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Abstract—A polynomial eigenvalue decomposition of paraher-
mitian matrices can be calculated approximately using iterative
approaches such as the sequential matrix diagonalisation (SMD)
algorithm. In this paper, we present an improved SMD algorithm
which, compared to existing SMD approaches, eliminates more
off-diagonal energy per step. This leads to faster convergence
while incurring only a marginal increase in complexity. We
motivate the approach, prove its convergence, and demonstrate
some results that underline the algorithm’s performance.

I. INTRODUCTION

Parahermitian polynomial matrices occur in e.g. broadband

sensor array problems: when in calculating correlations of

a data vector x[n] proper time delays rather than phase

shifts, as in the narrowband case, must be considered. In

this context, a useful quantity is the space-time covariance

matrix R[τ ] = E
{
x[n]xH[n− τ ]

}
, where E{·} denotes ex-

pectations and {·}H is the Hermitian transpose operator, the z-

transform of which is the cross-spectral density (CSD) matrix

R(z) =
∑

τ R[τ ]z−τ . Define the parahermitian operator

R̃(z) = R
H(z−1), i.e Hermitian transposing all matrix-value

coefficients and time-reverses the auto- and cross-correlation

terms in R[τ ]. Note that the CSD matrix is parahermitian with

R̃(z) = R(z).
An eigenvalue decomposition offers a powerful tool to

factorise Hermitian matrices to e.g. reveal subspace decom-

positions or identify optimal transforms for coding and com-

pression [1], [2]. For the polynomial case a polynomial EVD

(PEVD) has been generalised in [4] as

R(z) ≈ H(z)Γ(z)H̃(z) , (1)

where H(z) is paraunitary such that H(z)H̃(z) =
H̃(z)H(z) = I and Γ(z) is diagonal and spectrally ma-

jorised [2]. The approximation in (1) has been suggest to hold

very closely if the polynomial order of H(z) is permitted to

grow arbitrarily large [3]. This PEVD has found applications

in subband coding [5], filter bank-based channel coding [6],

design of broadband precoding and equalisation of MIMO

systems [7], broadband angle of arrival estimation [8], and

other problems.

For the calculation of the PEVD in (1), a number of iterative

algorithms have been suggested, including the second order

sequential best rotation (SBR2) algorithm [4], an approximate

PEVD [10], a subband coding-optimised version of SBR2 [5]

and a sequential matrix decomposition (SMD) algorithm [9].

All these algorithms calculate a sequence of simple paraunitary

transformtion with the aim of reducing off-diagonal power in

the parahermitian matrix. The SMD algorithms have shown

superior convergence due to eliminating an entire column

rather than just the maximum off-diagonal element, as in the

case of SBR2. The transfer of additional energy comes at

the expense of having to perform a matrix multiplication for

every lag value of the parahermitian matrix. In this paper,

we extend this idea by transferring additional energy from

multiple columns, whereby little extra cost over the standard

SMD algorithm arises.

In this paper, Sec. II reviews iterative PEVD approxi-

mations; Sec. III outlines the proposed algorithm and its

convergence; results are shown in Sec. IV and conclusions

drawn in Sec. V.

II. ITERATIVE PEVD ALGORITHMS

A. Second Order Sequential Best Rotation Algorithm

The idea of SBR2 is to iteratively diagonalise R(z),
whereby at each step the maximum off-diagonal element is

identified and its energy transferred onto the diagonal by

means of an elementary paraunitary transformation. The latter

consists of a delay to bring the element in question onto the lag

zero matrix R[0], where it is eliminated by a Jacobi rotation.

Starting with S
(0)(z) = R(z), at the ith iteration we first

perform a delay step

S
(i)′(z) = Λ̃

(i)
(z)S(i−1)(z)Λ(i)(z) , i = 1 . . . I , (2)

where

Λ(i) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} (3)

shifts the k(i)th column of S(i−1)(z) by τ (i) samples, and Λ̃
(i)

shifts the k(i)th row in the opposite lag direction.

To find the maximum off-diagonal element, we define a

modified column vector ŝ
(i)
k [τ ] ∈ CM−1, which contains

all elements in the k(i)th column of S(i)[τ ] except for the

diagonal element. Therefore, the optimum parameter set for
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Fig. 1. Sparsity structure of lag zero matrix S
(i)′[0] after ith iteration of (a)

the SMD algorithm, indicating the maximum off-diagonal element in position
m(i) of the k(i)th row, and (b) after permutation.

(3) is obtained from

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , (4)

such that the optimum off-diagonal element will now lie in

the lag zero matrix S(i),′[0].
The elimination of the maximum off-diagonal element is

accomplished by a Jacobi rotation, denoted here by a unitary

matrix Q(i),

S
(i)(z) = Q(i)H

S
(i)′(z)Q(i) . (5)

This Jacobi rotation is applied to only two rows and columns

of S
(i)′(z), defined by the column and row indices of the

maximum off-diagonal element according to (4). The energy

of this maximum element is transferred to the diagonal of

S(i)[0], allocating more energy to the element higher up on

the diagonal, which favours but does not guarantee eventual

spectral majorisation.

The algorithm has been proven to converge [4], since

the paraunitary operations do not alter the total energy in

S
(i)′(z), while in every step the off-diagonal energy is further

minimised. The algorithm stops after I iterations, either when

a maximum number of iterations is reached, or if the off-

diagonal energy falls below a defined threshold. In this case,

the paraunitary matrix

H(z) =
I∏

i=1

Q(i)Λ(i)(z) (6)

performs the computed decomposition.

B. Sequential Matrix Diagonalisation Algorithm

SMD algorithms differ from SBR2 in that they clear all

off-diagonal elements of the zero lag matrix S(i)[0] at every

step. An initialisation step is required to ensure that all

instantaneous correlations are removed by means of an EVD,

S(0)[0] = Q(0)HR[0]Q(0) , (7)

such that S(0)[0] is diagonal, and S
(0)(z) = Q(0)H

R(z)Q(0).

Subsequently, at the ith iteration, in a first step the k(i)th

column is transferred onto the zero lag matrix according to (2),

creating a sparsity structure for S(i)′[0] as shown in Fig. 1(a).

In the second step, the matrix S(i)′[0] is diagonalised according

to (5), whereby Q(i) is the modal matrix of an EVD of S(i)′[0]
rather than a simple Jacobi rotation.

SMD identifies the k(i)th column containing maximum off-

diagonal energy by replacing the L∞-norm in (4) by the L2-

norm. An alternative version, called maximum element SMD

(ME-SMD), searches for the column containing the maximum

off-diagonal element identical to SBR2 in (4), but performs the

SMD-characteristic complete diagonalisation.

The major advantage of SMD with respect to SBR2 is that

more energy is transferred onto the diagonal per iteration,

hence the algorithm will diagonalise a parahermitian matrix in

fewer iterations. However, the matrix Q(i), although computed

only based on S(i)′[0], has to be applied to S(i)′[τ ] for every

lag τ . Since Q(i) no longer has the simple structure of a

Jacobi rotation but is non-sparse, SMD has a significantly

higher computational complexity than SBR2. However, SMD

is capable of achieving levels of diagonalisation that are unob-

tainable with SBR2, and can generally realise diagonalisation

with paraunitary filters of lower order compared to SBR2.

III. MULTIPLE SHIFT ME-SMD ALGORITHM

A. Idea

As discussed in Sec. II-B, the primary advantage of the

SMD algorithm over SBR2 is its faster convergence due to

eliminating the off-diagonal energy of an entire column in the

lag zero matrix. The idea of the proposed algorithm is to move

more than one column — and therefore more energy — onto

the lag zero matrix and hence reduce even more off-diagonal

energy per iterations. This creates a more complex search

and EVD per step; however, the subsequent application of

the modal matrix to all lags remains the same. The algorithm

proposed below is an evolution of the ME-SMD search, but

aims to further increase the off-diagonal energy in the zero lag

matrix by additional column shifts at every step; we therefore

refer to this approach as multiple shift ME-SMD (MSME-

SMD) algorithm.

B. Algorithm

The initialisation of the proposed algorithm follows the

SMD family with (7). At the ith iteration, we first use (4) to

identify the maximum off-diagonal element, and time-shift it

with its column onto the lag zero slice, resulting in the sparsity

structure shown in Fig. 1(a). By permuting this matrix to the

structure in Fig. 1(b), any subsequent operations within the ith

iteration will not affect this maximum off-diagonal element as

long as the upper 2× 2 matrix remains untouched.

Different strategies to identify and time-shift further

columns within the ith iteration exist. The strategy employed

in MSME-SMD uses a set of reduced search spaces to ensure

(M−1) columns are shifted onto the zero lag at each iteration.

After the operations shown in Fig. 1 have been completed, the

search space shown in Fig. 2(a) is used. Only the highlighted

areas in Fig. 2(a) are considered because all their elements can

be permuted into the upper 3×3 matrix. If an element outside

the search space in Fig. 2(a) is chosen, such as element 2 in

Fig. 2(b), applying permutations results in the elements being



2
2

(a) (b)search
space

search
space

search
space

search
space

search space

se
a
rc
h
sp
a
c
e(c) (d)

Fig. 2. View of a 5 × 5 parahermitian matrix during the ith iteration, not
showing the lag dimension: starting from the top 2× 2 matrix containing the
maximum off-diagonal element in (a), (b) shows an example of an element
resistant to permutations, the third and fourth stages of the set of reduced
search space strategy are shown in (b) and (d).

left in the upper 4×4 rather than 3×3 matrix. Crucially, for the

next step when element 2 is chosen, only one further element

from the right most column and bottom row, i.e. Fig. 2(d),

could be chosen without affecting the previous two maxima.

By contrast, the next step when the strategy in Fig. 2(a) is used

allows a larger search space. Using another, similar, search

space reduction in Fig. 2(c), a third maximum is chosen that

can be permuted into the upper 4× 4 matrix. Finally a fourth

maximum can be chosen from the search space highlighted in

Fig. 2(d).

Therefore, a total of (M − 1) columns have been shifted

during the ith operation, redefining the simple delay matrix in

step (2) as a more complex delay & permutation matrix

Λ(i) = diag{1 z−τ
(i,1)

. . . z−τ
(i,M−1)

} P(i) (8)

whereby the permutation matrix P(i) accumulates all the

column shift operations discussed above. The delays τ (i,m),

m = 1 . . . (M − 1) are the lag values at which the maximum

elements for the different columns in Fig. 2 have been found.

Although the sequence of columns and rows has been

mixed during the above steps, the ith iteration concludes with

applying an ordered EVD [1] as in the ME-SMD algorithms.

This ensures that the diagonal elements of the zero lag matrix

are ordered in descending energy, thereby encouraging spectral

majorisation.

C. Convergence

Theorem 1 (Convergence of the MSME-SMD Algorithm):

With a sufficiently large number of iterations I , the multiple-

shift ME-SMD algorithm approximately diagonalises R(z)
and decreases the power in off-diagonal elements to an

arbitrarily low threshold ǫ > 0.

Proof: A number of norms are required to prove Theo-

rem 1. With s
(i)
m,m[0] the mth diagonal element of S(i)[0],

N1{S
(i)(z)} ,

M∑

m=1

|s(i)m,m[0]|2 (9)

is invariant to shifts and permutations, i.e.

N1{S
(i)′(z)} = N1{Λ

(i)(z)S(i−1)(z)Λ̃
(i)
(z)}

= N1{S
(i−1)(z)} . (10)

The energy of the lag zero matrix

N2{S
(i)(z)} , ‖S(i)[0]‖2F (11)

is invariant under any unitary operation,

N2{S
(i)(z)} = N2{Q

(i)
S
(i)′(z)Q(i)H}

= N2{S
(i)′(z)} . (12)

Further,

N3{S
(i)(z)} , N2{S

(i)(z)} − N1{S
(i)(z)} (13)

N4{S
(i)(z)} ,

∑

τ

‖S(i)[τ ]‖2F (14)

where ‖ · ‖F denotes Frobenius norm and the total energy

N4{·} is invariant under the application of a paraunitary

G
(i)(z) such that

N4{S
(i)(z)} = N4{G

(i)(z)S(i−1)(z)G̃
(i)
(z)}

= N4{S
(i−1)(z)} . (15)

For the off-diagonal norm at the ith iteration,

N3{S
(i)′(z)} ≥ 2‖ŝ

(i−1)

k(i) [τ (i)]‖2
∞

= 2γ(i) . (16)

In the following rotation step with Q(i), this energy is trans-

ferred onto the main diagonal such that N3{S
(i)(z)} = 0.

With

N1{S
(i)(z)} > N1{S

(i)′(z)}+ 2γ(i)

= N1{S
(i−1)(z)}+ 2γ(i) (17)

and γ(i) > 0, N1{S
(i)(z)} increases monotonically with

iteration index i. Since

N1{S
(i)(z)} ≤ N4{S

(i)(z)} ∀i , (18)

with the overall energy, N4{S(i)(z)}, remaining constant,

N1{S
(i)(z)} must have a supremum S,

S = sup
i

N1{S
(i)(z)} . (19)

It follows that for any ǫ > 0 there must be an iteration number

I for which S−N1{S
(I)(z)} < ǫ and so the increase 2γ(I+i),

i ≥ 0, at any subsequent stage must satisfy

2γ(I+i) ≤ S −N1{S
(I)(z)} < ǫ . (20)

Hence, for any ǫ > 0, there must be an iteration I by which

γ(I+i), i ≥ 0, is bounded by ǫ.
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Fig. 3. Comparison of normalised off-diagonalised energy E
(i)
norm according

to (21) for SBR2, ME-SMD and MSME-SMD, showing ensemble averages
with 90% confidence intervals versus iteration index.

IV. RESULTS

To demonstrate the proposed algorithm, we assess the

reduction of off-diagonal energy at the ith iteration,

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
, (21)

normalised by the total power N4{S
(i)(z)} = N4{R(z)} =

∑

τ ‖R[τ ]‖2F. The comparison to the SBR2 [4] and ME-SMD

algorithms [5] is calculated over an ensemble of 100 realisa-

tions of random parahermitian 5 × 5 matrices R(z) of order

11. These randomised parahermitian matrices can be generated

from matrices A(z) ∈ C5×5 of order 6 with independent

and identically distributed zero mean unit variance complex

Gaussian entries, such that R(z) = A(z)Ã(z).
The results are depicted in Fig. 3, and confirm the enhanced

convergence of ME-SMD over SBR2 due to eliminating an

entire off-diagonal column rather than just the maximum off-

diagonal element at every iteration step. The proposed MSME-

SMD algorithm, by eliminating at least as much as energy as

the ME-SMD algorithm per iteration step, provides even faster

convergence, and reaches higher levels of diagonalisation as

measured by the normalised off-diagonal energy, at the cost

of a marginally higher computational complexity.

Fig. 4 shows the power spectral densities along the diago-

nalised CSD matrix. As hinted earlier, the ordering of energy

encourages spectral majorisation — the strict ordering of PSDs

at all frequencies — is achieved best by MSME-SMD within

the given number of iterations.

V. CONCLUSION

We have presented an enhanced sequential matrix diag-

onalisation, which iteratively approximates the PEVD of a

parahermitian matrix. The algorithm is based on a maximum

element SMD version, which at each iteration step brings

the maximum off-diagonal element onto the lag zero matrix,

where then the entire column is eliminated. Since the main

algorithm complexity is to apply a unitary matrix of every
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Fig. 4. PSDs S
(100)
m,m (ejΩ) for a) SBR2 [4], b) ME-SMD [9], and c) MSME-

SMD demonstrating approximate spectral majorisation.

lag value of the parahermitian matrix, the idea pursued in

this paper has been to transfer more off-diagonal energy per

iteration step compared to ME-SMD. We have demonstrated

the multiple-shift maximum element SMD to be capable of

shifting a total of M − 1 columns. Due to this additional

energy, the algorithm converges significantly faster than both

SBR2 and ME-SMD.
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