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Abstract  
 

Multiple sequence alignment is usually considered as an optimization problem, which has a statistical 
and a structural component. It is known that in the problem of protein sequence alignment a processed 
sample is too small and not representative in the statistical sense though this information can be sufficient if 
an appropriate structural model is used. In order to utilize this information a new structural description of 
the pairwise alignment results union has been developed. It is shown that if the structure is restored then 
Multiple Sequence Alignment is achieved. Introduced structure represents the set of local maximums of 
quasi-concave set function on a lower semi lattice, which in turn is a union of the set-theoretical intervals. 
This union is a set of the consistent subsets of diagonals, introduced by B. Morgenstern, A. Dress, and T. 
Werner (1996). Algorithm for local maximums search on proposed structure has been developed. It 
consists of an alternation of the Forward and Backward passes. The Backward pass in this algorithm is a 
rigorous while the Forward pass is based on heuristics. Multiple alignment of 5 protein sequences are used 
as an illustration of the proposed algorithm. 
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1. Introduction 
 
Procedures of amino acid sequence alignment are basic methods for similarity analysis among proteins 

(generally speaking the same is true for DNA sequences, but in the paper we are interested in protein 
classification; this is the reason why we are focused on amino acid sequences). The analysis is used to 
predict structural and functional properties of proteins based on their primary structures, for their evolution 
relations, etc. [1-12, 14, 16-21]. There are two types of the alignment procedures: for pair-wise 
comparisons and multi-comparisons. In both of cases the most important part of results is presented as a 
table of aligned sequences which are related with rows of the table. Columns of the table are related with 
“common positions” of the sequences: “to compensate differences in the sequence lengths” some positions 
in some sequences present “gaps” of amino acids. Distributions of gaps are organized in order that 
positions without gaps present “most similar” amino acids from different sequences [4, 13, 15]. In the first 
case two sequences are under consideration, and such procedures are formulated as optimization 
procedures which solutions are achieved by dynamic programming methods efficiently. Multi-alignment 
problems can be also formulated similarly as optimization tasks, but they cannot be solved efficiently 
[4,5,15,]. However, needs to have efficient multi-alignment procedures are so actual and important that 
practitioners have applied heuristic procedures which results can be estimated only indirectly and 
statistically by their testing on known data. There are several such procedures which are very popular  

[1, 5, 27]. All of them use a pair-wise alignment as a preprocessing analysis which results after that are 
integrated in a multi-alignment result. The integration heuristic ideas are based on a statistical pattern about 
a profile related with a particular position in “correct, existed” (unknown) multi-alignment (in simplest case 
one can interpret the profile as an estimate of a probability distribution of amino acids for the position in 
evolution). The main difference between procedures is related with the profile heuristics.  

We found only one exclusion from many different multi-alignment procedures, DIALIGN [26, 28, 29], 
which doesn’t use any profile idea, and is based on absolutely different principle about a correct multi-
alignment. It is a pure combinatorial principle in which the correct multi-alignment is combined as “a 
consistent” system of blocks. The whole system is estimated by a statistical objective function which 
extreme value is related with the correct alignment. It is interestingly that the function is designed without 
penalties for gaps. The gaps arise “automatically” from constrains on consistency of the system-alignment. 
Authors proposed an efficient greedy procedure to find a local maximum of the function (exact global 
solution is also NP-hard problem).  

In this paper we analyze main combinatorial structures of DIALIGN and show another ways how they 
can be applied to construct new multi-alignment procedures. A novelty of these ways is they present multi-
alignment results with some “inner structure” of the alignment, which can help in an interpretation analysis. 

The paper is organized in 12 sections. In sections 2-6 we describe main DIALIGN’s combinatorial 
elements [22, 30]. In section 7 we discuss a fundamental notions of layered clusters [23], on which our 
concept is based. In section 8 we introduce a quasi-concave measure of alignment quality. In section 9 we 
discuss a concept of the best multiple alignment choice. In section 10 the best choice principle is 
implemented algorithmically. In section 11 an illustrative computed example of multiple alignment is 
shown and discussed. The conclusions are given in section 12. 
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2. Alignment as an Equivalence Relation 

 
 
Consider a set of sequences {X(1),…,X(N)}, where X(i)=<x(i)

1,…,x(i)
Li> is the i-th sequence and Li is the 

length of X(i). Let us call X(i)
int=<x(i)

k, x
(i)

k+1,…,x(i)
k+p> as interval of X(i) . 

Consider the set of pairs of indices 
 

S={(i, l) | 1≤i≤N, 1≤l≤Li} 
 

of all the positions of all sequences (Sequence-Position Pair Set (SPPS)).  

Consider a relation R on S. Say that each two pairs x,y∈S has a connection if (x,y) ∈R. 

Let R be an equivalence relation on S. It means that the set S divided into r classes S1,…,Sr,  Si∩Sj 

=∅, 1≤i,j≤r, �
r

i
i SS

1=

=  and two pairs x1 = (i1, l1) and  x2 = (i2, l2)  are in a relation R (symbolized as (x1, x2) 

∈ R) if and only if both of them belong to one of these classes. 

       Introduce a partial order ″≤″ relation on S as following:  

        ,,),(),( kljikjli ≤=⇔≤  
 
which means that only pairs from a same sequence can be compared. 
Introduce a new relation on S: 
 

        ,)(: tR R ≤∪=≤  

which is a transitive hull of union of R and ″≤″ relations, i.e. the elements c1,c2 ∈ S are in relation (R∪≤)t if 
and only if there exists a chain of elements s0,…,sk∈S with c1=s0, c2=sk and (si-1,si) ∈ R or si-1≤si , for all 
i=1,…,k. 

An equivalence relation R on the set S is called alignment if all restrictions of the extended relation 
″≤R″ to the single sequences coincide with their respective natural order relation. In other words an 
equivalence relation R on the set S is called alignment if for any two pairs x1 = (i, l1) and x2 = (i, l2) from a 
same proper sequence i the following is correct: 

.2121 xxxx R≤⇔≤  

 
 
 
 
 
 
 
 
 
 
 

 

                                                                                                                                                    

 

 

Y   I   A   V   L   F   A   R   E   D   P   E 
                 |     |    |     | 
L   A   C   V   I   F   G   P   D 
 
P   W   D   D  V  T   F   H   D   P   C 

(a) 

Y   I   A   V   L   F   A   R   E   D   P   E 
                 |     |    |     | 
L   A   C   V   I   F   G   P   D 
 
P   W   D   D  V  T   F   H   D   P   C 

(b) 

Figure 1: Two examples of an equivalence relation, which is 
an alignment (b) and an equivalence relation, which is not 
alignment (a). 
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Two examples of the introduced notions are given on the Figure 1. Here and below we numerate 
sequences from the top to the bottom. Lines reflect the connections on the set S. It is easy to see, that the 
restriction of ″≤R″ to the first sequence does not preserve its’ natural order relation in the case (a). On the 
other side all the restrictions are compatible with the natural order relations of the single sequences in the 
case (b). These examples are important for understanding of all the construction thus let us discuss them in 
more details. Obvious that all the pairs connected with a line can be united into the equivalence classes. 
Each letter, which does not connect to any other one, forms its own class of equivalence. Let us take, for 
example, a path (1,10), (3, 4), (3, 8), (2, 6), (1,6) on the Figure 1 (a). We see that (1, 10) ≤R (1,6). But from 
the other hand (1, 10) > (1, 6) according to the natural order relation on the sequence 1. This observation 
shows us that an equivalence relation example illustrated by Figure 1 (a) is not an alignment. 

Let us chose an arbitrary x∈S, an arbitrary i-th sequence, and an equivalence relation RA, which is 
an alignment.  The following boundaries characterize such triple: 

).),(or  0|},...,0{max(:),,(

)),,(or  1|}1,...,1{min(:),,(

xjijLijRxib

jixLijLijRxib

RA

RA

≤=∈=

≤+=+∈=
↑

↓

 

 

Let us illustrate this characterization with help of Figure 1 (b). Let us consider sequences 1 and 3 
and the letter R in the 1-st sequence. In this case b↓(3, (1, 8), RA) = 10 and b↑(3, (1, 8), RA) = 9. It means the 
letter R from the sequence 1 can be connected in RA with the sequence 3 only by a new position between 
original positions 9 and 10. In other words, only with a gap which should be inserted here.  

Now introduce the notion of consistency of a pair of elements x,y∈S to an alignment RA. 

A pair of elements x,y∈S be consistent with an alignment RA if the relation RA’=RA∪{(x,y)} is also 
an alignment.  

Describe now a way of checking that a pair of elements x,y∈S is consistent with an already built 
alignment A. This checking procedure will be a part of the proposed multiple alignment algorithm. 

 Assertion [22]. Given an alignment RA, an element Sx ∈ˆ  and an element Sjiy ∈= ),(ˆ 11 , the 

relation )}ˆ,ˆ{(: yxRR AÁ
∪=′ is a consistent extension of RA if and only if one has 

),ˆ,(),ˆ,( 111 AA RxibjRxib ↓↑ << . Moreover, the consistency bounds of RA
’ can be computed, for any 

Sjix ∈= ),( 00 and i, 1≤i≤N by the formulae 









≤<
≤<

=
↓

↑↓↑↓

↑↓↑↓

↓

.),,(

),ˆ,())),ˆ,(,(,(),ˆ,(

),ˆ,())),ˆ,(,(,(),ˆ,(

)',,( 000

000

elseRxib

RyibjRxibiibifRxib

RxibjRyibiibifRyib

Rxib

A

AAA

AAA

A  









≥>
≥>

=
↑

↓↑↓↑

↓↑↓↑

↑

.),ˆ,(

),ˆ,())),ˆ,(,(,(),ˆ,(

),ˆ,())),ˆ,(,(,(),ˆ,(

)',,( 000

000

elseRxib

RyibjRxibiibifRxib

RxibjRyibiibifRyib

Rxib

A

AAA

AAA

A  
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3. Diagonals of Dot Matrices 

 Now introduce a notion of diagonal. Given two sequences X=<x1,…,xL1> and Y=<y1,…,yL2> of 
length L1 and L2 respectively and A=||aij||L1*L2 ,where aij is a measure of compatibility of the xi and yj. A is 
called a dot matrix of (X,Y).Each sequence of pairs d=<(xi, yj), (xi+1,yj+1),…,(xi+k,yj+k)>, 1≤i≤L1, 1≤j≤L2, 
0<k≤min(L1-i, L2-j)  is called a diagonal of dot matrix. 

The notion of diagonals is illustrated on the Figure 2. We present here the two first sequences from Figure 
1, but with changed set of connections. Note that up to now we considered the notions of 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

consistency and alignment in the common case of a group of sequences, and we called as alignment a 
multiple alignment of this group. On the Figure 2 we illustrate these notions in the case of only two 
sequences. One can see 3 diagonals on this figure. It is shown that it is impossible to build an alignment 
using 1-st and 3-rd diagonals. In opposite, the pair of diagonals 1 and 2, or the pair of diagonals 2 and 3 
produce alignments. 

Let us consider a relation Q on a SPPS from the set S, such that  

(a) (x, y)∈Q ⇒ (y, x)∈Q, 

(b) (x, y)∈Q, (x, z)∈Q ⇒ y = z, 

(c) (y, x)∈Q, (z, x)∈Q ⇒ y = z, 

and a pair of sequences X(i) and X(j). Choose any interval from a sequence X(i) . Let X(i)
int be an interval from 

the sequence X(i)  without gaps and X(j) is some another sequence which is under consideration. It is easy to 
show that if every pair (i, l)∈ X(i)

int  is associated with such pair (j, k) from X(j) that ((i, l), (j, k))∈Q then 

         
         
         
   1      
    1     
     1    
      1   
         
 3        
  3       
       2  
        2 

Y 
 I 
A 
V 
L 
F 
A 
R 
E 
D 
P 
E 

Y   I   A   V   L   F   A   R   E   D   P   E 
                 |     |    |     | 
L   A   C   V   I   F   G   P   D 

L     A    C    V     I      F     G    P    D 

(a) (b) 

Figure 2: An Example of Diagonals in table (a) and graph (b) presentations. No 
alignment based on the 1-st and the 3-nd diagonals possible. An alignment based on 
the 1-st and the 2-nd diagonals is: 

Y   I   A   V   L   F   A   R   E   D   P   E 
L   A   C   V   I   F   G    -    -    -    P   D 

An alignment based on the 2-nd and the 3-rd diagonals is: 
Y   I   A   V   L   F   A   R   E   D   -    -    -    -     -    -    -    P   E 
L    -   -     -    -    -    -     -   A   C   V   I   F   G    -    -    -    P   D 
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X(i)
int is associated with an interval X(j)

int in order that (X(i)
int, X

(j)
int) is a diagonal. In opposite, each diagonal 

induces connections on the set S. The set of these connections is a relation Q with (a), (b), (c) properties. 

One can examine 6 diagonals on Figure 1 (a) and 5 diagonals on Figure 1 (b). 

Now it is easy to see that an alignment consists of a set of diagonals. A set of diagonals is called an 
alignment if the equivalence relation influenced by it is an alignment. 

Checking if a subset of diagonals G={g1,…,gk} is an alignment can be done by the following recursive 
procedure: 

 
Step 0: i=0, A=∅; 
Step i: i=i+1, A=A∪gi, if all the positions of gi are successively checked out for the consistency with the 

widened set of positions. If one found a non-consistent position, then G is non-consistent. Stop. 
 If i=k+1 then G is consistent. Stop. 
 

Using a set of diagonals which is an alignment, one can easily built a multiple alignment matrix, with  
matching  induced by the diagonals and gaps or letters, which are not included into the diagonals between 
these intervals of matching. Let us illustrate it on the alignment presented on the Figure 1 (b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that any successive widening of alignment pair by pair according to the Assertion [22] while the 
alignment constraints are succeed gives a multiple alignment. 

 

Y      I      A        -      V      L      F       -       A      R      E      D      P      E
                          
 -      L      A       C     V      I       F       -       G       -      P      D       -       -
 
P      W     D       D     V     T      F       H      D       -      P      C       -       -

Figure 3: A multiple alignment corresponded to 
the set of diagonals presented on Figure 1 (b). 
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4. Diagonal Weighting 

Consider two ways of a diagonal weight calculation. Let D is the set of all the considered diagonals  

and d is an arbitrary diagonal from the set D.  

In case that one use a 0-1 dot matrix w(d) can be calculated as following. Let l is the length of d, m is 
number of matches in d, T is a parameter. 



 >

=
otherwise ,0

,),(  ),,(
)(

TmlEifmlE
dw , 

),(ln),( mlPmlE −= , 

ili
l

mi

pp
i

l
mlP −

=
−





= ∑ )1(),( . 

 
P(l,m) is the probability of diagonal of length l has equal to or greater than m matches. p=0.05 in the 

protein case and p=0.25 in the DNA case.  

If one use a substitution dot matrix then w(d) can be calculated as: 



 >

=
otherwise ,0

,)(  ),(
)(

TSEifSE
dw  

)(ln)( SPSE −=  

  ,1)(
2* SeNKeSP

λ−−−=  

∑
∈⊆

=
sub

sub dji
ij

dd
aS

),(

,max  

   N = max(l-   λS/H, 1). 
 

P(S) is the probability of a length l diagonal maximal hit score is greater than or equal to S (extreme 
value distribution). K, H,λ are functions of dot matrix elements aij and a prior probability distribution for 
amino acids [24]. 
 

 

 

5. Pseudo Diagonals 

 

An Alignment Quality Measure is a function of its individual diagonal weights and the weights of 
“diagonal interactions.” In order to take these interactions in consideration the following construction of 
pseudo diagonal is introduced. 

Let w(d) be a weight of diagonal d, and e is another diagonal.  
Definition. If d and e have a common sequence S1, then there are 2 sequences (S1,S2) for d and 

(S1,S3) for e. Mark all the positions of S1 that included in d and e simultaneously. We call the new 
diagonal, which contains positions of S2 and S3 connected to the marked ones of S1 as pseudo diagonal z. 
Thus the interaction between d and e can be measured as following: 





=
else.0

exists,  )(
),(~ zifzw

edw  
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6. The Set-Theoretical Description of Consistent Alignments 
 
 

Let us consider the set of diagonals D and the set C of all the alignments on D: C⊆2D.  
The following statements can be easily checked: 

1. ∅∈C; 
2. C is a lower semilattice of sets: H1,H2∈C ⇒ (H1∩H2)∈ C; 
3. H1∈C, H2⊆H1 ⇒ H2∈C. Let {E1, …, Em} be the set of maximal elements of C. Then 
 C is a union of the set-theoretical intervals: 

.],[
1
�

m

i
i

EC
=

∅=   

 
 
 
7. Layered Clusters 
 
 

According to Mullat [25] and Mirkin, Muchnik [23] the tightness function, F(H) on a subset H of 
a finite set W, can be defined as following: 
 

( ) ( ),,min HiHF
Hi

π
∈

=  

 
where π(i, H) relates any non-empty subset H⊆W with its element i∈H. If π(i, H) is a monotone 
linkage function: H1⊆H2 ⇒ π(i, H1) ≤π(i, H2) then the corresponding tightness function satisfies the 
so-called quasi-concavity condition: for any H,G∈W, 
 

)).(),(min()( GFHFGHF ≥∪  
 
In this work we are interested only in the class of monotone linkage functions and the 

corresponding quasi-concave tightness functions. 
The tightness function reflects the density of interrelations within sets H. 
Let us refer to a subset H⊆W as to a pattern with regard to F(H) if H is separated from the rest in 

such a way that F(H) is greater than F(H’) for any H’, which is not its part, that is, F(H)>F(H’) for any 
H⊆W’ such that H’∩(W-H)≠∅. 

The set of all patterns Pall is nonempty and chain-nested: W=P1 ⊃ P2 ⊃ … ⊃ Pk=H*. H* here is the 
maximal global maximizer of F(H): F(H*) ≥ F(H), for every H ⊆X and F(H*) > F(H), for every H⊄H*. 
H* named kernel of quasi-concave function. 

Pall is named layered cluster. The pattern of a layered cluster can be considered as levels of 
resolution of the overall similarity modeled by the set function F. 

The following worst-out Algorithm 1:  
 

1. Xcurr=X;  
2. x = arg min π(x, Xcurr),x∈Xcurr;  
3. Xcurr=Xcurr\{x};  
4. If Xcurr= ∅, then STOP, else go to 2, 
   

successively built Pall:  Xcurr is a pattern iff 
steps previous on the 

).(max     )(
currXY

curr YFXF
=

>   

It is easy to check that all the theory can be transferred to the set theoretic intervals [A, W] by 
redefinition π′(i, H) = π(i, H∪A). 
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8. An Alignment Density Measure 
 
 
Let H is a subset of D: H∈2D. Let d is a diagonal from H: d∈H. Introduce the following linkage 

function: 
 

,),(~)(),( ∑
∈

+=
He

edwdwHdϕ  

 
which scores a linkage between a subset H and a diagonal d. It is easy to see that ϕ(i, H) is a monotone 
linkage function: H1⊆H2 ⇒ ϕ(i, H1) ≤ϕ(i, H2). 

Introduce the tightness function  
 

( ) ( ),,min HiH
Hi

ϕ
∈

=Φ  

 
which is quasi-concave correspondingly. This function reflects the density of interrelations within sets H in 
such a way that the greater Φ(H) the greater the density of H. 
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Figure 4: Hit scores distribution in a database search. X axe reflects the 
order of hits in a database search output. The hit score values marked on 
the Y axe. The clustering of hits is observed. 
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9. The Multiple Alignment Choice: Concept and Formalization 
 
 
Let us start to expose the concept from the following simple observation. Each one that made a protein  

sequences database search at least once is familiar with it. Given a query sequence and a database and one 
do the homologous search using a local alignment algorithm. The result of search is a chain of hits from the 
database sequences sorted according the descending of the scores. One can observe that the significant hits 
are clustered in the following way: the most closed homologues formed the core, the first cluster in the 
scores order then one can observe a shift on the score axe. After it a cluster of hits, which closeness to the 
query is weaker is observed. This cluster is also ended by shift in score, and so on.  

We illustrate the exposed observation on Figure 4.   
This observation suggests a nested structure of significant hit sets in a group of homologues. The  

closest hits will be clustered together, the second significant group of hits will be clustered together and 
with the first group and so on. 

Let us illustrate this consideration with help of the following example. On Figure 5 one can see 
three sequences and a imaginary results of pairwise alignments of the sequences from Figure 1 (a), which 
produce the pairwise diagonals. If one unite all the diagonals on a same picture (Figure 5 (b) which is the 
same as Figure 1 (a)) then one can see that this set of diagonals is incompatible and can not produce an 
alignment. It can be easily shown that only two set-theoretical intervals of alignments can be extracted: 

 

. 

DPC

GPD

[2,3]

 ,

PC

PE

[1,3]

 ,

DD

ED

[1,3]

 ,

LA

IA

]2,1[

    ,

 

DPC

GPD

[2,3]

 ,

VTF

VIF

]3,2[

,

PD

ED

[1,2]

 ,

VIFG

VLFA

[1,2]

 ,

LA

IA

]2,1[

    ,

2

1


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
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I

I , and 

 
 Let us analyze the multiple alignment matrices, which correspond to the maximal sets of these 

two intervals. These matrices are presented on Figure 6. The first alignment looks better than the second 
one, because it has more matching and much less gaps. What another difference we see between these two 
pictures? On the first picture we see a dense cluster in the middle of it, the two rather dense segments which 
are connected to the first cluster, the segment connected to the second pair and so on.  
 The second alignment consists of three different blocks, which are not connected together, that’s 
why this alignment is a weak one. 
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Figure 5:  (a) three pairwise alignments separately. Diagonals are colored 
in the same color and their corresponding amino acids are connected 
with a line. (b) All the diagonals obtained in three alignments united on 
the one picture. 

Y   I   A   V   L   F   A   R   E   D   P   E                     1 – 2 Alignment
                 |     |    |     |           
L   A   C   V   I   F   G   P   D 
 
L   A   C   V   I   F   G   P   D                                     2 – 3 Alignment
 
P   W   D   D  V  T   F   H   D   P   C 

Y   I   A   V   L   F   A   R   E   D   P   E                    1 – 3 Alignment 

P   W   D   D  V  T   F   H   D   P   C 

Y   I   A   V   L   F   A   R   E   D   P   E 
                 |     |    |     | 
L   A   C   V   I   F   G   P   D 
 
P   W   D   D  V  T   F   H   D   P   C 

(a) 

(b) 
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According to the enclosed structure of hits, illustrated above, we consider a multiple sequence 
alignment as a crystallization process: its first step is the nucleus of crystal formation and the further 
process is a crystal growing layer by layer. The nucleus of group of protein sequences is the set of the 
segments of its individual sequences with large connection strength, the connection strength decreasing in 
order of the layers’ addition. 

In other words, a procedure which restores this process has to find firstly the most dense set of hits, 
than to add the less dense, but mostly connected with the first set and so on. 

This process can be modeled as a restoration of such a set theoretical interval [∅, Ε*] which contains a 
chain of local extremes of the function Φ : 

 
   Pp= arg max Φ(H | H∈C); 

 Pp-1 = arg max Φ(H | Pp ⊆H ∈C); 
 … 
 P0 = E*. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: (a) an alignment corresponded to the maximal element of the first set-
theoretical interval. (b) an alignment corresponded to the maximal element of the 
second set-theoretical interval. 

(a) 

(b) 

Y      I      A        V      L      F     A      R      E      D      -       -       -        -       -        -      -      P      E 
                          
 -      L      A        -      C       -      -        V      -        -      I       -       -       F       -        -      G    P      D 
 
P      W      -        -       -      -        -       -       D       D     V     T      F       H      D      -      -      P      C 

Y      I      A        -      V      L      F       -       A      R      E      D      P      E 
                          
 -      L      A       C     V      I       F       -       G       -      P      D       -       - 
 
P      W     D       D     V     T      F       H      D       -      P      C       -       - 
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10. An Algorithm of the Crystallized Multiple Sequence Alignment Reconstruction  

We propose the following heuristics using the worst-off greedy Algorithm 1 of patterns search on 
a set theoretic interval: 

 
Algorithm 2: 
    E=∅, H*= ∅, H*

prev=∅; 
    Forward:  
        do  
           E=E∪{i} where i = arg max Φ(E∪{i}) over i∈D\E, i is consistent with E 
        while such i exists; 
    Backward: H*

prev=H*. Find H*=arg max Φ(H) over [∅, E] with help of the Algorithm 1. If H*=E, then 
stop and output E and all the chain of H*. If H*

prev≠H* then E=H* and go to Forward. If H*
prev=H* then find 

H*=arg max Φ(H) over (H*, E] with help of the Algorithm 1. If H*=E, then stop and output E and all the 
chain of H*. Else E=H* and go to Forward.  

 
Using less formal words, this algorithm works in the following way: starting from the empty set it 

runs forward providing a greedy choice of the maximal value of Φ on each step. It corresponds to an 
intuition for choice of an interval with big values of Φ on its successive nested sets. When it reaches an 
upper consistent set it turns back and found the set maximizes Φ on the chosen interval. Starting from this 
maximizer it repeats the forward and the backward passes until two successive passes give the same 

HTLV_II  t P L P SH e t hS A Q KG E L L A L I  C G L r aAKPW P S -  - LN I FL –   D SKYL I K ---  -  YLH sl   a i 
RSV          lG A -  - -  - - - SVQQ L E AR AVA M AL L– L - - W PT TPT NVVT– D SAFV a k mll  k m - -  -- GQ 
MoMLV  AGT -  -  -  - - - SAQR A E L I A LT Q AL K - M - - A EGKKLNVYT– D SRYAFA  - --  - TAH ih GE 
HBV         a PL P I H - - - T -  -  -  A E L L A  a -  C  f  -  -  - AR S R S G - - A N I  I GTD N -  - - - -   - --  -  -  - -  -- - - 
E.coli       AGYT r  T - - - T NN R M E LMA  A I  V  A L E a LK -  -  E h c e v i  l  s T – DSQYvr q   g itQ WI H  -- - - 

  
 [2, 3] 
 GASVQQLEARAVAMALLLWPTTPTNVVTDSAFV 
 GTSAQRAELIALTQALKMAEGKKLNVYTDSRYA 
  [1, 3] 
  LNIFLDSKYLIKYLH 
  LNVYTDSRYAFATAH 
  [3, 5] 
  TDSRY 
  TDSQY 
 
  [3, 4]          [1, 2]                                     [3, 5]                                           [1, 4]            [1, 4] 
  TDS           SAQKGELLALICGL          TSAQRAELIALTQALK           PLPSH        AKPWPSLNIF 
  TDN          SVQQLEARAVAMAL       TTNNRMELMAAIVALE         PLPIH         ARSRSGANII 
                                                                  [3, 4] 
                                                                 AELIA 
                                                                 AELLA 
 
  [1, 2]          [3, 5]      [1, 4]     [2,3]     [3, 5]  
  WP            AG          C          GQ       MAE 
  WP            AG          C          GE       LKE 

Figure 7: Multiple alignment results. The nucleus picked out by bold, the 
layers with medium density italicized and the layers with small density 
printed with regular font. 
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solution. When this search is finished the nucleus is fixed and the following layer is found in the same way. 
The procedure stops when the last layer, which is a maximal consistent set is found. 

 

11. Illustrative Results 

In order to test the proposed concept we implemented the Algorithm 2 in software and processed a 
group of 5 protein sequences.  The first step of our processing was all 10 pairwise alignments built with 
DIALIGN algorithm for each pair of sequences. The result of this step was a set of all possible diagonals, 
which was used for further processing. On the second step we ran the Algorithm 2 implementation on this 
set. On the last step our software places the obtained set of diagonals on the alignment matrix, with gaps 
signed as “-“. The results of the processing presented on Figure 7. We obtained 11 layers and classified 
them into 3 groups: nucleus, medium density, and small density. Figure 7 (a) illustrates the “forms” of 
layers. One can see that the “forms” rather complicated, with “nonlinear boundaries.” It corresponds to our 
concept of the crystallize growth. 

In order to estimate how distant our results from the results of the known algorithms we compared 
them with the ClustalW [27] results and with the DIALIGN results.  One can visually compare these results 
presented on Figure 8. To make this comparison more formal we compare multiple alignments according to 
the following criteria: 

1. Choose all the columns which have >1 amino acid. Count the number of columns, which have 
only 2 amino acids and these amino acids are identical. Count the number of columns, which have more 
then 2 amino acids and ≥ 2/3 amino acids in a column are identical. Summarize these two counters. 

2. Choose all the columns which have >1 amino acid. Count the number of columns, which have 
only 2 amino acids and these amino acids or both hydrophobic or both hydrophilic. Count the number of 
columns, which have more then 2 amino acids and ≥ 2/3 amino acids in a column are or all hydrophobic or 
all hydrophilic. Summarize these two counters. 

3. Count the number of gaps in a multiple alignment. 
 

Algorithm Criteria 1 Criteria 2 Criteria 3 
Our algorithm 20 21 21 
ClustalW 12 19 9 
DIALIGN 20 19 15 

  
Table 1: Comparison results 
 
 

The results of the comparison summarized in the Table 1. One can see that our results are very 
close to the DIALIGN results, but a little worse in the 3-rd criteria. The DIALIGN uses the same 
principle of diagonal set consistency. ClustalW does not provide good matching because of it is a 
global one. We lose a little for DIALIGN, because of its iterative structure. In terms of iterations we 
implemented only the first one. 
We conclude that the proposed principle gives rather good results and it is expedient to continue 
research of its properties. 
 
 
12. Conclusion 
 
We had two motivations to propose the above multi-alignment procedure: 

a. to emphasize that “correct” multi-alignment should be an analog for a crystallized process based on 
finding “a layered cluster” structure on the aligned set of sequences because such structure is reflected in “a 
nature” of data for what one wants to get a multi-alignment representation (according to the motivation we 
could show both that it is possible and that it gives a new way to construct multi-alignments); 
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b. the combinatorial optimization technique for quasi-concave set functions an appropriate, useful and 
efficient approach in order that to be applied in a sequence multi-alignment analysis. 

Experimental illustration has showed that this is a promised approach. Moreover, the procedure can be 
differently modified and improved using the same basic ideas. For instance, instead the set of diagonals one 
can consider all possible sub-diagonals from all given diagonals. Another example, instead using just a 
unique FORWARD, one can adapt the procedure FORWARD for starting from all possible diagonals, and, 
keep as a final result the best according to the maximum value of the function Φ(H). We want to investigate 
such possibilities in detail. 

The main part of our plan on the near future is to extend seriously data for the approach testing 
and comparative analysis. 
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