
Vol.:(0123456789)

SN Applied Sciences (2020) 2:66 | https://doi.org/10.1007/s42452-019-1831-3

Research Article

Multiple slip effects on MHD unsteady viscoelastic nano‑fluid flow 
over a permeable stretching sheet with radiation using the finite 
element method

Shahid Ali Khan1  · Yufeng Nie1 · Bagh Ali1

Received: 17 August 2019 / Accepted: 30 November 2019 / Published online: 11 December 2019 
© Springer Nature Switzerland AG 2019

Abstract

The current study investigates the impact of multiple slips on Jeffrey fluid model for unsteady magnetohydrodynamic 
viscoelastic buoyant nanofluid in the presence of Soret and radiation over a permeable stretching sheet. Appropriate 
transformations are utilized to obtain the relevant nonlinear differential system. The obtained differential system is tackled 
numerically with the finite element method. Effect of the controlling parameters on dimensionless quantities such as 
velocity, temperature, concentration, and nano-fluid volume fraction profile, as well as on dimensionless numbers such 
as local Nusselt, Sherwood, nano-particle Sherwood, and the local friction coefficient is analyzed. The effect of multiple 
slips is examined and found that the boundary layer flow increases in the presence of multiple slips. Numerically obtained 
solutions are contrasted with the published literature and found to be in nice agreement. The present study has many 
applications in coating and suspensions, cooling of metallic plate, paper production, heat exchangers technology, and 
materials processing exploiting.
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1 Introduction

In recent technological advances, the study of non-Newto-
nian materials has caught the attention of engineers and 
scientists. Broad stimulation of scientists is due to the wide 
use of liquids in technology and in industry. Examples of 
such applications are paints, colloids and suspensions, cos-
metics, polymer solutions, foods, exotic lubricants, paper 
production, coal water, ketchup, glues, ink, blood, some 
oils, fiber technology and clay coating. Due to the diversity 
of non-Newtonian liquids, there is no law to explain the 
viscous and elastic properties of these liquids. Despite all 
these challenges, researchers have made valuable contri-
butions to current literature on a variety of non-Newtonian 
fluids [1–8]. Among them, visco-elastic fluids are expected 
to be more important in the current research area due to 

their extensive applications in engineering and industrial 
production. Some of the most recent practices in this 
regard are in Kumar et al. The effect of non-linear thermal 
radiation on the flow of the mixed visco-elastic nano-liquid 
double diffusion convection boundary layer is discussed 
on a stretch film. Convective heat transfer and the MHD 
visco-elastic nanofluid flow induced by a stretch film are 
studied by Shit et al. [9]. Sheikholeslami et al. [10] studied 
the impact of the magnetic field and thermal radiation on 
the hydrothermal behavior of nanofluids of Fe

3
O
4
–H

2
O . 

The impact of Lorentz forces on the flow of CuO–water 
nanofluids in a permeable housing is presented by CVFEM 
and Nanofluid fluxes and heat transfer in a cavity. mag-
netic field from Sheikholeslami et al. [11, 12]. The flow of 
the magnetohydrodynamic boundary layer (MHD) with a 
stagnation point on a visco-elastic liquid stretch film in 
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the presence of thermal radiation was studied by Naryana 
et al. Application of the law of Darcy to the flow of nano-
fluids in a porous cavity below impact of Lorentz forces 
investigated by Sheikholeslami et al. Hussanan et al. [13] 
investigated the analytical solution for the suction and 
injection flow of a visco-elastic Cassco fluid past a stretch 
surface in the presence of viscous dissipation. Majeed et al. 
[14] investigated the analysis of heat transfer in a ferro-
magnetic visco-elastic fluid stream on a stretching sheet.

Non-Newtonian liquids have been discovered a lot of 
significant and helpful for innovative perspectives, for 
example, multi-grade oils, fluid cleansers, paints, polymer 
arrangements, and polymer softens are talked about in 
Elahi [15]. Moreover, ongoing advances in nanotechnol-
ogy have prompted the improvement of another imagi-
native class of warmth move called nanofluids made by 
scattering nanoparticles. Non-Newtonian nanofluids are 
generally experienced in numerous modern and innova-
tion applications, for instance melts of polymers, natural 
arrangements, paints, tars, black-tops, and pastes, and so 
on. The form of nanofluids is essentially the dispersion of 
solid nanoparticles in liquids such as water, oil or ethyl-
ene glycol. These nanoparticles are usually made from 
metals, oxides and carbon nanotubes. Nanoparticles can 
also be used in biomedical applications such as magnetic 
resonance imaging, photothermal therapy, drug delivery 
control, protein separation, biosensor, DNA detection and 
immune sensors. Choi [16] presented for the first time an 
innovative mixing technique using nanoparticles and 
basic liquids, with the aim of improving heat transfer by 
increasing the thermal conductivity of the liquid.

Boungiorno [17] then explained the reasons for 
improving the heat transfer of nanofluids and concluded 
that Brownian diffusion and heat development were 
the reasons for this improvement. Some recent articles 
about nanomaterials are presented in the Refs. [18–23]. 
Sulochana et al. [24] investigated the magnetohydrody-
namic radiation fluid thin film flux of a kerosene nanofluid 
with the aligned magnetic field. Daniel et al. [25] investi-
gated the effects of slip and convection conditions on the 
flow of MHD nanofluids on a porous non-linear stretch / 
shrink film. The nanofluid streams in a microchannel with 
oblique cross-flow injection are being studied by Shriniy 
et al. [26].

The effect of exponentially varying viscosity and perme-
ability on the Blasius current of the nanotile fluid on an 
electromagnetic plate through a porous medium is pre-
sented by Hakkem et al. [27] Waqas et al. [28] discussed 
the interaction of thermal radiation in hydromagnetic 
visco-elastic nanomaterials subject to gyrotactic microor-
ganisms. Maleki et al. [29] investigated heat transfer and 
nano-liquid flow on a porous plate with radiation and slip 
limit conditions. The effects of the second-order nano-fluid 

poiseuille call plan under the influence of Stefan blowing 
into a channel are discovered by Alamri et al. [30]. The 
effects of thermal radiation and slip on the flow of the 
MHD stagnation point of non-Newtonian nano fluid on a 
convection stretch surface are being studied by Besthapu 
et al. [31].

Motivated by the aforementioned studies, the pre-
sent paper aims to investigate investigates the effect of 
multiple slips on unsteady two-dimensional magnetohy-
drodynamic boundary layer flow of viscoelastic buoyant 
nanofluid with thermal radiation and Soret effect over a 
stretching sheet. Governed by an appropriate similarity 
transformation procedure partial differential equations 
are transformed into ordinary differential equations. The 
resulting ODE’s is numerically solved by hybrid approach 
consisting of finite element method [32–40]. The conse-
quences obtained were comprehensively discussed in 
tabulation and graphical representation.

2  Mathematical formulation

Consider the unsteady two-dimensional MHD bound-
ary layer of an electrically conductive liquid immersed 
in visco-elastic floating nanofluid with multiple slips and 
thermal radiation on a linear stretching sheet. The flow of 
conductive fluid is caused by stretching the sheet in the 
direction U(x, t) = ax∕(1 − �t) , where a is the stretch ratio 
and � is the positive constant. Consider that there is no flux 
of nanoparticles on the wall and that the surface extends 
in the direction of y. Suppose T

w
 , �

w
 and C

w
 define the 

temperature, dissolved concentration and friction of the 
nanoparticles on the stretch sheet as follows:

where T
0
 , C

0
 and �

0
 are the reference temperature, the 

reference solute concentration and the reference concen-
tration of the nanoparticles, and T

∞
 is the ambient tem-

perature, C
∞

 the concentration solutal and �
∞

 is supposed 
to be the concentration of nanoparticles. In the current 
study, B(x) = B

0
x−1∕2 summarizes the magnetic field input, 

where B
0
 is a uniform magnetic field strength. According 

to the above hypothesis, the conservation of mass, linear 
momentum conservation, energy conservation, salt con-
centration and volume fraction of nanoparticles can be 
obtained as follows:

T
w
= T∞ + T

0

(

ax

2�(1 − �t)2

)

C
w
= C∞ + C

0

(

ax

2�(1 − �t)2

)

�
w
= �∞ + �

0

(

ax

2�(1 − �t)2

)
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with respect to the boundary conditions

where u and v are the speed components, x and y, � , � , � , 
respectively, the kinetic viscosity, electrical conductivity, 
and fluid viscosity. D

B
 , D

T
 , D

s
 are respectively Brownian dif-

fusion, thermophoretic diffusion and sol solution. To solve 
the Eqs. (1)–(7) we have introduced the following transfor-
mations for agreements:

Given the transformation equation, the partial non-linear 
differential equations (1)–(6) transform into the following 
non-linear ODE’s system:

(1)
�u

�x
+

�u

�y
= 0,

(2)
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+ u
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−
�B2(x)u

�
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(3)
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(4)
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+ u
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�y
= Ds

�
2C
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+ DCT

�
2T
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(5)
��

�t
+ u

��

�x
+ v

��

�y
= DB

�2�

�y2
+

DT

T
∞

�2T
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(6)

u = U(x, t) + Uslip, v = vw , T = Tw(x, t) + Tslip,

C = Cw(x, t) + Cslip,

� = �w(x, t) + �slip at y → 0

(7)u → 0, T → T
∞
,C → C

∞
,� → �

∞
, as y → ∞,

(8)

� =

√

a

�(1 − �t)
y, � =

√

a�

(1 − �t)
xf (�),

�(�) =
T − T∞

Tw − T∞
, S(�) =

C − C∞

Cw − C∞
, �(�) =

� − �∞

�w − �∞

and the transformed boundary conditions Eqs. (6) and (7) 
are:

The primes show the differentiation with respect to � . The 

parameters in Eqs. (9)–(12) M =

�B
2

0

�co

 , Pr = �

�

 , Nb =
�DB(�w−�∞)

�
 , 

Nt =
�DT (Tw−T∞)

�T∞

 , Sc = �

DB

 , Le = �

DB

 , R =

16�∗T 3

∞

3kf K
∗

 , Sr = D
T
T
0
∕�C

0
 

are magnetic, Prandtl, Brownian, thermophoresis, Schmidt, 
Lewis number, thermal radiation and Soret number, 
respectively. A = �

t
∕a is the unsteady parameter and �

t
 is 

the retardation time, �
1
= g�TT0∕a� , �

2
= g�CC0∕a� , 

�
3
= g���0

∕a�  are the buoyancy parameters and 

� = �
t
a∕(1 − �t) is the Deborah number, Sf  is the hydrody-

namic slip, S
t
 the thermal slip, Sp the solutal slip and Sg is 

considered to be the nano-particle slip condition. Expres-
sion for physical quantities of interest are local skin friction 
coefficient Cf  , Nusselt number Nu, the Sherwood number 

Shx and the nano-particle Sherwood number Shx,n are,

(9)

f
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Plugging the values from (8) into (15)-(16), we can get

Where Re
x
= U

w
x∕� is the Reynolds number. The ordinary 

differential equations(ODE) are highly nonlinear, which are 
solved numerically by Hybrid finite element technique.

3  Finite element method solutions

The current problem is solved by using the finite element 
method(FEM). Due to the numerical integration, the error 
is minimized by using the hybrid technique inherent in 
FEM. As a result, this approach is expected to yield better 
and more effective results. The steps used in FEM are:

• Discretization of domain into small elements.
• Selection of appropriate shape function.
• Development of finite element equations.
• Assemble the element equations to obtain global 

equations.
• Incorporation of the boundary conditions.
• Solve the simultaneous equations for the unknowns .
• Interpolation of results (Fig. 1).

we assume

plugging Eq. (18) into Eqs. (9)–(14), we get
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with following boundary condition

For calculation purposes, the parameter � at ∞ is chosen 
large enough. The numerical solution therefore has no dis-

cernible variation for eta greater than �
max

 . Depending on 
the limit condition, �

max
 is set to �

max
= 10.

3.1  Variational formulations

The variational form associated with Eqs. (13)–(18) over a 
quadratic element Ω

e
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e
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Fig. 1  Flow chart of the finite element method
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where s1, s2, s3, s4 and s
5
 functions are of arbitrary form or 

test functions.

3.2  Finite element formulations

The equations of the finite element model is obtained by 
replacing the finite element approach of the following 
form in Eqs. (19)–(23).
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(i = 1, 2) , where the shape 

function �
i
 for a line element Ω
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+ 1) are given by

The model equations of the finite element method are 
therefore given by

where F
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d𝜓i

d𝜂

d𝜓j

d𝜂
d𝜂 + ∫

𝜂e+1

𝜂e

f̄𝜓i

d𝜓j

d𝜂
d𝜂 − ∫

𝜂e+1

𝜂e

h̄𝜓i𝜓jd𝜂d𝜂

− A
𝜂

2 ∫
𝜂e+1

𝜂e

𝜓i

d𝜓j

d𝜂
d𝜂 − 2A∫

𝜂e+1

𝜂e

𝜓i𝜓jd𝜂,

F45
ij

= F51
ij

= F52
ij

= F54
ij

= 0, F53
ij

= −
Nt

Nb ∫
𝜂e+1

𝜂e

d𝜓i

d𝜂

d𝜓j

d𝜂
d𝜂 F55

ij
= −∫

𝜂e+1

𝜂e

d𝜓i

d𝜂

d𝜓j

d𝜂
d𝜂

+ Le ∫
𝜂e+1

𝜂e

f̄𝜓i

d𝜓j

d𝜂
d𝜂 − Le ∫

𝜂e+1

𝜂e

h̄𝜓i𝜓jd𝜂d𝜂 − LeA
𝜂

2 ∫
𝜂e+1

𝜂e

𝜓i

d𝜓j

d𝜂
d𝜂 − 2LeA∫

𝜂e+1

𝜂e

𝜓i𝜓jd𝜂,
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and

where f̄ =
∑3

j=1
f̄j𝜓j , h̄ =

∑3

j=1
h̄j𝜓j , �̄�

�
=
∑3

j=1
�̄��
j
𝜓j  and 

�̄��
=
∑3

j=1
�̄��

j
𝜓j are supposed to be known. Hence after 

assembling all the element equations, we get the order of 

722 × 722 matrix. The resulting system is nonlinear, there-
fore an iterative scheme is utilized in the solution. After the 
boundary conditions are applied, the remaining system 
equations are solved by gaussian elimination method and 

(35)

b
1

i
= 0, b2

i
= −

(

�
dh

d�

)�e+1

�e

,

b
3

i
= −(1 + R)

1

Pr

(

�
d�

d�

)�e+1

�e

,

b
4

i
= −

1

Sc

(

�
dS

d�

)�e+1

�e

− Sr

(

�
dS

d�

)�e+1

�e

,

b
5

i
= −

(

�
d�

d�

)�e+1

�e

−
Nt

Nb

(

�
d�

d�

)�e+1

�e

,

will repeat this process until the desired accuracy of 
0.00005 obtained.

4  Results

The velocity distribution decreases with the increment 
of magnetic parameter M with suction, injunction and 
no suction in the presence of hydrodynamic slip Sf  and 
absence of hydrodynamic slip Sf  are depicted in Fig. 2. 
With the enhancing of viscoelastic parameter � and 
presence/absence of unsteadiness parameter A effects 
on increasing the velocity profile with both cases of 
hydrodynamic and no hydrodynamic slip are discussed 
in Fig. 3.

In the absence and presence of the unsteady parameter 
A, the radiation R and the hydrodynamic slip condition Sf  , 
the velocity profile is enhanced as the buoyancy parame-
ters �

1
 , �

2
 and �

3
 increases, the results are described graphi-

cally in Figs. 4, 5 and 6. The influence of thermal radiation 
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R and magnetic parameter M with thermal slip and no 
thermal slip condition are presented in the Fig. 7, apply-
ing the magnetic field heats up the fluid and thus reduces 

the heat and mass transfer rates from the wall causing 
increases in fluid temperature. We noticed from Fig. 7 
that the temperature profile increases as the radiation 
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parameter R value increases. Figures 8 and 9 depict that 
the temperature decreases as the effect of unsteadiness A 
increases with the presence and absence of the radiation 

parameter R and thermal slip condition S
t
 . The tempera-

ture profile increases as the thermophoresis parameter 
increase with presence and absence of suction fw and 
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thermal slip parameter S
t
 , as described in Fig. 10. The effect 

of the Schmidt number Sc and the magnetic parameter 

M on the concentration distribution is shown in Fig. 11. 
We observed that as the Schmidt number increases, the 
concentration distribution retard with the presence and 
absence of solute slip Sp . Figure 12 presents the character-
istics of the Sr Soret number and the A instability with the 
presence and absence of an absolute Sp slip on the concen-
tration profile. It is clear from the figure that the intensifica-
tion of the Soret number has reinforced the concentration 
profile and the associated concentration boundary layer.

Figure 13 describes the characteristics of the Lewis 
number and the instability of A on the nano-liquid slip 
profile without nano-liquid slip conditions. It is from the 
figure that the intensification the Lewis number reduces 
the volume fraction profile of nanofluid. Moreover, when 
we increase the value of the Lewis number, the concentra-
tion field is reduced because it is inversely proportional 
to the Brownie coefficient. The Brown diffusion coefficient 

is low for higher Lewis numbers and the Brown diffusion 
coefficient results in a decrease in the concentration field. 

Figure 14 is ready to take action, the Nb Brownian motion 
parameter and the fw suction parameter with the presence 
and absence of nano-fluid slip on the friction profile of 
the nano-fluid volume. The figure clearly shows that the 
volume friction profile of the nano-fluid and the associ-
ated boundary layer thickness of the nanoparticle concen-
tration accumulate for a higher parameter for Brownian 
motion. Figure 15 describe the influences of A, M, Sf  , R, Nt 
and S

t
 , on velocity and temperature gradients. Effects of 

M, A and Sf  on skin friction (Cf ) are portrayed in Fig. 15a. As 
previously seen, the fluid velocity decreases by increasing 
the magnetic parameter due to the Lorentz force caused 
by the magnetic field; as a result, the rubbing of the skin 
shows a behavior for the higher magnetic parameter, 
as shown in this figure. Skin friction diminish for M with 
increasing the unsteady parameter A. Figure 15b shows 
the impacts of Nt, S

t
 and R on temperature gradient (Nu). 
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These plots show that the the heat transfer rate decreases 
with the growth of the thermophoresis parameter. This 
is due to the fact that a larger one the thermophoretic 
force drives nanoparticles with high thermal conductivity 
from the hottest region to the ambient temperature liquid. 
Nano-scale thermophoresis therefore has a considerable 
influence on the behavior of heat transfer at plate level. 
Further, increasing the values of R the temperature gradi-
ent increases.

5  Discussion

A theoretical study was conducted to investigate the 
nanofluidic flux induced by a stretching surface [46]. It 
was probably the first attempt to reflect the flow of nano-
fluids on a stretch sheet using the Buongiorno model. 
Later Makinde and Aziz [47] investigated the effects of 

convective heat transfer in the nanofluid flow on the 
boundary layer on a flat plate. Recently, Hashim and 
Khan [48] studied the heat and mass transfer character-
istics for the flow of Carreau nanofluids past a stretching 

surface. Multiple slip effects on MHD unsteady flow heat 
and mass transfer impinging on permeable stretching 
sheet with radiation was discussed [42] and found that 
the existence of the hydrodynamic slip increases the 
velocity boundary layer. Here, we focused on describing 
the effects of different flow variables on velocity distri-
bution (f �(�)) , temperature profile (�(�)) , concentration 

(S(�)) , nano-fluid volume fraction profile (�(�)) , skin fric-
tion (Cf ) , Nusselt number (Nu), Sherwood number Shx 

and nano-particle Sherwood number (Shx,n) . The nonlin-
ear systems (18)–(22) subject to conditions (23) and (24) 
are solved numerically by hybrid finite element method. 
Further the characteristics of magnetic M, Brownian Nb, 

Table 1  Comparison of −f ��(0) for various values of M when fw = A = Sf = 0 and Pr when M = fw = Sf = St = A = �
1
= �

2
= R = 0

M Mabood and Das [41] Fazle [42] FEM (present) Pr Ali [43] FEM (present)

0 − 1.000008 − 1.0000024 − 1.0000062 – – –

1 1.4142145 1.41421316 1.41421563 – – –

5 2.4494867 2.44948944 2.44943463 0.72 0.8058 0.8088

10 3.3166237 3.31662459 3.31664163 1 0.9691 1.0000

50 7.1414294 7.14142833 7.14141539 3 1.9144 1.9237

100 10.049855 10.0498776 10.0498451 10 3.7006 3.7207

500 22.383049 22.3830203 22.3830323 – – –

1000 31.638574 31.6385890 31.6385753 – – –

Table 2  Comparison of −f ��(0) for various values of A when 
M = fw = Sf = �

1
= �

2
= 0

� Chamkha et al. [44] Fazle [42] FEM (present)

0.8 1.261512 1.261042 1.261042

1.2 1.378052 1.377724 1.377724
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thermophoresis Nt, Schmidt Sc, Lewis number Le, ther-
mal radiation R,Soret number Sr, unsteady parameter A, 
Buoyancy parameters �1, �2, �3 , Deborah number or vis-
coelastic parameter � , hydrodynamic slip Sf  , thermal slip 

S
t
 , solutal slip Sp and the nano-particle slip condition Sg 

are presented in this section. The numerical method is 
validated with the result obtained by Mabood and Das 
[41], Fazle mabood and Stanford Shateyi [42], Mudassar 
et al.[49], Gireesha et al. [50], Ishak et al.[45], Ali [43] and 
Chamkha et al.[44] in terms of skin friction coefficient and 
an excellent agreement is obtained, the comparison is 
illustrated in Tables 1, 2 and 3.

6  Conclusions

Here we explored a mathematical model to simulate an 
unsteady two-dimensional magnetohydrodynamic vis-
coelastic nano-fluid flow of an incompressible electrically 
conducting fluid over a permeable stretching sheet in the 
presence of multiple slips, Soret, and thermal radiation 
effect. The major results are listed below:

• The boundary layers increases in the presence of mul-
tiple slips.

• The velocity distribution boosts via viscoelastic param-
eter (�) and buoyancy parameters (�1, �2 , �3) , and 
decrease with increase of magnetic parameter (M).

• Temperature decays through unsteady parameter (A) 
and buoyancy parameter ( �

1
 ), while it enhanced with 

radiation (R) and thermophoresis parameter (Nt).
• Concentration profile enhance via increasing the Soret 

number (Sr) and diminish with Schmidt number (Sc).
• For larger estimation of Brownian motion parameter 

(Nb) the nano-fluid volume fraction profile enhance 
however it is reduced for Lewis number (Le).

• Skin friction coefficient shows decreasing behaviour 
against unsteadiness (A)and magnetic parameter (M).

• Nusselt number shows increasing behaviour against 
radiation parameter (R) and thermophoresis parameter 
(Nt).

• Sherwood number ( Shx ) is increasing function of 
Schmidt number (Sc) and magnetic parameter (M).

• Nano-particle Sherwood number ( Shx,n ) is enhanced 
as a function of thermophoresis parameter (Nt) with 
increasing value of unsteadiness parameter (A).
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