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ABSTRACT
Motivation: Progressive Multiple Sequence Alignment
(MSA) methods depend on reducing an MSA to a linear
profile for each alignment step. However, this leads to loss
of information needed for accurate alignment, and gap
scoring artifacts.
Results: We present a graph representation of an MSA
that can itself be aligned directly by pairwise dynamic
programming, eliminating the need to reduce the MSA
to a profile. This enables our algorithm (Partial Order
Alignment (POA)) to guarantee that the optimal alignment
of each new sequence versus each sequence in the MSA
will be considered. Moreover, this algorithm introduces a
new edit operator, homologous recombination, important
for multidomain sequences. The algorithm has improved
speed (linear time complexity) over existing MSA algo-
rithms, enabling construction of massive and complex
alignments (e.g. an alignment of 5000 sequences in
4 h on a Pentium II). We demonstrate the utility of this
algorithm on a family of multidomain SH2 proteins, and
on EST assemblies containing alternative splicing and
polymorphism.
Availability: The partial order alignment program POA is
available at http://www.bioinformatics.ucla.edu/poa.
Contact: leec@mbi.ucla.edu

INTRODUCTION
Multiple Sequence Alignment (MSA) is one of the most
important tools in bioinformatics, and has a long history of
study in computer science and bioinformatics (Needleman
and Wunsch, 1970; Smith and Waterman, 1981; Taylor,
1986; Barton and Sternberg, 1987; Higgins and Sharp,
1988; Altschul, 1989; Lipman et al., 1989; Subbiah and
Harrison, 1989; Gotoh, 1993, 1996; Thompson et al.,
1994; Notredame et al., 2000; Gordon et al., 2001). It
continues to be an active field of research, because it poses
computational challenges that are only partially solved by
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existing algorithms. For pairwise sequence alignment (of
just two sequences), a globally optimal solution can be
found in O(L2) time by dynamic programming, where
L is the length of the sequences. This algorithm can be
extended to align N sequences optimally, but requires
O(L N ) time. Whereas the pairwise alignment time of
O(L2) is acceptable for typical biological sequences
of genes and proteins (L < 10 000), the exponential
time required for aligning larger numbers of sequences
by dynamic programming is impractical. Thus optimal
alignment of pairs of sequences is performed routinely, but
optimal alignment of multiple sequences is generally not
possible.

Instead, a variety of heuristic MSA algorithms have
been developed, nearly all of them based on progressive
application of pairwise sequence alignment to build up
alignments of larger numbers of sequences as proposed
by Feng and Doolittle (1987). An excellent example of
the progressive alignment approach is CLUSTAL, initially
released by Higgins et al. in 1988 (Higgins and Sharp,
1988). This algorithm builds a MSA through a series of
pairwise alignments. Initially, all of the sequences are
aligned pairwise resulting in N (N − 1)/2 alignments.
The scores of these alignments are then used to construct
a binary tree of their evolutionary relationships. Finally,
the algorithm builds a MSA in the order dictated by the
evolutionary tree: the most recently diverged sequences
are aligned first resulting in N/2 alignment profiles; the
N/2 alignment profiles are aligned to each other resulting
in N/4 alignment profiles; and so forth, until all of
the sequences have been aligned, resulting in a single
alignment profile of the MSA of all N sequences. Finding
the scores and constructing the binary evolutionary tree
is O(N L2). Using the binary tree to build the MSA is
O(L2 log N ). Consequently, the overall algorithm runs
in polynomial time and can be used to align over a
hundred sequences in a reasonable amount of time. As
pointed out by Gibson and co-workers (Thompson et al.,
1994), this algorithm is greedy by nature and may find
a local minimum either because the guide tree is not
correct or because alignment errors that happen early on
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in the process of building the MSA get locked in. As a
consequence, this algorithm does not guarantee an optimal
MSA. Many MSA methods have been developed with
different advantages and disadvantages (Taylor, 1986;
Barton and Sternberg, 1987; Altschul, 1989; Lipman et
al., 1989; Subbiah and Harrison, 1989; Gotoh, 1993, 1996;
Thompson et al., 1994; Notredame et al., 2000; Gordon
et al., 2001), but globally optimal alignment of larger
numbers of sequences remains impractical.

Gibson and co-workers (Thompson et al., 1994) high-
lighted two major problems with the progressive MSA
approach: the local minimum problem, mentioned above,
and the choice of appropriate alignment parameters.
Their solution was to weight sequences according to their
degree of similarity, and to vary gap penalties and substi-
tution matrices during not only the dynamic programming
but also the course of building up the full alignment. This
strategy was implemented in CLUSTALW, which has
been one of the most commonly used MSA programs
since 1994 (Thompson et al., 1994).

While we agree with this analysis, we believe there
are additional problems in progressive alignment, whose
resolution can yield further improvements. Specifically,
we view handling of gaps and insertions as one of the
most troublesome and least rigorously formulated aspects
of MSA. We wish to emphasize that this is not a criti-
cism of any existing MSA method, but rather a way of
highlighting opportunities for fundamental rethinking of
the problem. We will use the term ‘progressive align-
ment’ to designate the general class of MSA build-up
algorithms, and our usages of this term should not be
interpreted as references to (or criticisms of) any existing
algorithm. Based on analysis of fundamental problems
in gap/insertion representation in progressive alignment,
we will present a novel approach based on graph theory
that could have broad applicability in MSA and sequence
analysis algorithms. Indeed, this approach complements
existing MSA algorithms, and can be combined with
them in many useful ways, since each method has specific
advantages.

PROGRESSIVE ALIGNMENT AND THE MSA
REPRESENTATION PROBLEM
To identify new areas of potential improvement in
progressive alignment, it is important to define its com-
ponents clearly. Progressive alignment requires aligning
pairs of MSAs, to build up larger MSAs. In practice,
however, pairwise dynamic programming is not applied
directly to align the pairs of MSAs. Instead, progressive
alignment has relied on reducing each MSA to a one-
dimensional (1D) sequence which can be used in pairwise
dynamic programming sequence alignment. This 1D
sequence is a consensus sequence or profile of the MSA
that gives position-specific residue weighting and scoring.

It is assumed that the two cluster MSAs should be aligned
exactly as their 1D profiles align, which makes sense if
no information about each MSA is lost when it is reduced
to a profile. From this point of view, gaps/insertions pose
a special challenge (Altschul, 1989; Gotoh, 1996), since
they raise the question of what should be included in the
profile, and the threat that important information will be
lost in the reduction process.

Unfortunately, this reduction of an MSA to a 1D profile
inevitably involves loss of information. That is, while the
MSA contains all the information to produce the profile,
the profile does not contain all the information needed
to reconstruct the original MSA. This is demonstrated
by the fact that many different MSAs (e.g. with letters
in a given column shuffled) would reduce to the same
profile. Because a given profile does not map uniquely to
a single MSA, it cannot be used to reconstruct the original
MSA. This lack of uniqueness can also be described as
degeneracy in the MSA → profile mapping.

What kinds of information are lost? Let’s assume that
all columns of the MSA are included in the 1D profile
(if not, that would immediately constitute a loss of
information). While the profile may keep residue and
gap frequencies for each column, it has no information
on which sequence a given letter comes from. This
makes scoring of gaps/insertions especially problematic.
Consider the simple MSA below. The profile will contain
all columns from all sequences in the MSA, even though
it is likely that no sequence in the MSA (or nature)
actually contains all these columns. Thus, any sequence
not containing all these inserts will now be charged
artifactual gap penalties even if its ‘gaps’ are exactly the
same as those in one or more sequences in the alignment.
Conversely, the only sequence that won’t be charged a gap
penalty is the completely artificial sequence constructed
by pasting together all columns from all sequences.
Alignment of multidomain proteins, for example, would
give rise to a gap of hundreds of residues wherever an extra
domain was present or missing in one or more sequences,
resulting in very large gap penalties. Although one may
use position-specific gap penalties to try to diminish this
problem (for example, reducing the gap penalty at a
position if many sequences are gapped there), this just
reveals more problems. For example, if only one sequence
in the profile contained an extra domain, we might reduce
the gap penalty greatly for those positions, to allow for
sequences that lack this domain. However, very low gap
penalties are extremely problematic because they cause
an exponential increase in the number of higher scoring
alignments, even for alignment of a random sequence. And
if a new sequence happened to align to this extra domain,
it would be wrong to use an extremely low gap penalty for
its insertions/deletions within that domain. A 1D profile
has no way to correct for this, because it does not know
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that these positions are all from the same source sequence.

Furthermore, consider the two columns marked above.
Technically, there is a gap in both columns. One position
(ˆ) is a true gap, i.e. a position that one sequence is
missing, bracketed on both sides by positions where both
sequences align. However, the other position (*) is not
actually a gap in the alignment, because both sequences
do not even begin to align until several residues further to
the right. Aligning the sequence S = TGCACTCGAT. . .
to a profile of this MSA would be charged a 5 residue
gap penalty because S lacks ACATG. This gap penalty is
purely an artifact of the 1D representation: it vanishes if
we reorder the profile by swapping the residues 1–5 with
residues 6–10. Now TGCACTCGAT. . . matches without a
gap. This reordering of the consensus does not change the
content of the original MSA, since the first five residues of
both sequences were not aligned at all.

This reveals that there is tremendous degeneracy in
the representation of gaps/insertions within this standard
MSA format, which we will refer to as the tabular
Row–Column MSA (RC-MSA) format. For example, there

are

(
5 + 5

5

)
= 10!

5!5! possible orderings of the first ten

columns of this MSA that differ only in the order in which
these unaligned residues are given. These different RC-
MSAs are all equivalent to the original alignment, but
will each give rise to different gap penalties. There is no
‘right choice’ of which to use; all of these gap penalties
are artifactual.

We can develop a new approach to MSA based on these
considerations. We desire a new MSA representation
that eliminates both the degeneracy of the RC-MSA
(which causes scoring artifacts), and the degeneracy of
the 1D profile (which causes information loss). To be
useful for progressive alignment, this MSA representa-
tion: (1) should itself be alignable by pairwise dynamic
programming alignment, just as a 1D sequence or profile
can be; and (2) should not lose any information from
the MSA, nor introduce any degeneracy. This raises the
interesting question, what is the real content of an MSA?
We consider this to be just two pieces of information:
what sequence positions are aligned to each other; and
the ordering of these positions within the sequences them-
selves. We have constructed a data structure that purifies
the idea of an MSA down to just these two properties,
which satisfies all of the above criteria, and therefore has
very interesting benefits for progressive MSA.

ALGORITHM
Partial Order Multiple Sequence Alignment
(PO-MSA) data structure
Consider the simple alignment of two sequences depicted
in RC-MSA format in Figure 1a. We can instead represent
it as a partially ordered graph in which individual sequence
letters are represented by nodes, and directed edges
are drawn between consecutive letters in each sequence
(Figure 1d). In this PO-MSA format, a single sequence
is simply a linear series of nodes each connected by
a single incoming edge and a single outgoing edge
(Figure 1b). Reconstructing the RC-MSA in Figure 1a
as a PO-MSA requires two steps. First, the two aligned
sequences are redrawn in PO-MSA format, with dashed
circles indicating aligned letters (Figure 1c). Second, the
letters that are aligned and identical are fused as a single
node, while the letters that are aligned but not identical are
represented as separate nodes that are recorded as being
aligned to each other (Figure 1d). When letters are fused
as one node, the resulting node stores information about
all of the individual sequence letters from which it was
derived, specifically the ID of the original sequence(s) and
the index of the letter’s position within that sequence. Thus
it is possible to trace the path of each individual sequence
through the PO-MSA. The PO-MSA format contains all
the information of a traditional MSA, but represents it as
a graph compacted for minimal node and edge counts.
Redundant edges are removed, i.e. a given pair of nodes
will be connected by at most one edge. A node may
have any number of incoming or outgoing edges. These
edges simply indicate the preceding or subsequent letters
of every sequence that passes through that node.

This representation corresponds exactly to the two
components that we identified above as the true content
of an MSA. What sequence positions are aligned is
indicated by node fusion/alignment. The ordering of these
positions within the sequences is indicated by the directed
edges. Since the representation consists of only these two
features, which correspond exactly to the two forms of
content of an MSA, it represents the MSA without loss of
information and without degeneracy. In other words, there
is a one to one mapping: each PO-MSA maps to a unique
MSA, and each MSA maps to a unique PO-MSA. From
the MSA we can construct the PO-MSA, and vice versa.

We use the mathematical term ‘partial order’ for this
data structure, because our graphs obey true linear (1D)
ordering only in regions of nodes with single outgoing
edges. In a linear order (such as the number line of
integers), for all distinct nodes i, j it is guaranteed that
they are ordered, i.e. either i < j XOR j < i , where the
ordering relation ‘i < j’ is defined to mean ‘there exists a
path of one or more directed edges from node i to node j .’
We will refer to this definition as ‘linear’ or 1D ordering.

454



MSA using partial order graphs

(d) P

T H
K M

I

L
V R

P Q K
N E T

V

I M

(c) P

T H

K M I V R

K M L V R

P Q K N E T V

N E T I M

(b) P K M I V R P Q K N E T V

(a) . . P K M I V R P Q K N E T

T H . K M L V R . . . N E T I M

Fig. 1. MSA in the POA representation. (a) RC-MSA representation
of a pairwise protein sequence alignment. (b) A single sequence in
PO-MSA format. (c) Two protein sequences in PO-MSA format
aligned to each other. Dashed circles indicate that two nodes are
aligned. (d) PO-MSA representation of a pairwise protein sequence
alignment. Dashed circles indicate that two nodes are aligned.

In a partial order graph, by contrast, there may exist nodes
i, j such that no path of directed edges exists from i to j
or from j to i (i.e. NOT i < j AND NOT j < i). When a
node n has multiple outgoing or multiple incoming edges
e1, e2, . . . , we define n as a ‘junction node,’ and the edges
e1, e2 . . . and the nodes and edges they connect to n as
‘branches.’ There exists no path of directed edges from
the nodes on one branch to the nodes on the other branch.
Within each branch the nodes are ordered with respect to
each other, but the nodes of one branch have no ordering
relation to the nodes on the other branch. Our PO-MSA
data structure belongs to the well-studied class of data
structures known as Directed Acyclic Graphs (DAGs).

Figure 2 shows a PO-MSA compared with the con-
ventional RC-MSA representation of a table of rows
(sequences) and columns (aligned letters). Gaps in the
RC-MSA appear in the PO-MSA as edges that jump one
or more nodes. The data compression property of the
PO-MSA is readily apparent. It reduces the RC-MSA
to a minimum description consisting of a consensus
sequence plus the deviations of individual sequences.
The partial order graph structure is also equivalent to
the representation of an alignment of N sequences as a
path through an N -dimensional MSA matrix. Figure 3
shows the N -dimensional representation versus the partial
order graph representation of a simple alignment of three
sequences.

Dynamic programming Partial Order Alignment
(POA)
Standard dynamic programming sequence alignment
(Needleman and Wunsch, 1970; Smith and Waterman,
1981) can be extended to work with partial orders. In
this paper we present a simple algorithm for aligning a
linear sequence to a PO-MSA (representing many aligned
sequences, or possibly a single sequence).

The extension can be illustrated in the following way
(Figure 4). Standard dynamic programming alignment
of two linear sequences can be represented as a two
dimensional (2D) matrix, whose two axes correspond
to the two sequences. A given point (n, m) in the
matrix corresponds to a pair of sequence positions (n
in sequence 1, m in sequence 2). For a given pair-
position, three basic moves are possible: a diagonal
‘alignment’ move indicating that n and m are aligned;
and horizontal and vertical moves indicating, respectively,
n as an insertion relative to m, or m as an insertion
relative to n. The set of all possible paths across the
2D matrix constructed from these moves represents all
possible alignments of the two sequences allowing the
‘edit operators’ of identity/substitution (diagonal move)
and insertion/deletion (horizontal and vertical moves).

POA extends the dynamic programming method of
Needleman–Wunsch in a natural way. We replace one
of the linear sequences by a partial order containing
branching. We transfer the partial order structure to the
2D matrix by grafting a copy of its bifurcations across the
matrix, forming additional dynamic programming matrix
surfaces that are joined exactly as the individual branches
are joined in the PO-MSA (Figure 4b). Thus, the 1D
branches of the partial order become bifurcated surfaces
in the partial order matrix. Now we must extend the set
of possible moves appropriately. On a given surface, the
POA behaves the same as the standard 2D alignment, and
the same set of three moves (diagonal, horizontal, vertical)
are allowed. At junctions where multiple surfaces fuse,
we extend the horizontal and diagonal moves to allow
them to go onto any of the incoming surfaces that meet
at this junction. Thus for the simplest case where two
branches join, the allowed moves are: two diagonal moves
(one from each incoming surface), two horizontal moves
(again, one from each incoming surface), only one vertical
move, and a ‘start’ move (explained below in Section
Alignment scoring).

Given the partial order move set, dynamic programming
sequence alignment (Needleman and Wunsch, 1970;
Smith and Waterman, 1981) can now be applied in the
usual way. At a given cell (n, m) in the matrix, the scores
for all possible moves at this point are calculated, and the
move with the maximum score is selected and saved at
this cell. The score for each possible move is just the sum
of the transition score associated with that move (for a
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CONSENS1 ............................TGTACNT.GTTTGTGAGG.CTA 
CONSENS0 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S663801 A.GTTCCTGC.TGCGTTTGCTGGACTTATGTACTT.GTTTGTGAGG.CAA 
Hs#S337687 AAGTTCCTGC.TGCGTTTGCTGGACTGATGTACTTGGTTTGTGNAGGCAA 
Hs#S629177 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTNAGG.CAA 
Hs#S672957 A.GTTCCTGC.TGCGTTTGCT............................. 
Hs#S672182 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTT.......... 
Hs#S674099 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S196113 A.GTTNCTGN.TGNGTTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S994400 .............................GTACNT.GTTTGTGAGG.CTA 
Hs#S550772 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S80460 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S39701 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S1988018 A.GTTCCTGC.TGCTTTTGCTGGACTGATGTACTT.GATTGTGAGG.CAA 
Hs#S341915 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S1794113 A.GTTCCTGC.TGCGCTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S4698 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTGCGG.CAA 
Hs#S813765 A.GT.CCTGC.G.CGTTTGC.GGACGGATGTACTT.GTT.GTGAGG.CAA 
Hs#S1184845 .............................................G.CAA 
Hs#S1577463 ............................................GG.CAA 
Hs#S914987 ........................CTGATGTACTT.GTT.GTGAGGGCAA 
Hs#S1985364 A.GTTCCTGC.TGCGTTTGCTGGACTGATGTACTT.GTTTGTGAGG.CAA 
Hs#S1465644 ..GTTC.TGCCTGCGTTTGCTGAACTGATGTACTT.GTTAGT.AAG.CAA 
Hs#S1850471 C.GTTACTGC.GGGGTTTGCTGGACTCATG.ACTTTGTTNGT.AGG.CAA 
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Fig. 2. Partial order alignment representation of UniGene EST sequences. Part of an alignment generated by POA of EST sequences from
UniGene cluster Hs. 100194: (a) PO-MSA representation; (b) traditional RC-MSA representation of the same data. Only part of the very
large alignment is shown.

diagonal move, the substitution score s(n, m) for aligning
residue n to residue m; for a horizontal or vertical, the
gap penalty �), plus the saved score S(p, m − 1) at the
predecessor cell pointed to by the move.

S(n, m) = max

{
S(p, m − 1) + s(n, m)

S(p, m) + �(m)

S(n, m − 1) + �(n),

(1)

considering all predecessor nodes p that have a directed
edge from p → n.

The only difference from standard sequence alignment,
in which there can be only one predecessor node, is that
there may be many predecessor nodes p for a given letter
n in the partial order.

Alignment scoring
In this paper we used Smith–Waterman dynamic program-
ming sequence alignment (Smith and Waterman, 1981),
which seeks only to align those regions that have a pos-
itive alignment score. Smith–Waterman differs from so-
called ‘global alignment’ in that it does not charge a gap

penalty for unaligned ends of sequences, whereas global
alignment does. This is implemented by allowing an ad-
ditional ‘start’ move at each cell, whose total score is just
zero, and corresponds to asserting that none of the preced-
ing residues in either sequence are aligned. It should be
emphasized the POA could in principle be used with any
of the common variations of dynamic programming align-
ment: global, Smith–Waterman, ‘overlap,’ or ‘repeat.’

Scores are calculated for each cell in order, starting from
the origin (0, 0) and filling in the complete partial order
matrix, to the end-point (N , M), where N is the number
of nodes in the PO-MSA G, and M is the length of the
new linear sequence S being aligned. The cell with the
highest score is taken as the end of the best alignment,
which is traced backwards through the full alignment path,
by simply following the saved best-move from that cell to
its predecessors, iteratively, until the path is terminated by
a ‘start’ move representing the beginning of the alignment.
This produces a set of aligned letter/node pairs (iS, jG)

from the sequence and the PO-MSA (e.g. Figure 1c).
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Fig. 3. POA maps the high-dimensional MSA path to a reduced
graph representation. (a) MSA can be represented as a path through
a high-dimensional space in which the dimensions of the space
correspond directly to the individual sequences (and thus have
a length equal to the length of the corresponding sequence).
(b) POA translates the high-dimensional MSA path into a graph
representation in which each node corresponds to a set of aligned
letters in the alignment.

Because of gaps, a given sequence letter lS may not be
aligned to any node in the PO-MSA at all; that is, it is not
included in the (iS, jG) alignment pair mapping.

Construction of the partial order graph
The sequence S is first converted into a trivial PO-MSA
(e.g. Figure 1b) with each letter stored in a separate node
and with a single directed edge between each successive
node. The sequence ID and residue position index of
each letter are stored on each node. This trivial PO-MSA
is joined to the original PO-MSA G through a process
of node fusion. When two nodes are fused, the lists of
sequence IDs and residue position indices stored on the
individual nodes are combined as a single list stored on the
fused node. While this sequence information is ignored by
the simple POA alignment algorithm described above (in
order to enable recombination during MSA; see Section
Discussion), it is essential for analysis of the resulting PO-
MSA. We will describe in a separate publication a series
of algorithms we have developed for analyzing PO-MSAs.

PO-MSA nodes are fused according to the (iS, jG)

mapping as follows. If node iS and node jG are aligned
and have identical letters then they are fused (e.g. letters
NET at the right of Figures 1c, d). If node iS and node
jG are aligned, but do not have identical letters, and node
jG is already aligned to a node kG in G whose letter is
identical to node iS , then node iS and node kG are fused.
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Fig. 4. Dynamic programming matrix for POA algorithm. (a) Dy-
namic programming matrix for Needleman–Wunsch sequence
alignment algorithm. The optimal global alignment path is shown.
(b) Dynamic programming matrix for POA algorithm. The optimal
global alignment path for aligning a single sequence represented as
a DAG to two sequences represented as a PO-MSA is shown. The
matrix bifurcates in the middle since the single sequence DAG can
align to either sequence stored in the PO-MSA. At the bifurcation
point five moves are allowed since the sequence can align to either
the first sequence traversing the upper dynamic matrix, or the second
sequence traversing the lower dynamic matrix. At every other point
in the dynamic matrix, not corresponding to a bifurcation point, the
usual three moves of insertion, deletion, and match are allowed.

Finally, if node iS and node jG are aligned, but do not
have identical letters, and node jG is not already aligned
to any node in G with an identical letter to node iS , then
node iS and node jG are recorded as being aligned to each
other (e.g. letter L of KMLVR in Figures 1c, d). The nodes
of PO-MSA S that are unaligned in the (iS, jG) mapping
(e.g. letters TH at the left of Figures 1c, d) are not altered.
Finally, we remove redundant directed edges (i.e. more
than one edge connecting the same pair of nodes).

457



C.Lee et al.

Iterative partial order alignment
In this paper, we have applied POA to MSA in the
simplest possible way. To construct a PO-MSA of a set
of sequences, they are simply aligned one after another
to a growing PO-MSA, using the algorithm described
above for aligning a single sequence to a PO-MSA. All
the results in this paper were obtained in this manner.

Computational complexity
Since the dynamic programming algorithm can be im-
plemented in the usual way for sequence alignment to a
partial order, the only increase in its time complexity over
standard sequence alignment arises from the possibility of
multiple predecessor nodes p. For n p predecessor nodes,
the number of moves whose score must be calculated
in (1) is 2n p + 1. For standard sequence alignment, where
n p = 1 by definition, there are exactly three moves, and
the total time complexity for aligning two sequences of
length N , M is O(3N M). For the POA algorithm, the
total time complexity of aligning a sequence of length
M to an N node PO-MSA with n̄ p average number of
predecessors per node is O((2n̄ p + 1)N M). Thus, the
time complexity increases only linearly with the average
number of branches per node. The space complexity
for POA, like standard pairwise dynamic programming
sequence alignment, is O(N M), for storing the best score
traceback. The time complexity for construction of the
(iS, jG) mapping by traceback, and for construction of the
new partial order graph, is just O(min(N , M)), so these
stages are also linear. The space complexity for storing
the PO-MSA is O(N + L), where N is the number of
nodes in the PO-MSA and L is the total number of letters
in all of the sequences aligned in the PO-MSA.

Moreover, the average partial order branch number n̄ p
tends to increase only slowly for biologically meaningful
alignments, because the partial order representation acts
like a data compression algorithm, since it fuses matching
sequence letters into a single node, removing redundancy
from the representation of the sequence alignment. In
many types of alignments there is a high degree of
matching sequence. Alignments of transcript sequences
such as ESTs, for example, have greater than 90% identity,
so n̄ p is only slightly greater than one. In these cases,
POA incurs very little extra computational cost, while
significantly expanding the capabilities of the alignment
algorithm for dealing with complex structures that occur
in biological sequences.

IMPLEMENTATION
We have implemented the POA algorithm in the program
POA, which is available for download from http://www.
bioinformatics.ucla.edu/poa. The program was written
in C in 1998, and supports a variety of alignment options.

This program can take as input a set of sequences in
FASTA format, and output a tabular form of the alignment
in the standard PIR or CLUSTAL alignment format, or
the PO-MSA representation as a simple text file. It has
been used extensively in a high-throughput production
environment. It has been essential for our analyses of
the human genome (Table 1), such as Single Nucleotide
Polymorphism (SNP) discovery (Irizarry et al., 2000)
and alternative splicing analysis of human genome data
(Modrek et al., 2001).

Partial order structure in biological sequence
alignments
Multidomain proteins. The utility and interest of POA
can easily be seen by applying this technique to MSA
of mammalian proteins. As an example, we applied the
simple iterative POA algorithm to several human protein
sequences containing SH2 domains: ABL1, CRKL,
GRB2, and MATK, obtained from SwissProt (Figure 5).
Using the program POA and the BLOSUM80 scoring
matrix, we aligned ABL1 and CRKL to create a partial
order graph. Next, GRB2 and MATK were aligned to
this partial order graph. The resulting alignment clearly
shows the multidomain structure and relationships of
these proteins. At the center of the graph, all four se-
quences merge, indicating that they share a common
domain. The SwissProt annotation records indicate that
this aligned region corresponds to an SH2 domain found
in all four sequences. To the left of this region, three of
the sequences (MATK, ABL1, GRB2) are aligned for
about 40–50 amino acids. According to the SwissProt
annotations, this corresponds to an SH3 domain found in
these three sequences. To the right side of the shared SH2
domain, MATK and ABL1 split off from the other two
sequences, and are aligned for about 235 amino acids, a
kinase domain. MATK and ABL1 then diverge at their
C-terminal ends. After the SH2, GRB2 and CRKL are
aligned for 60 amino acids, an SH3 domain, at which
point GRB2 ends and CRKL continues for another 118
amino acids.

The full details of this alignment are shown in Figure 6,
in the conventional alignment table format. This format
obscures the partial order structure of the alignment, but
is convenient for showing the sequence letter matches.
POA does a good job of aligning the sequences, as judged
by the superposition of the annotated domains (shown by
black or gray shading). Despite the low level of identities
(shown in bold), particularly in the first SH3 and SH2
domains, the domains appear to be aligned well. The most
visible question is the end residues of domains, which
are sometimes left unaligned, e.g. the first 8 residues of
MATK’s SH3 domain. This is an issue of the BLOSUM80
scoring matrix, not an issue of the POA algorithm. The
alignment that was chosen has a better BLOSUM80 score
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Table 1. Partial order alignment of all human expressed sequence data

Total EST clusters aligned (UniGene Feb 2001) 89 341 clusters
Total number of EST and mRNA sequences aligned 2 357 605 sequences
Total nucleotide length of EST and mRNA sequences aligned 1 045 666 301 nt
Largest alignment: Hs. 111334 4 704 sequences
Largest alignment: total nucleotide length of sequences aligned 2 201 252 nt
Largest alignment: longest individual sequence 2 095 nt
Largest alignment: average sequence length 468 nt

Using the program POA we aligned over 2 million human ESTs in UniGene clusters (Irizarry et al., 2000, 2001; Modrek et al., 2001). These PO-MSAs were
the basis of our genome-wide analysis of SNPs and alternative splicing, and were checked both by extensive visual analysis, and by experimental testing of
SNPs identified using these alignments (Irizarry et al., 2000).

MATK

ABL1

GRB2

CRKL

A

G

M
M

C

AH3

H3

SH3

SH2

Fig. 5. Partial order alignment of four human SH2 domain containing proteins. Four sequences (SwissProt identifiers MATK HUMAN,
ABL1 HUMAN, GRB2 HUMAN, CRKL HUMAN) were iteratively aligned by POA to produce this PO-MSA. The alignment is shown as
a schematic of the partial order structure (see Section Algorithm) indicating where the sequences align (lines that join) and diverge (lines
that split apart). The termini of each sequence are labeled with their respective first letters. The protein domains annotated in the SwissProt
records for these proteins are shown as ovals and rectangles. Full details (the individual letter nodes and edges, including minor branchings)
have been suppressed to make the overall structure clear. The full details of this PO-MSA are shown in Figure 6.

than aligning these eight residues to the ABL1/GRB2
SH3 residues. Similarly, the last 13 residues of GRB2’s
SH2 domain (TSVSRNQQIFLRD) are not aligned to the
other sequences’ last SH2 residues. Again, this is due to
the scoring matrix/gap penalty parameter, not the POA
algorithm. Since the connection between the SH2 and
next SH3 domain is 14 residues shorter in GRB2 than in
CRKL, the algorithm must place these gaps somewhere.
And the alignment chosen is given a better BLOSUM80
score than fully aligning the last few residues of the SH3
domain (because there is so little homology).

This example shows that real alignments of biological
sequences have a partial order structure. The alignment in
Figure 5 contains six major branch points, all of which
are essential to an accurate depiction of what the four
sequences share in common, versus where they diverge.
These branching structures are not a trivial reflection of
standard ways of classifying sequence alignments, such as
subdividing the alignment into a tree of homology families
by increasing similarity. For example, GRB2 is more
similar to CRKL at the C-terminal end. Together these
two sequences diverge from ABL1 and MATK after the
SH2 domain. However, at the N-terminal side of the SH2
domain, the situation is reversed. There, GRB2 is more
similar to ABL1 and MATK, and all three split away from
CRKL. This does not fit the expectation that we might be
able to explain these structures in phylogenetic terms (A

is more similar to B than to C or D, therefore A and B
will branch away from C and D). Not only is partial order
structure (branching) truly present in the alignment, but
it expresses a more complex set of relationships than can
easily be discovered by a phylogenetic tree.

This also demonstrates that the traditional set of ‘edit
operators’ used in pairwise sequence alignment (substitu-
tion, insertion and deletion) is inadequate for multidomain
protein MSA. Specifically, a new edit operator for the bi-
ological process of homologous recombination is needed.
Because GRB2 aligns with MATK and ABL1 at its N-
terminus, but after the SH2 domain splits away and aligns
with CRKL at its C-terminus, GRB2 corresponds to a ‘re-
combination’ of MATK/ABL1 and CRKL, with the SH2
domain as the recombination point. GRB2 could not be
aligned with these three proteins without including the re-
combination edit operator. Otherwise it would be forced
to make an either/or choice between aligning with ABL1
and MATK at its N-terminus, versus aligning with CRKL
at its C-terminus. We will describe how POA handles the
recombination edit operator in more detail in the Section
Discussion.

EST assembly. We have also applied POA to mRNA
transcript fragments such as human ESTs (Boguski and
Schuler, 1995) (Figures 2, and 7). The partial order
structure of EST alignments is biologically meaningful.
Even though branch points may be infrequent in EST
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Fig. 6. Partial order alignment of four human SH2 domain contain-
ing proteins (details). The PO-MSA from Figure 5 is shown here in
a conventional alignment table (RC-MSA) format, in which each
column of the table represents a set of aligned residues, with a
dot (.) as the gap symbol. Note that the tabular format creates the
appearance of many artifactual gaps, which are not present in the
PO-MSA, and are not real gaps. Identities are shown in bold, and
similar residues (with a BLOSUM80 score � 0 to at least one other
aligned residue) are shown in uppercase. Protein domains annotated
in the SwissProt records for these proteins are shown as follows: ki-
nase domain (black); SH2 domain (gray); SH3 domains (light gray);
proline-rich domain (underlined). The N- and C-terminal residues
of each sequence are indicated in light gray. Separate sections of
the alignment are separated with a horizontal line; if a sequence is
entirely gapped in a given section, it is not shown.

alignments, they are very important features: sequencing
errors, polymorphisms, alternative splicing, initiation,
or polyadenylation, and paralogous gene sequences.
This figure also shows the efficiency of the PO-MSA
representation. For sequences with a very high level of
identity (such as clustered ESTs) the partial order graph
achieves a very high level of compaction through fusion
of aligned, identical letters. Such a partial order graph

effectively consists of a ‘consensus’ sequence of nodes,
plus occasional ‘polymorphic’ nodes where an individual
sequence diverges from the consensus (Figure 2a). A
dense number of substitutions, deletions and inserted let-
ters is characteristic of the high level of sequencing error
in ESTs. The PO-MSA representation effectively handles
this sequencing error, making it easy to find consensus
sequences, called heaviest bundles, using graph algorithm
methods which we will describe elsewhere. Using POA,
the ESTs from UniGene cluster Hs. 1162 were aligned to
each other and the HLA-DMB genomic sequence. The
resulting POA, shown in Figure 7, has four consensus
sequences (heaviest bundles) of nodes, corresponding to
four different alternatively spliced mRNA forms of the
gene. This alignment was produced by POA as part of our
genome-wide study of alternative splicing in human EST
sequences (Modrek et al., 2001). This work depended on
our ability to easily find consensus mRNA forms along
with their associated splice sites in the PO-MSA data
structure using simple graph algorithm techniques.

Iterative POA gives an efficient EST assembly algorithm
capable of working with very large alignments. For ex-
ample, in one project analyzing all available human EST
data for SNPs (Irizarry et al., 2000) and alternative splic-
ing (Modrek et al., 2001), we constructed approximately
90 000 alignments totaling about 2 million distinct EST
sequences (Table 1). However, the sizes of the EST clus-
ters were very heterogeneous. The largest number of EST
sequences aligned by POA in a single MSA was about
5000 sequences, in approximately 4 h using an inexpen-
sive Pentium II PC. By contrast, other approaches often
impose much more restrictive size limitations. For exam-
ple, the computationally sophisticated analysis of Burke
et al. (1998) reports that for the same set of human Uni-
Gene clusters they could not process 359 clusters (aver-
age size 297 sequences per cluster) because they were too
big to be aligned, even using highly optimized MSA soft-
ware (TIGR msa) and hardware (MasPar massively paral-
lel computer), both designed specifically for this problem.
Based on these data it appears that POA may extend the
number of ESTs that can be easily aligned by a factor of 10
or more.

POA is able to scale successfully to such extremely
large alignments because of the advantageous computa-
tional complexity of this algorithm. POA’s computation
time for aligning N homologous EST sequences grows
only linearly with the number of sequences. CLUSTAL,
by contrast, must construct O(N 2) pairwise alignments
(of all possible pairs of sequences), before it even begins
MSA. This makes alignment of very large numbers
of sequences impractical. For small alignments (e.g.
50 sequences) POA was generally faster or the same
speed as CLUSTAL. For larger numbers of sequences
it was substantially faster. Thus, partial order sequence
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Genomic

mRNA form 3

mRNA form 4

mRNA form 2

mRNA form 1 1

4

3

2

G

2

G

3

1

44

1,2 

3

3

1

2 2 

Fig. 7. Partial order alignment of four HLA-DMB mRNA forms and genomic sequence. PO-MSA of the ESTs from UniGene cluster Hs. 1162
aligned to HLA-DMB genomic sequence. Consensus sequences (heaviest bundles) corresponding to four alternate mRNA forms are shown.
Exons are shown as rectangles. Non-exonic regions of the genomic sequence are shown as a solid line. Dotted lines correspond to the mRNA
sequences, and represent their starts, ends, and splices relative to the genomic sequence. Each splice is labeled with the IDs of the mRNA
forms contianing that splice. The * symbol indicates that all four mRNA sequences share that edge.

alignment offers important advantages even just consid-
ering performance and scalability for large data analysis
projects.

DISCUSSION
Alignment ordering and pairwise optimal
alignment inclusion
To understand the useful properties of the POA algorithm,
we must first consider the difficulties that MSA algorithms
face. In existing progressive MSA methods, it is important
that sequences be aligned in ‘the right order’ (i.e. most
similar sequences first), because there is no algorithmic
guarantee that the overall alignment process will actually
find an optimal alignment for any given sequence (Higgins
and Sharp, 1988; Mevissen and Vingron, 1996; Notredame
et al., 1998). In particular, if sequences were aligned in a
random order, this would produce alignment errors, e.g.
two highly similar sequences S and T might be aligned
differently than ther optimal pairwise alignment. Why
is this? In each progressive alignment step, each cluster
MSA must be reduced to a 1D profile, which no longer
represents the full complexity of the individual sequences.
Thus, when two clusters of sequences are aligned in
such an algorithm, there is no guarantee that any pair of
sequences from the two clusters will align optimally.

The simple iterative alignment procedure presented in
this paper, which aligns sequences in the order in which
they are given, will seem very unsophisticated relative to
CLUSTAL’s extensive consideration and optimization of
the order in which sequences must be aligned. Our align-
ment method is certainly not immune to order-dependency
effects in the MSAs that it constructs. We have observed
some differences in large PO-MSAs, particularly in re-
gions of marginal alignment score, depending on the order
in which the sequences were added. It is possible to apply
standard progressive alignment approaches to ordering the
alignment steps (Feng and Doolittle, 1987), by an exten-
sion of the algorithm (see Section Conclusion). However,

the simple POA algorithm can produce good MSAs of
complex (e.g. multidomain) sequence families (e.g. Fig-
ures 5 and 6), because the PO-MSA data structure stores
all sequences at all stages in the progressive alignment
process. When a new sequence S is aligned to an exist-
ing PO-MSA G, POA considers every possible alignment
of S versus every possible sequence in G. There is no pos-
sibility of the algorithm ‘missing’ an optimal alignment of
S against its closest homologous sequence S′ in G, and
this is true at every stage in the buildup of the MSA. In
this sense, it doesn’t matter greatly whether S and S′ are
aligned as the first step of the MSA, or at very different
stages of the buildup, because they are guaranteed to find
each other at any step.

POA is efficient. It can simultaneously consider all
possible alignments of sequence S against sequences T ,
U , V . . . in G, faster than separate pairwise alignments.
This is because the partial order graph squeezes out
redundancy from the representation of these sequences,
by fusing aligned, identical letters. All places where T ,
U , V . . . are the same will be represented only once in the
graph; additional nodes (requiring additional computa-
tion) will only be present where there is new information
(i.e. where a sequence diverges from the others). In the
worst case, where all the sequences T , U , V . . . have
no homology to each other, the number of nodes in
the PO-MSA will simply be the sum of the number of
letters in the sequences aligned so far, and the total time
complexity for aligning all the sequences increases to
O(N 2L2), where N is the number of sequences and L
is the length of each sequence. Thus, in the worst case
scenario POA’s time complexity is equivalent to that of
CLUSTAL.

Homologous recombination
A specific sequence alignment algorithm can be consid-
ered to be a model for how sequences can change over
time. For example, pairwise Needleman–Wunsch align-
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ment corresponds to a model that allows two edit oper-
ators, substitution and insertion/deletion. More complex
edit operators such as duplication (in which an extra copy
of part of a sequence is inserted next to it) or translocation
(in which part of a sequence may be moved to a different
location in the sequence) have also been modeled in other
algorithms. Any edit operator not explicitly included in a
given algorithm, will not be permitted in the alignments
produced by that algorithm. Thus, it is important that the
algorithm’s edit operators match the real-world process by
which the sequences it’s aligning evolved from a common
ancestor.

Our analysis of multidomain protein alignment (Fig-
ures 5 and 6) demonstrates that recombination is an
important edit operator for biological MSAs. In biology,
recombination is an important mechanism of gene ex-
change and generation of genetic diversity. Moreover,
most organisms have been shown to contain machinery
for homologous recombination, that is, crossing over
from one genetic sequence to another specifically within
regions of homology between them. We can state this
recombination edit operator precisely: it means aligning
part of a sequence S to one sequence T , and the next
part of S to another sequence U , only where T and U
are homologous (i.e. aligned, with at least one identity)
at the recombination point. For example, if one of the
sequences T had domains ACD, and another sequence
U had domains BCE, we would need the recombination
operator to align the domain sequence ACE to T and U .

We can analyze MSA methods in a new light by posing
the following problem: given a set of sequences T ,
U , V . . . with known alignment relationships, state an
efficient algorithm for finding the optimal alignment of a
new sequence S to all of them simultaneously, allowing
the new edit operator recombination in addition to the
usual edit operators of substitution and insertion/deletion.
Adding this new edit operator would appear to greatly
increase the computational complexity of sequence
alignment, since we must now consider all possible
recombinations of the set of sequences T , U , V . . . and
try aligning S to all of them.

One efficient algorithm for solving this problem is
simply POA. Since the partial order graph representation
fuses aligned letters from different sequences as a single
node in the graph, when a new sequence is being aligned
to the partial order, it can switch from aligning to one
sequence to aligning to another at these junction nodes.
Thus, POA also considers all possible recombinations of
T , U , V . . . when aligning S. The traversals in G that
represent the sequences T , U , V . . . in G are only a subset
of all traversals of G. The remaining traversals represent
recombinations in which parts of multiple sequences
are linked through junction nodes where two or more
sequences are aligned and identical. Since POA aligns S

against all possible traversals of G, it considers all possible
recombinations that pass through junction nodes.

If the number of branches in the alignment is b, the
number of possible recombinations grows exponentially
(as O(2b) if we assume no two branches are at the same
node). The time complexity of POA, by contrast, grows
at only O(2n̄ p + 1) = O

(
2
(
1 + b

N

) + 1
)
, where n̄ p is

the average number of branches per node, and N is the
total number of nodes in the graph. We would have to
add many branches to the graph before we would notice
even a slight increase in the computation time. POA
is able to consider recombinations efficiently because
the graph structure strictly limits the set of all possible
recombinations of the sequences, to just those that pass
through regions of homology (i.e. junction nodes where
two or more sequences are aligned and identical).

CONCLUSION
Should MSAs be linear?
The examples in this paper suggest that it may be
productive to question basic assumptions about sequence
alignment that underlie most work in the field. A single
sequence is by definition a linear object. Thus it is natural
to assume by extension that an alignment of sequences
would also be linear. However, a MSA is not necessarily a
linear object, but rather a partial order, because it joins
together multiple sequences that can diverge from one
another to form branches and loops. Partial ordering has
previously been proposed as a mathematical condition
for the consistency of a proposed MSA (Morgenstern et
al., 1996). This principle has been used by the program
DIALIGN to prune the set of possible combinations of
local (segment) alignments while building up an MSA
with a greedy algorithm, and has been applied successfully
to both DNA and protein sequences (Morgenstern et al.,
1996).

By contrast, representing an MSA as a linear structure
is equivalent to assuming that all regions of all its se-
quences are homologous to one another over their entire
length (and thus should be aligned, forming one linear
sequence of columns). Problems with this assumption
are well-known. When standard MSA methods are ap-
plied to large sequence families, it is often considered
important to ‘clip’ the sequences before alignment,
removing non-homologous parts. In fact, the CLUSTAL
manual warns that failure to remove such heterogeneous,
non-homologous regions can cause incorrect alignments.

In particular, alignments of multidomain protein fami-
lies should have complex partial order structure, because
such proteins often differ in their domain composition,
even when they have one or more domains in common.
Figure 5 illustrates that even for alignment of a very small
number of proteins (four), the partial order structure can be
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complex, interesting, and biologically meaningful. Indeed,
generating a POA of the human proteome, and analyzing
its branching structure, offers one way of identifying the
dictionary of domain types, and cataloguing how they are
combined. We anticipate that POA can provide interesting
new lines of work for the study of multidomain protein
families.

Future work
The simplistic POA algorithm presented in this paper has
a number of flaws that can be corrected by combining it
with other sequence alignment algorithms. For example,
POA is sensitive to sequence alignment order. One way
to address this would be to apply a CLUSTAL-like
progressive alignment algorithm, using a guide tree to
establish the best order for aligning the sequences. Since
this requires alignment of one set of aligned sequences
to another, this involves extending the POA algorithm
to align two PO-MSAs to each other. We will describe
this PO–PO algorithm and its application to CLUSTAL-
like progressive alignment elsewhere. A second flaw in
the simple POA algorithm is that it uses a pairwise
alignment scoring matrix as opposed to more sophisticated
profile scoring statistics. This becomes a problem when
aligning large numbers of highly variable sequences.
Since POA allows recombination when searching for
an optimal alignment, when there are multiple residue
choices at each position in the PO-MSA, POA will pick
the path that scores best at each position, and alignment
of a random sequence will no longer yield a neutral
(zero) score. This can lead to aligning non-homologous
regions of sequence, which should not be aligned. This
problem can be solved by properly adjusting the alignment
scoring for statistical significance, so that alignment of
shuffled sequences yields a zero score. Profile-based
scoring methods (Thompson et al., 1994) have solved
similar statistical problems.

POA is complementary to existing sequence alignment
approaches in many areas. For example, the data com-
pression inherent in the PO-MSA representation could be
used to develop accelerated forms of search methods like
FASTA (Pearson, 1990) and PSI-BLAST (Altschul et al.,
1997). By using POA to pre-align homologous sequences
in the input sequence database, the search algorithm
could use the PO-MSAs as the search database. This
could be much faster than searching all the individual
sequences separately, especially for datasets with high
levels of redundancy (like ESTs), and potentially more
sensitive because it can use position-specific profiles
(like PSI-BLAST) based on the PO-MSAs, and could
detect novel ‘recombinations’ of different elements
from a homologous sequence family. The PO-MSA
representation of MSAs is itself also potentially useful,
as the basis for applying and developing novel graph

algorithms for finding biologically interesting features in
sequence data. Finally, the PO-MSA is fully compatible
with probabilistic approaches based on Markov chains,
and is a natural object for Hidden Markov Model (HMM)
computations (reviewed in Eddy, 1996).
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