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Abstract 

In a system of N sensors, the sensor Sa, i = 1 , 2  . . . , iV, 

outputs Y(i) E 8, according to  an unknown prob- 

ability distribution Py(,)lx, corresponding to input 

X E 8. A training n-sample (Xl ,Yl) ,  (X2,Y2), . . ., 

such that y”’ is the output of Sj in response to  

input X i .  The problem is to  design a fusion rule 

f : %N H %, based on the sample, such that the 
expected square error 

(Xn,Yn) is given where = (@1),yZ(2), . . . , Y, ( N )  ) 

where Y = (Y(l), Y(2) ,  . . . , Y ( N ) ) ,  is minimized over a 

family of functions T.  Let f* minimize I ( . )  over F; 
in general, f* cannot be computed since the underly- 

ing distributions are unknown. We consider sufficient 

conditions based on smoothness and/or combinatorial 

dimensions of F to ensure that an estimator f satisfies 

P[I( . f )  - I(f”) > E] < 6 

for any E > 0 and 0 < 6 < 1. We present two methods 

for computing f^ based on feedforward sigmoidal net- 

works and Nadaraya-Watson estimator. Design and 

performance characteristics of the two methods are 
discussed, based both on theoretical and simulation 

results. 

1 Introduction 

Over the past decade, the area of sensor fusion has 

witnessed a tremendous growth due to: (a) an expand- 

ing application base that requires solutions to  difficult 

fusion problems, and (b) advances in computational 

systems and methods that make it possible to  process 

large volumes of data. The sensor fusion problems 

have particular relevance to  engineering applications, 

where researchers realized fundamental limitations of 

single sensor systems. By employing multiple sensors: 

(i) replicated sensors can be employed for fault tol- 

erance, and (ii) sensors of different modalities can be 

used to achieve tasks that cannot be performed by a 
single sensor. In either case, the fusion method must 

be designed carefully, since an inappropriate fuser can 

make the system worse than the worst individual sen- 

sor. 

Several existing sensor fusion methods require ei- 

ther independence of sensor errors or closed-form ana- 

lytical expressions for error densities. In the former 

case, a general majority rule suffices, while in the 

latter a fusion rule can be computed using Bayesian 

methods. Several popular distributed decision fusion 

methods belong to  the latter class [5]. In engineer- 

ing systems, however, independence can seldom be 

assured and, in fact, may not be satisfied. Also, 

the problem of obtaining the probability densities re- 

quired by Bayesian methods can be more difficult 

than the fusion problem itself. Thus practical solu- 

tions to fusion problems must exploit the empirical 

data available from observation and/or experimenta- 

tion. Recently, such “learning” methods that esti- 

mate fusion rules based on recent advances in empir- 

ical estimation and non-linear computational meth- 

ods have been developed [18] within the framework 

of Probably and Approximately Correct (PAC) learn- 

ing [31, 291. These methods are suited for engineering 

systems where the sensor system is available for oper- 

ation/experiment ation. 

Consider a system of N sensors such that cor- 

responding to  input X E %, the sensor Si, i = 
1 , 2 , .  . . , N ,  outputs Y(’) E X according to  an un- 

known distribution Py( , ) Ix .  A training n-sample 
(Xl,Y1),(X2,Y2), ..., (X,,Y,) is given where = 

(I$’), T”), . . . , and q”) is the output of Sj 
in response to  input X i .  We consider the expected 



square error 

where Y = (Y( l ) ,  Y(’), . . . , Y ( N ) ) ,  to  be minimized 

over a family of fusion rules 3, based on the given n- 
sample. For simplicity, we considered quadratic cost , 
but the approach is valid for general costs if suitable 

boundedness or smoothness condirions are satisfied 

(see Section 3). For convenience, in some parts of this 

paper, we may denote 3 by where A is an 

abstract index set. 

Let f* E F minimize I ( . ) .  In general, f* cannot be 

computed since the underlying distributions are un- 

known. Furthermore, since no restrictions are placed 

on the distributions, it will not be possible to  infer f’ 
(with probability one) based on only a finite sample. 

We show that in several cases an estimator can be 

computed, based on a sufficiently large sample, which 

satisfies 

P [ m  - I ( f ’ )  > €1 < 4 (1.2) 

where E > 0 and 0 < 6 < 1. Eq. (1.2) states t.hat the 

“error” of f  is within E of the optimal error (off*)  with 

arbitrary high probability 1 - 5, given a sufficiently 

large sample. Such criteria have been extensively used 

in a number of machine learning and empirical estima- 

tion problems (see Vapnik [31] for more details). We 

estimate the sample size required to  ensure (1.2) as a 

function of E ,  6, and the parameters of 3. We consider 

two types of conditions on 3 that enable us to  ensure 

(1.2). The first type are based on geometric and com- 

binatorial properties and the second type are based 

on smoothness properties. The geometric and combi- 

natorial properties are based on recent developments 

in empirical processes [la,  131 and their applications 

t o  computational learning theory [31]. The smooth- 

ness conditions are the traditional ones used in non- 
linear statistical estimators [15] coupled with compu- 

tational properties of sigmoidal neural networks and 
Haar wavelets. 

To put the above formulation in perspective, we 

now briefly discuss some related existing results. If 

the sensor error densities are known, several cases of 
the fusion rule estimation problem have been solved 

by methods not requiring the samples. Earlier work 

in this direction was done in the areas of pattern 

recognition (Chow [3]), political economy (Grofman 

and Owen [SI), and reliability (von Neumann [32]). 
The distributed detection problem based on proba- 

bilistic formulations has been extensively studied; see 

Dasarathy [5] (also the recent special issue [6]) for a 

comprehensive treatment. Most existing sensor fusion 

methods are based on maximizing a posteriori prob- 

abilities of hypotheses under a suitable probabilistic 

model. However, when the probability densities are 

unknown (or difficult to  estimate) such methods are 

ineffective. One alternative is t o  estimate the density 

based on a finite sample. But, as illustrated in gen- 

eral by Vapnik [30], the density estimation is more 

difficult than the subsequent problem of estimating a 

function chosen from a family with bounded capacity 

or a suitable 6-cover. 

The sensor fusion problem (1.1) under criterion 

(1.2) was first formulated in Rao [lS] and was fur- 

ther developed in Rao [17, 20, 211. The special case 

of decision fusion where Y ,  E (0, l}N has been solved 

using majority rules [25, 231, empirical Bayesian rules 

[16, 241, and nearest neighbor rules [22]. 

The paper is organized as follows. Preliminaries are 

summarized in Section 2. In Section 3, we show that 

for a sufficiently large sample, the bound (1.2) can be 
satisfied under fairly general conditions. We then con- 

sider two computationally viable methods for fuser de- 

sign based on neural networks and Nadaraya-Watson 

estimator in Sections 4 and 5, respectively. We present 

simulation examples and discussion of performance in 

Sections 6 and 7, respectively. 

2 Preliminaries 

We first review some basic definitions of smoothness 

of functions and their consequences. Let Q denote 

the unit cube [O, 1IN and C(Q)  denote the set of all 

continuous functions defined on Q. The modulus of 

smoothness o f f  E C(Q) is defined as 

M 

s = l  
where 11 y - z llm= maxlyi - zil. 

For m = 0 ,1 , .  . ., let Qm denote a family of diadic 
cubes (Haar system) such that Q = u J ,  J n J ‘  = 0 

for J # J’, and the N-dimensional volume of J ,  de- 

noted by IJI, is 2-Nm. Let ~ J ( Y )  denote the indicator 

function of J E Qm: 1 ~ ( y )  = 1 if y E J ,  and l j ( y )  = 0 
otherwise. For given m, we define the map Pm on 

C(Q) as follows: for f E C(Q), we have Pm( f )  = Pmf 

defined by 

J E Q m  

for y E J and J E Qm [4]. Note that Pmf : Q 
[O, 11 is a discontinuous (in general) function which 



takes constant values on each J E Qm. Consider the 

H a a r  kernel given by Pm(y, z )  = -L I J I  Jgm ~ J ( Y ) ~ J ( z )  

where 
i f z > O  

0 i f z < 0 .  . 
for y, z E Q. Then an estimator for a density p E C(Q) 
based on n-sample is given by [4] Formally, the capacity of {f"(y)},E~ is the Vapnik- 

Chervonenkis dimension of the set of indicator func- 
. n  

The following identity yields useful bounds on the 

simultaneous occurrence of events that  may not be 
which can also be written in the form fim,,(y) = 

n(J)hJ(y> with n ( J )  = i l { j  ' yj E J ) I  and independent. 
J E Q m  

hJ(y) = L l ~ ( y ) .  Note that a random variable is de- 

noted by an uppercase letter (e. g. Y) and its deter- 

ministic version is denoted by the corresponding low- 

ercase letter (e. g. y). 

We now consider the covering properties of 3. Let 

S be a set equipped with a pseuodometric d. The  
covering number N(E,  d ,  S )  is defined as the smallest 

number of closed balls of radius E ,  and centers in S ,  

whose union covers S. Let N , ( E , ~ )  = N ( E ,  11 . 11, 

Y E [O, 11N 

The following cover size for the class of Lipschitz 

functions will be used in our sample size estimates. 

Lemma 2.1 [27] Let Fk = {fk : [o, 1IN ++ 8) denote 
the set of Lipschitz functions with Lipschitz constant 

I J I  

YF)? where II f(Y) 11m= SUP I f ( Y ) I .  

We now present some basic definitions from Vapnik 

[30]. For family {A,}-,Er, A, C_ A, and for a finite set 

{a i ,  a2, . . . , an}  E A we define 

I I { ~ , } ( { a i , a z , . . . , a n } )  = { { a i , a 2 , . . . , a n } n A , } r ~ r .  

We maximize this quantity with respect to the set 

{ a l ,  a2, . . . ,a,} to obtain 

The following critical identity is established in [30] 

2, i f n s h  

< 1.5% if n > h. n{A,}(n)= { 
Notice that for a fixed h, the right hand side increases 

exponentially with n until it reaches h and then varies 

as a polynomial in n with fixed power h. This quantity 

h is called the VC dimension of A,. 
For a set of functions, the capacity is defined as the 

largest number h of pairs (zi,ya) that can be subdi- 

vided in all possible ways into two classes by means of 

rules of the form 

Lemma 2.2 [23] Consider events Ad, i = 1,2,. . . , N 

such that P(Ai)  2 1 - Si. Then we have 

It is assumed that we consider very small values of 

Si's such that the right hand side of the equation in 

the above lemma is positive. 

3 General Solutions for F'user 

Design 

In this section, we consider general conditions under 
which criterion (1.2) is met. Consider the empirical 

cost given by for any f E 3 

based on the sample ( X l , Y l ) ,  ( X 2 ,  Yz), . . . , (X,, Y,). 
To approximate f" E 3 t h a t  minimizes the expected 

error in (1.1), we minimize instead the empirical error 

in (3.1) to obtain a best empirical estimate f. In order 

to ensure the (E,&)-condition in (1.2), two types of 

conditions are sufficient [30]: 

(a) the capacity of 3 = {fQ}crEl\ is bounded; 

(b) the error I ( . )  is bounded, Le., sup ( ~ - f " ( y ) ) ~  5 

r or the relative error is bounded as follows for 

some p > 1 

X , Y , f f  

First we illustrate a very simple case. 

Theorem 3.1 [18] Consider that x and f" take val- 
ues from {O,1}.  



( i )  Given an n-sample, we have 

where h is the capacity of  3. 

(zi) If the hypothesis space is finite in dhat 3 = 
{fal(y), fa2(y), . . . f a ~ ( y ) } ,  given an n-sample, 
we have 

In Part (i), notice that the upperbounds on the 

right hand side are products of two main factors: first 

one is nh and the second one is e-K2n/4 .  For a fixed 

value of h,  the latter decreases with the sample size 

n,  and thus if n is chosen large enough the right hand 

side can be made equal to 6. 
An example of infinite hypothesis class can be given 

by the set of all neural networks with a fixed number 

of nodes, where fa(y) stands for a feedforward neu- 
ral network with connection weight vector CY (a more 

precise discussion is provided in the next section). 

The following two theorems for the general case f : 

Theorem 3.2 [18] Consider that the error is bounded 
as sup (z - fa(y))2 5 T ,  

H 9? [18] follow from the results of [30]. 

X , Y , a  

(i) Then given an n-sample, we have 

(ii) If the hypothesis space is finite in  that F 

{fa*(y), f a 2 ( y ) ,  . . . , f a M ( y ) } .  Then given an 
sample, we have 

P [ I ( f )  - I(f*) > ~ T K ]  < 18MIe-K2"/4. 

Theorem 3.3 [18] Consider that the relative error be 
bounded such that f o r  some p > 1 we have 

(i) I f p  > 2 ,  we have 

where a ( p )  = [.GI ' I p  

(ai) If 1 < p 5 2,  we have 

The above theorems are derived based on uniform 

convergence of empirical measures to their expecta- 

tions, which are available from the empirical process 

theory [12, 131 and its applications to  machine learn- 

ing [31, 91. Results of this kind are available based 

on a number of characterizations of 3 such as pseudo- 

dimension, fat VC-dimension, etc., which can be used 

to  obtain results along the lines of Theorems 3.1-3.3. 
We now illustrate a well-known argument due to  

Vapnik [30] to  facilitate the discussion of performance 

in Section 7. Consider a set of functions 1; such that 
the uniform convergence holds in the following man- 

ner : 

r 1 

such that n-c4 lim 6 ( ~ , n , 4 )  = 0. Notice here that  we 

explicitly show the dependence of 6 on the precision E ,  

sample size 1 and the family of functions 4. Recall that 

g* and g minimize I ( . )  and I e m p ( . )  respectively over 

G. With probability 1 - 6 ( c , n , G )  we have I e m p ( g )  5 
I(g) + c and I(g) 5 Iemp(9) + E for all g E G. In 

particular we have I (g )  5 Iemp(g)  + E  and Iemp(g*)  5 
I ( g * )  + E .  Noting that Iemp(9) f Iemp(g*) ,  we have 

with probability 1 - 6(c, n, G) or, equivalently, we have 

P[I(g> - I ( $ )  > 2 4  < 6 ( ~ ,  n,  4). 

Thus, the uniform convergence of empirical measures 

to  their expectations implies the proximity of g to  g* 

in the above sense. 

The results of this section do not directly yield 

methods t o  compute the required f. However, they 

provide very useful guidelines for the conditions under 

which this empirical estimation procedure is a viable 

option. The problem of computing f in this general 
framework is computationally intractable; for example 

in the special case that 3 is set of feedforward neural 

networks with threshold hidden units, this problem 

is NP-complete even for simple architectures [2]. In 



the next sections, we consider more restrictive cases 

where computational problems are easier to  handle. 

We wish to emphasize that to  be practically viable 

the solutions to the fusion rule must be computable 

with a low computational complexity. 

4 Fusers Based on Feedforward 

Neural Networks 

In this section we consider that 3 is given by feed- 

forward neural networks with sigmoidal hidden nodes. 

These networks have been found to  perform well in 

a number of difficult non-linear function estimation 

problems [28]. The results of this section are valid un- 

der the boundedness assumption that x E [-A, A], for 

0 < A < 00, and y E [-B, B] ,  for 0 < B < 0;) (see [20] 

for details). 

We consider a feedforward network with a single 

hidden layer of 1 nodes and a single output node. The 

output of the j t h  hidden node is u ( b 7 y  + t j ) ,  where 

y E [-B, Bid, bi E sRd, t j  E 3, and the nondecreasing 
u : sR H [-1,+1] is called the activation function. 
The output of the network corresponding to input y 

is given by 

where w = ( ~ 1 ,  w2, . . . , wqd+2)) is the weight vec- 
tor  of the network consisting of a l ,  u2, . . ., ul,  

b l l ,  b12,. . . , bld, . . ., bll , .  ..b(d, and t l , t 2 , .  . . ,tl. Let 

the set of sigmoidal feedforward networks with bounded 

weights be denoted by 

F&, = {fw : w E [-W, W]'(d+2)} (4.1) 

where 0 < y < 00, and u ( z )  = tanh(yz),O < W < 00. 

The function class 3 has an envelope F if f(y) 5 
F(y)  for all y and every f E 3. Let p be a probability 

measure on [ - B , B ] ~ ,  and p ( f l )  = J lf(y)ldp 

for a measurable function f .  For a measure p such 

that p ( F 1 )  < 00, we define the covering number 

N1 ( E ,  p ,  3, F )  to be the smallest cardinality for a sub- 

class F of 3 such that 

yE[--B,-BId 

We show that  the solutions to problem (1.1) can 

be found under requirement (1.2) by obtaining esti- 

mates for the required sample size. These estimates 

are based on three different parameters of the neural 

network. The first and second bounds are based on the 

Lipschitz properties of f,,,(y> with respect to w and y 

respectively. The  third bound is based on the cover 

size estimate for .F& derived by Lugosi and Zeger [lo]. 

Lemma 4.1 [20] For the class of feedforward neural 
networks 3; of Eq. (4.l) ,  we have 

I f  y E [-B,BId f o r  0 < B < 00, then we have 

N,(E,Fw) 5 L$d+2)(1/6)@+2) 

where L,  = max(1, WBy2/4, Wy2/4). For y = 1, we 
have 

Since f,,,(y) 5 1W for all f,,, E Fw, we have 

which enables us to  convert a cover for pw into a cover 

for the class functions of the form (x - f(y))2,  for f E 
p,. Based on these cover sizes, we can estimate the 

sample sizes required to  ensure condition (1.2). Here 

f; and f,,, denote a neural network that minimizes 

I(.) and lemp(.), respectively, over the set 3&. 

Theorem 4.1 [20] Consider the class of feedforward 
neural networks pw of Eq (4.1) Let g& = { ( x  - 
fw(y))2 : fw E Fw} and R = 8(A + lW)2. Given 

a sample of size at  least 

16R - €2 (In( 18/6) + 2ln(8R/e2) + ln(2y2W21R/~) 

the empirically best neural network f,,, in 3 ' ~  approx- 

imates the best expected f: in 3w such that 

P [l(.L) - qf:) > E] < 6. 

The same condition can also be ensured under the 
sample size 

E (ln(18/6) + 2 ln(8R/t2) + l(d + 2 )  ln(L,R/~)1) 
€2 



where L,  = max(1, WBy2/4, Wy2/4), or, f o r  y = 1, 

-max{ln 128R (:) ,In ( 16e(d + l)R 
€2 E ) } .  

The three estimates in Theorem 4.1 provide three 

different means for controlling the sample size depend- 

ing on the available information and intrinsic charac- 

teristics of the neural network class pw. For example, 

the sample size in the first bound is easier to  modify 

by changing the parameter y. In practice, it could 

be useful to compute all three bounds and choose the 

smallest one. 

In statistics and control theory literature dealing 

with general function estimation problems (to which 

the present sensor fusion problem is closely related), 

asymptotic results are more common. The results in 

Theorem 4.1 can be used in Borel-Cantelli Lemma [l] 

to  show that I ( f )  - I(f*) -+ 0 as n --+ 0 almost surely, 

thereby providing the asymptotic consistency result 

for the sensor fusion design problem. 

5 Fusers Based on Nadaraya- 

Watson Estimator 

We now present a polynomial-time (in sample size n)  

estimator which guarantees the criterion (1.2) under 

additional conditions listed in Theorem 5.1. 

Given an n-sample, the Nadaraya-Watson estima- 
tor based on Haar kernels is defined by 

for y E J [lS] (see also Engel [7]) l .  The second expres- 

sion indicates that fm,n(y) is the mean of the function 

values corresponding to  y j ' s  in J that contains y. This 

property is the key t o  efficient computation of the es- 

timate [as]. 
The Nadaraya-Watson estimator based on more 

general kernels is classical in statistics literature [ l l ] .  

Since its introduction in the early sixties, this estima- 

tor was successfully employed in a number of applica- 

tions involving nonlinear regression estimation. The 

classical analysis of this estimator was restricted to  

'Conventionally this estimator is used to fit functions of the 

form f ( X )  = Y (or its regression version). Due to the form 
of the present sensor fusion problem, namely fitting functions 

of the form f ( Y )  = X ,  the conventional notational roles of the 

variables X ,  and Y, are switched in this expression. 

asymptotic results, and is not particularly directed to- 

wards linear-time computation. This computationally 

efficient version based on Haar kernels is due to Engel 

[7], which was subsequently shown t o  yield finite sam- 

ple guarantees by Rao and Protopopescu [26]. The 

result of [26] requires finiteness of capacity of F in 

addition to smoothness, and here we require only the 

latter. The following theorem specifies the sample size 

needed to  ensure the condition (1.2). 

Theorem 5.1 Consider a family of functions .F E 
C(Q) with range [0,1] such that w o o ( f ; r )  5 k r  for  
some 0 < k < a. W e  assume that: (i) there exists 
a family of densities P C_ C(Q); (ai) for each p E P ,  
w o 3 ( p ; r )  5 k r ;  and (iii) there exists p > 0 such that 

for  each p E P ,  p(y) > p f o r  all y E [ O ,  1IN. Suppose 
that the sample size, n,  is  larger than 

y [(F [(F-l)".,] +rn) 

where €1 = c(,u - c)/4, 0 < /? < h, rn = 

. Then and X = b (3) 
for any f E F, we have P [I(fm,n) - I ( f * ) I  > E] < 5. 

The computation of .fm,n(y) at a given y involves 

obtaining the local sum of Xi's in J that  contains y. 

The range-tree (see Preparata and Shamos [14]) can 

be constructed to  store the cells J that contain at 
least one x; with each such cell, we store the num- 

ber of the x's that are contained in J and the sum 

of the corresponding Xi's. This computation can be 

achieved by known methods [14] in O(n(1og n)N-') 

time , and the values of J containing y can be re- 
trieved in O((1ogn)") time. Thus fm,n(y) can be 

computed in O((1og n ) N )  time after a preprocessing 

step in O(n(logn)N-l) time (see [as]). 

+ ($) 1/N+1--1/2P l /N+l-  1/2p 

6 Simulation Results 

We present two examples to  illustrate the performance 

of neural network and Nadaraya-Watson estimator. 

For both examples we also provide results obtained 

with the nearest neighbor rule, which is analyzed else- 

where [18]. In the second example, we also consider 

another estimate, namely, the empirical decision rule 

described in [22]. 

Example 1: Fusion of Function Estimators: [26] 

We consider five function estimators each of which 



100 10 

0.001955 

0.001948 I 
0.048654 0.000902 0.002430 

0.003538 

0.003743 

Training Set Testing Set Nadaraya-Watson Nearest Neighbor Neural Network 

100 10 0.00442 1 0 .O 14400 0.018042 

1000 100 0.002944 0.003737 0.021447 

10000 1000 0.001949 0.003490 0.023953 
i 

0.049281 I 0.050942 I 

Sample Size Test set size s1 S2 s3 s4 Ss 
100 100 7.0 20.0 33.0 35.0 55.0 

1000 1000 11.3 18.5 29.8 38.7 51.6 

10000 10000 9.56 20.19 30.38 39.82 49.68 

50000 50000 10.038 20.136 29.854 39.904 50.050 

10000 loo0 I l E 0  I 

Nadaraya-Watson 

12.0 

10.6 

8.58 

8.860 

(a) d = 3 

Sample Size Test set size Bayesian Fuser Empirical Decision Nearest Neighbor 

100 100 91.91 23.00 82.83 

1000 1000 91.99 82.58 90.39 

10000 10000 91.11 90.15 90.81 

50000 50000 91.19 90.99 91.13 

Nadaraya-Watson 

88.00 

89.40 

91.42 

91.14 

outputs the value of an unknown function g(X) E 

[0,1] at the input X E [O,lld. In particular Si 

outputs a corrupted value gi(X) of g ( X )  when pre- 

sented with input X E [0, lid. The fusion problem 

is to compute a function f : [0, lI5 n [0,1] such 

that f (gI(X),  . . . , g5(X)) closely approximates g(X). 

Here g is realized by a feedforward neural network, 

and, for i = 1 ,2 , .  .. , 5 ,  gi(X) = g(X)(l /2  + iZ/lO) 
where 2 is uniformly distributed over [-1,1]; note 

that 1/2 - i /10 5 gi(X)/g(X) 5 1/2 + i/10. Table 

1 corresponds to  the mean square error in the esti- 

mation of f for d = 3 and d = 5, respectively, us- 

ing the Nadaraya-Watson estimator, nearest neighbor 

rule, and a feedforward neural network with backprop- 

agation learning algorithm. Note the superior perfor- 

mance of the Nadaraya-Watson estimator. 17 

Example 2: Decision Fusion: [22, 201 We consider 

a system with 5 sensors such that Y E ( H O , H ~ } ~ .  
To each X there corresponds a “correct” decision; in 
the training data the correct decision ( H I  or Ho) is 

generated with equal probabilities for each X i ,  i. e., 

P ( H o l X )  = P(H1IX) = 1/2. The sensor Si, i = 
1 , 2 , .  . . ,5 ,  introduces an error as follows: the output 

corresponds to  the correct decision with probability of 

1 - i / l O ,  and with probability i/10 output is the op- 

posite. The individual sensor behavior is implemented 

by generating a uniform random variable in the range 
[0, D] and checking whether it falls within the interval 

[O, iD/lO].  The sensor fusion problem is to compute a 

rule that combines the outputs of the sensors to pre- 

dict the correct decision. The percentage error of the 

individual detectors and the fused system based on 
the Nadaraya-Watson estimator is presented in Table 
2. Note that the fuser is consistently better than the 

best sensor SI beyond the sample sizes of the order 

of 1000. Thus this example illustrates that  the per- 

formances exceeding the best of the individual sensors 

can be achieved through fusion methods. A compar- 
ative performance of the Nadaraya-Watson estimator, 

empirical decision rule, nearest neighbor rule, and the 

Bayesian rule based on the analytical formulae is pre- 

sented in Table 3. The Bayesian rule is computed 

based on the formulae used in the data generation and 

is provided for comparison only (note that such formu- 

lae are assumed to  be not available in computing the 

other estimators). 



7 Discussion of Performance 

The results obtained in Sections 3-5 guarantee only 

a PAC fuser design. The performance of the fuser 

compared to its individual components has not been 

addressed. We now investigate the conditions under 

which the composite system is a t  least as good as the 

best of the individual sensors. 

Consider that we use the empirical data to obtain 

a function fi E 3; that maps the output of the sensor 

Si to  sRd. The performance of fi can be measured 

by using (with abuse of notation) the following cost 

function 

IUi) = [x - f i (Y)J2dPpyqd~x  J 
as opposed to  (1.2). 

The success of the fuser design is determined by 

comparing the performance of the composite system 

{ f, SI, , . . , S N )  to the individual sensor system (fi , Si). 

The relative performance here depends on F and T i ' s ,  

and also on f^ and fi's. We consider that the empirical 

estimation methods of Section 3 or 4 are used in ob- 
taining f^  and f^i. In particular, we normalize the per- 

formance parameters by recomputing 6i(c, Fi, I) cor- 

responding to ci = € for each sensor and we also com- 

pute ~ F ( E , F , ~ ) .  Then a single sensor system with 

least value for 6, denoted by (fmin , Smin), is called best 
sensor system, i.e., bmin(<, 3min, i )  = minbi(c,Fi, I ) .  

Then the composite system will be at  least as good 

as the best of the individual sensor systems under the 
condition [18] 

a 

~ F ( E , F ,  l )  I brnin(E, Fmin,l)- 

In the present case, the error and its expectation 

E [ I ( f i )  - I(f;)] = / P [ I ( f i )  - I*(f:) > e]& (8.1) 

1 
(8.2) 

where the former follows from the definition of expec- 

tation and the latter is the well-known Chebyshev's 

inequality. Based on (8.2), the smaller the expected 

error, the smaller will be the corresponding 6 for fixed 

We now consider a specific class of fusion rules 3 = 
{Wi fi+. . .+WN fN}, for (W1,. . . , WN) E SN such that 
N 

wi = 1, and 0 5 wi 5 1. The first consequence is 
i = l  

are related by the following equations: 

P[l ( . f i )  - I*(f;) > €1 5 --E[I(.fi) - I ( f ; ) ]  
€ 

E .  

that fi E 3, which implies that 

Thus the empirical error of the fuser is no greater than 

that of the best sensor. An analogous property is valid 

for I ( . )  as stated in the next theorem. Let II be a 
permutation of { 1 , 2 , .  . . , N } ,  and define 

Let Ai denote the event I ( f ^ i )  5 c such that P(Ai) > 
1 - bi . Then by Lemma 2.1 we have 

P ( A ~  n A2 n . . . n A N )  2 T(&, b2,.  . . ,h). 

Theorem 7.1 [lS] With probability T(S1,. . . , 6 ~ ) ,  we 
have SF(C,F,I)  I minSi(c,Fi,l),  where 

z 

The above theorem illustrates that if no other in- 

formation is available, the fuser hypothesis space can 

be easily constructed using weighted sums of functions 
from individual hypotheses classes. 

There are a number of related methods for fu- 

sion rule estimation under different types of typically 

stronger conditions. Three methods based on classi- 
cal Robbins-Monroe algorithms, potential functions, 

and kernel regression methods are proposed in [17] for 

the fusion rule estimation. These methods are algo- 

rithmic (in contrast with general solutions of Section 

3) but are guaranteed to satisfy criterion (1.2) under 

various smoothness and martingale conditions. These 

conditions are very difficult to verify in typical appli- 

cations. 

From a computational point of view, the class of 
linearly separable systems of [19] constitute a non- 

trivial example where the empirical risk minimization 
of Section 3 can be solved in polynomial time (using 

quadratic programming methods). 

8 Conclusions 

We presented a review of solutions to the genera1 sen- 

sor fusion problem, where the underlying sensor error 

distributions are not known but a sample is available. 
Based on the smoothness and/or combinatorial prop- 

erties of the class of fusion rules, general solutions to 

the problem are provided based on empirical risk min- 

imization. Two computationally viable methods are 



presented based on feedforward sigmoidal networks 

and Nadaraya-Watson estimator. An assessment of 

these methods was carried out as to their intrinsic 

characteristics and overall performance. 

Several computational issues of the fusion rule es- 

timation are open problems. I t  would be interesting 

to  obtain general conditions under which polynomial- 

time algorithms can be used to  solve the fusion rule 

estimation problem under the criterion (1.2). It would 

also be interesting to  investigate the utility of com- 

putational methods based on bootstrap and cross- 

validation in the fusion rule estimation problem. Also, 

conditions under which the composite system is “sig- 

nificantly” better than best sensor would be extremely 

useful. Finally, lower bound estimates for various sam- 

ple sizes will be very important in judging the optimal- 

ity of sample size estimates. 
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