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ABSTRACT
Multiple sequence alignment is one of the dominant
problems in computational molecular biology. Numerous
scoring functions and methods have been proposed, most
of which result in NP-hard problems. In this paper we
propose for the first time a general formulation for multiple
alignment with arbitrary gap-costs based on an integer
linear program (ILP). In addition we describe a branch-
and-cut algorithm to effectively solve the ILP to optimality.
We evaluate the performances of our approach in terms
of running time and quality of the alignments using the
BAliBase database of reference alignments. The results
show that our implementation ranks amongst the best
programs developed so far.
Contact: althaus@icsi.berkeley.edu

INTRODUCTION
Aligning DNA or protein sequences is certainly one of
the dominant problems in computational molecular biol-
ogy. The spectrum of methods ranges from extremely fast,
while less sensitive, hashing-based methods (e.g. Altschul
et al. (1990), Delcher et al. (1999)) over moderately ex-
pensive pairwise comparisons based on dynamic program-
ming (e.g. Gotoh (1982); Smith and Waterman (1981);
Needleman and Wunsch (1970)), to costly and sensitive
exact multiple alignment formulations (e.g. Gupta et al.
(1995); Reinert et al. (1997, 2000); Lermen and Reinert
(2000)), which are based either on the natural extension of
the dynamic programming paradigm, or on the application
of combinatorial optimization techniques.

The introduction of combinatorial optimization methods
to the field of computational biology (Reinert et al.,
1997) produced useful tools for numerous applications
such as physical mapping (Christof et al., 1997), genome

rearrangements (Caprara et al., 1999), RNA secondary
structure alignment (Lenhof et al., 1998), optimization of
flexible side chains in protein-protein docking (Althaus
et al., 2000), computing the fit of three-dimensional
structures (Lancia et al., 2001), and a general trace
formulation (Kececioglu et al., 2000; Lenhof et al., 1999).

In this paper we extend the formulation of the gapped
trace problem proposed by Reinert (1999) so that we can
formulate a great variety of multiple sequence alignment
problems, among which the weighted sum of pairs
problem with arbitrary gap costs. To our knowledge this
is the first algorithm that can deal with truly affine gap
costs (Lipman et al. (1989) and Reinert et al. (2000) use
what is called ‘quasi’-affine or natural gap costs). Indeed
our method is independent of the choice of the gap cost
function and can handle any function including convex
and position-dependent gap costs which were proposed by
several authors (Larmore and Schieber (1990); Eppstein
(1990) to name a few).

To solve the problem to optimality, we propose a branch-
and-cut algorithm and present an implementation of it.
Our implementation was evaluated using BAliBase, a
benchmark library of structural alignments (Thompson et
al., 1999). While our initial implementation occasionally
failed to solve large examples in the specified time and
memory constraints, it was often the best or among the
tested programs. More precisely, for moderately sized
instances we compute on average the best solutions. This
positively answers a repeatedly asked question, whether
it is worthwhile to compute optimal alignments using
scoring functions which admittedly only approximate the
true biological phenomena.

In the first section we present a graph-theoretic formu-
lation for our problem, which is translated into an integer
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linear program (ILP). In the following section, we study
the structure of the gapped trace polytope, namely the con-
vex hull of the incidence vectors of the ILP solutions. The
study of the polytope is a prerequisite for the algorithm
we propose, which fits into the branch-and-cut framework.
We present some classes of valid inequalities and describe
how we reduce the number of variables in our ILP. Then
we evaluate the quality of our alignment algorithm and fi-
nally discuss our results in the last section.

For the technically interested reader we also give the
details of the branch-and-cut algorithm, specifically the
separation routines in the Appendix. There we also give
conditions under which the presented valid inequalities
define facets of the problem polytope.

A GRAPH THEORETIC MODEL
The gapped trace problem can be formulated as follows.
Let S = {s1, s2, . . . , sk} be a set of k strings over an
alphabet � and let �̄ = � ∪ {−}, where ‘−’ (dash) is
a symbol to represent ‘gaps’ in strings. An alignment of S
is a set S̄ = {s̄1, s̄2, · · · , s̄k} of strings over the alphabet �̄

that satisfies the following two properties: (1) the strings
in S̄ have all the same length, and (2) ignoring dashes,
string s̄i is identical to string si . An alignment in which
each string s̄i has length l can be interpreted as an array
of k rows and l columns where row i corresponds to string
s̄i . Two characters of distinct strings in S are said to be
aligned under S̄ if they are placed into the same column of
the alignment array.

In the following we will let n := ∑k
i=1 ‖si‖. In order

to express our problem on a graph we need the notion of
a mixed graph which is a tuple G = (V, E, A), where V
is a set of vertices, E is a set of (undirected) edges and
A is a set of (directed) arcs. A path in a mixed graph is
an alternating sequence v1, e1, v2, e2, . . . , vk of vertices
and arcs or edges such that either ei = {vi , vi+1} ∈ E
or ei = (vi , vi+1) ∈ A, for all i , 1 ≤ i ≤ k. A path is
called a mixed path if it contains at least one arc in A and
one edge in E . A mixed path is called a mixed cycle if
the first and the last vertex on the path coincide. A mixed
cycle represents an ordering conflict of the letters in the
sequences. The most trivial mixed cycle would correspond
to two alignment edges ‘crossing’, which is not allowed.
Since a mixed path P (or a mixed cycle C) is determined
by the set of arcs and edges in P (respectively in C), we
often identify paths and cycles by their set of edges and
arcs. We do allow multiple edges and arcs in between
any two nodes, or to put it differently a mixed graph is
a multigraph.

We can view the character positions of the k input strings
in S as the vertex set V of a mixed graph G = (V, E, A),
called the gapped alignment graph, where each node vi

j

represents the character si
j . For convenience we denote

by V i the set of all nodes corresponding to characters
in si , i.e. node set V is partitioned into V 1, . . . , V k .
Additionally we need the notion of a critical cycle. A cycle
C is called critical if for all i , 1 ≤ i ≤ k, all vertices in
V i ∩ C occur consecutively in C .

The edges in E represent alignments of pairs of char-
acters in different strings. Namely, we say that an edge
e = {u, v} is realized by an alignment if the endpoints of
the edge are placed into the same column of the alignment
array. Let Ei, j ⊆ E denote the set of all edges with one
endpoint in V i and the other in V j . Note that the graph
obtained from G by removing all its arcs is k-partite with
color classes V 1, . . . , V k .

The arcs in A = Ag ∪ Ap represent positional con-
straints. Arcs in Ap represent consecutivity of characters
within a same string and run from each node to its ‘right’
neighbor, i.e. Ap = {(vi

j , v
i
j+1) : 1 ≤ i ≤ k, 1 ≤ j <

‖si‖}. The arcs in Ag represent gaps in the alignment.
Each substring of a string si can be aligned with gap char-
acters in any other string s j , or to put it differently, it
may be the case that no character in this substring of si

is aligned with any character in s j . Hence we introduce
for each substring of si from si

l to si
m and for each 1 ≤

j ≤ k, j �= i , an arc from vi
l to vi

m , denoted by (vi
l , v

i
m) j .

In other words, there are k − 1 arcs in Ag from vi
l to vi

m .
We again say that a gap arc (vi

l , v
i
m) j is realized by an

alignment if the substring in si from position l to posi-
tion m is not aligned to any character in s j , whereas both
si
l−1 (if l > 1) and si

m+1 (if m < ‖si‖) are aligned with
some letter in s j . We also say that the nodes correspond-
ing to the substring of s j are spanned by the gap arc. Let
Ai, j ⊆ Ag denote the set of all gap arcs for substrings in
si aligned with gap characters in s j . Also, given two gap
arcs (vi

l , v
i
m) j , (vi

p, v
i
q) j ∈ Ai, j , we say that they conflict

if the substrings spanned by the arcs overlap or even touch,
that is if [l, m + 1] ∩ [p, q] �= ∅. The fact that the two arcs
conflict even if p = m +1 is due to the above definition of
realization – informally, there must be at least one aligned
character between consecutive gap arcs. Finally, we let

Ai, j (l ↔ m) := {(vi
p, v

i
q) j : p ≤ l, q ≥ m}

denote the set of arcs in Ai, j spanning vi
l , . . . , vi

m . We also
allow l = m+1, i.e. use Ai, j (p+1 ↔ p) to denote the set
of arcs that span either vi

p or vi
p+1. The latter is motivated

by the necessity of representing sets of conflicting arcs.
In order to score the alignment, each of the edges in E

and gap arcs in Ag is assigned a weight that corresponds
to the benefit (or cost) of realizing the edge or arc. We let
we and wa denote respectively the weight of edge e ∈ E
and arc a ∈ Ag . Note that arcs Ap are independent of the
alignment, which specifies which edges among E and arcs
among Ag are realized.
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Fig. 1. Gapped alignment graph for two sequences. In the middle is an alignment that realizes the gapped trace on the right.

A subgraph of the gapped alignment graph is called
gapped trace if it corresponds to a gapped alignment. A
gapped trace has to fulfill the following conditions which
we will formalize in the mathematical model of the next
section:

1. For each pair of strings, each node is either incident
to exactly one alignment edge or spanned by exactly
one gap arc.

2. There must not be a critical mixed cycle in the
subgraph. (see Reinert et al. (1997) for a proof).

3. There cannot be a pair of conflicting gap arcs for a
given pair of strings.

4. Whenever we realize two edges incident with the
same node, say {vi1

l1
, v

i2
l2

} and {vi1
l1

, v
i3
l3

}, by transitiv-

ity we must also realize edge {vi2
l2

, v
i3
l3

}.

The goal is to identify the gapped trace which has the
highest weight given a suitable scoring scheme (see Figure
1 for an example of a gapped alignment graph and an
associated gapped trace).

Usually one assigns to each edge e ∈ E the correspond-
ing cost derived from an amino acid substitution table (e.g.
Henikoff and Henikoff (1992); Dayhoff et al. (1979)) and
to each arc a ∈ Ag an affine or convex cost function.
However our method is capable of handling arbitrary, even
position-dependent, costs for both the edges in E and the
arcs in Ag . This is certainly in contrast to algorithms pre-
sented in (Lipman et al., 1989; Reinert et al., 2000). They
cannot compute alignments with truly affine gap costs,
which are currently the method of choice in most pairwise
alignment methods.

AN ILP FORMULATION
We assume in the following that ‖si‖ ≥ 3 for all strings si

and k ≥ 2.

An initial model
We have two types of variables:

• For every edge e = {vi
l , v

j
m} ∈ Ei, j , we define a binary

variable xe (we also write x{vi
l ,v

j
m}), which indicates

whether si
l is aligned with s j

m or not. We call these
variables the alignment variables.

• For every arc a = (vi
l , v

i
m) j ∈ Ai, j , representing a

gap in string s j aligned to the substring si
l↔m of si , we

define a binary variable ya (we also write y(vi
l ,v

i
m) j ).

We call these variables the gap variables.

For a cycle C , we denote the set of edges with CE and
the set of arcs with CA. Let C denote the (exponentially
large) collection of all critical mixed cycles in G and I
the collection of all maximal sets of conflicting gap arcs.
It is not difficult to show (see also the next section) that

I = {Ai, j (l + 1 ↔ l) : 1 ≤ i, j ≤ k, i �= j, 1 ≤ l < |si |}.
Our initial ILP formulation is given in Figure 2.

Constraints (2), (3), (4) and (5) correspond to require-
ments 1, 2, 3 and 4, respectively. Note that inequalities
(4), which prevent the realization of ‘touching’ gap arcs,
are not necessary in the case of convex gap costs. Note also
that transitivity inequalities involving four or more strings,
e.g.

x{vi1
l1

,v
i2
l2

} + x{vi2
l2

,v
i3
l3

} + x{vi3
l3

,v
i4
l4

} − x{vi1
l1

,v
i4
l4

} ≤ 2,

are implied by (5).
By the above discussion we have
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max
∑

e∈E

we · xe +
∑

a∈Ag

wa · ya (1)

subject to∑

1≤m≤|s j |
x{vi

l ,v
j
m} +

∑

a∈Ai, j (l↔l)

ya = 1, ∀ 1 ≤ i, j ≤ k, i �= j, 1 ≤ l ≤ |si | (2)

∑

e∈CE

xe ≤ |CE | − 1, ∀ C ∈ C (3)

∑

a∈I

ya ≤ 1, ∀ I ∈ I (4)

x{vi1
l1

,v
i2
l2

} + x{vi1
l1

,v
i3
l3

} − x{vi2
l2

,v
i3
l3

} ≤ 1, ∀ 1 ≤ ir ≤ k, 1 ≤ lr ≤ ‖sir ‖(r = 1, 2, 3) (5)

xe, ya ∈ {0, 1}, ∀ e ∈ E, a ∈ Ag (6)

Fig. 2. Integer linear program describing the gapped trace polytope.

PROPOSITION 1. Every gapped alignment corresponds
to a feasible solution of ILP (1)–(6) and vice versa.

We will use branch-and-cut techniques to solve this ILP
which can be shortly explained as follows: First define
the gapped trace polytope P of a gapped alignment graph
G as the convex hull of all incidence vectors of gapped
traces, i.e.

P := conv{χ X ∈ {0, 1}|E∪A| | X ⊆ E ∪ A

is a gapped trace of G}.

It is well known that the optimal ILP solution corresponds
to a vertex of this polytope. Unfortunately solving an ILP
directly is NP-hard. Hence we relax the given integer
program by dropping the integer conditions, that means
we replace (6) by

xe, ya ≥ 0, ∀ e ∈ E, a ∈ Ag (7)

(Note that xe, ya ≤ 1 is implied by (in)equalities (2) and
(4)). Then we solve the resulting linear program.

If the solution x̄ of the linear program is integral we
have the optimal solution. Otherwise we search for a valid
inequality f x ≤ f0 that ‘cuts off’ the solution x̄ , i.e.
f y ≤ f0 for all y ∈ P and f x̄ > f0; the set {x | f x = f0}
is called a cutting plane. The search for a cutting plane is
called the separation problem. Any cutting plane found
is added to the linear program and the linear program
is resolved. The generation of cutting planes is repeated
until either an optimal solution is found or the search for
a cutting plane fails. In the second case a branch step
follows: We generate two subproblems by setting one

fractional variable xe to 0 in the first subproblem and to
1 in the second subproblem and solve these subproblems
recursively. This gives rise to an enumeration tree of
subproblems.

It would be desirable that the LP relaxation be ‘close’
to the original problem. Geometrically, one would like
the polytope defined by (2)–(5) and (7) to be ‘close’
to P . In fact, one may be interested in determining
better LP relaxations. The study of the structure of P , in
particular the determination of linear inequalities which
are satisfied by all points in P , yields useful information
in this direction. In the next section, we illustrate valid
inequalities for P that are extensions of those in the initial
ILP formulation. In the Appendix we prove that they
define facets of P , i.e. they are as strong as possible, and
we describe efficient separation procedures for each class.

Valid inequalities
In order to define valid inequalities for P , we character-
ize pairs of edges and/or arcs that are incompatible, i.e.
the associated variables cannot both take the value 1 in a
feasible solution. All these incompatibilities follow imme-
diately from requirements 1 and 3 and the corresponding
constraints (2) and (4) in the ILP formulation.

Two alignment edges are incompatible if and only if
they are crossing, i.e. each edge {vi

l , v
j
m} is incompatible

with all edges {vi
p, v

j
q } such that either p ≤ l and q ≥ m

or p ≥ l and q ≤ m.
Two gap arcs are incompatible if and only if they

overlap or touch, i.e. each arc (vi
l , v

i
m) j is incompatible

with all arcs (vi
p, v

i
q) j such that p ≤ m + 1 and l ≤ q + 1.

An alignment edge and a gap arc are incompatible if
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and only if one endpoint of the former is spanned by the
latter, i.e. each edge {vi

l , v
j
m} is incompatible with all arcs

(vi
p, v

i
q) j such that p ≤ l ≤ q, as well as all arcs (v

j
p, v

j
q )i

such that p ≤ m ≤ q.
In particular, note that two variables may be incompati-

ble only if they are associated with the same (ordered) pair
of strings.

Clique inequalities We call clique a maximal set K of
pairwise incompatible edges and arcs. Moreover, we de-
note by KE and K A the edges and arcs in K , respectively.
The corresponding clique inequality has the form

∑

e∈KE

xe +
∑

a∈K A

ya ≤ 1, (8)

and is clearly valid for P . Note that (4), as well as (2) if
‘=’ is replaced by ‘≤’, are examples of clique inequalities.

Lifted mixed cycle inequalities In this section, we illus-
trate a class of inequalities which are stronger than the
original (3).

As their ‘weak’ version (3), these inequalities involve
only alignment variables. Consider a sequence of strings
si1, . . . , sit , along with edge set C ⊆ E , which is
partitioned into edge sets Cir ,ir+1 ⊆ Eir ,ir+1 , r = 1, . . . , t
(letting it+1 := i1). If C meets the following requirements

(a) for r = 1, . . . , t , all edges in Cir ,ir+1 are pairwise
incompatible;

(b) every set {e1, . . . , er }, where each er is chosen arbi-
trarily from Cir ,ir+1 , is the set of edges in a critical
mixed cycle;

then the following inequality
∑

e∈C

xe ≤ t − 1, (9)

is valid for P . Note that (3) are a special case of (9)
in which each set Cir ,ir+1 contains only one edge. If in
addition

(c) C is maximal with respect to properties (a) and (b);

we call (9) a lifted mixed cycle inequality.

Generalized transitivity inequalities The last class of
inequalities that we present is a generalization of the
transitivity inequalities (5).

Consider three different strings si1, si2, si3 , along with a
letter si1

l1
of string si1 and subsets S2 and S3 of letters in si2

and si3 , respectively. Clearly, if we align si1
l1

with a letter in

S2 as well as with a letter in S3, then we must align a letter

in S2 with a letter in S3. This yields the valid inequality
∑

s
i2
l2

∈S2

x{vi1
l1

,v
i2
l2

} +
∑

s
i3
l3

∈S3

x{vi1
l1

,v
i3
l3

} −

∑

s
i2
l2

∈S2

∑

s
i3
l3

∈S3

x{vi2
l2

,v
i3
l3

} ≤ 1, (10)

which coincides with one of (5) if |S2| = |S3| = 1.

Variable reduction
Even for rather small instances, the number of variables
in our ILP formulation is large. For example, an instance
with 5 strings of length 100 has 201 000 variables. Most of
these variables are very unlikely to take the value 1 in an
optimal solution. In this section, we describe a successful
method to reduce the number of variables by eliminating
those variables that can not appear in an optimal solution.

Assume we know a good lower bound L on the
optimum, e.g. found by a heuristic. For every variable v,
we compute an upper bound Uv on the value of the optimal
alignment in which variable v takes the value 1. If Uv ≤ L ,
we know that this variable is not used by any alignment
which is better than the one we already have, so we can
permanently fix the variable to 0, removing it.

A simple upper bound Uv for an alignment variable
v can be computed as follows: Compute all optimal
alignments between two strings si , s j , 1 ≤ i < j ≤ k.
The sum of the values of all these alignments is clearly an
upper bound on the value of the optimal alignment, called
the pairwise upper bound. Moreover, for any alignment
variable corresponding to an edge between si and s j

we can compute an upper bound on the value of the
optimal alignment that realizes the associated edge, by
computing the optimal alignment between si and s j that
realizes this edge and adding to the resulting value the
values of the optimal alignments between the other string
pairs. We can compute this upper bound for all alignment
variables by finding only two pairwise optimal alignments
(see Gusfield (1997)), with a total running time of O(n2).

For a gap variable corresponding to arc (vi
l , v

i
k)

j , we
can compute an upper bound on the value of the optimal
alignment that realizes this gap by iterating over all nodes
v

j
h of string j and assuming that vi

l−1 is aligned with v
j
h

and that vi
k+1 is aligned with some letter after v

j
h . The total

running time to compute all these upper bounds is O(n3).
Finally, we can compute a better upper bound for

alignment variables with the following idea. Assume we
fix edge {vi

l , v
j
m} in the solution. For every string h there

must be a node vh
k so that every letter before sh

k must be
aligned with a letter before si

l in string i as well as with a

letter before s j
m in string j , and every letter after sh

k+1 must
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be aligned with a letter after si
l+1 in string i as well as with

a letter after s j
m+1 in string j . The total running time to

compute all these upper bounds is O(n4).

COMPUTATIONAL EXPERIMENTS
Goal
The goal of our experiments is twofold. First, we want
to assess the quality of optimal alignments computed
with our algorithm. Second, we want to explore how
practical the current implementation is in terms of number
of sequences and sequence length, where each of these
factors will increase the size of the ILP and hence makes
it potentially harder to solve. Our comparison with other
programs serves these two goals. It reveals that computing
optimal alignments does pay off in terms of quality and it
explores the current limits for feasibility of our approach.
It should not be understood as a general ranking of
these programs, since, although we perform very well on
instances we can solve, we are still not able to solve larger
problems.

Test data
We tested our implementation, which we will call COSA
(COmbinatorial Sequence Alignment) using a database
of different benchmark alignments (Thompson et al.,
1999) containing groups of sequences of different lengths,
called Reference 1 to 5, or (for short) R1 to R5. R1,
R2 and R3 are subdivided into three groups of different
lengths. R1 is further subdivided into three subgroups
according to different identity levels (V1: identity < 25%,
V2: identity 20–40%, and V3: identity > 35%). (R4
and R5 are not subdivided.) The database also offers
an evaluation program which computes a score between
0 and 1 indicating the percentage of correctly aligned
residues in the core regions of the alignments, where
the reference alignments are hand-created using structural
information. Note that we use the newest version of the
evaluation program (from June 14, 2002) for which no
bug is known. In addition to the database Thompson
et al. (1999) also published a survey of the qualitative
performance of different alignment programs available at
that time.

Recently BAliBase 2 was made available which
contains updated reference alignments and more test
sets. Since we wanted to use the most recent structural
alignments as standard of truth we decided to use the
overall best performing programs from Thompson’s
survey, PRRP, ClustalX, and Dialign together with a
recently published program T-Coffee (Notredame et al.,
2000) which generally outperforms the other programs.
The source code of all these programs was downloaded
and they were run with default parameters. We disregard

Table 1. Comparison of different scoring functions. The table shows the
average scores of the overall best general and affine function. For both
functions, we show the score with and without a penalty on end gaps

Group 8 + 2l + 2
√

l 6 + 4l 8 + 6
√

l

R1 V1 0.552 0.556 0.513 0.524 0.540 0.612
R1 V2 0.848 0.879 0.846 0.851 0.766 0.843
R1 V3 0.974 0.978 0.978 0.981 0.957 0.981

all other programs, since they perform significantly
worse (compare http://www-igbmc.u-strasbg.fr/
BioInfo/BAliBASE/prog scores.html).

Setup for COSA
We implemented the above algorithms using the branch-
and-cut framework SCIL (SCIL, 2002). The input variable
set is constructed as follows: We used the variable
reduction as described earlier with the pairwise upper
bound minus 20 as lower bound. This was necessary to
reduce the run time and memory consumptions. Note that
this value is not a valid lower bound in most cases. That
means that we might lose variables in the optimal solution
and with that the optimal solution itself (For reference 1
we checked our computed solutions and can prove that
in most cases they are optimal, for other references we
find suboptimal or no solutions, i.e. they are in practice
infeasible).

To evaluate our implementation we proceeded as fol-
lows: In order to find a good scoring function we com-
puted the optimal alignment for all short instances of the
group R1 for different affine and convex gap cost func-
tions with and without end gap penalties. As a amino acid
substitution matrix we used blosum62. We also experi-
mented with blosum30, blosum90 and pam250, which
gave worse results. For each group of instances in R1 we
computed the average score for different objective func-
tions each with and without end-gap penalty (see Table 1).
It is interesting to note that 8 + 2l + 2

√
l, a non linear

function, was the best objective function. Hence we used
it to compute the optimal alignments in the other groups.
We ran the experiments on a Sparc Ultra-Enterprise-10000
(333 MHz) with 15 GB main memory. We allowed the
programs a running time of at most 10 hours and memory
of at most 4 GB. Any run that exceeded these limits was
counted as unsuccessful.

Results
Tables 2, 3, and 4 contain the results for some of the
reference sets. The first column contains the name of the
data set and the subsequent columns the results for the 5
alignment programs. Each entry in the tables is the score
computed by the evaluation program provided with the
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Table 2. Comparison of the Core scores for COSA, TCOFFE and other programs. In the first column we give the name of the instance and its size (in number
of strings/total number of characters)

Data COSA TCOFFEE PRRP CLUSTALX DIALIGN

Reference 1 short V1

1aboA (5/297) 0.558 (89) 0.509 (81) 0.212 (34) 0.63 (100) 0.624 (99)
1idy (5/269) 0.646 (95) 0.065 (10) 0.681 (100) 0.415 (61) 0.031 (5)
1r69 (4/277) 0.493 (100) 0.28 (57) 0.427 (87) 0.48 (97) 0.107 (22)
1tvxA (4/242) 0.158 (72) 0.219 (100) 0.132 (60) 0.105 (48) 0 (0)
1ubi (4/327) 0.46 (61) 0.447 (59) 0.46 (61) 0.76 (100) 0.06 (8)
1wit (5/484) 0.854 (100) 0.792 (93) 0.833 (98) 0.721 (84) 0.417 (49)
2trx (4/362) 0.723 (98) 0.587 (80) 0.364 (50) 0.705 (96) 0.735 (100)

avg. 0.556 (100) 0.414 (74) 0.444 (80) 0.545 (98) 0.282 (51)

Reference 1 short V2

1aab (4/291) 0.929 (100) 0.929 (100) 0.929 (100) 0.869 (94) 0.929 (100)
1fjlA (6/398) 1 (100) 0.993 (99) 1 (100) 1 (100) 1 (100)
1hfh (5/606) 0.958 (100) 0.922 (96) 0.869 (91) 0.694 (72) 0.259 (27)
1hpi (4/293) 0.841 (99) 0.727 (85) 0.852 (100) 0.841 (99) 0.545 (64)
1csy (5/510) 0.975 (100) 0.953 (98) 0.946 (97) 0.907 (93) 0.865 (89)
1pfc (5/560) 0.892 (94) 0.944 (100) 0.861 (91) 0.826 (88) 0.438 (46)
1tgxA (4/239) 0.641 (69) 0.7 (75) 0.865 (93) 0.929 (100) 0.459 (49)
1ycc (4/426) 0.979 (99) 0.921 (93) 0.958 (97) 0.991 (100) 0.636 (64)
3cyr (4/414) 0.77 (100) 0.713 (93) 0.713 (93) 0.751 (98) 0.355 (46)
451c (5/400) 0.801 (100) 0.713 (89) 0.618 (77) 0.646 (81) 0.571 (71)

avg. 0.879 (100) 0.852 (97) 0.861 (98) 0.845 (96) 0.606 (69)

Reference 1 short V3

1aho (5/320) 1 (100) 1 (100) 0.937 (94) 0.857 (86) 0.943 (94)
1csp (5/339) 0.993 (100) 0.993 (100) 0.967 (97) 0.993 (100) 0.967 (97)
1dox (4/374) 0.918 (100) 0.918 (100) 0.922 (100) 0.911 (99) 0.848 (92)
1fkj (5/517) 0.987 (100) 0.987 (100) 0.92 (93) 0.917 (93) 0.895 (91)
1fmb (4/400) 0.978 (100) 0.978 (100) 0.967 (99) 0.978 (100) 0.961 (98)
1krn (5/390) 1 (100) 1 (100) 1 (100) 0.992 (99) 0.84 (84)
1plc (5/470) 0.947 (97) 0.947 (97) 0.976 (100) 0.935 (96) 0.838 (86)
2fxb (5/287) 0.963 (98) 0.963 (98) 0.963 (98) 0.981 (100) 0.963 (98)
2mhr (5/572) 1 (100) 0.996 (100) 1 (100) 1 (100) 0.922 (92)
9rnt (5/499) 0.99 (99) 0.995 (100) 0.977 (98) 0.995 (100) 0.854 (86)

avg. 0.978 (100) 0.978 (100) 0.963 (98) 0.956 (98) 0.903 (92)

Table 3. Comparison of the Core scores for COSA, TCOFFE and other programs. In the first column we give the name of the instance and its size (in number
of strings/total number of characters)

Data COSA TCOFFEE PRRP CLUSTALX DIALIGN

Reference 2 (5 of 9 instances)

1aboA (16/945) 0.634 (74) 0.837 (98) 0.809 (95) 0.853 (100) 0.77 (90)
1csy (19/1581) 0.555 (62) 0.882 (99) 0.893 (100) 0.877 (98) 0.859 (96)
1tgxA (20/1246) 0.231 (24) 0.934 (99) 0.915 (97) 0.944 (100) 0.831 (88)
1tvxA (19/1056) 0.711 (73) 0.931 (96) 0.94 (97) 0.97 (100) 0.855 (88)
1ubi (17/1546) 0.484 (49) 0.88 (89) 0.925 (94) 0.984 (100) 0.842 (86)

avg. 0.523 (56) 0.893 (96) 0.896 (97) 0.926 (100) 0.831 (90)
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Table 4. Comparison of the Core scores for COSA, TCOFFE and other programs. In the first column we give the name of the instance and its size (in number
of strings/total number of characters)

Data COSA TCOFFEE PRRP CLUSTALX DIALIGN

Reference 4 (10 of 12 instances)

1dynA (6/1468) 0 (0) 0.1 (50) 0 (0) 0 (0) 0.2 (100)
1ckaA (10/1758) 0 (0) 1 (100) 0.75 (75) 0.75 (75) 0 (0)
1csp (6/1405) 0 (0) 0 (0) 0 (0) 0 (0) 0.11 (100)
1lkl (8/2007) 1 (100) 0.9 (90) 1 (100) 0.9 (90) 0.9 (90)
1mfa (7/1735) 0 (0) 0.38 (83) 0.46 (100) 0 (0) 0.38 (83)
1pfc (10/2315) 1 (100) 0.25 (25) 0.15 (15) 0.34 (34) 0 (0)
1vln (14/1195) 0 (0) 0.57 (79) 0 (0) 0.72 (100) 0.48 (67)
1ycc (9/1095) 0.485 (77) 0.48 (76) 0.48 (76) 0.63 (100) 0.45 (71)
2abk (6/1547) 0 (0) 0.58 (100) 0 (0) 0 (0) 0.47 (81)
kinase1 (6/1547) 0 (0) 0.89 (100) 0 (0) 0.06 (7) 0 (0)

avg. 0.249 (48) 0.515 (100) 0.284 (55) 0.34 (66) 0.299 (58)

database. In brackets we give the percentage relative to
the best performing program for this example. In addition
we provide an average for each group.

In Table 2 we give the values for all short sequences
of reference set 1. Our implementation is on average
superior to all other programs in each of these data
sets. This indicates that it pays to compute the optimal
solution, because our approach produced on average the
biologically most meaningful alignments.

Tables 3 and 4 exhibit the current practical limitations
of our approach. For reference 2 we are able to solve
only 5 of 9 instances where the average quality is at
least acceptable, while for reference 4 we can solve 10
of 12 instances with a miserable performance. This can be
attributed to the fact that we have not enough variables in
our initial ILP, but of course that would not be a guarantee
for a good performance (TCoffee and Dialign score in
this set extremely well, since they accommodate local
alignment information in contrast to PRRP, ClustalX and
COSA).

In summary, these experiments back out the claim
that optimal sequence alignment is able to find subtle
biological signals and that the current implementation is
capable of solving real world problems. However some
problem sizes are certainly still out of reach and better
addressed by other programs.

CONCLUSION
We have presented for the first time a general multiple
sequence alignment formulation with arbitrary gap costs.
The graph-theoretic formulation allows us to define an ILP
model which is valid for any choice of the gap penalty
function. The ILP model is solved by branch-and-cut.
Our implementation is competitive with or better than the

currently best programs for moderately sized problems.
We anticipate that we can improve the performance by (a)
a closer evaluation of different scoring and gap functions
(which is trivial in our approach), (b) a speed up in
the solution of the LP relaxation of the ILP, (c) an
improvement of the variable reduction procedure.
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APPENDIX
In the appendix we elaborate more details for two different
classes of valid inequalities that we proposed in the paper,
the clique inequalities and the lifted mixed cycle inequal-
ities. In addition we describe the separation routines and
and their time complexity.

The following general structure of maximal sets of
pairwise incompatible edges will be used next. For 1 ≤
i < j ≤ k, 1 ≤ lb ≤ le ≤ |si |, 1 ≤ mb ≤ me ≤ |s j |, we
let

E i, j (lb ↔ le, mb ↔ me)

denote the collection of all set of edges in S ⊆ Ei, j such
that

1. all edges in S are pairwise incompatible;

2. for each edge {vi
l , v

j
m} ∈ S, lb ≤ l ≤ le and

mb ≤ m ≤ me;

3. S is maximal with respect to properties 1 and 2.

LEMMA 1. Every set S ∈ E i, j (lb ↔ le, mb ↔ me) has
the form

S = {{vi
l1
, v

j
m1}, . . . , {vi

l p
, v

j
m p }},

where

1. l1 = lb, l p = le, m1 = me, m p = mb;

2. for q = 1, . . . , p − 1, either lq+1 = lq and mq+1 =
mq − 1 or lq+1 = lq + 1 and mq+1 = mq.

PROOF. By requirement (a), all edges in S are crossing,
meaning that, if we order them by increasing letter of si

to which they are incident (with appropriate tie breaking),
they will also be ordered by decreasing letter of s j

to which they are incident. Therefore, we assume that
the edges in S according to this order are e1, . . . , ep.
Requirement (b) imposes l1 ≥ lb, l p ≤ le, m1 ≤
me, m p ≥ mb. It is easy to verify that the maximality
requirement (c) implies that all these inequalities hold at
equality, otherwise at least one edge could be added to
S preserving (a) and (b). For instance, if l1 > lb, edge
{vi

lb
, v

j
me} could be added to S. This shows (i). It is easy

to verify that, if (ii) were violated, again at least one edge
could be added to S. For instance, if lq+1 = lq + 1 and

mq+1 = mq − 1, edge {vi
lq+1

, v
j
mq } could be added to S.

This shows (ii) and concludes the proof. �
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ACAB
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Fig. 3. Illustration of possible edges and arcs in a clique inequality.

Clique inequalities Recall that the clique inequality has
the form

∑

e∈KE

xe +
∑

a∈K A

ya ≤ 1, (11)

and is clearly valid for P .
The following characterization of all (exponentially

many) clique inequalities for our problem, which is an
extension of the one in Reinert et al. (1997) (where
only alignment variables are considered), will lead to an
efficient algorithm for their separation.

PROPOSITION 2. For every clique inequality (11), there
exist two strings si , s j such that either

KE = ∅, K A = Ai, j (l + 1 ↔ l)

for some 1 ≤ l ≤ ‖si‖, or

KE ∈ E i, j (lb ↔ le, 1 ↔ |s j |), K A = Ai, j (lb ↔ le)

for some 1 ≤ lb ≤ le ≤ ‖si‖
PROOF. The requirement that all edges and arcs be

incompatible implies KE ⊆ Ei, j and K A ⊆ Ai, j for some
1 ≤ i, j ≤ k, i �= j . If KE = ∅, K is a maximal set of
incompatible arcs in Ai, j , which is easily seen to have the
form given in the statement, the resulting clique inequality
being one of (4). Otherwise, note that the maximal set
of arcs in Ai, j pairwise incompatible with all edges in
a set S ⊆ Ei, j is uniquely determined by the first and
last letter si

lb
and si

le
of si to which the edges in S are

adjacent. Specifically, this set of arcs is Ai, j (lb ↔ le).
Along with the maximality requirement, this implies that
KE ∈ E i, j (lb ↔ le, mb ↔ me) with mb = 1 and
me = |s j |. In particular, if mb > 1 (resp. me < |s j |) then
edge {vi

le
, v

j
1 } (resp. {vi

lb
, v

j
|s1|}) would be incompatible

with all members of K .

An illustration of possible sets KE and K A in a clique
inequality is given in Figure 3.

Lifted mixed cycle inequalities Recall that the lifted
mixed cycle inequalities have the following form:

∑

e∈C

xe ≤ t − 1, (12)

and are valid for P .

PROPOSITION 3. For every lifted mixed cycle inequal-
ity (12) there exists a path

P = v
i1
l1

, {vi1
l1

, v
i2
l2

}, vi2
l2

, {vi2
l2

, v
i3
l3

}, . . . , {vit
lt
, v

i1
l1−1}, vi1

l1−1

containing t edges (and no arc) such that

1. for r = 1, . . . , t , {vir
lr

, v
ir+1
lr+1

} ∈ Cir ,ir+1;

2. for r = 1, . . . , t , Cir ,ir+1 ∈ E ir ,ir+1(lr ↔ |sir |, 1 ↔
lr+1);

where it+1 := i1 and lt+1 := l1 − 1.

PROOF. First of all, note that P together with arc
(v

i1
l1−1, v

i1
l1

) ∈ Ap defines a mixed cycle. We shall call
this the reference (mixed) cycle. In order to prove the
statement, we first observe that any set C that satisfies
conditions (i) and (ii) in the statement also satisfies (a)
(by definition of E ir ,ir+1(·)) and (b), since any set of edges
obtained by selecting one edge from each Cir ,ir+1 defines
a mixed cycle, which is obtained from the reference cycle
by replacing two consecutive edges by two edges with a
path in Ap in between (formal details are skipped). As
to the maximality requirement (c), note that the addition
to Cir ,ir+1 of an edge in Eir ,ir+1 compatible with some
edges already present would violate requirement (a) (and
the resulting inequality would not be valid), whereas the
addition of an edge e = {vir

l , v
ir+1
m } with l < lr or

m > lr+1 would violate (b), since it is easy to verify that
P \ {vir

lr
, v

ir+1
lr+1

} ∪ e is not the set of edges in a mixed cycle.
The proof is concluded by showing that every set C that

satisfies (a), (b) and (c) has the form given in the statement.
For r = 1, . . . , t , order the edges in Cir ,ir+1 according to
increasing letter of sir to which they are incident, breaking
ties by decreasing letter of sir+1 to which they are incident,
and let er be the last edge according to this ordering.
Consider the mixed cycle C with edges e1, . . . , et and
note that, after possible shifting of the indices i1, . . . , ik ,
we can assume without loss of generality that C contains
at least one arc in Ap associated with si1 . We show that
C contains only one arc. Indeed, if C contains also an arc
in Ap associated with string sir for some 1 < r ≤ t , we
have a contradiction to the maximality of C as we may
add to Cir−1,ir the edge in Eir−1,ir with the same endpoint
in sir −1 as er−1 and the same endpoint in sir as er . An
analogous reasoning shows that C contains exactly one arc
in Ap associated with string si1 . Finally, (i) is verified by
definition, and (ii) follows immediately by the maximality
requirement on C .

For an illustration see Figure 4. Note that P together
with arc (v

i1
l1−1, v

i1
l1

) ∈ Ap defines a mixed cycle. We shall
call this the reference (mixed) cycle.
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Fig. 4. Illustration of possible edges in a lifted mixed cycle
inequality (edges represented by an arrow are those in the reference
mixed cycle).

Polyhedral results
We summarize our polyhedral results in the following
theorem, whose proof will be given in the full paper.

THEOREM 1.

•Clique inequalities (11) define facets if le − lb ≥ 1,
lb > 1, le < ‖si‖, (vi

lb
, v

j
‖s j ‖−1

) ∈ KE and (vi
le
, v

j
2 ) ∈

KE .

•Lifted mixed cycle inequalities (12) define facets if
2 ≤ lr ≤ ‖sir ‖ − 2 for r = 1, . . . , t .

•Generalized transitivity inequalities (10) define facets
if there are l and m such that si2

l /∈ S2, si2
l+1 /∈ S2,

si3
m /∈ S3 and si3

m+1 /∈ S3.

The Branch-and-cut algorithm
Branch-and-cut is one of the most successful frameworks
for the solution of ILPs and works as follows. We relax
the integrality condition and solve the corresponding
(exponentially large) LP. If all variables in the optimal
solution of the LP are integral, we are done. Otherwise we
partition the problem into two subproblems by choosing
a variable with a fractional value and fixing it to 0 and 1
in the two subproblems. The procedure is iterated on the
subproblems.

Our integer program contains an exponential number
of clique, lifted mixed cycle and generalized transitivity
inequalities. Obviously, we cannot afford to simply give
all of them to a solver. Therefore we use cutting plane
approach. We start with a initial, small set of constraints
and solve the LP. We call the constraints that are given
to the LP solver the active constraints. We test, if the
solution of the LP over the active constraints violates any
non-active constraint. If so, we add one or more violated
constraints to the set of active constraints and iterate. Thus
we have to solve the following problem: given a solution

of an LP, test if a violated constraint exists and if so, find
one. This problem is called the separation problem and the
violated constraint is called a cutting plane. We describe
efficient algorithms that solve the separation problem for
the different classes of inequalities below. The fact that
polynomial-time separation algorithms exist for the facet-
defining inequalities that we present is somehow unusual
(in the positive sense), in that often efficient separation
procedures are known only for weaker versions of the
facet-defining (i.e. strongest possible) inequalities that one
can derive for the problem at hand. In this section we also
describe a simple but efficient procedure to reduce the
set of variables. The other details of the branch-and-cut
algorithm are standard and deferred to the full paper.

Separation procedures
Note first that there is no need for separation algorithms
for the constraints in our initial ILP model, since there
are only n(k − 1) equations of type (2) and inequalities
of type (4), transitivity inequalities (5) are a special
case of generalized transitivity inequalities, and mixed
cycle inequalities (3) are dominated by lifted mixed cycle
inequalities. In the following, let (x∗, y∗) be the solution
that should be separated.

Pairgraphs Given a clique K and edge weights we for
all edges e ∈ E , it is useful to compute KE ∈ E i, j (lb ↔
le, mb ↔ me), which maximizes

∑
e∈KE

we. According
to Lemma 1 one may use dynamic programming. We
represent the dynamic programming procedure as a path
computation in a directed acyclic graph. Specifically, we
need the notion of pairgraph, introduced by Reinert et
al. Reinert et al. (1997). They used them in the special
case lb = 1, le = ‖s1‖, mb = 1, and me = ‖s1‖,
which generalizes directly to our case. The pairgraph
PGi, j for an ordered pair of strings si , s j is a directed
acyclic graph with a node ne for every edge e ∈ Ei, j of
the alignment graph. Every node n{vi

l ,v
j
m} has up to two

outgoing arcs, namely (n{vi
l ,v

j
m}, n{vi

l ,v
j
m−1}), if m > 1, and

(n{vi
l ,v

j
m}, n{vi

l+1,v
j
m}), if l < ‖si‖.

LEMMA 2. Every path ne1, . . . , nel in PGi, j such that

e1 = {vi
lb
, v

j
me} and el = {vi

le
, v

j
mb}, corresponds to a set

{e1, . . . , el} ∈ E i, j (lb ↔ le, mb ↔ me) and vice versa.

PROOF. Follows directly from Lemma 1.

For further details on pairgraphs, see Reinert et al.
(1997). According to Lemma 2, the set KE ∈ E i, j (lb ↔
le, mb ↔ me) which maximizes

∑
e∈KE

we corresponds
to the longest node-weighed path in PGi, j between
n{vi

lb
,v

j
me } and n{vi

le
,v

j
mb } with respect to node weights
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wne := we for e ∈ E . Since PGi, j is acyclic, we can
compute such a path in linear time. In order to speed up
the computation, we use a sparse version of the pairgraph,
as described in Reinert et al. (1997).

Clique inequalities In the separation of clique inequali-
ties (11), we fix the strings si and s j , i �= j , considering all
k(k − 1) pairs. For every 1 ≤ lb < le ≤ ‖si‖, we (a) com-
pute KE ∈ E i, j (lb ↔ le, 1 ↔ ‖s j‖) which maximizes∑

e∈KE
x∗

e by finding a longest path in the pairgraph from
n{vi

lb
,v

j

‖s j ‖}
to n{vi

le
,v

j
1 }; (b) compute

∑
a∈Ai, j (lb↔le) y∗

a ; and

(c) test if the corresponding clique inequality is violated,
that is if

∑
e∈KE

x∗
e + ∑

a∈Ai, j (lb↔le) y∗
a > 1.

Given i and j , Step (a) takes, overall, O(‖si‖2‖s j‖)
time, since for each of the ‖si‖ − 1 values of lb we find
the shortest path tree from n{vi

lb
,v

j

‖s j ‖}
in PGi, j , whose size

is O(‖si‖‖s j‖). Step (b) requires overall O(‖si‖2) time,
noting that there are ‖si‖2 gap variables of length at most
‖si‖. The running time for Step (c) is overall O(‖si‖2).
Thus the total running time is O(

∑k
i=1

∑k
j=1 ‖si‖2‖s j‖+

∑k
i=1 ‖si‖2) = O(n3). However, if all strings have

approximately the same length n/k, the actual complexity
is roughly n3/k.

The discussion above shows

THEOREM 2. Clique inequalities (11) can be separated
in O(n3) time.

To accelerate the separation (mainly in the first itera-
tions), we use some heuristics described in the full paper.

Lifted mixed cycle inequalities For the separation of
lifted mixed cycle inequalities (12), it is easy to observe
that, if v

ir
lr

v
ir+1
lr+1

is an edge of the reference mixed cycle

corresponding to a violated inequality, then Cir ,ir+1 can be
defined as the element of E ir ,ir+1(lr ↔ ‖sir ‖, 1 ↔ lr+1)

which maximizes
∑

e∈Cir ,ir+1 x∗
e . Accordingly, let H =

(V, E ′) be the directed graph with the same nodes as G
and two arcs (u, v), (v, u) ∈ E ′ for every edge {u, v} of
G. The weight wa of an arc a = (vi

l , v
j
m) ∈ E ′ is defined

as

wa := 1 − max
KE ∈E i, j (l↔‖si ‖,1↔m)

∑

e∈KE

x∗
e .

The most violated lifted mixed cycle inequality whose
reference cycle contains the arc (v

i1
l1−1, v

i1
l1

) ∈ Ap (if
any) corresponds to a minimum-weight path in H from
v

i1
l1

to v
i1
l1−1. Indeed, if this path, say P , is given by arcs

(v
i1
l1

, v
i2
l2

), . . . , (v
it
lt
, v

i1
l1−1), the violation is given by

t∑

r=1

∑

e∈Cir ,ir+1

x∗
e − t + 1 = 1 −

t∑

r=1

(1 −
∑

e∈Cir ,ir+1

x∗
e )

= 1 −
∑

a∈P

wa,

i.e. the inequality is violated if and only if the weight of
P is smaller than 1. If all clique inequalities are satisfied,
which can be assumed if we separate these inequalities
before lifted mixed cycle inequalities, we know that wa ≥
0 for a ∈ E ′ and thus we can find the path P with
Dijkstra’s algorithm.

Computing the weights for the arcs in E ′ can be done
in O(n3) by finding the all pairs shortest paths in each of
the

(k
2

)
pairgraphs (and is already done for the separation

of clique inequalities). The running time for each call of
Dijkstra’s algorithm is O(n2), since graph H has n nodes
and O(n2) edges. Hence, the total running time is O(n3),
since Dijkstra’s algorithm is called n − k times, once for
each candidate pair v

i1
l1−1, v

i1
l1

. This shows

THEOREM 3. Lifted mixed cycle inequalities (12) can
be separated in O(n3) time.

To accelerate the separation, we sparsify graph H by the
same idea as in Reinert et al. (1997) (details are given in
the full paper).

Generalized transitivity inequalities For the separation
of generalized transitivity inequalities (10), we fix the
three strings si1, si2, si3 along with the letter si1

l1
of string

si1 . Then we need to check the existence of two sets
A ⊆ {1, . . . , ‖si2‖} and B ⊆ {1, . . . , ‖si3‖} such that

∑

l∈A

x∗
{vi1

l1
,v

i2
l } +

∑

m∈B

x∗
{vi1

l1
,v

i3
m } −

∑

l∈A

∑

m∈B

x∗
{vi2

l ,v
i3
m } > 1.

Consider the complete bipartite graph B = (U ∪ V, F)

in which U = {1, . . . , ‖si2‖} and V = {1, . . . , ‖si3‖}.
Assign to each vertex l ∈ U profit pl := x∗

{vi1
l1

,v
i2
l }, to

each vertex m ∈ V profit pm := x∗
{vi1

l1
,v

i3
m }, and to each

edge {l, m} ∈ F cost c{l,m} := x∗
{vi2

l ,v
i3
m }. Clearly, finding

the inequality (10) which is most violated is equivalent to
finding subsets A ⊆ U and B ⊆ V such that

∑

l∈A

pl +
∑

m∈B

pm −
∑

l∈A

∑

m∈B

c{l,m}

is maximized, or equivalently finding subsets A ⊆ U and
B ⊆ V such that

∑

l∈A

pl +
∑

m∈B

pm +
∑

l∈U\A

∑

m∈V \B

c{l,m} (13)
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E.Althaus et al.

is minimized. We show that the second problem is
equivalent to finding an {s, t}-cut of minimum value in
a suitable directed network. This network has node set
{s, t}∪U ∪V , where s plays the role of the source and t of
the sink, an arc (s, l) of capacity pl for each l ∈ U , an arc
(m, t) of capacity pm for each m ∈ V , and an arc (l, m)

of capacity c{l,m} for each l ∈ U, m ∈ V . Recall that the
value of an {s, t}-cut defined by node set S, with s ∈ S,
t ∈ S, is given by the sum of the capacities of all arcs with
tail in S and head in S, where S is the set of nodes outside
S. Letting A := U ∩ S and B := V ∩ S, it is simple to
verify that the value of this cut is given by (13). Note that
it may well be the case that either A = U or B = V in the
above problem (i.e. either A = ∅ or B = ∅), which means
that no inequality (10) is violated since, by equations
(2) both

∑
l∈U x∗

{vi1
l1

,v
i2
l } ≤ 1 and

∑
m∈V x∗

{vi1
l1

,v
i3
m } ≤ 1.

Note also that the two problems above are generalizations
of Stable Set and Vertex Cover in a bipartite graph (arising
when the edge costs are are either 0 or ∞), and in fact the
solution method above is a simple extension of the method
for these problems.

In the separation procedure above, for each triple
si1, si2, si3 and l1 ∈ {1, . . . , ‖si1‖}, we have to compute a
maximum flow in a network with O(‖si2‖+‖si3‖) nodes,
which can be done in O(‖si2‖3 + ‖si3‖3) time. The over-
all complexity is O(

∑k
i1=1

∑k
i2=1

∑k
i3=1 ‖si1‖(‖si2‖3 +

‖si3‖3)) = O(n4). As before, if each string has approx-
imately the same length n/k, the complexity is roughly
n4/k. This shows

THEOREM 4. Generalized transitivity inequalities (10)
can be separated in O(n4) time.
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