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INTRODUCTION:Multiple sclerosis (MS) is
an inflammatory and degenerative disease of
the central nervous system (CNS) that often
presents in young adults. Over the past decade,
certain elements of the genetic architecture of
susceptibility have gradually emerged, butmost
of the genetic risk for MS remained unknown.

RATIONALE: Earlier versions of the MS gen-
etic map had highlighted the role of the adapt-
ive arm of the immune system, implicating
multiple different T cell subsets. We expanded
our knowledge of MS susceptibility by per-
forming a genetic association study in
MS that leveraged genotype data from
47,429 MS cases and 68,374 control
subjects. We enhanced this analysis
with an in-depth and comprehensive
evaluation of the functional impact
of the susceptibility variants that we
uncovered.

RESULTS: We identified 233 statis-
tically independent associations with
MS susceptibility that are genome-wide
significant. The major histocompati-
bility complex (MHC) contains 32 of
these associations, and one, the firstMS
locus on a sex chromosome, is found in
chromosome X. The remaining 200 as-
sociations are found in the autosomal
non-MHC genome. Our genome-wide
partitioning approach and large-scale
replication effort allowed the evaluation
of other variants that did not meet our
strict threshold of significance, such as
416 variants that had evidence of statis-
tical replication but did not reach the
level of genome-wide statistical signif-
icance. Many of these loci are likely to
be true susceptibility loci. The genome-
wide and suggestive effects jointly ex-
plain ~48%of the estimated heritability
for MS.
Using atlases of gene expression

patterns and epigenomic features, we
documented that enrichment for MS
susceptibility loci was apparent inmany

different immune cell types and tissues,
whereas there was an absence of enrichment
in tissue-level brain profiles. We extended the
annotation analyses by analyzing new data
generated from human induced pluripotent
stem cell–derived neurons as well as from puri-
fied primary human astrocytes and microglia,
observing that enrichment for MS genes is
seen in human microglia, the resident im-
mune cells of the brain, but not in astrocytes
or neurons. Further, we have characterized
the functional consequences of many MS
susceptibility variants by identifying those

that influence the expression of nearby genes
in immune cells or brain. Last, we applied an
ensemble of methods to prioritize 551 puta-
tive MS susceptibility genes that may be the
target of the MS variants that meet a thresh-
old of genome-wide significance. This exten-
sive list of MS susceptibility genes expands
our knowledge more than twofold and high-
lights processes relating to the development,

maturation, and terminal
differentiation of B, T, nat-
ural killer, and myeloid
cells that may contribute
to the onset of MS. These
analyses focus our atten-
tion on a number of dif-

ferent cells in which the function ofMS variants
should be further investigated.
Using reference protein-protein interaction

maps, these MS genes can also be assembled
into 13 communities of genes encoding pro-
teins that interact with one another; this higher-
order architecture begins to assemble groups
of susceptibility variants whose functional
consequences may converge on certain pro-
tein complexes that can be prioritized for
further evaluation as targets for MS preven-
tion strategies.

CONCLUSION:We report a detailed
genetic and genomic map of MS sus-
ceptibility, one that explains almost
half of this disease’s heritability. We
highlight the importance of several
cells of the peripheral and brain res-
ident immune systems—implicating
both the adaptive and innate arms—
in the translation of MS genetic risk
into an auto-immune inflammatory
process that targets the CNS and
triggers a neurodegenerative cascade.
In particular, the myeloid compo-
nent highlights a possible role for
microglia that requires further in-
vestigation, and the B cell component
connects to the narrative of effective
B cell–directed therapies in MS. These
insights set the stage for a new gen-
eration of functional studies to un-
cover the sequence ofmolecular events
that lead to disease onset. This per-
spective on the trajectory of disease
onset will lay the foundation for
developing primary prevention strat-
egies that mitigate the risk of devel-
oping MS.▪
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The MS genetic map implicates microglia as well as
multiple different peripheral immune cell populations in
the onset of the disease.We list some of the immune cells
in which we found an excess of MS susceptibility genes,
implicating these cells as contributing to the earliest events
that trigger MS. The sample size of our genome-wide
association study is listed along with a circus plot
illustrating main results.
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We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control
subjects and established a reference map of the genetic architecture of MS that includes
200 autosomal susceptibility variants outside the major histocompatibility complex
(MHC), one chromosome X variant, and 32 variants within the extended MHC. We used
an ensemble of methods to prioritize 551 putative susceptibility genes that implicate
multiple innate and adaptive pathways distributed across the cellular components of the
immune system. Using expression profiles from purified human microglia, we observed
enrichment for MS genes in these brain-resident immune cells, suggesting that these may
have a role in targeting an autoimmune process to the central nervous system, although
MS is most likely initially triggered by perturbation of peripheral immune responses.

O
ver the past decade, elements of the ge-
netic architecture ofmultiple sclerosis (MS)
susceptibility have gradually emerged from
genome-wide and targeted studies (1–6).
The role of the adaptive arm of the im-

mune system, particularly its CD4+ T cell compo-
nent, has become clearer, with multiple different
T cell subsets being implicated (4). Although the
T cell component plays an important role, func-
tional and epigenomic annotation studies have
begun to suggest that other elements of the im-
mune system may be involved as well (7, 8). We
assembled available genome-wideMS data to per-
form a meta-analysis followed by a systematic,
comprehensive replication effort in large inde-
pendent sets of subjects. This effort has yielded a
detailed genome-wide genetic map that includes
the first successful evaluation of the X chromo-
some inMS and provides a powerful platform for
the creation of a detailed genomicmap, outlining
the functional consequences of most variants and
their assembly into susceptibility networks (fig. S1).

Discovery and replication of genetic
associations

We organized available (1, 2, 4, 5) and newly geno-
typed genome-wide data in 15 data sets, totaling
14,802 subjects with MS and 26,703 controls for
our discovery study (tables S1 to S3) (9). After
rigorous per-data-set quality control, we imputed
all samples using the 1000 Genomes Project Euro-
pean panel, resulting in an average of 7.8 million
imputed single-nucleotide polymorphisms (SNPs)
with aminor allele frequency (MAF) of at least 1%
(9).We then performed ameta-analysis, penalized
for within–data set residual genomic inflation, to

a total of 8,278,136 SNPs, with data in at least
two data sets (9). Of these, 26,395 SNPs reached
genome-wide significance (P < 5 × 10−8; fixed-
effects inverse-variancemeta-analysis), and anoth-
er 576,204 SNPs had at least nominal evidence
of association (5 × 10−8 < P < 0.05; fixed-effects
inverse-variancemeta-analysis). In order to iden-
tify statistically independent SNPs in the discov-
ery set and to prioritize variants for replication,
we applied a genome-partitioning approach (9).
Briefly, we first excluded an extended region of
~12Mb around themajor histocompatibility com-
plex (MHC) locus to scrutinize this distinct region
separately, and we then applied an iterative method
to discover statistically independent SNPs in the
rest of the genome using conditional modeling.
We partitioned the genome into regions by ex-
tracting ±1 Mb on either side of the most statisti-
cally significant SNP and repeating this procedure
until therewere no SNPswithP< 0.05 (fixed-effects
inverse-variancemeta-analysis) left in the genome.
Within each region,we applied conditionalmodel-
ing to identify statistically independent effects
(fig. S2). As a result, we identified 1961 non-MHC
autosomal regions that included 4842 presum-
ably statistically independent SNPs. We refer to
these 4842 prioritized SNPs as “effects,” assuming
that these SNPs tag a true causal genetic effect. Of
these, 82 effects were genome-wide significant in
the discovery analysis, and another 125 hadP< 1×
10−5 (fixed-effects inverse-variance meta-analysis).
In order to replicate these 4842 effects, we

analyzed two large-scale independent sets of data.
First, we designed the MS Chip to directly repli-
cate each of the prioritized effects (9) and, after
stringent quality check (table S4) (9), analyzed
20,360 MS subjects and 19,047 controls, which
were organized into nine data sets. Second, we
incorporated targeted genotyping data generated
using the ImmunoChip platform on an additional

12,267 MS subjects and 22,625 control subjects
that had not been used in either the discovery or
the MS Chip subject sets (table S5) (3). Overall,
we jointly analyzed data from 47,429 MS cases
and 68,374 control subjects to provide a compre-
hensive genetic evaluation of MS susceptibility.
For 4311 of the 4842 effects (89%) that were

prioritized in the discovery analysis, we could
identify at least one tagging SNP in the replica-
tion data (table S6) (9); 156 regions had at least one
genome-wide effect, and overall, 200 prioritized
effects reached a level of genome-wide significance
(GW) in these 156 regions (Fig. 1). Of these 200 ef-
fects, 62 represent secondary, independent, effects
that emerged from conditional modeling within
a given locus (table S7 and fig. S3) (9). The odds
ratios (ORs) of these genome-wide effects ranged
from 1.06 to 2.06, and the allele frequencies of the
respective risk allele ranged from 2.1 to 98.4%
in the European samples of the 1000 Genomes
Project reference (mean, 51.3%; standard devia-
tion, 24.5%) (table S8 and fig. S4). Of these 156
regions, 19.9% (31 out of 156) harbored more than
one statistically independent GW effect. One of
themost complex regions was the one harboring
the EVI5 gene, which has been the subject of
several reports with contradictory results (10–13).
In this locus, we identified four statistically inde-
pendent genome-wide effects, three of which were
found under the same association peak (Fig. 2A),
illustrating how our approach and the large
sample size clarify associationsdescribed insmaller
studies and can facilitate functional follow-up of
complex loci.
We also performed a joint analysis of available

data on sex chromosome variants (9) and identi-
fied rs2807267 as genome-wide significant [odds
ratio (OR) for T allele (ORT) = 1.07, P = 6.86 × 10−9;
fixed-effects inverse-variancemeta-analysis] (tables
S9 and S10). This variant lies within an enhancer
peak specific for T cells and is 948 base pair (bp)
downstream of the RNA U6 small nuclear 320
pseudogene (RNU6-320P), a component of the
U6 small nuclear ribonucleoprotein (snRNP)
that is part of the spliceosome and responsible
for the splicing of introns from pre-mRNA (Fig.
2B) (14). The nearest gene is VGLL1 (27,486 bp
upstream) that has been proposed to be a co-
activator of mammalian transcription factors (15).
No variant in the Y chromosome had a P value
lower than 0.05 (fixed-effects inverse-variance
meta-analysis).
The MHC was the first MS susceptibility locus

to be identified, and prior studies have found that
theMHC harbors multiple independent suscep-
tibility variants, including interactions within the
class II human leukocyte antigen (HLA) genes
(16, 17). We undertook a detailed modeling of
this region to account for its long-range linkage
disequilibrium and allelic heterogeneity using
SNP data as well as imputed classical alleles and
amino acids of the HLA genes in the assembled
data. We confirmed prior MHC susceptibility
variants (including a nonclassical HLA effect
located in the TNFA/LST1 long haplotype) and
extended the associationmap to uncover a total of
31 statistically independent effects at the genome-
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wide level within the MHC (Fig. 3 and table S11).
Multiple HLA and nearby non-HLA genes have
several independent effects that can now be iden-
tified because of our large sample; for example,
the HLA-DRB1 locus has six statistically indepen-
dent effects. Another finding involvesHLA-B, which
also appears to harbor six independent effects on
MS susceptibility. The role of the nonclassicalHLA
and non-HLA genome in the MHC is also high-

lighted. One-third (9 out of 31) of the identified
variants lie within either intergenic regions or
in a long-range haplotype that contains several
nonclassical HLA and other non-HLA genes (17).
Recently, we reported an interaction between

HLA-DRB1*15:01 and HLA-DQA1*01:01 by ana-
lyzing imputed HLA alleles (16). In this work, we
reinforced this analysis by analyzing SNPs, HLA
alleles, and respective amino acids.We replicated

the presence of interactions among class II alleles,
but the second interaction term, besides HLA-
DRB1*15:01, can vary depending on the other
independent variants that are included in the
model. First, we found that there are interaction
models of HLA-DRB1*15:01 with other variants in
MHC that explain better the data than our pre-
viously reported HLA-DRB1*15:01/HLA-DQA1*01:01
interaction term (fig. S5). Second, we observed that
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Fig. 1. The genetic map of multiple sclerosis. The circos plot displays
the 4842 prioritized autosomal non-MHC effects and the associations in
chromosome X. Joint analysis (discovery and replication) P values are
plotted as lines (fixed-effects inverse-variance meta-analysis). The green
inner layer displays genome-wide significance (P < 5 × 10−8), the blue
inner layer displays suggestive P values (1 × 10−5 < P >5 × 10−8), and the
gray layer displays P values > 1 × 10−5. Each line in the inner layers
represents one effect. Two hundred autosomal non-MHC and one in

chromosome X genome-wide effects are listed. The vertical lines in the
inner layers represent one effect, and the respective color displays the
replication status (supplementary materials, materials and methods):
green (genome-wide), blue (suggestive), and red (nonreplicated). Plotted
on the outer surface are 551 prioritized genes. The inner circle space
includes PPIs among genome-wide genes (green) and between genome-
wide genes and suggestive genes (blue) that are identified as candidates
by using PPI networks (9).
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there is a group of HLA*DQB1 and HLA*DQA1
SNPs, alleles, and amino acids that consistently
rank among the bestmodelswithHLA-DRB1*15:01
interaction terms (fig. S6). This group of HLA-
DRB1*15:01–interacting variants is consistently
identified regardless of the marginal effects of
other statistically independent variants that are
added in themodel, implying that these interaction
terms capture a different subset of phenotypic
variance and can be explored after the identifi-
cation of the marginal effects. Last, we performed
a sensitivity analysis by including interaction terms
of HLA-DRB1*15:01 in each step and selecting
the model with the lowest Bayesian information

criterion instead of testing only the marginal re-
sults of the variants, as we did in the main analy-
sis (classical model MHC analysis) (table S12).
This sensitivity analysis also resulted in 32 statis-
tically independent effects with a genome-wide
significant P value (fixed-effects inverse-variance
meta-analysis) (table S12), ofwhich one-third (9 out
of 32) were different than the ones in classical
model MHC analysis. The main differences be-
tween the results of the two approaches were the
inclusion of interaction of HLA-DRB1*15:01 and
rs1049058 in step 3 and the stronger association
of HLA*DPB1/2 effects over HLA*DRB1 effects
in the sensitivity model (tables S12 and S13 and

fig. S6). Thus, overall, our MHC results are not
strongly affected by the analytic model that we
have selected.

Characterization of
non–genome-wide effects

The commonly used threshold of genome-wide
significance (P = 5 × 10−8) has played an impor-
tant role inmaking human genetic study results
robust; however, several studieshavedemonstrated
that non–genome-wide effects explain an impor-
tant proportion of the effect of genetic variation
on disease susceptibility (18, 19). More importantly,
several such effects are eventually identified as
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Fig. 2. Multiple independent effects in the
EVI5 locus and chromosome X associations.
(A) Regional association plot of the EVI5 locus.
Discovery P values (fixed-effects inverse-
variance meta-analysis) are displayed. The layer
tagged “Step 0” plots the associations of the
marginal analysis, with the most statistically
significant SNP being rs11809700 (ORT = 1.16;
P = 3.51 × 10−15). The “Step 1” plots the
associations conditioning on rs11809700;
rs12133753 is the most statistically significant
SNP (ORC = 1.14; P = 8.53 × 10−09). “Step 2”
plots the results conditioning on rs11809700
and rs12133753, with rs1415069 displaying the
lowest P value (ORG = 1.10; P = 4.01 × 10−5).
Last, “Step 3” plots the associations
conditioning on rs11809700, rs12133753, and
rs1415069, identifying rs58394161 as the most
statistically significant SNP (ORC = 1.10; P =
8.63 × 10−4). All four SNPs reached genome-
wide significance in the respective joint (discov-
ery plus replication) analyses (table S7). Each of
the four independent SNPs—lead SNPs—are
highlighted by use of a triangle in the respective
layer. (B) Regional association plot for the
genome-wide chromosome X variant. Joint
analysis P values (fixed-effects inverse-variance
meta-analysis) are displayed. Linkage dis-
equilibrium, in terms of r2 based on the 1000
Genomes European panel, is indicated by use of
a combination of color grade and symbol size.
All positions are in human genome 19.
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genome-wide significant, given enough sample size
and true effects (3). Thus, we also evaluated the
non–genome-wide effects that were selected for
replication, had available replication data (n =
4111 effects), but did not meet a standard thresh-
old of genome-wide significance (P < 5 × 10−8).
Specifically, we decided to stratify these 4111 ef-
fects into twomain categories: (i) suggestive effects
(S; n = 416), and (ii) nonreplicated effects (NR; n =
3,695) (9).Weused these categories in downstream
analyses to further characterize the prioritized ef-
fects from the discovery study in terms of potential
to eventually be replicated. We also included a
third category: effects for which there were no
data for replication in any of the replication sets
[no data (ND); n = 532). Furthermore, to add
granularity in each category, we substratified the
suggestive effects into two groups: (1a) strongly
suggestive (sS; n = 117; 5 × 10−8 < P < 1 × 10−5,
fixed-effects inverse-variance meta-analysis) and
(1b) underpowered suggestive (unS; n = 299). Of
these two categories of suggestive effects, the ones
in the sS category have a high probability of reach-
ing genome-wide significance as we increase our
sample size in future studies (table S14) (9).

Heritability explained

To estimate the extent to which we have char-
acterized the genetic architecture of MS suscep-
tibility with our 200 genome-wide non-MHC
autosomal MS effects, we calculated the narrow-
sense heritability captured by common variation
(h2g), the ratio of additive genetic variance to the
total phenotypic variance (18, 20). Only the 15 strata
of data from the discovery set had true genome-
wide coverage, andhence, we used these 14,802MS

subjects and 26,703 controls for the heritability
analyses. The overall heritability estimate for MS
susceptibility in the discovery set of subjects was
19.2% [95% confidence interval (CI), 18.5 to 19.8%).
Heritability partitioning by using minor allele fre-
quency or P value thresholds has led to substantial
insights in previous studies (21), and we therefore
applied a similar partitioning approach but in a
fashion that took into consideration the study de-
sign and the existence of replication information
from the two large-scale replication cohorts. First,
we partitioned the autosomal genome into three
components: (i) the super extended MHC (SE
MHC), (ii) a component with the 1961 regions
prioritized for replication (Regions), and (iii) the
rest of the genome that had P > 0.05 (fixed-effects
inverse-variance meta-analysis) in the discovery
study (Nonassociated regions). Then, we estimated
the h2g that can be attributed to each component
as a proportion of the overall narrow-sense heri-
tability observed. The SEMHCexplained 21.4%of
the h2g, with the remaining 78.6% being captured
by the second component (Fig. 4A). Then, we fur-
ther partitioned the non-MHC component into
one that captured all 4842 statistically indepen-
dent effects (Prioritized for replication), which
explained the vast majority of the overall esti-
mated heritability: 68.3%. The “Nonprioritized”
SNPs in the 1961 regions explained 11.6% of the
heritability, which suggests that there may be
residual linkage disequilibrium (LD) with priori-
tized effects or true effects that have not yet been
identified (Fig. 4B).
We then used the replication-based categories

described above to further partition the “Priori-
tized” heritability component, namely “GW,” “S,”

“NR,” and “ND” (Fig. 4C). The GWcaptured 18.3%
of the overall heritability. Thus, along with the
contribution of the SE MHC (20.2% in the same
model), we can explain ~39% of the genetic pre-
disposition toMSwith the validated susceptibility
alleles. This can be extended to ~48% if we include
the suggestive (S) effects (9.0%). The nonreplicated
(NR) effects captured 38.8% of the heritability,
which could imply that some of these effectsmight
be falsely nonreplicated—that these are true ef-
fects that need further data to emerge robustly or
that their effectmay be true and present in only a
subset of the data. However, few of the 3695 NR
effects would fall in either of the above two cases;
the vast majority of these effects are likely to be
false-positive results.

Functional implications of the MS loci,
enriched pathways, and gene sets

Next, we began to annotate the MS effects. To
prioritize the cell types or tissues in which the
200 non-MHC autosomal effects may exert their
effect, we used two different approaches: one
that leverages atlases of gene expression patterns
and another that uses a catalog of epigenomic
features suchasdeoxyribonucleasehypersensitivity
sites (DHSs) (8, 9, 22–24). Significant enrichment
for MS susceptibility loci was apparent in many
different immune cell types and tissues, whereas
there was an absence of enrichment in tissue-
level central nervous system (CNS) profiles (Fig. 5).
The enrichment is observed not only in immune
cells that have long been studied in MS, such as
T cells, but also in B cells, whose role has emerged
more recently (25). Furthermore, although the
adaptive immune system has been proposed to
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Fig. 3. Independent associations in the major histocompatibility locus. Regional association plot in the MHC locus. Only genome-wide statistically
independent effects are listed. The order of variants in the x axis represents the order that these were identified. The size of the circle represents different
values of –log10(P value) (fixed-effects inverse-variance meta-analysis). Different colors are used to depict class I, II, III, and non-HLA effects. y axis
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play a predominant role inMS onset (26), we now
demonstrate that many elements of innate im-
munity, such as natural killer (NK) cells and den-
dritic cells, also display strong enrichment for MS
susceptibility genes. At the tissue level, the role of
the thymus is also highlighted, possibly suggest-
ing a role of genetic variation in thymic selection
of autoreactive T cells in MS (27). Public tissue-
level CNS data—which are derived from a com-
plex mixture of cell types—do not show an excess
of MS susceptibility variants in annotation analy-
ses. However, sinceMS is a disease of the CNS, we
extended the annotation analyses by analyzing
data generated fromhuman iPSC-derivedneurons
as well as from purified primary human astrocytes
andmicroglia (9). As seen in Fig. 6, enrichment
for MS genes is seen in humanmicroglia (P = 5 ×
10−14) but not in astrocytes or neurons, suggest-
ing that the resident immune cells of the brain
may also play a role in MS susceptibility.
We repeated the enrichment analyses for the

S and NR effects, aiming to test whether these
have a similar enrichment patternwith the 200GW
effects. The S effects exhibited a pattern of en-
richment that is similar to that of the GW effects,
with only B cell expression reaching a threshold
of statistical significance (fig. S7). This provides
additional circumstantial evidence that this cate-
gory of variantsmayharbor true causal associations.
On the other hand, the NR enrichment results
seem to follow a rather random pattern, suggest-
ing that most of these effects are indeed not truly
MS-related (fig. S7).
The strong enrichment of the GW effects in

immune cell types motivated us to prioritize can-
didate MS susceptibility genes by identifying those
susceptibility variants, which affect RNA expres-
sion of nearby genes [cis expression quantitative
trait loci effect (cis-eQTL)] [±500 kilobase pairs

(kbp) around the effect SNP] (9). Thus, we inter-
rogated the potential function of MS susceptibil-
ity variants in naive CD4+ T cells and monocytes
from 211 healthy subjects as well as peripheral
bloodmononuclear cells (PBMCs) from225 remit-
ting relapsingMS subjects. Out of the 200GWMS
effects, 36 (18%) had at least one tagging SNP
(r2 ≥ 0.5) that altered the expression of 46 genes
[false discovery rate (FDR) < 5%] in CD4+ naïve
T cells (tables S15 and S16), and 36 MS effects
(18%; 10 common with the CD4+ naïve T cells)
influenced the expression of 48 genes in mono-
cytes (11 genes in common with T cells). In MS
PBMC, 30% of the GW effects (60 out of the 200)
were cis-eQTLs for 92 genes in the PBMCMS sam-
ples, with several loci being shared with those
found in healthy T cells and monocytes (26 effects
and 27 genes in T cells, and 21 effects and 24 genes
in monocytes, respectively) (tables S15 and S16).
Because MS is a disease of the CNS, we also

investigated a large collection of dorsolateral pre-
frontal cortex RNA sequencing profiles from two
longitudinal cohort studies of aging (n = 455
subjects), which recruit cognitively nonimpaired
individuals (9). This cortical sample provides a
tissue-level profile derived from a complex mix-
ture of neurons, astrocytes, and other parenchymal
cells, such asmicroglia and occasional peripheral
immune cells. In these data, we found that 66 of
the GWMS effects (33% of the 200 effects) were
cis-eQTLs for 104 genes. Over this CNS and the
three immune sets of data, 104 GW effects were
cis-eQTLs for 203 different genes (n = 211 cis-
eQTLs), with several appearing to be seemingly
specific for one of the cell or tissue type (table
S16). Specifically, 21.2% (45 out of 211 cis-eQTLs)
of these cortical cis-eQTLs displayed no evidence
of association [P > 0.05, for linear regression (9),
with any SNPwith r2 > 0.1] in the immune cell and

PBMCs results and are less likely to be immune-
related (tables S16 and S17).
To further explore the challenging and critical

question of whether some of theMS variants have
an effect that is primarily exerted through a non-
immune cell, we performed a secondary analysis
of our cortical RNA-sequencing (RNA-seq) data
inwhichwe attempted to ascribe a brain cis-eQTL
to a particular cell type. Specifically, we assessed
our tissue-level profile and adjusted each cis-eQTL
analysis for the proportion of neurons, astrocytes,
microglia, and oligodendrocytes estimated to be
present in the tissue: The hypothesiswas that the
effect of a SNP with a cell type–specific cis-eQTL
would be stronger if we adjusted for the propor-
tion of the target cell type (Fig. 6 and fig. S8). As
anticipated, almost all of theMS variants present
in cortex remain ambiguous; it is likely thatmany
of them influence gene function in multiple im-
mune and nonimmune cell types. However, the
SLC12A5 locus is different; here, the effect of the
SNP is significantly stronger when we account for
the proportion of neurons (Fig. 6, A and B), and
theCLECL1 locus emergeswhenwe account for the
proportion of microglia. SLC12A5 is a potassium/
chloride transporter that is known to be expressed
in neurons, and a rare variant in SLC12A5 causes
a form of pediatric epilepsy (28, 29). Although this
MS locus may therefore appear to be a good can-
didate to have a primarily neuronal effect, further
evaluation found that thisMS susceptibility haplo-
type also harbors susceptibility to rheumatoid
arthritis (30) and a cis-eQTL in B cells for theCD40
gene (31). Thus, the same haplotype harbors dif-
ferent functional effects in very different contexts,
illustrating the challenge in dissecting the func-
tional consequences of autoimmune variants in
immune function as opposed to the tissue targeted
in autoimmune disease. However, CLECL1 repre-
sents a simpler case of a known susceptibility effect
that has previously been linked to altered CLECL1
RNA expression inmonocytes (26, 32); its enrich-
ment in microglial cells, which share many molec-
ular pathways with other myeloid cells, is more
straightforward to understand. CLECL1 is expres-
sed at low levels in our cortical RNA-seq profiles
because microglia represent just a small fraction
of cells at the cortical tissue level, and CLECL1’s
expression level is 20-fold greater when we com-
pare its level of expression in purified human cor-
tical microglia with the bulk cortical tissue (Fig.
6). CLECL1 therefore suggests a potential role of
microglia in MS susceptibility, which is under-
estimated in bulk tissue profiles that are availa-
ble in epigenomic and transcriptomic reference
data. Overall, many genes that are eQTL targets
of MS variants in the human cortex are most
likely to affect multiple cell types. These brain
eQTL results and the enrichment found in analy-
ses of our purified humanmicroglia data therefore
highlight the need for more targeted, cell-type–
specific data for the CNS to adequately determine
the extent of its role in MS susceptibility.
These eQTL studies begin to transition our ge-

netic map into a resource outlining the likely MS
susceptibility gene(s) in a locus and the potential
functional consequences of certain MS variants.
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Fig. 4. Heritability
partitioning. Proportion of the
overall narrow-sense heritability
under the liability model
(~19.2%) explained with differ-
ent genetic components.
(A) The overall heritability is
partitioned in the SE MHC, the
1962 regions that include all
SNPs with P <0.05 (Regions;
fixed-effects inverse-variance
meta-analysis), and the rest of
genome with P >0.05 (Nonas-
sociated regions). (B) The
Regions are further partitioned
to the seemingly statistically
independent effects (Priori-
tized) and the residual effects
(Nonprioritized). (C) The Priori-
tized component is partitioned
on the basis of the replication
knowledge to genome-wide
effects (GW), suggestive (S),
nonreplicated (ND), and no data
(ND). The lines connecting the pie charts depict the component that is partitioned. All values were
estimated by using the discovery data sets (n = 4802 cases and 26,703 controls).
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To assemble these single-locus results into a higher-
order perspective of MS susceptibility, we turned
to pathway analyses to evaluate how the extended
list of genome-wide effects provides new insights
into the pathophysiology of the disease. Acknowl-
edging that there is no available method to iden-
tify all causal genes after genome-wide association
study (GWAS) discoveries, we prioritized genes
for pathway analyses while allowing several dif-
ferent hypotheses for mechanisms of actions (9).
In brief,weprioritized genes that (i)were cis-eQTLs
in any of the eQTL data sets outlined above, (ii)
had at least one exonic variant at r2 ≥ 0.1 with
any of the 200 effects, (iii) had high scores of
regulatory potential byusing a cell-specific network
approach, and (iv) had a similar coexpression
pattern as identified with DEPICT (33). Sensi-
tivity analyses were performed that included dif-
ferent combinations of the above categories and
included genes with intronic variants at r2 ≥ 0.5
with any of the 200 effects (9). Overall, we prior-
itized 551 candidate MS genes (table S18; sensi-
tivity analyses are provided in table S19) to test
for statistical enrichment of known pathways. Ap-

proximately 39.6% (142 out of 358) of the Inge-
nuity Pathway Analysis canonical pathways (34),
which had overlap with at least one of the iden-
tified genes, were enriched for MS genes at a
FDR < 5% (table S20). Sensitivity analyses that
included different criteria to prioritize genes re-
vealed a similar pattern of pathway enrichment
(table S21) (9). The extensive list of susceptibil-
ity genes, which more than doubles the previous
knowledge in MS, captures processes of develop-
ment, maturation, and terminal differentiation of
several immune cells that potentially interact to
predispose to MS. In particular, the role of B cells,
dendritic cells, and NK cells has emerged more
clearly, broadening the prior narrative of T cell
dysregulation that emerged from earlier studies
(4). Given the overrepresentation of immune path-
ways in these databases, ambiguity remains as
to where some variants may have their effect:
Neurons and particularly astrocytes repurpose
the component genes ofmany “immune” signal-
ing pathways, such as the ciliary neurotrophic
factor, nerve growth factor, and neuregulin signal-
ing pathways that are highly significant in our

analysis (table S20). These results—along with
the results relating to microglia—emphasize the
need for further dissection of these pathways in
specific cell types to resolve where a variant is
exerting its effect; it is possible that multiple,
different cell types could be involved in disease be-
cause they all experience the effect of the variant.
Pathway and gene-set enrichment analyses can

only identify statistically significant connections
of genes in already reported, and in some cases
validated, mechanisms of action. However, the
function of many genes is yet to be uncovered, and
even for well-studied genes, the full repertoire of
possible mechanisms is still incomplete. To com-
plement the pathway analysis approach and to
explore the connectivity of our prioritized GW
genes, we performed a protein-protein interac-
tion (PPI) analysis usingGeNets (9, 35). About one-
third of the 551 prioritized genes (n = 190; 34.5%)
were connected (P = 0.052; permutation-based
P value), and these could be organized into 13
communities—subnetworks with higher connec-
tivity (P< 0.002; permutation-basedP value) (table
S22). This compares with nine communities that
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could be identified by the previously reported MS
susceptibility list (81 connected genes out of 307)
(table S23) (3). Next, we leveraged GeNets to pre-
dict candidate genes on the basis of network con-
nectivity and pathwaymembership similarity and
tested whether our previous known MS suscepti-
bility list could have predicted any of the genes

prioritized by the newly identified effects. Of the
244 genes prioritized by new findings (out of the
551 overall prioritized genes), only five could be
predicted given the old results (out of 70 candi-
dates that emerge from the extrapolation of earlier
data) (fig. S9 and table S24). In a similar fashion,
we estimated that the list of 551 prioritized genes

could predict 102 new candidate genes, four of
which can be prioritized because they are in the list
of suggestive effects. (Fig. 1, fig. S10, and table S25).

Discussion

This detailed genetic map of MS is a powerful sub-
strate for annotation and functional studies and
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Fig. 6. Dissection of cortical RNA-seq data. (A) A heatmap of the
results of our analysis assessing whether a cortical eQTL is likely to come
from one of the component cell types of the cortex: neurons, oligoden-
drocytes, endothelial cells, microglia, and astrocytes (in rows). Each
column presents results for one of the MS brain eQTLs. The color scheme
relates to the P value of the interaction term (linear regression), with red
denoting a more extreme result. (B) The same results in a different form,
comparing results of assessing for interaction with neuronal proportion
(y axis) and microglial proportion (x axis). The SLC12A5 eQTL is
significantly stronger when accounting for neuronal proportion, and
CLECL1 is significantly stronger when accounting for microglia. The
Bonferroni-corrected threshold of significance is highlighted by the
dashed line. (C) Locus view of the SLC12A5/CD40 locus, illustrating the
distribution of MS susceptibility and the SLC12A5 brain eQTL in a segment

of chromosome 20 (x axis); the y axis presents the P value of association
with MS susceptibility (top; fixed effects inverse-variance meta-analysis)
or SLC12A5 RNA expression (bottom; linear regression). The lead MS SNP
is denoted by a triangle; other SNPs are circles, with the intensity of the red
color denoting the strength of LD with the lead MS SNP. (D) Plot of the level
of expression, transcriptome-wide, for each measured gene in our cortical
RNA-seq dataset (n = 455) (y axis) and purified human microglia (n = 10)
(x axis) from the same cortical region. In blue, we highlight those genes with
greater than fourfold increased expression in microglia relative to bulk cortical
tissue and are expressed at a reasonable level in microglia. Each dot is one
gene.Graydots denote the 551 putativeMSgenes fromour integrated analysis.
SLC12A5 andCLECL1 arehighlighted in red; in blue,wehighlight a selected subset
of the MS genes—many of them well-validated—which are enriched in
microglia. Forclarity,wedidnot includeall of theMSgenes that fall in this category.
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provides a new level of understanding for the
molecular events that contribute to MS suscep-
tibility. Although the exact amount of MS’s heri-
tability varies given the data and method used
(36–38), we report that our findings can explain
up to 48% of the heritability that can be esti-
mated by using large-scale GWAS data. It is clear
that these events are widely distributed across
themany different cellular components of both
the innate and adaptive arms of the immune sys-
tem: Everymajor immune cell type is enriched for
MS susceptibility genes. An important caveat is
thatmany of the implicatedmolecular pathways,
such as response to tumor necrosis factor–a and
type I interferons, are repurposed in many differ-
ent cell types, leading to an important ambiguity:
Is risk of disease driven by altered function of
only one of the implicated cell types, or are all of
them contributing to susceptibility equally? This
question highlights the important issue of the
context in which these variants are exerting their
effects. We have been thorough in our evaluation
of available reference epigenomic data, butmany
different cell types and cell states remain to be
characterizedand couldalter our summary. Further,
interindividual variability has not been established
in such reference data that are typically produced
from one or a handful of individuals; thus, this
issue is better evaluated in the eQTL data, where
we have examined a range of samples and states
in a large numbers of subjects. Overall, althoughwe
have identified putative functional consequences
for the identified MS variants, the functional con-
sequence of most of these MS variants requires
further investigation.
Evenwhere a function is reported, furtherwork

is needed to demonstrate that the effect is the
causal functional change. This is particularly true
of the role of the CNS in MS susceptibility; we
mostly have data at the level of the human cor-
tex, a complex tissue with many different cell
types, including resident microglia and a small
number of infiltrating macrophage and lympho-
cytes. MS variants clearly influence gene expres-
sion in this tissue, andwemust now (i) resolve the
implicated cell types andwhether pathways shared
with immune cells are having their MS susceptibil-
ity effect in the periphery or in the brain, and (ii)
more deeply identify additional functional conse-
quences that may be present in only a subset of
cells, such as microglia or activated astrocytes,
that are obscured in the cortical tissue level pro-
file. A handful of loci are intriguing in that they
alter gene expression in the human cortex but not
in the sampled immune cells; these MS suscepti-
bility variants deserve close examination to resolve
the important question of the extent towhich the
CNS is involved in disease onset. Thus, our study
suggests that although MS is a disease whose
origin may lie primarily within the peripheral im-
mune compartment where dysregulation of all
branches of the immune system leads to organ-
specific autoimmunity, there is subset of loci with
a key role in directing the tissue-specific auto-
immune response. This is similar to our previous
examination of ulcerative colitis, in which we ob-
served enrichment of genetic variants mapping

to colon tissue (7). This view is consistent with
our understanding of the mechanism of impor-
tant MS therapies, such as natalizumab and
fingolimod, that sequester pathogenic immune
cell populations in the peripheral circulation to
prevent episodes of acute CNS inflammation. It
also has important implications as we begin to
consider prevention strategies to block the onset
of the disease by early targeting of peripheral
immune cells.
An important step forward in MS genetics, for

a disease with a 3:1 preponderance of women
being affected, is robust evidence for a suscep-
tibility locus on the X chromosome. Although
chromosome X associations cannot be the sole ex-
planation for the preponderance of women among
MS patients, the discovery of anMS locus on the
X chromosome is an exciting first step toward
understanding the genetic contributions of this
strong sex bias. This result also highlights the need
for additional, dedicated genetic studies of the
sex chromosomes in MS because existing data
have not been fully leveraged (39). Future studies
will also need to incorporate the interaction of
the autosomal genomewith factors that can affect
the sex bias, such as hormones (40).
This genomicmap ofMS—the geneticmap and

its integrated functional annotation—is a foun-
dation on which the next generation of projects
will be developed. It is an important substratewith
which to further dissect the genetic architecture
of MS by accounting for the contribution of sex,
evaluating the possibility of interaction among
loci, and assessing other important factors, such
as heterogeneity of effects across human popula-
tions or certain subsets of patients given the hetero-
geneity of this disease. In the current study, we
have included individuals with either the relaps-
ing remitting or the progressive form of MS be-
cause they are currently conceptualized to belong
to the same disease spectrum. Further investiga-
tionmay lead to the identification of variants that
have an effect on the neurodegenerative com-
ponent of MS, which is largely genetically distinct
from MS susceptibility (41). Beyond the charac-
terization of the molecular events that trigger
MS, this map will also inform the development
of primary prevention strategies because we can
leverage this information to identify the subset of
individuals who are at greatest risk of developing
MS. Although insufficient by itself, anMS genetic
risk score has a role to play in guiding themanage-
ment of the population of individuals “at risk” of
MS (such as family members) when deployed in
combination with other measures of risk and
biomarkers that capture intermediate phenotypes
along the trajectory from health to disease (42).
We thus report an important milestone in the
investigation ofMSand share a roadmap for future
work: the establishment of a map with which to
guide the development of the next generation of
studies with high-dimensional molecular data to
explore both the initial steps of immune dysregu-
lation across both the adaptive and innate arms
of the immune system, and second, the translation
of this autoimmune process to the CNS, where it
triggers a neurodegenerative cascade.

Materials and methods
Detailed materials and methods are listed in the
supplementary materials (9). In brief, we ana-
lyzed genetic data from 15 GWASs of MS. For
the autosomal non-MHC genome, we applied a
partitioning approach to create regions of ±1Mbp
around the most statistically significant SNP.
Then, we performed stepwise conditional analy-
ses within each region to identify statistically
independent effects (n = 4842). We replicated
these effects in two large-scale replication cohorts:
(i) nine data sets genotyped with the MS Repli-
cation Chip and (ii) eleven data sets genotyped
with the ImmunoChip. Chromosomes X and Y
were analyzed jointly across all the data sets,
the discovery and replication. The extended
MHC region was also analyzed jointly across all
data sets. We further imputed HLA class I and II
alleles and corresponding amino acids. Statisti-
cally independent effects in the autosomal non-
MHC genome were grouped into four categories
after replication: (i) genome-wide effects (GW),
(ii) suggestive effects (S), (iii) nonreplicated (NR),
and (iv) no replication data (ND). Narrow-sense
heritability was estimated for various combina-
tions of these effects, and the extended MHC re-
gion, to quantify the amount of the heritability our
findings could explain. Next, we leveraged enrich-
ment methods and tissue or cell reference data
sets to characterize the potential involvement of
the identified MS effects in the immune and cen-
tral nervous system, at the tissue and cellular level.
We developed an ensemble approach to priori-
tize genes putatively associated with the identify
effects, leveraging cell-specific eQTL studies, net-
work approaches, and genomic annotations. We
performed pathway analyses to characterize canon-
ical pathways statistically enriched for the putative
causal genes. Last, we leveraged protein-protein
interaction networks to quantify the degree of con-
nectivity of the putative causal genes and identify
new mechanisms of action.
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meet the criteria for access to confidential data. Please reference the
manuscript title and corresponding author in your communication).
Corresponding summary statistics for these three GWAS studies
(ANZGENE, Rotterdam, and Berkeley) are available upon request.
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