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Introduction 

The common techniques for solving two-point boundary 
value problems can be classified as either "shooting" or 
"finite difference" methods. Central to a shooting method 
is the ability to integrate the differential equations as an 
initial value problem with guesses for the unknown initial 
values. This ability is not required with a finite difference 
method, for the unknowns are considered to be the values 
of the true solution at a number of interior mesh points. 
Each method has its advantages and disadvantages. One 
serious shortcoming of shooting becomes apparent when, 
as happens altogether too often, the differential equations 
are so unstable that they "blow up" before the initial 
value problem can be completely integrated. This can 
occur even in the face of extremely accurate guesses for 
the initial values. Hence, shooting seems to offer no hope 
for some problems. A finite difference method does have 
a chance for it tends to keep a firm hold on the entire 
solution at once. The purpose of this note is to point out 
a compromising procedure which endows shooting-type 
methods with this particular advantage of finite difference 
methods. For such problems, then, all hope need not be 
abandoned for shooting methods. This is desirable because 
shooting methods are generally faster than finite difference 
methods. 

The organization is as follows: 
I. The two-point boundary value problem is stated in 

quite general form. 
II. A particular shooting method is described which is 

designed to solve the problem in this form. 
---
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Ill. The two-point boundary value problem is then 
restated in such a way that: 
(a) the restatement still falls within the general form, 

and 
(b) the shooting method now has a better chance of 

success when the equations are unstable. 

The Method 

I. The two-point boundary problem may be stated 
as follows: 

if= g(y,t), j[y(to), y(T)] = 0 (1) 

where y, g and fare vectors of order n; f and g may be 
nonlinear. 

II. A shooting method which has been successful in 
many cases is the following: Let y(t) be the true solution 
of (1), and let y0 = y(to). Let fjo be an approximation to 
yo , and define y( t) to be the solution of the initial value 
problem: 

fj = g(y, t), y(to) = Yo · (2) 

Thus y satisfies the differential equation, but not (in 
general) the boundary conditions; that is, 

j(Y(to), y( T)] = E. (3) 

Assume the existence of the partial derivatives necessary 
to construct the matrices P, JYI and N, where 

ag;(t) af; af; 
Pu = ayj(t) ' 1ni,j = ayi(to)' ni,j = ayi(T) ( 4) 

(i, j = 1, 2, · · · , n). 

Let 'f'J(t) = y(t) - y(t). Finding y(t) is then equivalent 
to finding 'f'J(t) so that 

fj + iJ = g(y + 'f'J, t), 

j[y(to) + 'f'J(to), y(T) + 'f'J(T)] = 0. 
(5) 

Expanding these expressions in a first order Taylor series 
and using (2) gives the approximate formula 

(6) 

The partial derivatives are to be evaluated for the approxi
mate solution y. 

This suggests the following iterative procedure: 

1. Simultaneously integrate from to to T 

U = PU, U(to) = Uo (7) 
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and 

l~ = g(Y, t), y(to) = iio, (8) 

where Uo is the identity matrix of order n, except that the ith 
diagonal element of Uo may be suppreEsed if the ith component 
of y(t 0 ) is a known eondition. If k components of y(t 0 ) are known, 
then only n(n - k) variational equations need to be integrated 
instead of n 2 • 

2. Compute M, Nand f. 

3. Solve the linear algebraic system [MU0 + NU(T) ]a = - f. Then 
11 = Ua satisfies the required equations (6) as may be verified by 
direct substitution. 
4. Form 'lo = U 0 a which provides a correction to y(t 0) = iio . Then 
iio + 'lo replaces iio ; stop or go back to 1. 

This process may be iterated until appropriate con
vergence tests are satisfied. (This method, incidentally, is 
similar to that in [3] but has the advantages that the 
problem solved is more general and no backwards integra
tion is needed.) 

A modification often helpful at step 3 is, instead, to 
minimize II[MUo -1- NU(T)]a + ~11 2 under the constraints 
that lajl :::=;; Mi where the J.l!Ij are prescribed constants. 
This enables one to remain close to the current iterant 
y(O) in case the unconstrained solution is too large to 
give a useful correction. 

Ill. The multiple-shooting method can be described 
as a compromise between shooting and solving implicit 
finite difference equations. Its only devices are a general 
shooting method, such as the one introduced above, and a 
restatement of the problem. Without loss of generality 
let to = 0. The interval from 0 to T is split into k equal 
subintervals. In each subinterval, the dependent variables 
are denoted by new symbols. There are now nk dependent 
variables, but the interval of integration is 0 to T jk. By 
changing the sign of iJ in an interval, the direction of 
integration in that interval is reversed. Thus, if the 
integration is unstable in only one direction in the original 
problem and the sign of iJ is changed in half the sub
intervals, then half the integrations will be in the 
stable direction. Moreover, the subintervals can be made 
short enough so that the integration will end before any 
instability takes over. As in finite difference methods a 
firm hold is kept on the solution at the splitting points. 
Also, all boundary conditions given in the original problem 
can b3 satisfied at once. The new boundary conditions are 
that individual pieces of the same original variable must 
match up at the interior splitting points. Thus, if Yi 
denotes a variable in the original interval from (p - 1) T /k 
to pT /k and y i denotes the same variable in the interval 
from pT /k to (p + 1) T jk and if the direction of integra
tion in the later interval is reversed, then in general 
y;(O) and Yi(O) are guessed and the condition introduced 
is that y;(T/k) == Yi(T/k). If Ym denotes the same vari
able in the interval from (p + l)T/k to (p + 2)T/k, an
other condition is that Yi(O) = Ym(O), etc. 

Example 

The above multiple shooting method was successful in a 
case in which simple shooting failed with a more accurate 
guess. More specifically, the integration from 0 to T was 
sufficiently unstable to cause overflow when the initial 
guess was correct to three significant figures. Yet splitting 
the interval into four subintervals and using guesses 
correct to only two significant figures led to convergence. 
The specific problem was: 

Y1(0) = 1, YI(4) = e4, 

with solution Yi = et . 
This problem transforms into 

Y2i+l = ( -1) i Y22i+ll 
Y2i+2 

r i = 0, 1, 2, 3, 

iJ2;+2 ( -1) i Y~i+2J 
Y2i+1 

and reversing the direction of integration in the second and 
fourth intervals yields the boundary conditions: 

YI(O) = 1 

YI ( 1) = Y3 ( 1) 

y2(1) = Y4(1) 

Ya(O) = ys(O) 

Y4(0) = Ys(O) 

ys(l) = Y1( 1) 

ys(1) = Ys(1) 

y1(0) = e4 

A value for y;(O) is then guessed for i = 2, 3, 4, 8 (thus 
determining the guesses for i = 5 and 6) and the general 
shooting procedure can be applied. 
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