 nm in ~a!–~f!, respectively. The near

field has been also represented for points lying on

concentric hemispheres whose distance from the

cluster center is 50 @150# 200 nm in ~g!–~j!,

respectively. In this case, the representation is

based upon polar angles with respect to the for-

ward direction determined by the center of the

hemispheres, in a similar way as in Fig. 8~h!. The

sphere surfaces are represented by thick circum-

ferences in ~a!–~c!. The separation between the

surfaces of the spheres is 2 nm. Contour curves

limiting white areas correspond to a value of 4

a.u. in ~a!–~d!, 2.2 in ~e!, and 1.2 in ~f!. The

difference in value between consecutive contour

curves is 0.5 a.u. in ~a!–~d!, and 0.2 in ~e! and ~f!.

The maximum values in ~g!–~j! are 2.5, 0.36,

0.24, and 0.19 a.u., respectively. The strength of

the external field has been normalized to 1 a.u.
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toward lower frequencies is observed here again when mul-
tiple scattering is switched on.

Metallic spheres of frequency-independent negative di-
electric function are contemplated in Fig. 15. For nonmag-
netic isolated spheres @Fig. 15~a!#, a general trend toward
lower energies is observed in the features of the cross-section
spectrum when the magnitude of the dielectric constant in-
creases. Also, the cross section increases in magnitude in the
same direction, and this is consistent with the fact that nega-
tive dielectric functions act like repulsive potentials for light,
so that, the larger the magnitude of e , the stronger the inter-
action. For a cluster of three nonmagnetic spheres @Fig.
15~b!#, multiple-scattering effects are important and they are
enhanced when the magnitude of the dielectric function in-
creases ~notice in particular the dramatic change that occurs
when e goes from 220 to 240!.

Finally, the lower part of Fig. 15 is devoted to studying
magnetic spheres as a function of the magnetic permeability
for e5210. The attenuation of the electric field inside the
spheres increases with m following the exponential law

exp(2rA2em), so that m and ueu play a similar role in
this respect. Actually, the modes of both isolated spheres
@Fig. 15~c!# and three-sphere clusters @Fig. 15~d!# are also
shifted toward lower energies when the permeability m in-
creases.

VI. CONCLUDING REMARKS

In summary, a general, computationally efficient tech-
nique has been presented for solving Maxwell’s equations in
a cluster of arbitrarily disposed dielectric objects. This
method permits one to express the solution of Maxwell’s
equations in terms of the scattering properties of the constitu-
ents of the cluster. The computation time scales with the
square of the number of elements of the cluster.

The generality of this method relies on the fact that there
is no restriction on the shape or internal structure of the
constituents of the clusters under consideration, apart from
the condition imposed by the translation formula of spherical
harmonics @see Eq. ~10!#, which requires that the objects of
the cluster can be embedded inside nonoverlapping spheres.
Work to overcome this restriction is in progress.

The present formalism has been applied to the study of
scattering of radiation and different examples of simulation
for clusters formed by spheres have been offered, including
clusters of magnetic spheres and coated spheres. The effect
of multiple scattering of radiation is dramatic in some of the
clusters under consideration. In general, metallic clusters are
able to produce larger multiple scattering effects than clus-
ters formed by insulators.

Near-field distributions have been presented for various
clusters. Notice that there is a connection between the elec-

FIG. 12. Total scattering cross section for RCP radiation inci-

dent on tetrahedral clusters of Al spheres of various sizes. Single

scattering results ~ss; dashed curves! and full multiple-scattering

results ~MESME; solid curves! are shown for clusters of spheres of

radius a50.475d , whose centers are separated a distance d ~see

labels!. The radiation is coming along a direction perpendicular to

one of the faces of the tetrahedron, as shown in the inset. The cross

section has been normalized to both the number of spheres and the

projected area of one sphere pa2. Consecutive curves have been

shifted a value of 5 upwards to improve readability.

FIG. 13. ~a! Radiation scattering cross section for a cluster

formed by 60 SiO2 spheres with the same structure as carbons in a

C60 molecule. The radius of the spheres is 49.5 nm. The nearest-

neighbor bond distance is 100 nm. The elastic cross section @dashed

curve; integral of Eq. ~29!# is compared with the total cross section

@solid curve; Eq. ~30!#, and 60 times the total cross section of an

isolated sphere ~dotted curve!. ~b! The same as ~a! for Al spheres.
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tric field induced at a position near a cluster illuminated by
an external plane wave incident along a certain direction, and
the radiation emitted along that direction due to a localized
source at the position under consideration.13 This reciprocity
theorem permits us to extract conclusions on the information
contained in SNOM images by analyzing the near field in-
duced in the cluster by external radiation. In this sense, the
method presented here can be applied to the analysis of
SNOM in complex geometries.

The present theory can deal with different external
sources. For instance, if the external field is provided by a
fast electron, the induced field acting back on the electron
can be used to simulate electron energy losses in scanning
transmission electron microscopes.

Finally, an interesting possibility is offered by the exten-

sion of quasicrystals56,57 to their photonic counterpart, where
large clusters of dielectrics would be distributed to form a

nonperiodic structure able to reflect light forming fivefold
symmetry patterns. Well-defined electronic bands are ob-
served in quasicrystals.56 Similarly, photonic band gaps have
been predicted in two-dimensional photonic quasicrystals,58

and one would expect similar results in three-dimensional
photonic structures, where cluster models like the one devel-
oped here are ideal to study local properties.
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APPENDIX: TRANSLATION OF THE ORIGIN

OF ELECTROMAGNETIC MULTIPOLES

This appendix is devoted to deriving Eq. ~15!, which rep-
resents the explicit form of the transformation rule of multi-
pole coefficients of scalar functions under translations of the
origin of multipoles from rb to ra along the vector dab

5ra2rb , when the latter is directed along the positive z

FIG. 14. Total scattering cross section for RCP radiation inci-

dent on both ~a! an isolated Si sphere coated with SiO2 and ~b! a

cluster of three touching spheres. The sphere radius is a520 nm in

all cases and the radius of the Si core b is changed as shown by

labels. In ~b!, the radiation is coming normal to the plane defined by

the sphere centers. The cross section has been normalized to the

projected area of one and three spheres in ~a! and ~b!, respectively.

Consecutive curves have been shifted 0.2 upwards to improve read-

ability.

FIG. 15. Total scattering cross section for RCP radiation inci-

dent on both an isolated sphere @~a! and ~c!# and a cluster of three

identical spheres along the direction normal to the plane of the

sphere centers @~b! and ~d!#, as a function of frequency v . Nonmag-

netic spheres (m51) have been considered in ~a! and ~b! with

different values of the dielectric constant (e524, 25, 26, 28,

210, 215, 220, and 240). Results for magnetic spheres are

shown in ~c! and ~d! for e5210 in all cases and different values of

the magnetic permeability (m51, 2, 4, 6, 8, 10, 12, 14, and 16).

The results have been normalized to the projected area of either one

sphere or three spheres, in each case. The separation between the

surfaces of the spheres is a/10 in the three-sphere cluster, where a

is the sphere radius. The wavelength of the radiation l52pc/v is

given on the upper scale, normalized to a . Consecutive curves have

been shifted 0.2 upwards to improve readability in ~c! and ~d!.
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axis. This can be accomplished by projecting Eqs. ~13! and
~14! onto multipole components, noticing that each multipole
under consideration is actually a spherical plane wave jL @see
comments immediately after Eq. ~6! and those at the end of
Sec. II C#. In particular, the d function in Eq. ~15! comes
from the first term on the right-hand side of Eqs. ~13! and
~14!. Moreover, the last term in these equations can be pro-
jected using the identity

1

La
2

dab•La jL~ua!5

mdab

l~ l11 !
jL~ua!, ~A1!

where ua5k0(r2ra), L5(l ,m), and the substitution

(1/La
2 ) jL˜ jL /l(l11) has been performed. This gives rise to

crossed electric-magnetic terms in Eq. ~15!.
The remaining second term requires a more careful analy-

sis. One can proceed by considering the operator

ẑ•~La3“ !5iF ~z2za!¹2
2

1

k0
~ua–“ !]zG . ~A2!

Using the identity ¹2 jL52k0
2 jL @see Eq. ~2! and notice that

the medium filling the interstitial region between objects of
the cluster corresponds to j50#, Eq. ~A2! leads to

ẑ•~La3“ ! jL~ua!52i l11k0H ua@ j l~ua!1 j l9~ua!#mY L~ua
̂!

1F j l8~ua!2

j l~ua!

ua
G

3~12m2!]mY L~ua
̂!J ,

where m5(z2za)/ur2rau. Now, expressing mY L and (1
2m2)]mY L in terms of Y l11,m and Y l21,m ~see for instance
the appendices of Messiah46! and using the recurrence rela-
tions of the spherical Bessel functions j l , one finds

dab

La
2

•~La3“ ! jL~ua!5ik0dab$D l11,m j l11,m@ua#

2DL j l21,m@ua#%, ~A3!

where DL is defined by Eq. ~16!. Finally, using Eqs. ~A1!
and ~A3! in the multipole expansion of Eqs. ~13! and ~14!,
and rearranging the summation index l , one obtains Eq. ~15!.
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