Vol. 18 Suppl. 2 2002
Pages S4-S16

Knut Reinert?

Multiple sequence alignment with arbitrary gap
costs: Computing an optimal solution using
polyhedral combinatorics

Ernst Althaus, Alberto Caprara?® Hans-Peter Lenhof? and

!International Computer Science Institute, 1947 Center Street, Berkeley, CA,
94704-1198, USA, 2DEIS, Universita di Bologna, Viale Risorgimento 2, Bologna,
40136, Italy, 3Zentrum fiir Bioinformatik, Universitat des Saarlandes, Im Stadtwald,
Saarbrticken, 66123, Germany and #Informatics Research, Celera Genomics, 45
West Gude Drive, Rockville, 20850, USA

Received on April 8, 2002; accepted on June 15, 2002

ABSTRACT

Multiple sequence alignment is one of the dominant
problems in computational molecular biology. Numerous
scoring functions and methods have been proposed, most
of which result in NP-hard problems. In this paper we
propose for the first time a general formulation for multiple
alignment with arbitrary gap-costs based on an integer
linear program (ILP). In addition we describe a branch-
and-cut algorithm to effectively solve the ILP to optimality.
We evaluate the performances of our approach in terms
of running time and quality of the alignments using the
BAliBase database of reference alignments. The results
show that our implementation ranks amongst the best
programs developed so far.

Contact: althaus@icsi.berkeley.edu

INTRODUCTION

Aligning DNA or protein sequences is certainly one of
the dominant problems in computational molecular biol-
ogy. The spectrum of methods ranges from extremely fast,
while less sensitive, hashing-based methods (e.g. Altschul
et al. (1990), Delcher et al. (1999)) over moderately ex-
pensive pairwise comparisons based on dynamic program-
ming (e.g. Gotoh (1982); Smith and Waterman (1981);
Needleman and Wunsch (1970)), to costly and sensitive
exact multiple alignment formulations (e.g. Gupta et al.
(1995); Reinert et al. (1997, 2000); Lermen and Reinert
(2000)), which are based either on the natural extension of
the dynamic programming paradigm, or on the application
of combinatorial optimization techniques.
Theintroduction of combinatorial optimization methods
to the field of computational biology (Reinert et al.,
1997) produced useful tools for numerous applications
such as physical mapping (Christof et al., 1997), genome

rearrangements (Caprara et al., 1999), RNA secondary
structure alignment (Lenhof et al., 1998), optimization of
flexible side chains in protein-protein docking (Althaus
et al., 2000), computing the fit of three-dimensional
structures (Lancia et al., 2001), and a genera trace
formulation (Kececioglu et al., 2000; Lenhof et al., 1999).

In this paper we extend the formulation of the gapped
trace problem proposed by Reinert (1999) so that we can
formulate a great variety of multiple sequence alignment
problems, among which the weighted sum of pairs
problem with arbitrary gap costs. To our knowledge this
is the first algorithm that can deal with truly affine gap
costs (Lipman et al. (1989) and Reinert et al. (2000) use
what is called ‘quasi’-affine or natural gap costs). Indeed
our method is independent of the choice of the gap cost
function and can handle any function including convex
and position-dependent gap costs which were proposed by
several authors (Larmore and Schieber (1990); Eppstein
(1990) to name afew).

To solve the problem to optimality, we propose abranch-
and-cut algorithm and present an implementation of it.
Our implementation was evaluated using BAliBase, a
benchmark library of structural alignments (Thompson et
al., 1999). While our initial implementation occasionally
failed to solve large examples in the specified time and
memory constraints, it was often the best or among the
tested programs. More precisely, for moderately sized
instances we compute on average the best solutions. This
positively answers a repeatedly asked question, whether
it is worthwhile to compute optimal alignments using
scoring functions which admittedly only approximate the
true biological phenomena.

In the first section we present a graph-theoretic formu-
lation for our problem, which is trandated into an integer

S4

(© Oxford University Press 2002

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

Combinatorial sequence alignment

linear program (ILP). In the following section, we study
the structure of the gapped trace polytope, namely the con-
vex hull of the incidence vectors of the ILP solutions. The
study of the polytope is a prerequisite for the algorithm
we propose, which fitsinto the branch-and-cut framework.
We present some classes of valid inequalities and describe
how we reduce the number of variablesin our ILP. Then
we evaluate the quality of our alignment algorithm and fi-
nally discuss our resultsin the last section.

For the technically interested reader we also give the
details of the branch-and-cut algorithm, specificaly the
separation routines in the Appendix. There we also give
conditions under which the presented valid inequalities
define facets of the problem polytope.

A GRAPH THEORETIC MODEL

The gapped trace problem can be formulated as follows.
Let S = {s1, &2, _,sk} be a set of k strings over an
aphabet ¥ and let ¥ = T U {—}, where ‘-’ (dash) is
asymbol to repr&ent gaps in strings. An alignment of S
isaset S= (5,52, ..., 5K} of strings over the alphabet
that satisfies the f0||0WI ng two properties: (1) the strings
inS have all the same length, and (2) ignoring dashes,
string § is identical to string s'. An alignment in which
each string § has length | can be interpreted as an array
of k rowsand | columnswhererow i correspondsto string
§'. Two characters of distinct strings in S are said to be
aligned under Sif they are placed into the same column of
the alignment array.

In the following we will let n := Z!‘Zl Is']l. In order
to express our problem on a graph we need the notion of
amixed graph whichisatuple G = (V, E, A), where V
is a set of vertices, E is a set of (undirected) edges and
Ais aset of (directed) arcs. A path in a mixed graph is
an aternating sequence vy, €1, v2, €, ... , vk Of vertices
and arcs or edges such that either ¢ = {vi, vi11} € E
org = (vi,vit1) € Afordli,1 <i < k. A pahis
called a mixed path if it contains at least one arc in A and
one edge in E. A mixed path is called a mixed cycle if
the first and the last vertex on the path coincide. A mixed
cycle represents an ordering conflict of the letters in the
sequences. The most trivial mixed cycle would correspond
to two alignment edges ‘crossing’, which is not allowed.
Since a mixed path P (or a mixed cycle C) is determined
by the set of arcs and edges in P (respectively in C), we
often identify paths and cycles by their set of edges and
arcs. We do allow multiple edges and arcs in between
any two nodes, or to put it differently a mixed graph is
amultigraph.

We can view the character positions of the k input strings
in Sasthe vertex set V of amixed graph G = (V, E, A),
called the gapped alignment graph, where each node v'j

represents the character s'J For convenience we denote

by V' the set of al nodes corresponding to characters
in s, i.e. node set V is partitioned into V1,..., VK
Additionally we need the notion of acritical cycle. A cycle
C iscdled critical if forall i, 1 < i < k, al verticesin
V' N C occur consecutively in C.

The edges in E represent alignments of pairs of char-
acters in different strings. Namely, we say that an edge
e = {u, v} isrealized by an alignment if the endpoints of
the edge are placed into the same column of the alignment
array. Let E"") C E denote the set of al edges with one
endpoint in V' and the other in V!. Note that the graph
obtained from G by removing all its arcs is k-partite with
color classes V1, ..., VK,

The arcsin A = Ag U Ap represent positional con-
straints. Arcsin Ap represent consecutivity of characters
within a same string and run from each node to its ‘right’
neighbor, i.e. Ap = {(vJ, J+1) l<i<kl=<jcx<
Is'||}. The arcs in Ag represent gaps in the aignment.
Each substring of astring s' can be aligned with gap char-
acters in any other string s!, or to put it differently, it
may be the case that no character'in this substring of &'
is aligned with any character in s!. Hence we introduce
for each substring of from §' to s, and for each 1 <
j <k, j #1i,anarcfrom vl to v}, denoted by (vI , vm)J
In other words, there are k — 1 arcsin Ag from v] to vy,
We again say that a gap arc (v, vl))! is realized by an
aignment if the substring in s' from position | to posi-
tion m is not aligned to any character in s!, whereas both
§_, (ifI > 1) and Sm+1 (if m < ||s'|) are aligned with

some letter in s/, We also say that the nodes correspond-
ing to the substring of s! are spanned by the gap arc. Let
A) C Ag denote the set of all gap arcs for substringsin
s aligned with gap charactersin sl. Also, given two gap
arcs (v, vl (v v,)J e Al we say that they conflict
if the substrings spanned by the arcs overlap or even touch,
that isif [I, m+1]N[p, q] # @. Thefact that the two arcs
conflict evenif p = m+ 1 isdue to the above definition of
realization — informally, there must be at least one aligned
character between consecutive gap arcs. Finally, we let
A < m) = {(vp,vg)! cp<Il.q>m}

denotethe set of arcsin A spanning v, .. . , vp,,. Wealso
alowl =m+1,i.e useA' J(p+1 < p) to denote the set
of arcsthat span either v or vp . The latter is motivated
by the necessity of repr@entl ng sets of conflicting arcs.

In order to score the alignment, each of the edgesin E
and gap arcsin Ag is assigned a weight that corresponds
to the benefit (or cost) of realizing the edge or arc. We let
we and wy denote respectively the weight of edgee € E
and arc a € Ag. Note that arcs Ap are independent of the
alignment, which specifies which edges among E and arcs
among Ag are realized.

S5

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

E.Althaus et al.

(v, v})? (vi, vh)?
C--GT-U
~AGGTC- @
(2, vd)! (v2, v3)?

Fig. 1. Gapped alignment graph for two sequences. In the middle is an alignment that realizes the gapped trace on the right.

A subgraph of the gapped alignment graph is called
gapped trace if it corresponds to a gapped alignment. A
gapped trace has to fulfill the following conditions which
we will formalize in the mathematical model of the next
section:

1. For each pair of strings, each node is either incident
to exactly one alignment edge or spanned by exactly
one gap arc.

2. There must not be a critical mixed cycle in the
subgraph. (see Reinert et al. (1997) for a proof).

3. There cannot be a pair of conflicting gap arcs for a
given pair of strings.

4. Whenever we redize two edges incident with the
same node, say {v, v2} and {y}, v}, by transitiv-

ity we must also realize edge {v]2, v}

The godl is to identify the gapped trace which has the
highest weight given asuitable scoring scheme (see Figure
1 for an example of a gapped aignment graph and an
associated gapped trace).

Usually one assigns to each edge e € E the correspond-
ing cost derived from an amino acid substitution table (e.g.
Henikoff and Henikoff (1992); Dayhoff et al. (1979)) and
to each arc a € Ay an affine or convex cost function.
However our method is capable of handling arbitrary, even
position-dependent, costs for both the edges in E and the
arcsin Ag. Thisis certainly in contrast to agorithms pre-
sented in (Lipman et al., 1989; Reinert et al., 2000). They
cannot compute alignments with truly affine gap costs,
which are currently the method of choicein most pairwise
alignment methods.

AN ILP FORMULATION

We assumein the following that ||s' || > 3 for all strings s'
and k > 2.

An initial model
We have two types of variables:

e Foreveryedgee = {v, v} € E''I, wedefineabinary

variable Xe (we also write X{vi ol }), which indicates
S
whether §' is aigned with sh or not. We call these
variables the alignment variables.

o Forevery aca = (v,vl)) e A\, representing a
gapinstring sl aigned to the substring s, . of s, we
define a binary variable y; (we also write y(vlivvim),-).
We call these variables the gap variables.

For a cycle C, we denote the set of edges with Cg and
the set of arcs with Ca. Let C denote the (exponentialy
large) collection of all critical mixed cyclesin G and 7
the collection of all maximal sets of conflicting gap arcs.
It isnot difficult to show (see aso the next section) that

IT={All+1loD:1<i,j<kiz#jl<l<]s|}.

Our initial ILP formulation is given in Figure 2.
Constraints (2), (3), (4) and (5) correspond to require-
ments 1, 2, 3 and 4, respectively. Note that inequalities
(4), which prevent the realization of ‘touching’ gap arcs,
are not necessary in the case of convex gap costs. Note also

that transitivity inequalitiesinvolving four or more strings,
eg.
X{v:i,vE} + X{v:g,v:g} + X{vfg,v:j} - X{v:i,v:j} =2

areimplied by (5).
By the above discussion we have

S6

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

Combinatorial sequence alignment

max Y we-Xe+ » wa-Va)
ecE achAg
subject to
> Xyt 2 Ya=LlVisijski#jlsi<ys| 2
1<m<|si| acAli(l<l)
D ¥ <ICel-1 V¥CeC ®)
ecCg
ZYafl,VleI 4
ael
Xt o2y T X1 s i sy = 1, Vi<ir<k 1<l <|s"|(r =123 (5)
[CPE T B U |3} {Iz vt
Xe,Ya € {0,1}, Veec E,a e Ag (6)

Fig. 2. Integer linear program describing the gapped trace polytope.

PROPOSITION 1. Every gapped alignment corresponds
to afeasible solution of ILP (1)—(6) and vice versa.

We will use branch-and-cut techniques to solve thisILP
which can be shortly explained as follows. First define
the gapped trace polytope P of a gapped alignment graph
G as the convex hull of al incidence vectors of gapped
traces, i.e.

P :=conv{x* € {0, /BN | X CEUA
isagapped trace of G}.

It iswell known that the optimal |LP solution corresponds
to avertex of this polytope. Unfortunately solving an ILP
directly is NP-hard. Hence we relax the given integer
program by dropping the integer conditions, that means
we replace (6) by

Xe,Ya>0, Vee E;ac Aq (7

(Note that xe, Ya < lisimplied by (in)equalities (2) and
(4)). Then we solve the resulting linear program.

If the solution X of the linear program is integral we
have the optimal solution. Otherwise we search for avalid
inequality fx < fo that ‘cuts off’ the solution X, i.e.
fy < foforaly e Pand fX > fo;theset{x | fx = fp}
is called a cutting plane. The search for a cutting plane is
called the separation problem. Any cutting plane found
is added to the linear program and the linear program
is resolved. The generation of cutting planes is repeated
until either an optimal solution is found or the search for
a cutting plane fails. In the second case a branch step
follows: We generate two subproblems by setting one

fractional variable xe to O in the first subproblem and to
1 in the second subproblem and solve these subproblems
recursively. This gives rise to an enumeration tree of
subproblems.

It would be desirable that the LP relaxation be ‘close’
to the origina problem. Geometrically, one would like
the polytope defined by (2)—(5) and (7) to be ‘close
to P. In fact, one may be interested in determining
better LP relaxations. The study of the structure of P, in
particular the determination of linear inequalities which
are satisfied by all pointsin P, yields useful information
in this direction. In the next section, we illustrate valid
inequalitiesfor P that are extensions of thosein the initial
ILP formulation. In the Appendix we prove that they
define facets of P, i.e. they are as strong as possible, and
we describe efficient separation procedures for each class.

Valid inequalities

In order to define valid inequalities for P, we character-
ize pairs of edges and/or arcs that are incompatible, i.e.
the associated variables cannot both take the value 1 in a
feasible solution. All these incompatibilities follow imme-
diately from requirements 1 and 3 and the corresponding
constraints (2) and (4) in the ILP formulation.

Two alignment edges are incompatible if and only if
they are crossing, i.e. each edge {v;, vin} is incompatible
with all edges {vl,, v4} such that either p <1 andq > m
orp>landg<m.

Two gap arcs are incompatible if and only if they
overlap or touch, | e. each arc (v], vm)J is incompatible
W|thallarcs(v vyl suchthat p < m+1andl < g+ 1.

An alignment ec? e and a gap arc are incompatible if

S7

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

E.Althaus et al.

and only if one endpoint of the former is spanned by the
latter, i.e. each edge {v], vin} isincompatible with all arcs
(v, vi)) suchthat p < | < q, aswell asall arcs (v, vg)’
suchthat p <m <aq.

In particular, note that two variables may be incompati-
ble only if they are associated with the same (ordered) pair
of strings.

Cligue inegqualities We call clique a maximal set K of
pairwise incompatible edges and arcs. Moreover, we de-
note by Kg and K a the edges and arcsin K, respectively.
The corresponding clique inequality has the form

Yo Xet Y Va<1i, ®

ecKg acKpa

and is clearly valid for P. Note that (4), as well as (2) if
‘="isreplaced by ‘ <’, are examples of cliqueinequalities.

Lifted mixed cycle inequalities In this section, we illus-
trate a class of inequalities which are stronger than the
origina (3).

As their ‘weak’ version (3), these inequalities involve
only allgnment variables. Consider a sequence of strings
s, .. , dong with edge set C < E, which is
partltloned into edgesetsC'rlr+1 C Elrlr+t r =1, ... |t
(letting i1 := i1). If C meetsthe following requirements

(@ forr = 1,...,t, al edges in Cirir+1 are pairwise
incompatible;
(b) every set {e1, ..., &}, where each & is chosen arbi-

trarily from C'r-ir+1, is the set of edges in a critical
mixed cycle;

then the following inequality

erft—]-,)

ecC

is valid for /P. Note that (3) are a special case of (9)
in which each set C'r-'"+1 contains only one edge. If in
addition

(c) C ismaximal with respect to properties (a) and (b);
we call (9) alifted mixed cycle inequality.

Generalized transitivity inequalities The last class of
inequalities that we present is a generalization of the
transitivity inequalities (5). S

Consider three different strings s't, s'2, s'3, along with a
letter §* of string s' and subsets S? and S® of lettersin s'2
and s'3, respectively. Clearly, if wealign 5 * with aletter in
S? aswell aswith aletter in S?, then we must align aletter

in S with aletter in S3. Thisyields the valid inequality

Z X{u, u|'2}+ Z le'l U|'3

5'22632 '3 €S?

> Zx.z .'3<1 (10)

§|2652 51'3683

which coincides with one of (5) if |S?| = |S®| = 1.

Variablereduction

Even for rather small instances, the number of variables
in our ILP formulation is large. For example, an instance
with 5 strings of length 100 has 201 000 variables. Most of
these variables are very unlikely to take the value 1 in an
optimal solution. In this section, we describe a successful
method to reduce the number of variables by eliminating
those variables that can not appear in an optimal solution.

Assume we know a good lower bound L on the
optimum, e.g. found by a heuristic. For every variable v,
we compute an upper bound U,, on the value of the optimal
alignment inwhich variable v takesthevauel.IfU, < L,
we know that this variable is not used by any alignment
which is better than the one we already have, so we can
permanently fix the variable to 0, removing it.

A simple upper bound U, for an alignment variable
v can be computed as follows: Compute al optimal
aignments between two strings s', s/, 1 <i < j < k.
The sum of the values of al these alignmentsis clearly an
upper bound on the value of the optimal alignment, called
the pairwise upper bound. Moreover, for any alignment
variable corresponding to an edge between s' and s!
we can compute an upper bound on the value of the
optimal alignment that realizes the associated edge, by
computing the optimal alignment between s' and s! that
realizes this edge and adding to the resulting value the
values of the optimal alignments between the other string
pairs. We can compute this upper bound for all alignment
variables by finding only two pairwise optimal alignments
(see Gusfield (1997)), with atotal running time of O(nz)

For a gap variable corresponding to arc (vI AL
can compute an upper bound on the value of the opti maI
alignment that realizes this gap by iterating over all nodes

vp of string j and assuming that v _, is aligned with v,
and that v}, ; isaligned with someletter after v}. Thetotal

running time to compute all these upper boundsis O(n%).
Finally, we can compute a better upper bound for
aignment variables with the following idea. Assume we

fix edge {v], vin} in the solution. For every string h there
must be a node vy, so that every letter before s must be
digned with aletter before § instring i aswell aswith a

letter before sk in string , and every letter after S¢,q must

S8

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

Combinatorial sequence alignment

be aligned with a letter after S, instringi aswell aswith

a letter after s,iprl in string j. The total running time to
compute all these upper boundsis O(n%).

COMPUTATIONAL EXPERIMENTS
Goal

The goa of our experiments is twofold. First, we want
to assess the quality of optimal alignments computed
with our agorithm. Second, we want to explore how
practical the current implementation isin terms of number
of sequences and sequence length, where each of these
factors will increase the size of the ILP and hence makes
it potentially harder to solve. Our comparison with other
programs serves these two goals. It reveal s that computing
optimal alignments does pay off in terms of quality and it
explores the current limits for feasibility of our approach.
It should not be understood as a general ranking of
these programs, since, although we perform very well on
instances we can solve, we are still not able to solve larger
problems.

Test data

We tested our implementation, which we will call COSA
(COmbinatorial Sequence Alignment) using a database
of different benchmark alignments (Thompson et al.,
1999) containing groups of sequences of different lengths,
called Reference 1 to 5, or (for short) R1 to R5. R1,
R2 and R3 are subdivided into three groups of different
lengths. R1 is further subdivided into three subgroups
according to different identity levels (V 1: identity < 25%,
V2: identity 2040%, and V3: identity > 35%). (R4
and R5 are not subdivided.) The database also offers
an evaluation program which computes a score between
0 and 1 indicating the percentage of correctly aligned
residues in the core regions of the alignments, where
the reference alignments are hand-created using structural
information. Note that we use the newest version of the
evaluation program (from June 14, 2002) for which no
bug is known. In addition to the database Thompson
et al. (1999) aso published a survey of the qualitative
performance of different alignment programs available at
that time.

Recently BAliBase 2 was made available which
contains updated reference alignments and more test
sets. Since we wanted to use the most recent structural
alignments as standard of truth we decided to use the
overal best performing programs from Thompson's
survey, PRRP, ClustalX, and Dialign together with a
recently published program T-Coffee (Notredame et al.,
2000) which generally outperforms the other programs.
The source code of all these programs was downloaded
and they were run with default parameters. We disregard

Table 1. Comparison of different scoring functions. The table shows the
average scores of the overall best genera and affine function. For both
functions, we show the score with and without a penalty on end gaps

Group 8+2 +2J1 644 8+ 61

R1V1 0.552 0.556 0.513 0.524 0.540 0.612
R1V2 0.848 0.879 0.846 0.851 0.766 0.843
R1V3 0.974 0.978 0.978 0.981 0.957 0.981

all other programs, since they perform significantly
worse (comparehttp://www-igbmc.u-strasbg.fr/
BioInfo/BA1iBASE/prog_scores.html).

Setup for COSA

We implemented the above agorithms using the branch-
and-cut framework SCIL (SCIL, 2002). Theinput variable
set is constructed as follows: We used the variable
reduction as described earlier with the pairwise upper
bound minus 20 as lower bound. This was necessary to
reduce the run time and memory consumptions. Note that
this value is not a valid lower bound in most cases. That
means that we might lose variables in the optimal solution
and with that the optimal solution itself (For reference 1
we checked our computed solutions and can prove that
in most cases they are optimal, for other references we
find suboptimal or no solutions, i.e. they are in practice
infeasible).

To evaluate our implementation we proceeded as fol-
lows:. In order to find a good scoring function we com-
puted the optimal alignment for al short instances of the
group R1 for different affine and convex gap cost func-
tions with and without end gap penalties. Asaamino acid
substitution matrix we used blosum62. We also experi-
mented with blosum30, blosum90 and pam250, which
gave worse results. For each group of instancesin R1 we
computed the average score for different objective func-
tions each with and without end-gap penalty (see Table 1).
It is interesting to note that 8 4+ 21 + 24/, a non linear
function, was the best objective function. Hence we used
it to compute the optimal alignments in the other groups.
We ran the experiments on a Sparc Ultra-Enterprise-10000
(333 MHz) with 15 GB main memory. We allowed the
programs a running time of at most 10 hours and memory
of at most 4 GB. Any run that exceeded these limits was
counted as unsuccessful.

Results

Tables 2, 3, and 4 contain the results for some of the
reference sets. The first column contains the name of the
data set and the subsequent columns the results for the 5
alignment programs. Each entry in the tables is the score
computed by the evaluation program provided with the

S9

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

http://www-igbmc.u-strasbg.fr/

E.Althaus et al.

Table 2. Comparison of the Core scores for COSA, TCOFFE and other programs. In the first column we give the name of the instance and its size (in number

of strings/total number of characters)

Data COSA TCOFFEE PRRP CLUSTALX DIALIGN
Reference 1 short V1
1aboA (5/297) 0.558 (89) 0.509 (81) 0.212 (34) 0.63 (100) 0.624 (99)
lidy (5/269) 0.646 (95) 0.065 (10) 0.681 (100) 0.415 (61) 0.031 (5)
1r69 (4/277) 0.493 (100) 0.28 (57) 0.427 (87) 0.48 (97) 0.107 (22)
1tvxA (4/242) 0.158 (72) 0.219 (100) 0.132 (60) 0.105 (48) 0(0)
1ubi (4/327) 0.46 (61) 0.447 (59) 0.46 (61) 0.76 (100) 0.06 (8)
1wit (5/484) 0.854 (100) 0.792 (93) 0.833 (98) 0.721 (84) 0.417 (49)
2trx (4/362) 0.723 (98) 0.587 (80) 0.364 (50) 0.705 (96) 0.735 (100)
avg. 0.556 (100) 0.414 (74) 0.444 (80) 0.545 (98) 0.282 (51)
Reference 1 short V2
laab (4/291) 0.929 (100) 0.929 (100) 0.929 (100) 0.869 (94) 0.929 (100)
1fjlA (6/398) 1(100) 0.993 (99) 1(100) 1(100) 1(100)
1hfh (5/606) 0.958 (100) 0.922 (96) 0.869 (91) 0.694 (72) 0.259 (27)
1hpi (4/293) 0.841 (99) 0.727 (85) 0.852 (100) 0.841 (99) 0.545 (64)
1csy (5/510) 0.975 (100) 0.953 (98) 0.946 (97) 0.907 (93) 0.865 (89)
1pfc (5/560) 0.892 (94) 0.944 (100) 0.861 (91) 0.826 (88) 0.438 (46)
1tgxA (4/239) 0.641 (69) 0.7 (75) 0.865 (93) 0.929 (100) 0.459 (49)
lycc (4/426) 0.979 (99) 0.921 (93) 0.958 (97) 0.991 (100) 0.636 (64)
3cyr (4/414) 0.77 (100) 0.713 (93) 0.713 (93) 0.751 (98) 0.355 (46)
451c (5/400) 0.801 (100) 0.713 (89) 0.618 (77) 0.646 (81) 0.571 (71)
avg. 0.879 (100) 0.852 (97) 0.861 (98) 0.845 (96) 0.606 (69)
Reference 1 short V3
1aho (5/320) 1(100) 1(100) 0.937 (94) 0.857 (86) 0.943 (94)
1csp (5/339) 0.993 (100) 0.993 (100) 0.967 (97) 0.993 (100) 0.967 (97)
1dox (4/374) 0.918 (100) 0.918 (100) 0.922 (100) 0.911 (99) 0.848 (92)
1fkj (5/517) 0.987 (100) 0.987 (100) 0.92 (93) 0.917 (93) 0.895 (91)
1fmb (4/400) 0.978 (100) 0.978 (100) 0.967 (99) 0.978 (100) 0.961 (98)
1krn (5/390) 1(100) 1(100) 1(100) 0.992 (99) 0.84 (84)
1plc (5/470) 0.947 (97) 0.947 (97) 0.976 (100) 0.935 (96) 0.838 (86)
2fxb (5/287) 0.963 (98) 0.963 (98) 0.963 (98) 0.981 (100) 0.963 (98)
2mhr (5/572) 1(100) 0.996 (100) 1(100) 1(100) 0.922 (92)
9Irnt (5/499) 0.99 (99) 0.995 (100) 0.977 (98) 0.995 (100) 0.854 (86)
avg. 0.978 (100) 0.978 (100) 0.963 (98) 0.956 (98) 0.903 (92)

Table 3. Comparison of the Core scores for COSA, TCOFFE and other programs. In the first column we give the name of the instance and its size (in number

of strings/total number of characters)

Data COSA TCOFFEE PRRP CLUSTALX DIALIGN
Reference 2 (5 of 9 instances)

1aboA (16/945) 0.634 (74) 0.837 (98) 0.809 (95) 0.853 (100) 0.77 (90)

lcsy (19/1581) 0.555 (62) 0.882 (99) 0.893 (100) 0.877 (98) 0.859 (96)
1tgxA (20/1246) 0.231 (24) 0.934 (99) 0.915 (97) 0.944 (100) 0.831 (88)
1tvxA (19/1056) 0.711 (73) 0.931 (96) 0.94 (97) 0.97 (100) 0.855 (88)
1ubi (17/1546) 0.484 (49) 0.88 (89) 0.925 (94) 0.984 (100) 0.842 (86)
avg. 0.523 (56) 0.893 (96) 0.896 (97) 0.926 (100) 0.831 (90)

S10

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

Combinatorial sequence alignment

Table 4. Comparison of the Core scores for COSA, TCOFFE and other programs. In the first column we give the name of the instance and its size (in number

of strings/total number of characters)

Data COSA TCOFFEE PRRP CLUSTALX DIALIGN
Reference 4 (10 of 12 instances)

1dynA (6/1468) 0(0) 0.1 (50) 0(0) 0(0) 0.2 (100)

1ckaA (10/1758) 0(0) 1 (100) 0.75 (75) 0.75 (75) 0(0)

1csp (6/1405) 0(0) 0(0) 0(0) 0(0) 0.11 (100)

1Ikl (8/2007) 1 (200) 0.9 (90) 1 (100) 0.9 (90) 0.9 (90)

1mfa (7/1735) 0(0) 0.38(83) 0.46 (100) 0(0) 0.38(83)

1pfc (10/2315) 1 (200) 0.25 (25) 0.15 (15) 0.34(34) 0(0)

1vin (14/1195) 0(0) 0.57 (79) 0(0) 0.72 (100) 0.48 (67)

lycc (9/1095) 0.485 (77) 0.48 (76) 0.48 (76) 0.63 (100) 0.45 (71)

2abk (6/1547) 0(0) 0.58 (100) 0(0) 0(0) 0.47 (81)

kinasel (6/1547) 0(0) 0.89 (100) 0(0) 0.06 (7) 0(0)

avg. 0.249 (48) 0.515 (100) 0.284 (55) 0.34 (66) 0.299 (58)

database. In brackets we give the percentage relative to
the best performing program for this example. In addition
we provide an average for each group.

In Table 2 we give the values for all short sequences
of reference set 1. Our implementation is on average
superior to al other programs in each of these data
sets. This indicates that it pays to compute the optimal
solution, because our approach produced on average the
biologically most meaningful alignments.

Tables 3 and 4 exhibit the current practical limitations
of our approach. For reference 2 we are able to solve
only 5 of 9 instances where the average quality is at
least acceptable, while for reference 4 we can solve 10
of 12 instances with a miserable performance. This can be
attributed to the fact that we have not enough variablesin
our initial ILP, but of course that would not be a guarantee
for a good performance (TCoffee and Dialign score in
this set extremely well, since they accommodate local
alignment information in contrast to PRRP, ClustalX and
COSA).

In summary, these experiments back out the claim
that optimal sequence alignment is able to find subtle
biological signals and that the current implementation is
capable of solving real world problems. However some
problem sizes are certainly still out of reach and better
addressed by other programs.

CONCLUSION

We have presented for the first time a general multiple
sequence alignment formulation with arbitrary gap costs.
The graph-theoretic formulation allowsusto definean ILP
model which is valid for any choice of the gap penalty
function. The ILP model is solved by branch-and-cut.
Our implementation is competitive with or better than the

currently best programs for moderately sized problems.
We anticipate that we can improve the performance by (a)
a closer evaluation of different scoring and gap functions
(which is trivial in our approach), (b) a speed up in
the solution of the LP relaxation of the ILP, (c) an
improvement of the variable reduction procedure.

ACKNOWLEDGMENTS

This work was supported by a grant from DAAD within
the ‘Higher Education Special Program 111’ (Hochschul-
sonderprogramm |11) of the German Federal Government
and the Federal States.

REFERENCES

Althaus,E., Kohlbacher,O., Lenhof,H.-P. and Miller,P. (2000) A
combinatorial approach to protein docking with flexible side-
chains. In Proceedings of the 4th Annual International Confer-
ence on Computational Molecular Biology (RECOMB-00). ACM
Press, pp. 15-24.

Altschul,S.F, Gish,W., Miller,W., MyersEW. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mal. Biol., 215, 403~
410.

Caprara,A., Lancia,G. and Ng,S. (1999) A column-generation based
branch-and-bound algorithm for sorting by reversals. In Farach-
Colton,M., RobertsF.,, Vingron,M. and Waterman,M. (eds),
Mathematical Support for Molecular Biology, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 47,
pp. 213-226.

Christof,T., Junger,M., Kececioglu,J., Mutzel,P. and Reinelt,G.
(1997) A branch-and-cut approach to physica mapping
with end-probes. In Proceedings of the First Annual Interna-
tional Conference on Computational Molecular Biology (RE-
COMB97). pp. 84-93.

Dayhoff,M., Schwartz,R. and Orcut,B. (1979) A model of evolu-
tionary change in proteins. In Dayhoff,M. (ed.), Atlasof Protein
Sequence and Structure, Vol. 5, National Biomedical Research
Foundation, Washington, DC, pp. 345-352.

S11

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

E.Althaus et al.

Delcher,A., Kasif,S., Fleischmann,R., Peterson, JO.W. and
Salzherg,S. (1999) Alignment of whole genomes. Nucleic Acids
Res., 27, 2369-2376.

Eppstein,D. (1990) Sequence comparison with mixed convex and
concave costs. J. Algorithms, 85-101.

Gotoh,0. (1982) An improved agorithm for matching biological
sequences. J. Mol. Biol., 162, 705-708.

Gupta,S., Kececioglu,J. and Schaeffer,A. (1995) Improving the
practical space and time efficiency of the shortest-paths approach
to sum-of-pairs multiple sequence alignment. J. Comput. Biol., 2,
459-472.

Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge Uni-
versity Press, Cambridge.

Henikoff,S. and Henikoff,J. (1992) Amino acid substitution matri-
ces from protein blocks. Proc. Natl Acad. Sci. USA, 89, 10915—
10919.

Kececioglu,J.D., Lenhof,H.-P,, Mehlhorn,K., Mutzel,P, Reinert,K.
and Vingron,M. (2000) A polyhedra approach to sequence
alignment problems. Discrete Appl. Math., 104, 143-186.

Lancia,G., Carr,R., Walenz,B. and Istrail,S. (2001) 101 optimal
pdb structure alignments: a branch-and-cut algorithm for the
maximum contact overlap problem. In Proceedings of the 5th
Annual International Conference on Computational Molecular
Biology (RECOMB-01). ACM Press, pp. 193-202.

Larmore,L. and Schieber,B. (1990) Online dynamic programming
with applications to the prediction of rna secondary structure. In
Proceedings of the First Symposium on Discrete Algorithms. pp.
503-512.

Lenhof,H.-P, Morgenstern,B. and Reinert,K. (1999) An exact so-
lution for the segment-to-segment multiple sequence alignment
problem. Bioinformatics, 15, 203-210.

Lenhof,H.-P, Reinert,K. and Vingron,M. (1998) A polyhedral
approach to RNA seguence structure alignment. J. Comput. Biol .,
5, 517-530.

Lermen,M. and Reinert,K. (2000) The practical use of the A*
algorithm for exact multiple sequence alignment. J. Comput.
Biol., 7, 655-673.

Lipman,D., Altschul,S. and Kececioglu,J. (1989) A tool for multiple
sequence alignment. Proc. Natl Acad. Sci. USA, 86, 4412—4415.

Needleman,S. and Wunsch,C. (1970) A genera method applicable
to the search for similarities in the amino-acid sequence of two
proteins. J. Mol. Biol., 48, 443-453.

Notredame,C., Higgins,D.G. and Heringa,J. (2000) T-coffee: a
novel method for fast and accurate multiple sequence alignment.
J. Mol. Biol., 302, 205-217.

Reinert,K. (1999) A Polyhedral Approach to Sequence Alignment
Problems, Ph.D. thesis, Universitat des Saarlandes.

Reinert,K., Lenhof,H.-P,, Mutzel P, Mehlhorn,K. and Kececioglu,J.
(1997) A branch-and-cut algorithm for multiple sequence align-
ment. In Proceedings of the First Annual International Confer-
ence on Computational Molecular Biology (RECOMB-97). pp.
241-249.

Reinert,K., StoyeJ. and Will,T. (2000) An iterative methods for
faster sum-of-pairs multiple sequence alignment. Bioinformatics,
16, 808-814.

SCIL, (2002) SCIL-Symbolic Constraints for Integer Linear pro-
gramming. http://www.mpi-sb.mpg.de/SCIL.

Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular subsequences. J. Mal. Biol., 147, 195-197.

Thompson,J.D., Plewniak,F. and Poch,O. (1999) BAIIBASE: a
benchmark alignment database for the evaluation of multiple
alignment programs. Bioinformatics, 15, 87—88.

APPENDIX

In the appendix we el aborate more details for two different
classes of valid inequalities that we proposed in the paper,
the cligue inequalities and the lifted mixed cycle inequal-
ities. In addition we describe the separation routines and
and their time complexity.

The following general structure of maximal sets of
pairwise incompatible edges will be used next. For 1 <
i<j=kl<lp<le<|s',1<mp<me<|s!| we
let

EI’J(lb <> |e, Mp < me)

denote the collection of all set of edgesin S € E'J such
that

1. all edgesin Sare pairwise incompatible;

2. for each edge {vli,v,jn} e Slp < | < lgand
Mp <M =< Mg;

3. Sismaximal with respect to properties 1 and 2.

LEMMA 1. Everyset Se £l (lp < le, My <> Me) has
the form

S= ([l v} o] v,

where

2. forqg=1,...,p—1eitherlgi1 =lgandmgy; =
Mg —1orlgy1 =lg+land mgy1 = mq.

PrOOF. By requirement (a), all edgesin Sare crossing,
meaning that, if we order them by increasing letter of &'
to which they are incident (with appropriate tie breaking),
they will also be ordered by decreasing letter of s!
to which they are incident. Therefore, we assume that
the edges in S according to this order are e, ... , €p.
Requirement (b) imposes I3 > Ip,lp < le,m <
Me, Mp > Mp. It is easy to verify that the maximality
requirement (c) implies that all these inequalities hold at
equality, otherwise at least one edge could be added to
S preserving (a) and (b). For instance, if I3 > Ip, edge
{v}, v} could be added to S. This shows (i). It is easy
to verify that, if (ii) were violated, again at least one edge
could be added to S. For instance, if lq41 = Iq + 1 and

Mg+1 = Mg — 1, edge {v]_,. vm,} could be added to S.
This shows (ii) and concludes the proof. O

S12

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

http://www.mpi-sb.mpg.de/SCIL

Combinatorial sequence alignment

- //'7"\\4
B B A CA

x

B A B AC

Fig. 3. lllustration of possible edges and arcsin a clique inequality.

Cligue inequalities Recall that the clique inequality has

theform
Yo Xet+ D Ya<l, (11)

ecKg aeKpa

and isclearly valid for P.

The following characterization of all (exponentially
many) clique inequalities for our problem, which is an
extension of the one in Reinert et al. (1997) (where
only alignment variables are considered), will lead to an
efficient algorithm for their separation.

PROPOSITION 2. For every cliqueinequality (11), there
exist two strings s', s! such that either

Ke=0,Ka=All+1o1)
forsomel<| < |s'|, or
Kee &l <le, 1< IS, Ka= A1y < lo)
for somel <lp <le < [I5']|

PrOOF. The requirement that al edges and arcs be
incompatibleimplies Kg € E"J and Ka € A'*J for some
1<i,j <ki#j.If Ke =9, Kisamaximal set of
incompatible arcsin A'), which is easily seen to have the
form given in the statement, the resulting clique inequality
being one of (4). Otherwise, note that the maximal set
of arcsin A" pairwise incompatible with all edges in
aset S € E"J is uniquely determined by the first and
last letter q‘b and q'e of s' to which the edges in S are
adjacent. Specifically, this set of arcs is A (Ip < le).
Along with the maximality requirement, this implies that
Ke € &1 (p < le,my < me) withmp = 1 and
me = |s!|. In particular, if mp > 1 (resp. me < |s!|) then
edge {v]_, vy} (resp. {v],. ”|Jsl|}) would be incompatible
with all members of K.

An illustration of possible sets Kg and K4 in aclique
inequality isgivenin Figure 3.

Lifted mixed cycle inequalities Recal that the lifted
mixed cycle inequalities have the following form:

Y Xest—1, (12)

ecC

and are valid for P.

PROPOSITION 3. For every lifted mixed cycle inequal-
ity (12) there exists a path

_ i i2 i3 i1
P_vIl {v|1 Ulz} v, » {v vls} {vIt ”Il 1) Vi1

containing t edges (and no arc) such that

Lforr=1...t1{y, vl':ll} € Clrlrit;

2. forr=1,...,t, Crirsl ¢ g1, o], 1 <

|r+1);

whereitq1 :=i1andliy1 =11 — L

PROOF. First of all, note that P together with arc
(vI1 1 Ull) € Ap defines a mixed cycle. We shall call
this the reference (mixed) cycle. In order to prove the
statement, we first observe that any set C that satisfies
conditions (i) and (ii) in the statement also satisfies (a)
(by definition of £'*-'r+1(.)) and (b), since any set of edges
obtained by selecting one edge from each C'r-'r+1 defines
amixed cycle, which is obtained from the reference cycle
by replacing two consecutive edges by two edges with a
path in Ap in between (formal details are skipped). As
to the maximality requirement (c), note that the addition
to C'rIr+1 of an edge in E'""'"+1 compatible with some
edges already present would violate requirement (@) (and
the resulting inequality would not be valid), whereas the
addition of an edge e = {vl oy with | < Iy or
m > Ir11 would violate (b), sinceit is easy to verify that
P\ (v, v,"f} U eis not the set of edgesin amixed cycle.

The proof is concluded by showing that every set C that
setisfies (a), (b) and (c) hastheform given in the statement.
Forr =1,...,t, order the edgesin C''r+1 according to
increasing letter of s'* to which they areincident, breaking
ties by decreasing letter of s'r+1 to which they areincident,
and let & be the last edge according to this ordering.
Consider the mixed cycle C with edges ey, ..., & and
note that, after possible shifting of theindicesiy, ... , ik,
we can assume without loss of generality that C contains
at least one arc in Ap associated with s't. We show that
C contains only one arc. Indeed, if C contains also an arc
in Ap associated with string s'* for somel < r <'t, we
have a contradiction to the maximality of C as we may
add to C'r-1'r the edgein E'r-r with the same endpoint
in s'~1 as g _1 and the same endpoint in s'" as & . An
anal ogous reasoning showsthat C contains exactly onearc
in Ap associated with string s't. Finally, (i) is verified by
definition, and (ii) followsimmediately by the maximality
requirement on C.

For an illustration see Figure 4. Note that P together
with arc (v| 1 vll) € Ap defines amixed cycle. We shall
cal this the reference (mixed) cycle.

S13

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

E.Althaus et al.

Fig. 4. lllustration of possible edges in a lifted mixed cycle
inequality (edges represented by an arrow are those in the reference
mixed cycle).

Polyhedral results

We summarize our polyhedral results in the following
theorem, whose proof will be given in the full paper.

THEOREM 1.

oClique inequalities (11) define facets if le — 1, > 1,
lb> L le < [IS'], (v],,) € Ke and (v]_, v}) €
Keg.

J
1) .
Ist—-1

eLifted mixed cycle inequalities (12) define facets if
2<ly <|sr||=2forr =1,...,t.

eGeneralized transitivity inequalities (10) define facets
if there are | and m such that 52 ¢ S?, 52, ¢ &,

s3 ¢ S3andsrir31+1¢ 3

The Branch-and-cut algorithm

Branch-and-cut is one of the most successful frameworks
for the solution of ILPs and works as follows. We relax
the integrality condition and solve the corresponding
(exponentialy large) LP. If al variables in the optimal
solution of the LP areintegral, we are done. Otherwise we
partition the problem into two subproblems by choosing
a variable with a fractional value and fixing it to 0 and 1
in the two subproblems. The procedure is iterated on the
subproblems.

Our integer program contains an exponential number
of clique, lifted mixed cycle and generalized transitivity
inequalities. Obviously, we cannot afford to simply give
al of them to a solver. Therefore we use cutting plane
approach. We start with a initial, small set of constraints
and solve the LP. We call the constraints that are given
to the LP solver the active constraints. We test, if the
solution of the LP over the active constraints violates any
non-active constraint. If so, we add one or more violated
constraintsto the set of active constraints and iterate. Thus
we have to solve the following problem: given a solution

of an LP, test if aviolated constraint exists and if so, find
one. Thisproblemiscalled the separation problemand the
violated constraint is called a cutting plane. We describe
efficient algorithms that solve the separation problem for
the different classes of inequalities below. The fact that
polynomial-time separation algorithms exist for the facet-
defining inequalities that we present is somehow unusual
(in the positive sense), in that often efficient separation
procedures are known only for weaker versions of the
facet-defining (i.e. strongest possible) inequalitiesthat one
can derive for the problem at hand. In this section we aso
describe a simple but efficient procedure to reduce the
set of variables. The other details of the branch-and-cut
algorithm are standard and deferred to the full paper.

Separ ation procedures

Note first that there is no need for separation algorithms
for the constraints in our initial ILP model, since there
are only n(k — 1) equations of type (2) and inequalities
of type (4), transitivity inequalities (5) are a specia
case of generalized transitivity inequalities, and mixed
cycle inequalities (3) are dominated by lifted mixed cycle
inequalities. In the following, let (x*, y*) be the solution
that should be separated.

Pairgraphs Given a clique K and edge weights we for
al edgese € E, it isuseful to compute Kg € £ (lp <
le, Mp < M), Which maximizes ZeeKE we. According
to Lemma 1 one may use dynamic programming. We
represent the dynamic programming procedure as a path
computation in a directed acyclic graph. Specifically, we
need the notion of pairgraph, introduced by Reinert et
a. Reinert et al. (1997). They used them in the specia
caselp = L, le = |stf, mp = 1, and me = [,
which generalizes directly to our case. The pairgraph
PG"! for an ordered pair of strings s', s! is a directed
acyclic graph with a node ne for every edge e € E"/ of
the alignment graph. Every node n{v.i,vr'ﬁ | has up to two

outgoing arcs, namely (n{vli’vrjn}, n{vli’vrjn—l})’ if m> 1, and

N i
(n n ’Urjn}),lfl<||s||.

by 0ol
LEMMA 2. Every path N, ..., ng in PG"J such that
e = {v,, Vi) and g = (.. Ui, }, COrresponds to a set

{er,...,a}) e &y < le, mp <> Me) and vice versa.
PROOF. Followsdirectly from Lemma 1.

For further details on pairgraphs, see Reinert et al.
(1997). According to Lemma 2, the set Kg € £/ (lp <
le, Mp < Me) Which maximizes ZeeKE we CoOrresponds
to the longest node-weighed path in PGl between

n{Ulib~Uro1e} and n{vlie’vfjnb} with respect to node weights

S14

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

Combinatorial sequence alignment

wn, = we for e € E. Since PG"! is acyclic, we can
compute such a path in linear time. In order to speed up
the computation, we use a sparse version of the pairgraph,
as described in Reinert et al. (1997).

Clique inequalities In the_separa_tion of clique inequali-
ties(11), wefix thestringss' ands!,i # j, considering all
k(k —1) pairs. Forevery 1 < Ip < Ie < |Is'|I, we (a) com-
pute Kg € EM(lp < le, 1 < |s!|) which maximizes
> eckg Xe by findi ng alongest path in the pairgraph from

n{vlib’v|j\si) to n{vI y (b) compute Y o aii 1y <) Yas and

(c) test if the correspondl ng clique inequality is violated,

that isif > ec . Xa + D acaiigyoly Ya > 1. . _
Given i and j, Step (a) takes, overall, O(||s' 1211s) 1D

time, since for each of the ||s'|| — 1 values of I, we find

the shortest path tree from N i }ln PG}, whosesize
Ub Vs |

is O(|Is'l]s!). Step (b) requwes overal O(J|s'||?) time,
noting that there are ||s'||2 gap variables of length at most
[s'|l. The running time for Step (c) is overall O(||s' 12).

Thusthetotal running timeis O(3_<_ 12, _1 IS 12lIst |1+

YK Is'1?) = O(nd). However, if al strings have
approximately the same length n/k, the actual complexity
isroughly n3/Kk.

The discussion above shows

THEOREM 2. Cliqueinequalities (11) can be separated
in O(n®) time.

To accelerate the separation (mainly in the first itera-
tions), we use some heuristics described in the full paper.

Lifted mixed cycle inequalities For the separation of
lifted mixed cycle inegqualities (12), it is easy to observe
that, if v,'rv,'”l is an edge of the reference mixed cycle
corresponding to aviolated inequality, then C'r-'r+1 can be
defined as the element of £'"+1(l; < |IS'7]l, 1 < lr41)
which maximizes Zeecir,irH xs. Accordingly, let H =
(V, E") be the directed graph with the same nodes as G
and two arcs (u, v), (v,u) € E’ for every edge {u, v} of
G. The weight w, of anarca = (v, vh) € E’ isdefined
as

Wa i=1-— max Xa-

Kge&ll(l«|s,1<m) ecKe

The most violated lifted mixed cycle inequality whose
reference cycle contains the arc (v 1 vll) e Ap (if
any) corresponds to a minimum-we|ght path in H from
vl to v’ ;. Indeed, if this path, say P, is given by arcs

(vlil, vliz), e (vlit, vlll—l)' the violation is given by

t

Y x-t+1=1- 2(1— >ooxd)

r=1ecCirir+1 ecCirir+1

:1—Zwa,

i.e. the inequality is violated if and only if the weight of
P issmaller than 1. If al clique inequalities are satisfied,
which can be assumed if we separate these inequalities
before lifted mixed cycle inequalities, we know that wa >
0 for a € E’ and thus we can find the path P with
Dijkstra’s algorithm.

Computing the weights for the arcs in E’ can be done
in O(n3) by finding the all pairs shortest paths in each of
the ('g) pairgraphs (and is already done for the separation
of clique inequalities). The running time for each call of
Dijkstra’s algorithm is O(n?), since graph H has n nodes
and O(n?) edges. Hence, the total running timeis O(n%),
since Dijkstra’s algorithm is called n — k times, once for

each candidate pair vl 1 vI This shows

THEOREM 3. Lifted mixed cycle inequalities (12) can
be separated in O(n®) time.

To accelerate the separation, we sparsify graph H by the
same idea as in Reinert et al. (1997) (details are given in
the full paper).

Generalized transitivity inequalities For the separation
of generalized transitivity inequalities (10), we fix the
three strings s'1, s'2, '3 along with the letter 51'11 of string
s't, Then we need to check the existence of two sets
AC{l,...,|s?|}and B C {1, . Is'3 1} such that

ZX{U'l 2yt Z X{ L) Z Z X{U'z 3y~

leA meB le AmeB

Consider the complete bipartite graph B = (U UV, F)
inwhichU = {1,...,[s?||}and V = {1,. ||s'3||}
Assign to each vertexl e U profit p := x: 2y to
v| Y
each vertex m € V profit pm = x*;,) and to each
V7, Um

edge {I, m} € F cost ¢y, m) = x{ Clearly, finding

i2 '3
the inequality (10) which is most VI|0| ated is equivalent to

finding subsets A € U and B C V such that

DR+ Pn=)) Cim

leA meB le AmeB

is maximized, or equivalently finding subsets A € U and
B C V such that

YP+Y Pt D D cim (13

leA meB leU\AmeV\B

S15

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

E.Althaus et al.

is minimized. We show that the second problem is
equivalent to finding an {s, t}-cut of minimum value in
a suitable directed network. This network has node set
{s, t}uUU UV, wheres playstherole of the source and t of
the sink, an arc (s,) of capacity py for eachl € U, anarc
(m, t) of capacity pm for eachm € V, and an arc (I, m)
of capacity ¢y m) for eachl € U, m e V. Recall that the
value of an {s, t}-cut defined by node set S, withs € S
t e S, isgiven by the sum of the capacities of all arcswith
tail in Sand head in S, where Sis the set of nodes outside
S. Letting A := U NSand B := VN S, itissimpleto
verify that the value of this cut is given by (13). Note that
it may well be the case that either A= U or B = V inthe
above problem (i.e. either A = ¢ or B = ¢J), which means
that no inequality (10) is violated since, by equations
(2) both >, .y X*Uil A land) oy x:il i < L
10 U

{ 1Y } |1yvm} a

Note also that the two problems above are generalizations
of Stable Set and Vertex Cover in abipartite graph (arising
when the edge costs are are either 0 or co), and in fact the
solution method above is a simple extension of the method
for these problems.

In the separation procedure above, for each triple
§1,82 88 andly € {1,..., S|}, we have to compute a
maximum flow in anetwork with O(]|s'2|| + ||s'3||) nodes,
which can be donein O(||s'2|® + ||s'3)|%) time. The over-
al complexity is O(Yf_q Doi5og Doiey SIS 2% +
Is'3)1®)) = O(n*). As before, if each string has approx-
imately the same length n/k, the complexity is roughly
n*/k. This shows

THEOREM 4. Generalized transitivity inequalities (10)
can be separated in O(n%) time.

S16

220z 1snbny Lz uo1sanb Agq 9zz061/¥S/Z |ddns/g | /a[01e/solew.oulolq/wod dno-olwapeoe//:sdyy wolj papeojumoq

