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Multiple sclerosis (MS) is a chronic and autoimmune disease that forms lesions in the central nervous system.Quantitative analysis of these
lesions has proved to be very useful in clinical trials for therapies and assessing disease prognosis. However, the efficacy of these quantitative
analyses greatly depends on how accurately theMS lesions have been identified and segmented in brainMRI.)is is usually carried out by
radiologists who label 3DMR images slice by slice using commonly available segmentation tools. However, suchmanual practices are time
consuming and error prone. To circumvent this problem, several automatic segmentation techniques have been investigated in recent years.
In this paper, we propose a new framework for automatic brain lesion segmentation that employs a novel convolutional neural network
(CNN) architecture. In order to segment lesions of different sizes, we have to pick a specific filter or size 3× 3 or 5× 5. Sometimes, it is hard
to decide which filter will work better to get the best results. Google Net has solved this problem by introducing an inception module. An
inceptionmodule uses 3 × 3, 5 × 5, 1 × 1 andmax pooling filters in parallel fashion. Results show that incorporating inceptionmodules in
a CNN has improved the performance of the network in the segmentation of MS lesions. We compared the results of the proposed CNN
architecture for two loss functions: binary cross entropy (BCE) and structural similarity index measure (SSIM) using the publicly available
ISBI-2015 challenge dataset. A score of 93.81 which is higher than the human rater with BCE loss function is achieved.

1. Introduction

Multiple sclerosis (MS) is a chronic disease that damages the
nerves in the spinal cord, brain, and optic nerves. Axons in the
brain are covered with a myelin sheath. Demyelination is a
process in which the myelin sheaths start falling off and
develops lesions in brain nerves. Millions of people are af-
fected by MS worldwide which is mainly found in young
people between 20 and 50 years of age. )e symptoms caused
by this disease are fatigue, memory problem, the problem in
concentration, weakness, loss of balance, loss of vision, and
many others. Diagnosing and treating this disease is very
challenging because of its variability in its clinical expression.

)ese lesions can be traced in magnetic resonance imaging
(MRI) using different sequences. Many features such as a
volume and location are very important biomarkers for
tracking the progression of the disease. Manually segmenting
these lesions by expert radiologists is the most common
practice in clinics, but this is tiresome, time consuming, and
error prone. Figure 1 shows the manual segmentation of MS
lesions by two raters in one slice of a brain MRI.

In recent years, automatic segmentation of MS lesions
using convolutional neural networks (CNNs) have been
investigated [1–5]. CNNs learn subtle features from the raw
image data to facilitate 2D pixel (or 3D voxel) classification
that ultimately leads to image segmentation. However, there
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is no one-fit-for-all CNN model that could work for every
classification problem or data. An expert knowledge has to be
incorporated during the design phase of the CNN model
based on the nature of the application and the data. Complex
problems such as MS lesion segmentation require careful
selection of the CNN architecture and training model for an
optimum solution. In addition, automatic segmentation of an
MS lesion in MRI may be challenging due to the following:

(i) )e lesion size and location are highly variable

(ii) )e edges between anatomical objects are not well
defined in MR images due to low contrast

(iii) )e MR image of clinical quality may have imaging
artifacts such as noise and inhomogeneity

In this work, we are proposing a novel CNN architecture
for MS lesion segmentation. )e MS lesions vary tremen-
dously in size and shape, and sometime, it is difficult to detect
in brain MR images. To address this particular challenge,
inception modules, originally introduced by Google in
GoogLeNet, are added in the CNNmodel [6].)e significance
of the inception module lies in using multiple kernels of
different sizes in parallel in an efficient way. )is smart ap-
proach captures features of varying magnitude in the input
data without overburdening the network with additional
computations. )e proposed model is trained for two loss
functions, binary cross entropy (BCE) and structural simi-
larity index measure (SSIM). )e BCE loss function tries to
maximize the difference of the probability distribution be-
tween two classes, in this case, lesion and nonlesion voxels [7].
SSIM, on the other hand, is a perception-based loss function
that quantifies the similarity between two images [8].

)e proposed solution for the MS lesion segmentation in
brain MRI offers the following attributes:

(i) Introduction of inception modules embedded in the
CNN architecture for the segmentation of MS le-
sions with different shapes and sizes

(ii) Comparison of MS lesion segmentation results
using BCE and SSIM loss functions

(iii) Improvement of performance of the proposed ar-
chitecture in terms of the Dice coefficient, positive

predicted value, lesion-wise true positive rate, and
volume difference of the segmented lesions com-
pared to the gold standard

1.1. Literature Review. In past decade, deep neural networks
have shown promising results in the segmentation of MS
lesions in brain MR images. In [9], a novel architecture for
segmenting MS lesions in magnetic resonance images by
using a deep 3D convolutional encoder with the connections
of shortcut in pathways was proposed. )e method was
evaluated on publicly available data from ISBI-2015 [10] and
MICCAI-2008 [11] challenges. Authors compared their
method with other five available approaches used for MS
lesion segmentation.)e final results show that their method
outperformed the previous existing methods for MS lesion
segmentation. In [12], the authors used a fully automatic
multiview CNN approach for segmenting a multiple scle-
rosis lesion in longitudinal MRI data and tested on the ISBI-
2015 dataset. Various deep learning techniques for the
medical image analysis are presented in [13].

Valverde et al. have proposed a novel architecture for
segmentation of a white matter (WM) lesion in multiple
sclerosis (MS) using small number of imaging data [14]. )is
approach proposed a cascaded CNN model working on 3D
MRI patches from FLAIR and T1w modalities. In this
method, the output of the first network is retrained on the
second network in series to reduce misclassification from
the first network. )e proposed model score is evaluated
on the publicly available dataset of MICCAI-2008 and
outperformed all the participant approaches. Roy et al.
proposed a fully convolutional neural network (FCNN) to
segment WM lesions in multicontrast MR images using
multiple convolutional pathways [15]. )e first pathway of
the CNN contains dual convolutional filters for two image
modalities. In the second pathway, the convolutional fil-
ters are applied to the output of the first pathway which are
in parallel and concatenated. )is method was evaluated
on the ISBI-2015 dataset. A novel approach of using a fully
2D CNN to segment MS lesions in MR images is proposed
in [16]. Maleki et al. have investigated the use of a CNN

(a) (b) (c)

Figure 1: Manual segmentation of MS lesions: (a) T1w MRI, (b) manual segmentation by rater 1, and (c) manual segmentation by rater 2.
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model for the detection and segmentation of MS lesions
[17].

In recent studies, a multimodal MRI dataset in tissue
segmentation has shown promising results. In a recent work
for brain tumor segmentation, a deep multitask learning
framework that performs a performance test on multiple
BraTS datasets was shown [18]. )e authors claimed im-
provement over the traditional V-Net framework by using a
structure of two parallel decoder branches. )e original
decoder performs segmentation, and the newly added de-
coder performs the auxiliary task of distance estimation to
make more accurate segmentation boundary. A total loss
function is introduced to combine the two tasks with a
gamma factor to reduce the focus on the background area
and set different weights for each type of label to alleviate the
problem of category imbalance. Zhang et al. proposed the
ME-Net model and obtained promising results using the
BraTS 2020 dataset [19]. Four encoder structures for the four
modal images of brain tumorMRI were employed with skip-
connections. )e combined feature map was given as input
to the decoder. )e authors also introduced a new loss
function, that is, Categorical Dice, and set different weights
for different masks. In another study, a 3D supervoxel-based
learningmethod was proposed that demonstrated promising
results in the segmentation of brain tumor [20]. )e added
features from multimodal MRI images greatly increased the
segmentation accuracy. In another earlier study, Gabor
texton feature, fractal analysis, curvature, and statistical
intensity features from superpixels were used to segment
tumors in multimodal brain MR images using extremely
randomized trees (ERTs) [21]. )e experimental results
demonstrated the high detection and segmentation per-
formance of the proposed method. Soltaninejad et al. pro-
posed a method that used machine-learned features learned
by fully convolutional networks (FCNs) and texton-based
histograms as hand-crafted features [22]. )e random forest
(RF) classifier was then employed for the automated seg-
mentation of brain tumor in the BraTS 2017 dataset.

Segmentation results can be greatly affected by the
quality of the MRI images. Low resolution, intensity vari-
ations, and image acquisition noise hamper the accuracy of a
segmentation task. Jin et al. proposed a deep framework for
the segmentation of prostate cancer [23]. )ey had shown
that the segmentation results were greatly improved by using
bicubic interpolation and improved version of 3D V-Net.
)e bicubic interpolation of the input data helped in en-
hancing the relevant features required for prostate seg-
mentation. Recently, attention-based methods have gained
reputation in the segmentation of small but discrete objects
in MRI images. In a study, for the enhancement of left
atrium scars, a dilated attention network was used [24]. )e
proposed approach improved the accuracy of the scar
segmentation to 87%. Liu et al. proposed a spatial attentive
Bayesian deep learning network for the automatic seg-
mentation of the peripheral zone and transition zone of the
prostate with uncertainty estimation [25]. )is method
outperformed the state-of-the-art methods.

)e heterogeneity of MS lesions poses a challenge
for the detection and segmentation in MR images. An

attention-based fully CNN has also been used in the seg-
mentation of prostate zones [26]. )e authors in this work
have proposed a novel feature pyramid attention mechanism
to cope with heterogeneous prostate anatomy. Raschke et al.
developed a statistical method to analyze heterogeneity of
brain tumors in multimodal MRI [27]. )e approach pre-
sented in the paper does not make any assumption on the
probability distribution of the MRI data and prior knowl-
edge of the location of tumors. )is, according to the au-
thors, gives an advantage for tumor segmentation of varying
sizes and spatial locations. )e proposed method consist of
two deep subnetworks in which the first one was an
encoding network that was responsible of extracting feature
maps and the second was a decoding network and was
responsible for upsampling feature maps. )e proposed
FCNN was evaluated on an ISBI-2015 dataset.

2. Proposed Methodology

As mentioned earlier, the shape and size of MS lesions vary
dramatically. To detect these lesions using machine
learning techniques is a challenging task. In the proposed
methodology, a CNN model with inception modules is
employed to automatically segment MS lesions in brain
MRI. Filters of multiple sizes used in the inception modules
capture features of MS lesions of different sizes. Prior to
CNN model training, the images in the dataset are first
preprocessed to remove image noise, intensity inhomo-
geneity, variability of intensity ranges, and the presence of
nonbrain tissues. In this work, preprocessed ISBI-2015
image data have been used.

2.1.Dataset. )eproposed algorithm uses the dataset of ISBI-
2015 challenge [10] which is grouped in two categories,
training and testing data.)e training data are named ISBI-21
and are available publicly with 21MRI images from 5 patients.
In the training set, MR brain images of four patients with 4
time points and one with 5 time points with a gap of ap-
proximately a year are gathered. )e test data are named as
ISBI-61 which are not available publicly and have 14 subjects
with 61 images. Each subject in the testing set has 4-5 time
points, and each time point has a gap of approximately a year.
)ese images contain longitudinal scans of all five patients, as
shown in Figure 2. During training, we used 80 percent of the
total patches of 100 × 100 size for training and the remaining
20 percent for validation.

2.2. Proposed Deep Network Architecture. In the CNN ar-
chitecture, a kernel size and type of filters have to be selected
carefully so that it can learn all the features which are useful
in the classification of objects. Generally, filters of different
sizes and pooling schemes are employed in different CNN
layers in order to learn most present features in the data. )e
inception module, however, uses multiple kernels in each
layer in parallel and then pools the features [28]. In the
proposed framework, we have investigated the efficacy of
inception modules embedded in the CNN model for the
segmentation of MS lesions.
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2.2.1. CNN Model. In the proposed method for segmenta-
tion of multiple sclerosis disease, we incorporated three
inceptionmodules in our CNNmodel. Eachmodule consists
of 1 × 1, 3 × 3, 5 × 5, max pooling, and average pooling. )e
CNN model consists of two convolution layers with 64
feature maps followed by inception modules and then three
convolutions layers. )e final layer has one feature map for
the prediction of lesion and nonlesion voxels. Figure 3 shows
the complete architecture with inceptionmodules embedded
in the CNN layers. )e model is trained with two different
loss functions, i.e., binary cross entropy (BCE) and structural
similarity index measure (SSIM). BCE is a measure of the
difference between two probability distributions for a given
random variable or a set of events and is used in binary
classification tasks, whereas SSIM is a perceptual metric that
quantifies image quality degradation caused by losses in data
compression. For high similarity in images, the value of BCE
is low and the value of SSIM is high.

2.2.2. Inception Module. )e fundamental idea behind the
GoogLeNet is the introduction of inception modules or
inception blocks in the CNN architecture. In CNN, the
feature maps learned from the previous layer are given as
input to the next layer. )e inception module takes the
previous layer output and passes it to four different filter
operations in parallel, as shown in Figure 4. )e feature
maps from all the filters are then concatenated to form the
final output. )e fundamental idea of using a 1 × 1 kernel in
the inceptionmodule is just to shrink the depth of the feature
maps [29]. )e 1 × 1 convolutions preserve the parameters
spatially that can be used when needed. )is strategy in the

inception module can lower the dimensions of the feature
maps which can eventually drop the computational cost.

2.3. Loss Functions. )e proposed model is trained for two
loss functions, binary cross entropy (BCE) and structural
similarity index measure (SSIM).)e BCE loss function tries
to maximize the difference of the probability distribution
between two classes, in this case, lesion and nonlesion voxels.
It measures the performance of a classification model whose
output is the probability between 0 and 1, i.e., the output of
sigmoid activation. Mathematically, BCE loss for an output
y with probability p can be computed as

BCE � − y log p − (1 − y)log(1 − p). (1)

SSIM is a perception-based loss function that quantifies
the similarity between two images. In SSIM, similarity be-
tween two images can be computed using a statistical model.
Let μx and μy be the means, σx and σy be the variances, and
σxy be the covariance of the two images x and y; then,

SSIM(x, y) �
2μxμy + C1( ) + 2σxy + C2( )
μ2x + μ

2
y + C1( ) σ2x + σ

2
y + C2( )

, (2)

where C1 and C2 are regularization constants.

2.4. Model Implementation. )e CNN model is imple-
mented in Python using Keras [30] with TensorFlow library
[31]. All the experiments were performed on the Nvidia
GeForce RTX 2080 GPU.)e deep network is trained end to
end using patches. During the training phase of the CNN

(a) (b) (c)

(d) (e) (f )

Figure 2: Sample of the ISBI dataset: (a) T1w, (b) FLAIR, (c) T2w, and (d) PDw, (e) manual delineation by rater 1, and (f) manual
delineation by rater 2.
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model, the patches are extracted from each slice in MR
images. )e training set is divided into two subsets, one for
training the network and the other for validating the results.
)e optimization technique employed to update the pa-
rameters in the model is the Adam method [32]. In neural
network parameter optimization, the Adam method shows
better convergence. )e hyperparameters used during net-
work training include the fixed learning rate of 0.0001 for 50
epochs. )ese parameters’ setting has produced sufficient
convergence to optimal network parameters without over-
fitting the data. )e size of the minibatch is set to 64, and
each minibatch includes random number of patches. )e
best model from the validation set is selected at the 24th

epoch which takes 48 hours on the GPUs.

3. Results and Discussion

3.1. PerformanceMetrics. Standard performance metrics for
the assessment of the proposed CNN model have been
employed. )e Dice similarity coefficient measures repro-
ducibility of segmentation as a statistical validation of
manual annotation. Another similar metric is the Jaccard
similarity index that gives the intersection between the
machine segmentation and the ground truth. Positive

predicted value is the probability that people with a positive
screening test result indeed have the condition of interest.
)e portion of positive voxels in ground truth that is also
identified as positive in the automatic segmentation is
captured by true positive rate. Lesion-wise true/false positive
rate is the number of lesions that overlap/do not overlap in
automatic segmentation and the ground truth. )e differ-
ence is volume of automatic segmentation, and the ground is
another important metric for the assessment of the per-
formance of the CNN model. )e Pearson correlation co-
efficient computes the correlation between the automatic
segmentation and the ground truth. )e overall score gives
the average of the combined effect of all these performance
metrics in a single number. Table 1 shows formulas for these
performance metrics.

3.2. Feature Learning by InceptionModules. As suggested by
the literature, the proposed CNN model is trained on T1w,
T2w, and FLAIR sequences of the MRI data. Table 2 shows
quantitative results for automatic MS lesion segmentation in
MRI using the BCE loss function for test images at time
points TP. Although, in the results, both Dice and Jaccard
similarity indices are reported, they both convey the same
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Figure 3: Proposed deep network architecture for MS lesion segmentation in brain MRI.
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information. )e performance metrics observed for the
proposed CNNmodel have significantly outperformed when
compared with the existing techniques, as shown in Table 3.
Kernels of different sizes used in the inception modules help
in extracting discriminative features for the automatic
segmentation of MS lesions and background tissues in brain
MRI. )e most present features are ultimately pooled using
max pooling and average pooling at various stages of the
inception modules. )e number of inception modules used
in the CNN model is also very crucial in the architecture
design. Using too many inception modules in MS lesion
segmentation has degraded the results due to overfitting the
model to the data. Also, poor results are obtained when the
number of inception modules has been lowered. )is may
correspond to underfitting the CNN model for the

segmentation of MS lesions. Experiments have also con-
firmed that a mix of average pooling and max pooling works
better by keeping the most present features in the high-level
feature maps and averaging them in the low-level feature
maps.)e authors suggest that, for a specific application, the
number and placement of inception modules, filter size, and
pooling strategy have to be selected accordingly.

3.3. Comparison of BCE and SSIM Loss Functions. Two loss
functions in training the proposed CNN model have been
used, BCE and SSIM. Tables 2 and 4 report the quantitative
results for the two loss functions. Table 5 gives the com-
parison of the two loss functions on the basis of the average
values of the results. In the MS lesion classification, the BCE
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Figure 4: Inception block in the proposed CNN architecture.

Table 1: Performance metrics used in the proposed solution.

Metric Formula

Dice similarity coefficient DSC � 2TP/(FN + FP + 2TP)
Jaccard similarity coefficient JSC � TP/(TP + FP + FN)
Positive predicted value PPV � TP/(TP + FP)
True positive rate TPR � TP/(TP + FN)
Lesion-wise true positive rate LTPR � LTP/RL
Lesion-wise false positive rate LFPR � LFP/PL
Volume difference VD � TPs − TPgt/TPgt
Pearson correlation coefficient Cor � cov(X, Y)/σXσY
Overall score SC � (1/|R| + |S|)∑R,S((DSC/8) + (PPV/8) + (1 − LFPR/4) + (LTPR/4) + (Cor/4))

6 Journal of Healthcare Engineering



Table 2: Quantification of MS lesion segmentation with the BCE loss function.

Subject TP Dice Jaccard PPV TPR LFPR LTPR VD

test01 1 0.6639 0.4969 0.8991 0.5263 0.1356 0.5068 0.4147
test01 2 0.6916 0.5286 0.9131 0.5566 0.0806 0.5128 0.3904
test01 3 0.682 0.5174 0.8845 0.5549 0.1452 0.5 0.3726
test01 4 0.6732 0.5074 0.9226 0.5299 0.1034 0.4667 0.4256
test02 1 0.6933 0.5306 0.7548 0.6411 0.1176 0.4653 0.1507
test02 2 0.6823 0.5178 0.8229 0.5828 0.087 0.4969 0.2918
test02 3 0.664 0.497 0.8241 0.5559 0.0638 0.4867 0.3254
test02 4 0.6409 0.4716 0.8529 0.5134 0.0631 0.5411 0.3981
test02 5 0.7099 0.5502 0.8444 0.6123 0.1277 0.4157 0.2748
test03 1 0.4949 0.3288 0.8944 0.3421 0.125 0.3056 0.6175
test03 2 0.5132 0.3451 0.9271 0.3548 0.1379 0.3333 0.6173
test03 3 0.4988 0.3322 0.9457 0.3387 0 0.4375 0.6419
test03 4 0.5838 0.4122 0.9242 0.4266 0.08 0.4667 0.5384
test04 1 0.8168 0.6903 0.8693 0.7702 0.1154 0.6944 0.114
test04 2 0.7928 0.6567 0.8205 0.7668 0.36 0.5172 0.0654
test04 3 0.8067 0.676 0.8099 0.8035 0.08 0.7586 0.0078
test04 4 0.7999 0.6665 0.8095 0.7905 0.2759 0.697 0.0234
Average 0.6711 0.5133 0.8658 0.5686 0.1234 0.5060 0.3335

Table 3: Comparison with the existing techniques.

Method SC DSC PPV LTPR LFPR VD

Birenbaum and Greenspan [12] 90.07 0.6271 0.7889 0.5678 0.4975 0.3522
Litjens et al. [13] 86.92 0.5009 0.5491 0.4288 0.5765 0.5707
Valverde et al. [14] 91.33 0.6294 0.7866 0.3669 0.1529 0.3384
Aslani et al. [16] 89.85 0.4856 0.7402 0.3034 0.1708 0.4768
Proposed 90.84 0.6306 0.7888 0.5736 0.2512 0.3444

Table 4: Quantification of MS lesion segmentation with the SSIM loss function.

Subject TP Dice Jaccard PPV TPR LFPR LTPR VD

test01 1 0.6061 0.4348 0.866 0.4662 0.0408 0.4247 0.4617
test01 2 0.6296 0.4595 0.8677 0.4941 0.0702 0.4487 0.4306
test01 3 0.6179 0.447 0.85 0.4853 0.0556 0.4024 0.429
test01 4 0.6194 0.4486 0.8814 0.4775 0.0909 0.4267 0.4582
test02 1 0.6608 0.4934 0.7923 0.5667 0.0864 0.375 0.2847
test02 2 0.631 0.4609 0.8246 0.5111 0.101 0.4025 0.3802
test02 3 0.5987 0.4273 0.8224 0.4707 0.0667 0.34 0.4277
test02 4 0.5909 0.4194 0.852 0.4523 0.0467 0.4452 0.4692
test02 5 0.6617 0.4944 0.8427 0.5446 0.0978 0.3614 0.3537
test03 1 0.4394 0.2815 0.7986 0.3031 0.0769 0.3333 0.6205
test03 2 0.4663 0.3041 0.8313 0.3241 0.08 0.4 0.6102
test03 3 0.4597 0.2985 0.852 0.3148 0.0909 0.375 0.6305
test03 4 0.5254 0.3563 0.8287 0.3847 0.2 0.3333 0.5358
test04 1 0.776 0.634 0.8535 0.7115 0.1304 0.5833 0.1664
test04 2 0.762 0.6156 0.8345 0.7012 0.2353 0.4138 0.1597
test04 3 0.7729 0.6299 0.8089 0.74 0.2273 0.5862 0.0852
test04 4 0.7792 0.6383 0.8187 0.7433 0.1667 0.6364 0.0921
test05 1 0.433 0.2763 0.3939 0.4806 0.45 0.2778 0.2201
test05 2 0.4622 0.3006 0.5652 0.391 0.1852 0.4082 0.3082
test05 3 0.5353 0.3655 0.6448 0.4576 0.1951 0.4923 0.2903
test05 4 0.5169 0.3485 0.6145 0.446 0.1923 0.375 0.2742
Average 0.5974 0.4350 0.7830 0.4984 0.1374 0.4210 0.3661

Table 5: Quantitative comparison of BCE and SSIM loss functions.

Loss function SC DSC PPV LTPR LFPR VD

BCE 90.84 0.6306 0.7888 0.5736 0.2512 0.3444
SSIM 89.01 0.5934 0.7288 0.4476 0.1935 0.3999
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loss function seems to work better than SSIM. )is sounds
very intuitive as BCE tries to evaluate the difference in the
maximum likelihood between the predictions and ground
truths. SSIM, on the other hand, quantifies the perceptual
differences between the predictions and the ground truths. It
uses luminance, contrast, and structure features to compute
the similarity between two images. )e reason why the BCE
loss function works better than SSIM is because loss functions
also depend on the activation functions used in the output
layer. For sigmoid activation, the literature suggests that the
BCE loss function is the natural choice due to its accuracy and
efficiency. )e automatic MS lesion segmentation using BCE
and SSIM loss functions is illustrated in Figure 5.

3.4. Comparison with Existing Techniques. )e proposed
methodology is compared with different published tech-
niques for MS lesion segmentation using the ISBI-2015
dataset. )e comparison of the results is shown in Table 3.
)e Dice coefficient, PPV, LTPR, and VD obtained in the
proposed methodology show that the model is generalized
well for successfully handling new data. )e performance of

Birenbaum and Greenspan’s model, multiview CNN, in-
cludes a score of 90.07, DSC of 62.71%, PPV of 78.89%,
LTPR of 56.78%, LFPR of 49.75%, and VD of 35.22%. )is
model produced the best LFPR result among the five
techniques compared here. )e performance of Litjens’
CNN model used was the worst compared to the other
techniques. )e performance value of score was 86.92, the
DSC was 50.09%, PPV was 54.91%, LTPR was 42.88%, LFPR
was 57.95%, and VD was 57.07%. )e second best perfor-
mance was shown by the cascaded CNN architecture pro-
posed by Velverde et al. It includes a score of 91.33, DSC of
62.94%, PPV of 78.66%, LTPR of 36.69% LFPR of 15.29%,
and VD of 33.84%. )e results for the multibranch CNN
model proposed by Aslani et al.’s model includes a score of
89.85, DSC of 48.56%, PPV of 74.01%, LTPR of 30.34%,
LFPR of 17.08%, and VD of 47.68%. Finally, the perfor-
mance of the proposed model was the best with a score of
93.81, DSC of 67.11%, PPV of 86.58%, LTPR of 50.60%,
LFPR of 12.34%, and VD of 33.35%. )e value of LTPR was
the only metric that was worse than Valverde’s and Aslani’s
models. )e shortcoming in LFPR can further be investi-
gated in the future model of the present work.

(a) (b) (c)

(d) (e)

Figure 5: Comparison of the segmentation results when using BCE and SSIM loss functions. (a) T1w. (b) T2w. (c) Rater 1. (d) BCE. (e)
SSIM.
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4. Limitations in Real Clinical Studies

)e proposed work is an attempt to prove the efficacy of AI-
based techniques in medical applications. In recent years, AI
has gained reputation in automating tedious routine works
in clinical settings. However, the diversity and inadequacy of
the patient data for training a deep network have hampered
practical use of AI-based techniques in clinics. As more and
more data will become available and as deep neural networks
will become more efficient, the practicability of these
techniques will definitely improve.

5. Conclusions and Future Works

In this work, a CNN model with inception modules is in-
vestigated in automatic segmentation of MS lesions in MRI.
)e CNN model with inception modules seems to pick MS
lesions of different sizes and shapes more successfully. )e
key advantage of inception modules is the use of different
kernels such as 1 × 1, 3 × 3, and 5 × 5 that tend to extract
salient features in the input of varying sizes. )is improves
the Dice coefficient, PPV, LTPR, and VD of the segmen-
tation when compared to the existing techniques. )ese
results have outperformed all the existing techniques. )e
success of Velverde’s model can also be attributed to ac-
curate learning of MS lesion features of various sizes and
shapes. )e performance of Birenbaum and Greenspan’s
model, multiview CNN, includes a score of 90.07, DSC of
62.71%, PPV of 78.89%, LTPR of 56.78%, LFPR of 49.75%,
and VD of 35.22%. )is model produced the best LFPR
result among the five techniques compared here. )e per-
formance of Litjens’ CNNmodel was the worst compared to
the other techniques. )e performance of the model used
had a score of 86.92, DSC of 50.09%, PPV of 54.91%, LTPR of
42.88%, LFPR of 57.95%, and VD of 57.07%.)e second best
performance was shown by the cascaded CNN architecture
proposed by Velverde et al. It includes a score of 91.33, DSC
of 62.94%, PPV of 78.66%, LTPR of 36.69%, LFPR of 15.29%,
and VD of 33.84%. )e results for the model proposed by
Aslani et al.’s model, multibranch CNN, includes a score of
89.85, DSC of 48.56%, PPV of 74.01%, LTPR of 30.34%,
LFPR of 17.08%, and VD of 47.68%. Finally, the perfor-
mance of the proposed model was the best with a score of
93.81, DSC of 67.11%, PPV of 86.58%, LTPR of 50.60%,
LFPR of 12.34%, and VD of 33.35%. )e value of LTPR was
the only metric that was worse than Valverde’s and Aslani’s
models. In the present study, we have also discovered that
the BCE loss function works better than the SSIM loss
function. )e intuition behind this behavior of the model is
that BCE tries to maximize the differences between the
probability distributions predictions and ground truths.
SSIM, on the other hand, seems to converge to local minima
while quantifying the error loss. Another important reason is
the sigmoid activation function used in the output layer for
the binary classification. )e authors believe this naturally
supports the BCE loss function to produce more accurate
and efficient results. In the future, this work can be further
extended to integrate in different architectures such as the
residual network (ResNet), UNet, parallel CNN, and

cascaded CNN on multiple datasets which are publicly
available. )e incorporation of event-driven processing can
improve the performance of the suggested solution in terms
of computational efficiency and compression [33–36]. In-
vestigation based on this axis is another prospect.
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