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Multiple skyrmion crystal phases by itinerant frustration in

centrosymmetric tetragonal magnets
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A skyrmion crystal (SkX) expressed as a multiple number of spiral modulations manifests itself not only
in its peculiar magnetic texture but also in nontrivial transport properties originating from an emergent
magnetic field. We here report our numerical results for multiple SkXs in a centrosymmetric tetragonal
crystal system. By performing simulated annealing for an effective spin model for itinerant magnets, we
find that three types of the SkXs with the skyrmion numbers of one and two, which are characterized by
different superpositions of helices, are stabilized in the ground state, and are transformed by an external
magnetic field. The essence of the emergent multiple SkXs is lied in itinerant frustration where exchange
interactions are competed in momentum space due to the nature of itinerant electrons.

A multiple-Q magnetic ordering, which is constructed
from a superposition of helices, has been extensively
studied in recent years, since its spin texture is related
to a topological spin texture that causes the topological
Hall effect and multiferroic phenomena.1–4) Depending
on a way of superposing helices, various topological spin
textures, such as a magnetic skyrmion, vortex, meron,
and hedgehog, are realized.5–10) Notably, such multiple-
Q orderings have been ubiquitously found in both non-
centrosymmetric11–21) and centrosymmetric22–30) mag-
nets composed of p, d, and f electrons, although their
mechanisms are qualitatively different: The former relies
on the Dzyaloshinskii-Moriya (DM) interaction31,32) and
the latter is accounted for by frustrated exchange inter-
actions33–39) and/or effective magnetic interactions me-
diated by itinerant electrons.40–46) Their different mech-
anisms lead to a difference of magnetic modulation pe-
riods in the multiple-Q orderings; the latter mechanism
tends to favor the short-period skyrmion crystal (SkX)
compared to the former one, which might be promising
for high-efficient spintronic devices consisting of high-
density topological objects.47)

For the latter mechanisms without relying on the
DM interaction, magnetic spiral periods are determined
by exchange interactions in momentum space. For in-
stance, the periods in frustrated Mott insulators are set
by the Fourier transform of the exchange interactions
Jq =

∑
ij Jije

−iq·(ri−rj), where Jij is the exchange cou-
pling between spins at sites i and j, q is the wave vector
in momentum space, and ri is the position vector for site
i. Similarly, the periods in itinerant magnets consisting
of itinerant electrons and localized spins are determined
by the Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
action J2

Kχq,48–50) where JK is the exchange coupling
between itinerant electron spins and localized spins and
χq is the bare susceptibility of itinerant electrons with
the wave vector q. The important common feature is
that there are multiple choices of the ordering vectors,
which are connected by the rotational symmetry of the
lattice structure, since the helix with one of the ordering
vectors is energetically degenerate with the symmetry-
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Fig. 1. (Upper panel) Schematics of the interactions in momen-
tum space with maxima at (a) Q1 = (Q, 0) and Q2 = (0, Q) and

(b) Q3 = (Q′, Q′) and Q4 = (−Q′, Q′) (Lower panel) SkXs con-

structed from the superposition of helices with (a) Q1 and Q2 or
(b) Q3 and Q4.

related helices, as shown in the upper panel of Fig. 1.
In this situation, additional interactions and fluctuations
stabilize the multiple-Q states instead of the single-Q he-
lical state.2,10) We show the example of the square SkXs
consisting of the double-Q spiral modulations along the
〈100〉 and 〈110〉 directions in the lower panel of Figs. 1(a)
and 1(b), respectively. In particular, in itinerant mag-
nets, the relatively large strength of multiple-spin inter-
actions beyond the RKKY level brings about the insta-
bility toward the multiple-Q states, which is in contrast
to the insulating magnets with the short-ranged compet-
ing interactions where the multiple-spin interactions are
supposed to be weak. The concept of such a frustration in
the nature of itinerant magnets is referred to as itinerant
frustration.10,51)

In the present study, we propose yet another interest-
ing situation that arises from itinerant frustration where
χq shows distinct multiple peaks at several wave vectors
that are not symmetry-related with each other. Specif-
ically, we focus on the situation caused by the com-
peting interactions at different wave vectors. For exam-
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ple, in the square-lattice case in Fig. 1, one can con-
sider the situation where χq at q = Q1 = (Q, 0) and
q = Q3 = (Q′, Q′) take similar values, χQ1

' χQ3
, but

they are not connected by the symmetry operation. We
find that such a competition gives rise to multiple SkXs
with the skyrmion number nsk of one and two based on
simulated annealing for an effective spin model of the
Kondo lattice model on a square lattice. We show that
the competing interactions at different q lead to the rect-
angle SkX with nsk = 1 and the square SkX with nsk = 2
in addition to the square SkX with nsk = 1. We also
obtain various multiple-Q states distinct from the SkXs
depending on the strength of the multiple-spin interac-
tion and magnetic field. Our result will stimulate fur-
ther exploration of multiple-skyrmion-hosting materials
in itinerant magnets.

We consider an effective spin model of the Kondo lat-
tice model on the square lattice, which is given by

H = 2
∑
ν

(
−Jλν +

K

N
λ2ν

)
−H

∑
i

Szi , (1)

where λν =
∑
α,β ΓαβQν

SαQν
Sβ−Qν

for α, β = x, y, z, SQν is
the Fourier transform of the classical localized spin Si,
and N is the system size. The first term represents the
bilinear (RKKY) interaction J and the second term rep-
resents the biquadratic interaction K defined in momen-
tum space. The interactions are derived from the per-
turbative expansion of the Kondo lattice model in terms
of JK; J ∝ J2

K and K ∝ J4
K.44) We here neglect the

other four-spin interactions between the different order-
ing vectors for simplicity. It is noted that the biquadratic
interaction also arises from the order-by-disorder effect
arising from thermal and/or quantum fluctuations33,52)

and short-ranged multi-spin interactions.53–57) These ef-
fects can contribute to K at a level of the effective Hamil-
tonian in Eq. (1) when regarding the model parameters
as phenomenological ones.

The wave vector Qν are set by the nesting of the Fermi
surfaces. We suppose the situation where the bare sus-
ceptibility χq shows the first maxima at Q1 = (2π/5, 0)
and Q2 = (0, 2π/5) and the relatively large values at
Q3 = (π/5, π/5) and Q4 = (−π/5, π/5) satisfying Q1 =
Q3 −Q4 and Q2 = Q3 + Q4, as schematically shown in
Fig. 1(a). The wave vectors Q1 and Q2 are higher har-
monics of Q3 and Q4, which is a source of multiple SkXs
as described below. We note that the interactions at the
other wave vectors q′ are not important to determine
the ground-state spin configuration under the condition
χq′ < χQ1

, χQ2
, χQ3

, χQ4
. In real materials, the Fermi

surfaces connected by Q1-Q4, which give rise to a dis-
tinct peak structure of χQ1-χQ4 , would be promising to
realize the present situation.

For these ordering vectors, the interaction tensors ΓαβQν

to satisfy the tetragonal lattice symmetry are given by
ΓyyQ1

= ΓxxQ2
= γ1, ΓxxQ1

= ΓyyQ2
= γ2, ΓzzQ1

= ΓzzQ2
= γ3,

ΓxxQ3
= ΓyyQ3

= ΓxxQ4
= ΓyyQ4

= γ4, −ΓxyQ3
= −ΓyxQ3

= ΓxyQ4
=

ΓyxQ4
= γ5, ΓzzQ3

= ΓzzQ4
= γ6 (the others are zero), which is

obtained by the perturbative expansion from the Kondo
lattice model.58,59) Although the magnitude and sign of
the anisotropic form factors are determined by the spin-

orbit coupling, the basis wave function, and the Fermi
surface geometry, we choose them phenomenologically as
follows. We set J = 1 as the energy unit of the model,
and choose the anisotropic parameters γ1 = 0.9, γ2 =
0.855, γ3 = 1, γ4 = 0.81, γ5 = 0.06525, and γ6 = 0.9,
where γ1 and γ2 (γ4 and γ5) stand for the in-plane bond-
dependent anisotropy, while γ3 (γ6) denotes the easy-axis
anisotropy at Q1 and Q2 (Q3 and Q4). For γ1 = γ2 = γ3,
γ4 = γ6, and γ5 = 0, the model reduces to the isotropic
spin model. We set the anisotropic parameters so as to
satisfy χQ1

= χQ2
> χQ3

= χQ4
, which means that

the helix with Q1 or Q2 has a smaller energy than that
with Q3 or Q4. The last term in Eq. (1) represents the
Zeeman coupling to an external magnetic field H.

It was shown that the parameter set of (γ1, γ2, γ3) for
γ4 = γ5 = γ6 = 0 is enough to stabilize the square
SkX with nsk = 1 under H [denoted as SkX-160) in
Fig. 2(a)], where the essence is lied in choosing the easy-
axis anisotropy γ3 > γ1, γ2, which tends to stabilize the
square SkX. The difference between γ1 and γ2 is intro-
duced so as to fix the spiral plane, which can be taken to
be negligibly small. This parameter set of (γ1, γ2, γ3) well
reproduces the experimental observations of the SkX and
the other multiple-Q states in a skyrmion-hosting mate-
rial GdRu2Si2.28) The other model parameters (γ4, γ6)
are chosen to realize the situation with the competing
interactions in momentum space as γ4/γ1 = γ6/γ3 = 0.9
satisfying χQ1

> χQ3
. The following results are, at least,

qualitatively similar to 0.8 . γ4/γ1, γ6/γ3 < 1. The re-
maining parameter 2γ5/(1 − γ2) = 0.9 is chosen to fix
the spiral plane.

We study the magnetic phase diagram of the model
in Eq. (1) by simulated annealing.44,61) Our simulations
are carried out with the Metropolis local updates for Si
in real space.62) In each simulation, starting from a ran-
dom spin configuration at a high temperature, T0 = 1-
10, we gradually reduce the temperature at the rate of
Tn+1 = αTn to obtain the lowest-energy state, where Tn
is the temperature in the nth step and α = 0.99995-
0.99999. The final temperature is typically taken as T =
0.01, which is reached by a total of 105-106 Monte Carlo
sweeps. At the target temperature, we perform 105-106

Monte Carlo sweeps after equlibration. We also start the
simulations from the spin configurations obtained at low
temperatures to determine the phase boundaries. In the
following, we present the results for N = 1002.

Figure 2(a) shows the phase diagram while varying
K and H. Notably, we find three SkX phases in the
phase diagram. The first SkX appears in the region
for K & 0.1 and 0 ≤ H . 0.45, which is denoted
as the SkX-2. In this state, the spin configuration is
characterized by the double-Q peaks with equal inten-
sity in the xy component of the spin structure fac-
tor S⊥s (q) = (1/N)

∑
i,j(S

x
i S

x
j + Syi S

y
j )eiq·(ri−rj) at

Q3 and Q4 and the z component of the spin struc-
ture factor Szzs (q) = (1/N)

∑
i,j S

z
i S

z
j e
iq·(ri−rj) at Q1

and Q2, as shown in Fig. 3(a). This spin configura-
tion is regarded as the superposition of four sinusoidal
waves as Si = (1/Ni)[axy(− sinQ3+sinQ4), axy(sinQ3+
sinQ4), az(cosQ1 +cosQ2)], where Qν = Qν ·ri+θν (θν
is the phase of waves), axy and az are the numerical co-
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Fig. 2. (a) Phase diagram of the model in Eq. (1) obtained by

simulated annealing. SkX and CS represent the skyrmion crystal
and chiral stripe, respectively. (b) H dependence of Mz and χ0 at

K = 0.2. The vertical solid and dashed lines represent the topo-

logical and non-topological transitions, respectively.

efficients, and Ni is the normalization constant. In the
real-space picture, there are two pairs of merons with
the opposite vorticity but the same scalar chirality in a
magnetic unit cell, which results in nsk = ±2. This is why
we call this state the SkX-2. The degeneracy of nsk is ow-
ing the symmetry of the transformation of Q3 → −Q3

or Q4 → −Q4 in the spin configuration. We show the
contour of the scalar chirality χR = Si · (Sj × Sk) in
Fig. 3(a), whose summation in the magnetic unit cell
is related to nsk. Although a similar magnetic texture
has recently been discussed in frustrated magnets with
the competing interactions in momentum space,63) the
present SkX-2 is the first observation based on itinerant
tetragonal magnets.

The second SkX phase is stabilized in the intermediate-
H region, next to the SkX-2 phase upon increasing H.
This state exhibits the dominant peaks with equal inten-
sity at Q3 and Q4 in both S⊥s (q) and Szzs (q), as shown in
Fig. 3(b). In contrast to the SkX-2, the peak intensities
at Q1 and Q2 are different, which indicates the breaking
of fourfold rotational symmetry. We call this state the
SkX-1’. Indeed, the real-space spin configuration shows

(a) SkX-2

(b) SkX-1’

(c) SkX-1

0 max00 +1-1 maxmin

q
x

q
y

Fig. 3. Snapshots of the spin configurations in (a) the SkX-2 for
K = 0.2 and H = 0.2, (b) the SkX-1’ for K = 0.2 and H = 0.6,

and (c) the SkX-1 for K = 0.2 and H = 1. The arrows and their

color show (Sx
i , S

y
i ) and Sz

i , respectively. The scalar chirality χR is
also shown. The xy and z components of the spin structure factor,√
S⊥
s (q) and

√
Szz
s (q), in the first Brillouin zone are shown in

the right panel. The open (dashed) circles represent the positions
at Q3 = (π/5, π/5) and Q4 = (−π/5, π/5) [Q1 = (2π/5, 0) and

Q2 = (0, 2π/5)].

a rectangle alignment of the skyrmion core, as shown in
Fig. 3(b). This state exhibits nsk = −1, where the sign
of nsk is determined by γ1, γ2, and γ5.64) The spin con-
figuration is mainly constructed from the superposition
of the spirals at Q3 and Q4, where the spiral planes are
tilted from the plane perpendicular to Q3 and Q4 so as to
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have a more y-spin component, and the sinusoidal wave
at Q2.

The increase of H in the SkX-1’ phase drives the phase
transition to the SkX-1 phase, as shown in Fig. 2(a). Al-
though this state exhibits nsk = −1 as well, the spin tex-
ture is characterized by the fourfold-symmetric double-
Q structures, as shown in Fig. 3(c). The spin configu-
ration is well approximated by superposing the proper-
screw spirals with Q1-Q4. The SkX-1 phase is stabilized
even without the contributions at Q3 and Q4,60) which
also appears in the frustrated magnets with the bond-
dependent anisotropy63,65) and double-exchange model
with the antisymmetric spin-orbit coupling.66)

Among the three SkXs, the emergence of the SkX-2
and the SkX-1’ is owing to the competing interactions at
Q1-Q4. In particular, the latter SkX-1’ is, to the best of
our knowledge, the first realization that has never been
reported. It is also remarkable that the SkX-1’ and the
SkX-1 are stable even without the multiple-spin interac-
tions, i.e., K = 0, where the model has only the bilinear
interaction and reduces to the RKKY model and Heisen-
berg model. This is attributed to the energy gain in
the SkX from the contribution of higher harmonics, i.e.,
Q1 = Q3−Q4 and Q2 = Q3 +Q4. Thus, our result indi-
cates that the competing interactions in the symmetry-
unrelated ordering vectors might be important to exam-
ine the stability of the SkXs or other multiple-Q states
with higher harmonics.

Another interesting feature is that the phase transi-
tions between the three SkXs are induced by the external
magnetic field, which is in contrast to those between the
two SkXs in previous studies.43,59,63,67,68) While chang-
ing the magnetic field, the phase change between the
SkX-2 and SkX-1’ can be easily observed by jumps of the
magnetization Mz = (1/N)

∑
i S

z
i and the net scalar chi-

rality χ0 = [(1/N)
∑
i,δ=±1 Si · (Si+δx̂ × Si+δŷ)]2, where

x̂ (ŷ) is the unit vector in the x (y) direction, as shown
in Fig. 2(b). Meanwhile, there is no clear anomaly in the
phase transition between the SkX-1’ and the SkX-1 in
Fig. 2(b). In this case, however, one can distinguish them
from the symmetry viewpoint, since the SkX-1 holds
fourfold rotational symmetry, while the SkX-1’ does not.

The competing interactions at Q1-Q4 also give rise to
unconventional multiple-Q states with the chirality den-
sity waves but without the skyrmion number, nsk = 0,
in addition to the single-Q (1Q) conical state with Q1

or Q2 (the spiral plane is the xy plane) and 1Q spiral
state with Q1 or Q2 (the spiral plane is perpendicular to
Q1 and Q2). We find four multiple-Q states: 2Q chiral
stripe (CS), 2Q coplanar, 4Q CS-1, and 4Q CS-2 states,
as shown in Fig. 2(a). The 2Q CS state for small K
and small H is described by the superposition of the
single-Q spiral along the Q1 direction and the single-Q
sinusoidal wave along the Q2 direction,42,69) while the
2Q coplanar state for large H is by that of the two si-
nusoidal waves along the Q1 and Q2 directions, which
have been found in the itinerant electron model without
the higher-harmonic contributions60) and the frustrated
spin model without the multiple-spin interactions.63,65)

The spin and chirality configurations of the 2Q CS and
2Q coplanar states are shown in Figs. 4(a) and 4(b), re-

(a) 2Q CS (b) 2Q coplanar

(d) 4Q CS-2(c) 4Q CS-1

00 +1-1 maxmin

Fig. 4. Snapshots of the spin configurations in (a) the 2Q CS for

K = 0.1 and H = 0, (b) the 2Q coplanar for K = 0.2 and H = 1.5,
(c) the 4Q CS-1 for K = 0 and H = 0.55, and (d) the 4Q CS-2 for

K = 0.4 and H = 1.4. The arrows and their color show (Sx
i , S

y
i )

and Sz
i , respectively. The scalar chirality χR is also shown.

spectively. The other 4Q states are a consequence of the
present model with competing interactions. The 4Q CS-
1 state for small K and intermediate H resembles the
2Q CS state but have additional sinusoidal modulations
along the Q3 and Q4 directions. The 4Q CS-2 state for
large K and large H is described by a superposition of
three inplane spirals at Q1, Q2, and Q3 and almost in-
plane spiral slightly tilted to have the z spin component
at Q4. The spin and chirality configurations in both 4Q
states are presented in Figs. 4(c) and 4(d).

To summarize, we found that the competing interac-
tions arising from the multiple peaks in the bare suscep-
tibility in itinerant magnets stabilize multiple SkXs with
different skyrmion numbers. The competing interactions
at the RKKY level are enough to stabilize the SkX with
nsk = 1 in tetragonal itinerant magnets. Meanwhile, it
was shown that the biquadratic interaction leads to the
SkX with nsk = 2 at zero field. Our argument based on
the effective spin model in Eq. (1) holds for arbitrary |Q|
and for any tetragonal systems. We also showed that a
variety of multiple-Q states appear by considering the
competing interactions in momentum space. Our study
will provide rich multiple-Q spin textures that emerge
from itinerant frustration, which are relevant with the
recent experimental findings of the SkX and the other
multiple-Q phases in GdRu2Si2

27,28) and EuAl4.70,71)

Moreover, as the present scenario based on itinerant frus-
tration can happen in the other topological spin tex-
tures in the other lattice structures, such as the meron-
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antimeron crystal on the triangular lattice72) and the
hedgehog crystal on the cubic lattice,73,74) it is interest-
ing to explore further intriguing topological spin textures
and their related phase transitions.
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(2009).

12) X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han,
Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901

(2010).
13) X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Zhang,

S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106

(2011).
14) S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Science 336,

198 (2012).

15) T. Tanigaki, K. Shibata, N. Kanazawa, X. Yu, Y. Onose, H. S.
Park, D. Shindo, and Y. Tokura, Nano Lett. 15, 5438 (2015).

16) A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sa-
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