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Multiple-scattering theory for three-dimensional periodic acoustic composites
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We present results for acoustic wave propagation in periodic composites consisting of solid spheres in a fluid
host. We show that for solid scatterers in fluid host material combinations the extensively used plane-wave
method is inadequate to produce accurate results and a new approach is required. Our band-structure results are
obtained by using a multiple-scattering approach based on an extension of the well-known Korringa-Kohn-
Rostoker method.@S0163-1829~99!04841-9#
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I. INTRODUCTION

The propagation of acoustic and elastic waves in perio
media is a problem of increasing interest in recent years.
the condensed matter physicists the interest is focused o
question of the existence or not of spectral gaps in th
periodic media~phononic band gaps! in analogy with the
electronic band gaps in metals or the photonic band gap
photonic crystals. Materials with phononic band gaps~spec-
tral regions where sound and vibrations are not permitt!
can be proved very important for a lot of branches of scie
and technology: They can be used as sound filters, for
improvement of the design of transducers, as vibration
environment for sensitive devices, etc. The interest
acoustic and elastic wave propagation stems also from
rich physics of the acoustic and elastic waves as well:
existence of a term proportional to the mass density varia
in the acoustic and elastic wave equation or the mixed l
gitudinal and transverse vector character of the elastic wa
are characteristics that distinguish them from other types
classical waves~waves obeying a second-order equation
the time domain!. The investigation of the possible new fe
tures in the propagation coming from these particular ch
acteristics is a challenging problem. Moreover, the acou
and elastic composite media offer some important adv
tages ~absence of interactions, precise tuning of the f
quency! for the experimental investigation of questions r
lated to localization—note that band gaps tend to be reg
where localized states start to appear if we gradually diso
a periodic system.1

Based on the above considerations, several band-stru
calculations for acoustic or elastic waves propagating in
riodic composites consisting of spheres in a host mate
@three dimensional~3D!# or rods in a host material@two di-
mensional~2D!#, where both the scatterers~spheres or rods!
and the host are either fluids or solids appear.2–12Experimen-
tal studies were also performed8,13–15demonstrating the use
fulness of acoustic waves in illustrating general features
wave propagation in inhomogeneous or random media. M
PRB 600163-1829/99/60~17!/11993~9!/$15.00
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of the calculations have been performed using the pla
wave~PW! method.~In Ref. 8 a variational method was use
based on an expansion in functions localized around e
lattice point.! PW, which is based on the expansion of t
periodic coefficients in the wave equation in Fourier sum
has been applied to a variety of realistic as well as id
material combinations. Study within PW has shown that g
can exist under rather extreme conditions that conc
mainly the elastic parameters~density, velocities! of the
components of the composite, the volume fraction of one
the two components, and the topology. More specifically
has been found that the density contrast of the componen
the composite plays a crucial role for the appearance o
gap. For solids, gaps are favored by high-density scattere
a low-density host. In contrast, for fluids, low-density sc
terers in a high-density host is the most favorable combi
tion for gaps to appear.4,5 Also gaps seem to prefer the ce
met topology~isolated scatterers! rather than the network
topology. Optimum~for gap formation! volume fraction of
the scatterers ranges between 10–50 %. Ideal~for wide gap!
realistic material combinations, according to the above c
ditions, can be composites consisting of heavy metal sca
ers ~e.g., Fe, steel, Pb! in a polymer host~e.g., epoxy!.6,9

Although the existing theoretical study of 2D or 3Dfluid
or solid composites is quite extensive, this is not the case
mixedcomposites, i.e., composites consisting either of so
scatterers in a fluid host or of fluid scatterers in a solid ho
The aim of this work is to study the case ofsolid scatterers
in a fluid host. As we will show in the following, the PW is
unable to give accurate results in this case. The attemp
find a method for the calculation of the band structure
solid scatterers in a fluid led us to extend to acoustic wave
variational multiple-scattering~MS! approach based on th
well-known ~in the band-structure electronic communit!
Korringa-Kohn-Rostoker~KKR! theory.16–20 The success of
this theory in the electronic band-structure calculations a
recently, in electromagnetic wave band-structu
calculations,21–23 combined with its ability to describe bot
fluid and solid scatterers and~most importantly! both peri-
11 993 ©1999 The American Physical Society
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11 994 PRB 60M. KAFESAKI AND E. N. ECONOMOU
odic and random media were the main reasons for our in
est in the MS method. In the present work we apply the M
method in periodic composite systems consisting of spher
scatterers.

The structure of this paper is as follows: We will briefl
present first PW, discussing its inability to describe comp
ites with solid scatterers in a fluid. Then we will present o
MS method, focusing also on the differences in the appli
tion of this method between the acoustic and the electro
case. Finally, we will present some of our main results. T
results and some of our arguments will be discussed in c
nection with single-scattering data. It has been shown
single-scattering analysis, i.e., examination of the form of
single-scattering cross section, can give predictions and
derstanding for the band-structure characteristics~including
the possible existence and the position of the gaps! in a pe-
riodic multiple-scattering system.10,24,25 Usually, widely
separated strong resonances in the cross section are
bined to give flat bands in a periodic system, while gaps t
to appear between these flat bands.

II. ABOUT PW

PW is a fast and easy-to-apply method that is based on
expansion of the periodic coefficients in the wave equat
and the periodic wave amplitude in Fourier series. Appro
mating these infinite Fourier series with finite sums, the
lution of the wave equation is reduced to the solution o
finite matrix eigenvalue equation.

The elastic wave equation in isotropic systems has
following form:

1

r H ]

]xi
S l

]ul

]xl
D1

]

]xl
FmS ]ui

]xl
1

]ul

]xi
D G J 1v2ui50, ~1!

whereui are the Cartesian components of the displacem
vector, r(r ) is the mass density, andl(r ) and m(r ) the
Lamé coefficients of the medium@l5r(cl

222ct
2), m

5rct
2 , wherecl and ct are the longitudinal and the trans

verse velocities, respectively#. For N terms in the Fourier
sums ([N scatterers in the periodic medium! Eq. ~1! leads
to a 3N33N eigenvalue equation, giving 3N permitted fre-
quencies that correspond to mixed longitudinal and tra
verse waves.

For fluid systemsm50 and by introducing the pressur
p52l“u, the above equation takes the form

l~r !“F 1

r~r !
“p~r !G1v2p~r !50. ~2!

Equation~2! is the starting point for the application of PW i
fluid systems~fluid scatterers in a fluid host!. For N terms in
the Fourier sums one obtains in this case aN3N system.

Let us come now to the case of solid scatterers embed
in a fluid host. In that case the eigenmodes of the wh
system~which areN for N scatterers! correspond to pure
longitudinal waves. There are, however, transverse mo
that cannot propagate, but they are localized inside the s
terers.~For a longitudinal wave incident on a scatterer, o
can show that the field inside the scatterer will be both l
gitudinal and transverse.26! Due to the special, no propaga
ing character of these modes, Eq.~1!, with the application of
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PW, fails in the description of the propagation. Indeed,
attempts for such a calculation led to no convergence a
and unphysical solutions.

On the other hand, one can obtain reasonable solut
using Eq. ~2! ~this is the method of some existing ban
structure calculations11!. Starting from Eq.~2!, however,
means that one ignores completely the difference of the w
equation inside the scatterers and, in fact, one replaces
solid scatterers with fluid scatterers~of the samel and r)
ignoring completely the transverse component of the w
within the scatterers. This transverse component, due to
face scattering, can be strongly coupled to the longitudi
component inside as well as outside the scatterers. Thus
expect that it can considerably influence the longitudi
propagation modes in the entire system.

In order to obtain a first indication whether such an infl
ence exists and to what extent, we examine first the sin
scattering case. In Fig. 1~solid line! we show the scattering
cross section for a solid sphere with parametersr i
52.0 g/cm3, cli 53.0 km/s, andcti51.5 km/s, embedded
in water. For the water ro51.0 g/cm3, clo5co
51.5 km/s.@In the above and in what follows the subscri
o (5out) denotes the host material and the subscripi
(5 in) the scattering material while thel and t denote longi-
tudinal and transverse, respectively.# The dashed line in Fig.
1 shows the cross section for a fluid sphere of the samer and
l as the solid one@r5r i , l5r i(cli

2 22cti
2 )#, embedded

also in water. As it is clear from Fig. 1, the substitution of
solid sphere by a fluid one of the samer and l @what PW
with Eq. ~2! does# produces huge changes in the cross s
tion. This, combined with our experience of the strong co
nection between the single-scattering cross section and
band structure, is an indication that we can expect consi
able difference also in the band structure. Thus, the ba
structure results provided by the combination of Eq.~2! and
the PW method can be very inaccurate. The confirmation
this last statement will come from the comparison of the P
result with the result of the MS method, which we prese
next. The MS method takes into account the exact chara
of the problem and it can be also applied to the full fluid ca
~fluid scatterers and host! with limited additional effort.

FIG. 1. Total dimensionless cross section (s/pr s
2) vs kor s

5vr s /co for a solid sphere in water~solid line! and for a fluid
sphere of the same density and Lame´ coefficientl ~dashed line!
also embedded in water.r s is the sphere radius.
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III. MULTIPLE-SCATTERING „MS… METHOD

As has been already mentioned, our multiple-scatter
method is based on the KKR theory. We start from t
acoustic wave equation in a periodic medium, Eq.~2!. An
alternative way to write this equation is

¹2p~r !1
v2

co
p~r !1v2F 1

c2~r !
2

1

co
2Gp~r !1r~r !

3F“ 1

r~r !G“p~r !50. ~3!

Equation~3! has the form

H0~r …p~r !1U~r !p~r !50, ~4!

where H0(r )p(r )50 @H0(r …5“

21v2/co
2# represents the

wave equation in the absence of scatterers (co is the wave
velocity in the host material!. Equation~4! has the same form
as the Schro¨dinger equation for the electron waves. Th
analogy indicates that one can apply the KKR theory in
similar way as in the electronic case. There is, however
important difference between our case and the electro
case. The difference stems from the fact that the potentia
our case has ad-function singularity at the surface of th
scatterers due to the factor¹r21. Thus, the contribution of
the surface scattering to the volume integrals is not ne
gible ~as in the electronic case17!. Due to this difference we
will present our calculations in some detail despite the f
that analogous calculations have been presented in the li
ture for the electronic case.17,20,18

It can be easily shown20 that in a periodic system Eq.~3!
is equivalent to the following integral equation:

p~r !5E
v
G~r2r 8!V~r 8!p~r 8!dr 8, ~5!

wherev is the volume of a unit shell and the functionG(r
2r 8) is given by

G~r2r 8!5(
n

eik•RnG0~r2r 82Rn!. ~6!

G0 is the Green’s function27 for the homogeneous equatio
H0(r )p(r )50:

G0~r2r 8!52
1

4p

eikour2r8u

ur2r 8u
, ko5

v

co
. ~7!

The local potentialV(r ) in Eq. ~5! is zero outside the uni
shell centered at the origin of the coordinate system@it is
related toU by U(r )5(nV(r2Rn)#, and the pressure field
p(r ), obeys the Bloch’s condition, p(r1Rn)
5exp(ik•Rn)p(r ).

Taking into account that for acoustic waves the local p
tentialsV are nonzero only inside and at the surface of
scatterers@see Eq.~3!#, the integral over the unit shell in Eq
~5! is reduced to an integral over the volume of a scatte
(r 8<r s , r s is the scatterer radius!:
g
e

a
n
ic
in

i-

t
ra-

-
e

r

E
v
dr 85 lim

e→01
E

r 8<r s1e
dr 8. ~8!

The limiting procedure in Eq.~8! ensures that we approac
the surface of the sphere from the outside, including thus
surface singularity.

By noticing that for nonoverlapping spheres andr , r 8
inside a unit shell centered at the origin of the coordin
system the functionG obeys the equation

¹2G~r2r 8!1ko
2G~r2r 8!5d~r2r 8!, ~9!

and by using the wave equation and the Gauss theorem
volume integral in Eq.~8! can be transformed to a surfac
integral. After some algebraic manipulations one can fi
that

lim
r 8→r s1

E
S8

@p~r 8!“ r 8G~r2r 8!2G~r2r 8!“ r 8p~r 8!#dS8

5H p~r ! for r .r s

0 for r ,r s ,
~10!

whereS8 is a spherical surface of radiusr 8, centered at the
origin of the coordinates.

The r 8→r s1 in the above limit denotes that we approa
the sphere surface from the outside. This is a direct con
quence of Eq.~8! and it is very important in our case as th
integrated functions are not continuous across the sur
~the pressure is continuous but its derivative has a step fu
tion discontinuity! and thus the side limits do not coincide
This discontinuity of the integrated functions does not oc
in the electron wave case, where the usual practice is
consider the above integral as an ‘‘inwards’’ integral (r 8
→r s2).17,20

The solution of Eq.~10! for r ,r s gives the eigenfrequen
cies of our periodic system for each Bloch’s vectork. To
obtain this solution we use the fact that both the functio
G(r2r 8) and p(r 8) can be expanded in spherical functio
of r and r 8 ~see Appendix B!:

G~r2r 8!5(
lm

(
l 8m8

@Alml8m8 j l~kor ! j l 8~kor 8!

1koj l~kor !yl 8~kor 8!d l l 8dmm8#

3Ylm~r !Yl 8m8
* ~r 8! ~ for r ,r 8!, ~11!

p~r 8!ur 8>r s
5pout~r 8!

5(
lm

alm@ j l~kor 8!1t lhl~kor 8!#Ylm~r 8!.

~12!

~In the above equationsj l and yl are the first- and second
kind spherical Bessel functions of orderl andhl5 j l1 iy l .)

Substituting Eq.~11! and Eq.~12! into Eq.~10! we obtain
the final multiple-scattering equation:

(
l 8m8

@Alml8m82koIm~ t l 8
21

!d l l 8dmm8#al 8m850. ~13!
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11 996 PRB 60M. KAFESAKI AND E. N. ECONOMOU
The coefficientsAlml8m8 in the above equations are calle
structure constants and they depend onk, v, and the lat-
tice structure. Their calculation is described in Appendix
The coefficientst l , relating the incident to the scattered fie
at each scatterer, can be calculated by solving a sin
scattering problem~see Appendix D!.

Equation~13! can be written as

(
l 8m8

L lml8m8al 8m850⇔(
L8

LLL8aL850, L[~ l ,m!,

~14!

which corresponds to a linear homogeneous algebraic
tem. The condition for this system to have nonvanishing
lutions, det(L)50, gives the eigenfrequencies of our pe
odic composite.

A careful examination of the above equations shows t
the elastic parameters of the scattering material affect
calculation only through the scattering coefficientst l . t l can
be calculated very easily and accurately for both solid a
fluid scatterers. Thus, the method can be applied to b
solid and fluid scatterers changing only the form of a sing
scattering problem. This, however, is not the only advant
of the method. Its most important advantage, as has b
already mentioned, is that it can be applied also in disorde
systems. It can treat systems with positional as well as s
stitutional disorder@the latter can be done by combining th
KKR method with the coherent potential approximati
~CPA! method#.

An alternative way to obtain Eq.~14! is to convert the
‘‘outwards’’ integral ~10! to an ‘‘inwards’’ integral and to
use the pressure field inside a sphere.~This is the way that
the KKR has been applied in the electronic case, but th
the distinction between ‘‘inwards’’ and ‘‘outwards’’ integra
does not matter as the two integrals coincide.! The conver-
sion to an ‘‘inwards’’ integral~for fluid scatterers! can be
done by taking into account the boundary conditions of
acoustic scattering problem,

lim
r 8→r s1

p~r 8!5 lim
r 8→r s2

p~r 8!,

lim
r 8→r s1

]

]r 8
p~r 8!5 lim

r 8→r s2

ro

r i

]

]r 8
p~r 8!. ~15!

With the boundary conditions~15!, the integral~10! ~for
r ,r s , r ,r 8) becomes

lim
r 8→r s2

E
S8
Fr i p~r 8!

]

]r 8
G~r2r 8!

2roG~r2r 8!
]

]r 8
p~r 8!GdSn850 ~16!

and Eq.~14! can be obtained by substituting in this integr
the expansion of the functionG @see Eq.~11!#, the pressure
field inside a scatterer,

pin~r !5(
lm

dlmj l~kir !Ylm~r !, ki5
v

ci
, ~17!
.
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and by taking into account the form oft l @see Eq.~D1!#. (ci
is the wave velocity inside the scatterers.! For solid scatterers
the conversion of~10! to an ‘‘inwards’’ integral is a more
complicated problem.

A. Calculational details

As we discussed above, the eigenmodes of a periodic
tem are obtained by requiring nonvanishing solutions for
linear homogeneous system~14!. Thus, one has to calculat
the matrixL, the determinant of which has to be set equal
zero@see Eq.~14!#. The order of the matrixL depends on the
number of the angular momentum terms that we keep in
field function~12! @or ~17!#. In our calculations we obtained
good convergence by keeping the maximum number ol
5 l max53 or 4, while for the lower bands we had goo
convergence withl max less than 3.

Another parameter of the problem is the size of the pe
odic system. In the results shown in this paper we have c
sidered a system of 400–500 lattice vectors in the direc
well as the reciprocal lattice, with excellent convergence

The solution of the secular equation~14! by checking the
vanishing of the determinant through its sign change
volves the risk of losing some multiple solutions. One way
face this difficulty is to diagonalizeL first and then find the
sign changes of each of the resulting diagonal eleme
~which have no multiple roots!.

Among the calculational problems of the MS method o
worth mentioning is the problem of the spurious ‘‘roots
~sign changes of the determinant that do not correspon
actual eigenfrequencies of the system!. We met these kinds
of roots in two cases:~a! For ko5v/co'uk1Gnu (Gn is any
vector of the reciprocal lattice!. For these values ofko the
structure constantsAlml8m8 become singular~see Appendixes
B and C! and there is a possibility that the determinant or
eigenvalue ofL may change sign without the existence of
real eigenfrequency of the system.~For actual eigenfrequen
cies one or more eigenvalues ofL have to approach zero
continuously as we approach the eigenfrequency.! For the
calculation of eigenmodes of the system withko5v/co'uk
1Gnu the MS method is a bit inconvenient.~b! We met
spurious roots also for frequencies for which the coeffici
t l becomes zero. The actual eigenmodes of the system c
to these frequencies, if they exist, can be found if one
places theL by its submatrix which arises by subtracting th
rows and the columns corresponding to thel for which t l
50.19

IV. RESULTS AND DISCUSSION

In what follows we present some of our main results. O
of our aims is to examine how important is the nonvanish
rigidity of the scatterers for the band structure. For that r
son we compare our reliable MS results with results obtai
within PW or, equivalently, with band-structure results f
corresponding fluid scatterers~fluid scatterers with the sam
l andr as the solid ones!.

Our first result~see Fig. 2! concerns the material comb
nations of Fig. 1. Figure 2~a! shows the band structure alon
theLG andGX directions for an fcc periodic composite con
sisting of solid spheres~with the same parameters as in Fi
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PRB 60 11 997MULTIPLE-SCATTERING THEORY FOR THREE- . . .
1! in water host. The volume fraction of the spheres isf s
550%. Figure 2~b! shows the band structure for flui
spheres of the samel andr as the solid ones and in the sam
periodic arrangement, also in water host. Figure 2~b! is what
PW @with Eq. ~2!# gives for the material combination of Fig
2~a!. As can be seen the PW results are very different fr
those of the MS method. This difference shows that the
placement of the solid scatterers with fluids can change
band structure drastically.

A realistic case similar to the previous one is presente
Fig. 3. Figure 3 shows the band structure for a system c
sisting of glass spheres in water, in sc structure and g
volume fraction f 545%. ~For glass r52.5 g/cm3, cl
55.7 km/s, ct53.4 km/s.! Again, here, the left panel is
our MS method result and the right one is what the com
nation of Eq.~2! and PW provides in this case, i.e., the ba
structure for fluid spheres of the samel andr as in glass.

As can be seen in Fig. 3, the difference between the
and the PW result is reduced compared to the previous
~Fig. 2!. This reduction can been predicted by calculating
cross section for a glass sphere embedded in water and
cross section of a fluid sphere of the samel andr as in the
glass embedded also in water~see Fig. 4!. The difference

FIG. 2. Dispersion relation along theLG andGX directions for
an fcc periodic composite consisting of solid spheres in water.
parameters are as follows:ro /r i51/2, co /cli 51/2, lo /l i

51/4, cti /cli 51/2. Volume fractions of spheresf 550%. co is
the wave velocity in the host anda the lattice constant.~a! shows
the result within MS method and~b! the same within PW and Eq
~2!.

FIG. 3. Dispersion relation along theMXGR directions for a sc
periodic composite consisting of glass spheres in water. Glass
ume fractionf 545%. co is the wave velocity in the water anda the
lattice constant.
-
e

in
n-
ss

i-

S
se
e
the

between the two curves is considerably less than the dif
ence between the solid and dashed line in Fig. 1.

The reduction of the difference between the PW and
MS result in the case described in Fig. 3 compared to tha
Fig. 2, which actually means reduction of the influence of
rigidity of the scatterers, can be attributed to the larger
locity and density contrast between scatterers and host
has been discussed in the past5,24 the velocity and mainly the
density contrast between scatterers and host are the
important parameters controlling the scattering and thus
propagation in the composite system. As these contrasts
crease, other parameters, as the rigidity of the scatterers
come less important.

To demonstrate this point we examine the case of s
spheres in air. The band structure obtained by the
method~see Fig. 5, circles! is the same as that obtained fo
fluid spheres with thel and r as in steel~see Fig. 5, solid
line!. The origin of this coincidence comes from the e
tremely large density contrast between steel and air. T

e

l-

FIG. 4. Solid line: single-scattering cross sections/pr s
2 for a

glass sphere in water host. Dashed line: single-scattering cross
tion for a fluid sphere with ther andl as in the glass, also embed
ded in water.co is the wave velocity in the water andr s the sphere
radius.

FIG. 5. Dispersion relation along theLGX directions for a fcc
periodic composite consisting of steel spheres in air~steel volume
fraction f 565%). The circles indicate our MS result and the so
line the corresponding PW result.co is the wave velocity in the air
anda the lattice constant.
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11 998 PRB 60M. KAFESAKI AND E. N. ECONOMOU
large density contrast is the dominant parameter for the s
tering and, consequently, for the band structure. Thus,
existence of a nonvanishing shear velocity in the sphe
does not play a significant role. We can also understand i
taking into account that a steel sphere in air is almost equ
lent to a ‘‘hard’’ ~inpenetrable! sphere, which permits no
wave to get in. Thus, the details of wave propagation ins
the sphere are irrelevant.

An examination of material combinations other than the
shown in Figs. 2, 3, and 5 leads to the result that the role
the scatterer shear velocity orm becomes important for the
band structure only when both the density and the longitu
nal velocity contrast between scatterers and host are
tively low. When either the velocity or the density contra
starts to get higher, the role of the scatterersct ~or m) be-
comes less and less important. The most extreme case is
of high-density contrast, where the shear velocity in the s
terers does not seem to affect the band structure at all.
last case is the one that the PW method can describe
accurately.11

V. CONCLUSIONS

In this work we extended the multiple-scattering KK
method and we presented band-structure results for aco
waves propagating in periodic composites consisting of s
spherical scatterers in a fluid host. We calculated the b
structure for a variety of material combinations and we
amined whether and under what conditions the scatt
shear velocity affects the propagation. For this purpose
compared the MS-KKR results with those based on the
method, which calculates the band structure approxima
the solid scatterers with fluid ones. We found that the sc
terer’s shear velocity is important for the determination
the band structure only in the case of low-density and lo
velocity contrast between scatterers and host.
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APPENDIX A: TRANSFORMATIONS OF FUNCTIONS;
ELEMENTARY FUNCTIONS; USEFUL EXPANSIONS

1. Expansion of a plane wave

eik•r54p(
lm

i l j l~kr !Ylm~r !Ylm* ~k!, ~A1!

where the spherical harmonicsYlm(r ) are given by

Ylm~r !5Ylm~ r̂ !5F2l 11

4p

~ l 2umu!!
~ l 1umu!! G

1/2

Pl
umu~cosu!eimf,

r5~r ,u,f!, m>0 ~A2!

and
t-
e
s
y

a-

e

e
of

i-
la-
t

hat
t-
is
ry

tic
id
d
-
er
e

g
t-
f
-

r
s
n-

Yl 2m~ r̂ !5~21!mYlm* ~ r̂ !, Ylm~2 r̂ !5~21! lYlm~ r̂ !.
~A3!

2. Transformations of elementary spherical functions

hl~kur2r 8u!Ylm~r2r 8!

55 (
l 8m8

j l 8~kr !Yl 8m8~r !gl 8m8 lm
(h)

~r 8! for r ,r 8

(
l 8m8

hl 8~kr !Yl 8m8~r !gl 8m8 lm
( j )

~r 8! for r .r 8,

~A4!

where

gl 8m8 lm
(R)

~D!5(
LM

~21!( l 82 l 2L)/24pCl 8m8 lmLM

3RL~kD!YLM~D!, R5 j or h.

~A5!

Cl 8m8 lmLM are the Gaunt numbers:28

Cl 8m8 lmLM5E Yl 8m8~r !Ylm* ~r !YLM~r !dV r ~A6!

5
~21!m

A4p
@~2l 11!~2l 811!~2L11!#1/2

3S l 8 l L

0 0 0D S l 8 l L

m8 2m MD .

The symbols with the parentheses are the 3j symbols.28 For
given l ,m,l 8,m8 the only value ofM that gives nonzero
Cl 8m8 lmLM is M5m2m8. Thus, the double sum in Eq.~A5!
is in fact a sum only overL, with M5m2m8.

According to the above,

2
1

4p

eikur2r8u

ur2r 8u
52 i

k

A4p
h0~kour2r 8u!Y00~r2r 8!

52 ik(
lm

j l~kr !Ylm~r !hl~kr8!

3Ylm* ~r 8!, r ,r 8. ~A7!

The regular spherical functionj l(kur2r 8u)Ylm(r2r 8) can
be transformed17 as

j l~kur2r 8u!Ylm~r2r 8!5
1

4p i lE eik•(r2r8)Ylm~k!dVk

5 (
l 8m8

j l 8~kr !Yl 8m8~r !gl 8m8 lm
( j )

~r 8!.

~A8!

From Eq.~A4! and Eq.~A8! it can also be seen that
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2
1

4p

cos~kur2r 8u!

ur2r 8u

5k(
lm

j l~kr !Ylm~r !yl~kr8!Ylm* ~r 8!, r ,r 8. ~A9!

APPENDIX B: THE STRUCTURE CONSTANTS Alml 8m8

Starting from the expression of the free space Gree
function,G0 @Eq. ~7!#, and using Eq.~6! and the formulas of
Appendix A, we can express the functionG(r2r 8)5G(r 9)
~with r 9,uRnu for eachRnÞ0) as17

G~r 9!5(
Rn

eik•RnG0~r 92Rn!

5(
LM

DLM j L~kor 9!YLM~r 9!2
1

4p

cos~kor 9!

r 9
,

~B1!

where

DLM52 ikoF (
RnÞ0

eik•RnhL~koRn!YLM* ~Rn!1
1

4p
dL0dM0G .

~B2!

Expanding the functionsj L(kor 9)YLM(r 9) and cos(ko9r)/r9
according to Eq.~A8! and Eq.~A9! and comparing with Eq.
~11!, we can expressAlml8m8 as

Alml8m85(
LM

4p i l 2 l 82LCl 8m8 lmLMDLM . ~B3!

Thus, the structure constantsAlml8m8 can be calculated
throughDLM . The calculation ofDLM requires calculation
of a sum over all lattice sites. In order to ensure the conv
gence of this sum a usual practice is the application
Ewald’s summation29 ~see Appendix C!.

APPENDIX C: CALCULATION OF THE SUMS—EWALD’S
SUMMATION

Ewald’s summation has been applied in the literature18 to
the sum contained in the functionG(r2r 8)5G(r 9) @see Eq.
~6!#. Using the integral representation of the Hankel funct
h0 , G can be written as

G~r 9!5
2 iko

4p (
Rn

eik•Rnh0~kour 92Rnu! ~C1!

5
21

2pAp
(
Rn

eik•RnE
0

`

e2(r92Rn)2j21ko
2/4j2

dj

~C2!

5
21

2pAp
(
Rn

eik•Rn

3F E
0

Ah/2
dj1E

Ah/2

`

djGe2(r92Rn)2j21ko
2/4j2

, ~C3!
’s

r-
f

n

whereh is a positive number. Applying Ewald’s condition,29

(
Rn

e2(r2Rn)2j21 ik•(Rn2r )5
pAp

yj3 (
Gn

e2(k1Gn)2/4j21 iGn•r,

~C4!

to the first integral in Eq.~C3! and comparing the result with
Eq. ~B1! in the limit r 9→0, one can obtain the following
expressions for the coefficientsDLM :

DLM5DLM
(1) 1DLM

(2) 1D00
(3)dL0dM0 , ~C5!

DLM
(1) 52

1

y (
Gn

4p i L

~k1Gn!22ko
2

3e[ 2(k1Gn)21ko
2]/h

uk1GnuL

ko
L

YLM* ~k1Gn!,

~C6!

DLM
(2) 52

2L11

ko
LAp

(
RnÞ0

Rn
Leik•RnYLM* ~Rn!

3E
Ah/2

`

j2Le2Rn
2j21ko

2/4j2
dj, ~C7!

D00
(3)52 i L

Ah

2p (
s50

`
~ko

2/h!s

s! ~2s21!
. ~C8!

~The i L difference between our expressions for theDLM ’s
and the corresponding expressions of Ref. 18 is due to
difference in the definition of theDLM .)

The structure constantsAlml8m8 are calculated combining
the above expressions forDLM with Eq. ~B3!. The conver-
gence of the sums inDLM

(1) andDLM
(2) depends on the choice o

the parameterh. Usually a good choice is a value that mak
DLM

(1) of the same order withDLM
(2) .

From the above it means that the calculation of the su

ZLM~k!5 (
RnÞ0

eik•RnhL~koRn!YLM* ~Rn! ~C9!

according to Ewald’s procedure is done through the exp
sion (LM j L(kor )YLM(r …ZLM(k). Taking into account that

(
LM

j L~kor !YLM~r !ZLM~k!1
1

A4p
h0~kor !Y00~r !

5
2 i

ko

1

4p (
Rn

eik•Rn
eikour2Rnu

ur2Rnu
, ~C10!

and transforming the right-hand side according to Ewal
procedure in the limitr→0, one can obtain the Ewald’
expression forZLM . Also,

HLM~k!5 (
RnÞ0

e2 ik•RnhL~koRn!YLM~Rn!

5~21!L1MZL2M~k!. ~C11!
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APPENDIX D: CALCULATION OF THE SCATTERING
COEFFICIENTS tn

The coefficienttn connects the scattered to the incide
field at each scatterer.~To avoid the confusion between th
subscript that denotes the spherical harmonic and the
script that denotes ‘‘longitudinal,’’ in this appendix we wi
denote the first withn.! For a fluid scatterer in a fluid host
can be calculated by considering the pressure fields~12! and
~17! and applying the boundary conditions~15!. The result-
ing expression is

tn5
2~ko /ro! j n~kir s! j n8~kor s!1~ki /r i ! j n8~kir s! j n~kor s!

~ko /ro! j n~kir s!hn8~kor s!2~ki /r i ! j n8~kir s!hn~kor s!

5
1

211 iwn
, wn5Im~ tn

21!5real. ~D1!

For a solid scatterer in a fluid host the boundary con
tions at the surface of the scatterer require continuity of
normal component of the displacement vectoru, continuity
of the normal component of the stress vector, and vanish
of the tangential component of the stress vector.24,26 Taking
into account that in a homogeneous mediumu(r )
5(1/rv)¹p(r ), one can calculate the incident displaceme
vector for a given pressure field. Applying, then, the abo
mentioned boundary conditions,tn can be calculated as fol
lows:

tn5
1

Dn
Ua14 a12 a13

a24 a22 a23

a34 a32 a33

U5
1

211 ivn
,

Dn5Ua11 a12 a13

a21 a22 a23

a31 a32 a33

U , vn5Im~ tn
21!; ~D2!

a115hn8~Zo!, a1252 j n8~Zli !,

a1352n~n11! j n~Zti !/Zti , a1452 j n8~Zo!; ~D3!

a215Zo@2lohn~Zo!#,

a2252Zli @2m i j n9~Zli !2l i j n~Zli !#,

a23522n~n11!m i@ j n8~Zti !2 j n~Zti !/Zti #,

a245Zo@loj n~Zo!#; ~D4!

a315a3450, a32522m i@ j n8~Zli !2 j n~Zli !/Zli #,

a3352m i@Zti j n9~Zti !1~n21!~n12! j n~Zti !/Zti #.
~D5!

In the above equationsZo5vr s /co , Zli 5vr s /cli , Zti
5vr s /cti , andr s is the sphere radius.
t

b-

i-
e

g

t
e

APPENDIX E: SIMPLE MULTIPLE-SCATTERING
FORMALISM

In the following we will show that we can obtain th
multiple-scattering secular equation~14! without the use of
the integral equation~10! and using only a physical multiple
scattering picture. This picture is based on the simple i
that in a multiple-scattering system~either periodic or ran-
dom! the incident wave at each scatterern, pn

inc , has to be
equal to the sum of the scattered waves from all the ot
scatterers, plus, possibly, an external fieldp0 incident to the
composite system.16 This idea can be expressed mathema
cally as follows:

pn
inc~r !5p0~r !1 (

pÞn
pp

sc~r !, ~E1!

where the subscriptn denotes the scatterer at the lattice p
sition Rn . We can write the incident and the scattered wa
at each lattice position as a sum of elementary spher
waves:

pn
inc~r !5pinc~r2Rn!5(

lm
alm

n j l~kour2Rnu!Ylm~r2Rn!,

~E2!

pn
sc~r !5psc~r2Rn!5(

lm
blm

n hl~kour2Rnu!Ylm~r2Rn!.

~E3!

Relating the scattered wave by each scatterer with the i
dent wave at the same scatterer by solving a simple sin
scattering problem~see Appendix D!, one can relate the co
efficientsblm

n with the alm
n :

blm
n 5t lalm

n . ~E4!

The scattering coefficientst l @see Eq.~D1! and Eq.~D2!# are
independent of the lattice positionn only in the case of iden-
tical scatterers.

We are interested for the eigenfrequencies of the syst
which means solutions with external field equal to zero. S
ting p0(r )50 in Eq. ~E1!, using Eqs.~E2!, ~E3!, and ~E4!,
and the expansions of the elementary spherical functi
hl(kour2Rpu)Ylm(r2Rp) in functions with center atRn @see
Eq. ~A4!#, Eq. ~E1! takes the form

alm
n 5 (

pÞn
(
l 8m8

t l 8al 8m8
p glml8m8

(h)
~Rp2Rn!. ~E5!

~The coefficientsglml8m8
(h) are given in Appendix A.! More-

over, using Bloch’s theorem one can relate the coefficie
alm of the different lattice sites

alm
p 5eik•(Rp2Rn)alm

n . ~E6!

Substituting Eq.~E6! into Eq. ~E5!, we obtain
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(
l 8m8

F (
pÞn

eik•(Rp2Rn)glml8m8
(h)

~Rp2Rn!

2~ t l 8
21

!d l l 8dmm8Gal 8m8
n

50, ~E7!

which can be rewritten as
h-

B

.

te

O

,

(
l 8m8

H 2 ikoF (
RjÞ0

eik•Rjglml8m8
(h)

~Rj !11G
2koIm~ t l 8

21
!d l l 8dmm8J al 8m850. ~E8!

It is easy, using the formulas of the Appendixes A and B,
show that Eq.~E8! is identical with the secular equation~13!.
.
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