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Multiple social network influences 
can generate unexpected 
environmental outcomes
J. Yletyinen1,2*, G. L. W. Perry3, P. Stahlmann‑Brown4, R. Pech2 & J. M. Tylianakis1

Understanding the function of social networks can make a critical contribution to achieving 
desirable environmental outcomes. Social‑ecological systems are complex, adaptive systems in 
which environmental decision makers adapt to a changing social and ecological context. However, 
it remains unclear how multiple social influences interact with environmental feedbacks to generate 
environmental outcomes. Based on national‑scale survey data and a social‑ecological agent‑based 
model in the context of voluntary private land conservation, our results suggest that social influences 
can operate synergistically or antagonistically, thereby enabling behaviors to spread by two or more 
mechanisms that amplify each other’s effects. Furthermore, information through social networks 
may indirectly affect and respond to isolated individuals through environmental change. The 
interplay of social influences can, therefore, explain the success or failure of conservation outcomes 
emerging from collective behavior. To understand the capacity of social influence to generate 
environmental outcomes, social networks must not be seen as ‘closed systems’; rather, the outcomes 
of environmental interventions depend on feedbacks between the environment and different 
components of the social system.

Solving environmental problems requires collective e�ort, including adoption of pro-environmental  behaviors1–3. 
A major barrier for individuals to adopt pro-environmental behaviors is being embedded in a social context 
in which others do not approve of that  behavior1. Leveraging social in�uence, basically communicating what 
“should be done”, may help to overcome this barrier and accelerate the spread of pro-environmental  behaviors1,3,4. 
Humans exchange information and knowledge through social interactions, including expressed behaviors, and 
modify their behaviors and beliefs in response to those of  others1,4,5. �e networked character of social interac-
tions allows behaviors to spread through social networks, potentially creating clusters of people with similar 
behaviors and  views6–9. Such behavioral clusters may emerge, for instance, from the tendency for people to form 
social relationships with like-minded  people10 (i.e. ‘echo chambers’) into which new ideas cannot easily penetrate. 
Despite a wealth of work on the importance of social network connections to external actors in environmental 
 management11, we know little about how multiple and interacting social in�uences contribute to the spread of 
pro-environmental behaviors and emergent environmental outcomes. Studies exploring the e�ects of social 
networks on environmental outcomes o�en focus on one type of social in�uence at a time, usually an ingroup 
based on similarity in demographic factors, beliefs, profession etc. (e.g. interactions among  �shers9)3,12. However, 
individuals experience social in�uences from people outside the  ingroup13,14, which may explain unexpected 
behavioral or environmental outcomes emerging from social groups.

A social-ecological systems (SES) view holds that human behavior constantly adapts to changing conditions 
and, in so doing, co-evolves with social and environmental  contexts15,16. In addition to social in�uence, the 
environmental outcomes of behaviors are in�uenced by the biophysical context of decision-making and hetero-
geneity in each individual’s beliefs and  actions15,17. In practice, through micro-scale patterns (such as individual 
beliefs, behaviors and social interactions), humans (as social actors in SES) collectively create and reinforce 
macro-scale patterns, such as social network structures, social norms, resource abundance and conservation 
 landscapes15. �ese emerging macro-scale patterns, in turn, feedback to shape actors’ micro-scale  behaviors15,16. 
Linking social actors’ behaviors to their decision-making context, and investigating their interplay over time as 
dynamic two-way interactions, is especially important for understanding environmental outcomes emerging from 
social actors’ collective  behaviors16. For instance, if social in�uence leads to the adoption of pro-environmental 
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behaviors, such behavioral changes may not persist in a di�erent social-ecological context. Moreover, the pres-
ence of multiple social in�uences may drive the simultaneous spread of desirable and undesirable social in�u-
ence among social actors, which may break clusters of behaviors that social networks with one type of social 
in�uence can  containe.g.9. �is complex adaptive SES perspective of social in�uence may help to explain why 
the environmental outcomes of collective behavior can range from success to failure, and why the outcomes of 
interventions in social in�uence are inconsistent.

Here, we investigate the e�ect of multiple social in�uences on environmental outcomes in dynamic SESs. 
In particular, we use simulation modelling to ask whether the success of collective environmental action (vol-
untary habitat conservation on landscape levels) is in�uenced by inclusion of multiple social in�uences in 
individual (landowner) decision-making. Voluntary conservation of natural and semi-natural habitats in agricul-
tural landscapes epitomises a SES in which social in�uence strongly in�uences landowners’ pro-environmental 
 behavior18–21. �e environmental outcomes emerging from individual actions determine conservation success 
since a species’ persistence in a landscape is predicted by the composition, abundance and spatial con�guration 
of habitats at the landscape  level22,23. While social processes in�uence long-term conservation  success24–26, the 
role of dynamic feedbacks between social and ecological outcomes must be better integrated into conservation 
science to improve our ability to achieve conservation  goals27–31. Feedbacks underlie the persistence of ecologi-
cally or societally undesirable or desirable conservation  statese.g.32,33, and incorporating human behavior into 
environmental systems research (and vice versa) can reveal a richer diversity of feedbacks than either social or 
ecological research  alone34. Identifying interactions between multiple elements or  processes31 can, for example, 
inform conservation initiatives that explicitly focus on reinforcing or dampening feedbacks of biodiversity  loss29.

Here, we relax the common assumption in social network analysis that in�uence and behaviors almost inevita-
bly spread between interacting social actors. Instead, we assume that behavioral decisions are a�ected by multiple 
social in�uences and that environmentally desirable and undesirable behaviors can spread  simultaneously6,35. 
Environmental managers, such as landowners, commonly interact with groups of actors with diverse  interests14,20. 
Environmental behaviours can, therefore, be in�uenced by the information and perspectives gained via these 
interactions and the quality of the interactions, such as level of  trust20. For example, landowners may contact 
authorities to gain information about environmental practices that is not available from fellow landowners and 
then adopt the practice if encouraged to do so by a like-minded  landowner20,36. In this context, we introduce 
three types of social in�uence into landowners’ decisions to voluntarily protect habitat on their own land, based 
on data collected in a large online survey of rural landowners and land managers (herea�er, ’landowners’) in 
New Zealand (herea�er, ‘the survey’) (Fig. 1)37.

First, peer in�uence captures the frequency and perceived importance of conversations with other land-
owners about environmental performance on farms (the term “peer” in social networks may take on di�erent 
 meanings38–40; here, it denotes  similarity38,41, that is, being another landowner). Peer in�uence is modelled as a 

Figure 1.  �e concept of interacting social in�uences a�ecting environmental behavior. In this study, each 
landowner’s (blue node with black outline) decision about voluntary habitat conservation is a�ected by their 
interactions with a network of other landowners (blue nodes), three cross-scale actor groups (red nodes) and 
spatial knowledge di�usion mediated by change in biophysical context emerging from seeing other landowners’ 
conservation decisions (exempli�ed by one grey node). �e width of connection between nodes illustrates the 
level of in�uence on landowner’s decision-making. �e diversity and strength of social in�uences a�ecting 
decision-making vary among landowners. �e �gure was created using Microso� PowerPoint version 16.43.
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social peer group network with landowners as network nodes, and environmental conversations as links between 
the nodes. �e second in�uence type is cross-scale in�uence, which represents the persuasiveness of cross-scale 
actors (i.e. social actors who do not themselves make decisions to convert land) on  landowners14,20,42. We include 
government representatives, councils, and indigenous groups as cross-scale actors. Connectivity and level of 
in�uence for peer in�uence network and cross-scale in�uence are self-reported by the respondents of the survey. 
Both peer in�uence and cross-scale in�uence links are weighted by the level of in�uence on landowners, as self-
estimated by the respondents of the survey.

While peer in�uence and cross-scale in�uence are e�ected through conversations, spatial knowledge dif-
fusion is mediated through behavior. Spatial knowledge di�usion43,44 occurs among contiguous neighbouring 
properties, and in�uences landowners’ decision-making through expressed enviromental behaviors and their 
visible  outcomes45,46. �is comprises a feedback from local changes in the biophysical environment to landowner 
behavior. In practice, the landowners in our model can observe changes in land use on adjacent farms; they then 
include this knowledge of their neighbors’ behaviors in their decision-making during subsequent years. Finally, 
habitat protection decisions are a�ected by a landowner’s personality traits, i.e. actor attributes. Each land-owner 
has a set of actor-level characteristics that in�uence his or her decisions about participation in environmental 
action (e.g., personal beliefs and farm  characteristics47); these are called actor attributes when associated with 
social networks. Much empirical research has sought to identify the predictors of landowners’ adoption of 
conservation  practices47,48. A suite of universal predictors that would enable targeting speci�c farmer pro�les in 
conservation has not been identi�ed; instead, such predictors are likely to be context-dependent47,48.

Using the survey data, we implemented a dynamic, social-ecological agent-based model to evaluate the impact 
of multiple, interacting social in�uences on the outcomes of conservation action on agricultural land (Fig. 2). 
We assessed the in�uence of the three social in�uence types of on landowners’ decision-making by varying the 
relative strength of each from them having no in�uence to being the sole in�uence on conservation decisions 
(Table 1), and modeled the spread of environmental behaviors under these di�erent conditions. Quantitative 
knowledge is generally not available on the predictors of conservation decisions or their relative  importance47. 
�us, we systematically explored the plausible parameter space to identify which parameters are in�uential in the 
study context (a sensitivity  analysis49). We then evaluated the consequences of landowners’ behavior on landscape 
structure by measuring resulting landscape-level protected area, habitat fragmentation and area of covenanted 
land, i.e. permanently protected habitat. �e total sum of the in�uence parameter values (i.e. relative weights 
of each in�uence on decision-making) always sums to one. �is approach prevents the model from creating 
unrealistic parameter combinations, such as two social in�uence types simultaneously having 0.8 in�uence on 
an individual. In so doing, our approach acknowledges that landowners are always a�ected by multiple in�u-
ences. �e individual e�ects of each in�uence on decisions can only be considered alongside other in�uences 
and landowners’ susceptibility to each in�uence. �e only in�uence type that cannot have a value of zero is actor 
attributes; the landowners’ decisions are always in�uenced by their own characteristics. 

�e interplay of social in�uences in our study is not determined simply by the relative weights of each in�u-
ence type on decision-making, but also by landowners’ self-reported individual di�erences in who they are 
in�uenced by and who they regularly interact with, as well as their actor attributes. Our study draws on exten-
sive survey data, which produces actor diversity in the model in terms of the owners’ susceptibility to di�erent 
social in�uences. �us, allocating a high weight to a given social in�uence type does not necessarily mean that 

Figure 2.  General model concept. �e model consists of (A) three cross-scale actor groups and their in�uence 
links to landowners; (B) 200 heterogeneous landowners, each with his or her actor attributes, and in�uence 
links between landowners (peer in�uence); (C) a simulated agricultural landscape with areas available for 
conservation on each farm, upon which the landowner makes conservation decisions (dashed line); (D) a binary 
ecological landscape emerging from conservation action and consisting of either protected or unprotected land, 
coloured here accordingly; (E) spatial di�usion knowledge to each landowner from his or her neighbouring 
farms (here illustrated with one arrow only). (A,B) Network link weights represent the level of in�uence 
that landowners have self-reported their social connections to have. �e �gure was created using Microso� 
PowerPoint version 16.43.
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landowners will be in�uenced by it, or be in�uenced to an extent that a�ects the collectively produced environ-
mental outcomes. It is the outcomes of the interactions in the model that are of interest.

To evaluate the in�uence of actor similarity-based landowners’ social networks, we used synthetic (i.e. gen-
erated by our model) social networks to perform actor-centric  analysis50. In this analysis, the network plays an 
important role in the interaction between social actors, but di�erent model outcomes are obtained by varying 
input parameters that are not related to the network  itself50. A common approach to social network studies is 
investigating the extent to which peer in�uence and actor attributes explain environmental  outcomese.g.9,51. Here, 
in the context of simulation modelling, we call our experiments taking this approach ‘Ingroup In�uence’ experi-
ments as they include only peer in�uence and actor attributes in decision-making. We use the term ‘Multiple 
In�uences’ experiments for simulations that include all three types of social in�uences and actor attributes in 
decision-making.

We conducted four in silico experiments (Table 1) to account for the in�uence of the network structure. �e 
experiments were conducted with two synthetic, di�erently randomized peer in�uence networks. �e actor 
similarity network is informed by survey data describing landowners’ interactions with di�erent actor groups 
and self-perceived in�uence of these interactions. �e network generation, therefore, captures social actors’ 
social network connectivity as a realistic number of links to other landowners and the in�uence of these links 
as self-reported in the survey. �e second network is the Erdős-Rényi (ER) random network  model52 in which 
landowners connect to each other at random at some �xed probability. We included the ER model for the purpose 
of determining the impact of actor similarity-based network on the environmental  outcomes50. �e ER model 
is not intended to capture characteristics of survey-informed social connectivity, but rather to serve as a null 
model against which to measure the impact of actor similarity-based network structure.

Table 1.  Model experiments. In each experiment, the e�ect of social in�uences was tested by systematically 
changing their in�uence in decision-making. Landowners’ decision options include voluntarily keeping or 
converting part of their farm to protected habitat, either permanently or for the time being, or keeping or 
converting the land to productive use. Parameters are varied across plausible parameter ranges to detect which 
parameters are in�uential on conservation outcomes. �e sum of parameter values for social in�uences and 
actor attributes is always scaled to one. “Change-makers” is the percentage of landowners making a decision 
during each time step. “Time steps” is the minimum time interval between land use changes.

Experiment Parameter values

`Multiple in�uences experiment:
Includes all social in�uences and actor attributes in decision-making
Network model: actor similarity

Actor attributes: 0.1, 0.5, 1

Peer in�uence: 0, 0.5, 1

Cross-scale groups

Indigenous: 0, 0.5, 1

Council representatives: 0, 0.5, 1

Government representatives: 0, 0.5, 1

Spatial knowledge di�usion: 0, 0.5, 1

Change-makers: 0.3, 0.7, 1

Time steps: 0, 2, 6

Multiple in�uences (ER) experiment:
Includes all social in�uences and actor attributes in decision-making
Network model: Erdős Rényi

Actor attributes: 0.1, 0.5, 1

Peer in�uence: 0, 0.5, 1

Cross-scale groups

Indigenous: 0, 0.5, 1

Council representatives 0, 0.5, 1

Government representatives: 0, 0.5, 1

Spatial knowledge di�usion: 0, 0.5, 1

Change-makers: 0.3, 0.7, 1

Time steps: 0, 2, 6

Ingroup in�uence experiment:
Includes peer in�uence and actor attributes in decision-making
Network model: Actor similarity

Actor attributes: 0.1, 0.5, 1

Peer in�uence: 0, 0.5, 1

Change-makers: 0.3, 0.7, 1

Time steps: 0, 2, 6

Ingroup in�uence (ER) experiment:
Includes peer in�uence and actor attributes in decision-making
Network model: Erdős Rényi

Actor attributes: 0.1, 0.5, 1

Peer in�uence: 0, 0.5, 1

Change-makers: 0.3, 0.7, 1

Time steps: 0, 2, 6
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Results and discussion
When decision-making is embedded in a dynamic SES, multiple types of social in�uence interact and can create 
unanticipated social-ecological dynamics. We detected a greater range of outcomes in landscape structure in 
experiments where landowner decision-making was a�ected by all three social in�uences compared with only 
peer in�uence. �is result is evidenced by the vertical spread in Fig. 3a–c. A greater range of outcomes, including 
extremes in environmental outcomes, which in this context are success or failure in achieved conservation land-
scapes, emerged only when landowners were in�uenced by multiple social in�uences. For example, the Multiple 
In�uences experiments produced landscapes where 18% to 95% of land was protected, whereas the Ingroup 
In�uence experiments produced landscapes with protected area of 21–70% of available land (Fig. 3a). Similarly, 
on average we detected greater variability in habitat fragmentation in the Multiple In�uences experiments than 
in the Ingroup In�uence experiments. �us, the Multiple In�uences experiments more o�en produced unex-
pected outcomes than the Ingroup In�uence experiments. Furthermore, the Multiple In�uences experiments 
resulted in, on average, more desirable environmental outcomes (i.e. more protected land) than Ingroup In�uence 
experiments (when using ER model), but this e�ect of multiple social in�uences was reduced when landowners 
formed social connections with other similar landowners (the actor similarity-based network model) (Fig. 3a–c).

When investigating which social or social-ecological processes in the model explain the experiment-speci�c 
di�erences in environmental outcomes, we found that (i) interacting e�ects of social in�uences create mecha-
nisms that lead to accelerating change, and (ii) stronger social in�uence types can, in synergy or on their own, 
cancel the e�ect of a less dominant social in�uence. Our use of the term “strength” does not indicate only the 
relative weight of a social in�uence in decision-making, as per our analysis design; rather, a strong social in�uence 
is one that can a�ect and in�uence many landowners, even in the presence of other social in�uence types. �ese 
conclusions are based on the experiment-speci�c correlation (using Pearson’s r) between social in�uence and 
environmental outcomes (Fig. 4). First, our actor similarity-based and ER networks produced di�erent results, 
demonstrating that di�erent social in�uence types interacted with landowners’ peer group network structure 
(Figs. 3a–c, 4). When multiple social in�uences were included in landowner decision-making, spatial knowledge 
di�usion was the strongest predictor of environmental change. We interpret e�ect sizes (r) ≥ | 0.5 | as a strong 
association. �is result is due in large part to the presence of a high number of landowners without network links 
to other landowners (i.e. isolates, Table 2) in our networks; spatial knowledge di�usion could directly a�ect all 
landowners, whereas peer group and cross-scale actor-in�uence directly a�ected only those landowners who had 
links with these groups. ER networks, which were generally more fragmented and contained more isolates than 
the survey-based networks, produced more desirable environmental outcomes (Table 2, Fig. 3a–c). �is trend 
arises because landowners in actor similarity-based networks had more connections to others on average, and so 
had more potential to be in�uenced by their peer group than in ER networks. �e typically cohesive structure of 
actor similarity-based networks allowed both undesirable and desirable behaviors to spread more e�ectively than 
in the more compartmentalized and fragmented ER networks (Table 2, Fig. 5). �us, in the presence of strong 
spatial knowledge di�usion, social connections among like-minded landowners enabled peer group in�uence to 
mediate the spatial knowledge di�usion e�ect, producing ‘compromise’ environmental outcomes. In our study, 
both desirable and undesirable behaviors spread at the same time, and the typically cohesive structure of actor 
attribute–based networks allows both behaviors to spread more widely than in the more compartmentalized 
and fragmented random networks. Further, similarity among landowners was calculated using actor attributes. 
�us, landowners who have a high (or low) probability of protecting land due to their attributes were connected 
to each other. �us, altering behavior in such echo chambers would, in our study, require more behavioral di�u-
sion than would altering behaviors of landowners who have connections to a more mixed group of landowners 
(random networks). Our model does not adjust the homophily-mimicking connectivity during the simulation. 
�e landowners’ conservation behavior could become more diverse, but the network is not rewiring accordingly; 
like-mindedness is based on a number of actor attributes and not only conservation behavior.  

To describe the structure of landowners’ peer in�uence networks, we measured a number of network indi-
ces, which have been found to be in�uential for environmental action in empirical and theoretical research 
(Table 2). We found moderate e�ect sizes (r > |0.3|) for structural network properties only in the Ingroup In�u-
ence experiment conducted with ER networks, which might suggest that network structure did not in�uence 
environmental outcomes in other experiments. However, our results do not support this interpretation. �e 
di�erences in environmental outcomes between the actor similarity-based network and the ER network demon-
strate that network structure strongly in�uences the environmental outcomes in our model. �e small e�ect of 
network structure shown in Fig. 4 is more likely due to the presence of stronger social in�uences (Table 2). Using 
the actor similarity-based network, which was generated to capture social connectivity and in�uence among 
landowners as self-reported in the survey and was based on like-mindedness, led, on average, to less-protected 
landscapes with more habitat fragmentation. Hence, network structure is another important factor in mediat-
ing environmental behavior in the presence of multiple types of social in�uences. However, measuring network 
indices could not disentangle which structural characteristics bene�t environmental outcomes; future studies 
should test generating di�erent network models and explore the association between modi�cations of network 
structures and environmental outcomes.

Since individual actor attributes did not in�uence environmental outcomes (e�ect sizes r > |0.3|) and a greater 
range of outcomes were detected in experiments with multiple social in�uences, the extreme outcomes emerged 
from the combined e�ects of spatial knowledge di�usion and peer in�uence. �e results suggest that the combi-
nation of these two social in�uence types produced a social-ecological dynamic that generated accelerating gain 
or loss of natural habitats. While spatial knowledge di�usion produced spatial clusters of protected or unprotected 
areas, behavior in peer in�uence networks spread independently of landowners’ spatial locations. Behavioral 
change through peer group in�uence networks could therefore ‘jump’ in space and produce protected areas in 
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Figure 3.  �e main environmental outcomes for experiments including multiple social in�uences and peer 
in�uence only. �e blue distributions present results for experiments using actor similarity-based network 
model, and the red distributions show results for experiments using ER model. Comparisons of experiment-
speci�c outcomes are shown as bean plots. Horizontal black lines represent averages for experiment-speci�c 
distribution and dashed lines represent overall averages. (a and d) Show the total percentage of protected 
and covenanted area, respectively, of the land available for conservation in the modelled landscape. 
Fragmentation (b) represents the number of habitat fragments in the landscape and entropy the randomness of 
these fragments. �e length of the bean per point found is 0.1. �e high ends of the beans are cut to a maximum 
value of 0.2 for visibility of the distribution. �e �gure was produced using the Beanplot R package version 
1.277,78.
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Figure 4.  Experiment and model-speci�c correlation between environmental outcomes and factors that could 
in�uence environmental outcomes. Social in�uences and actor attribute included in decision-making are 
marked with a black rectangle, and the remaining variables on the y-axis are social network indices. �e �gure 
was produced using the ggplot2 R package version 3.0.377,79.

Table 2.  Social network indices. Calculated from networks for both network models, a total of 13,122 
simulations (6561 each). Density was used in network randomization in Erdős Rényi (ER) network model 
experiments. For each index, the table shows the minimum value, the mean value and the maximum 
value for all simulations, in respective order. �e full table and descriptions for each index can be found in 
Supplementary Materials tables S3 and S4.

Social network index Actor similarity network ER network

Network size (number of links)

91.000 74.000

142.726 139.117

217.000 212.000

Bridging actors

26 8.000

46.272 30.565

70.000 60.000

Isolates

37.000 61.000

69.262 99.657

101.000 136.000

Compartmentalization

0.210 0.791

0.677 0.934

0.911 0.974

Average weighted indegree without isolates

0.523 0.642

0.723 0.918

0.979 1.225

Density

0.002 0.002

0.004 0.003

0.005 0.005

Density without isolates

0.006 0.010

0.008 0.014

0.012 0.021
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otherwise unprotected regions, or vice versa, which then seed new clusters induced by spatial knowledge di�u-
sion. �e process is similar to the core-satellite spatial pattern seen in ecological invasion due to long-distance 
 dispersal53. �e detected social-ecological spatial dynamic is facilitated by more fragmentation and spatial habitat 
clustering (i.e. lower entropy) in Multiple In�uences experiments, especially with actor similarity-based networks, 
which have fewer isolates. �is combination allows more seeds to emerge that interact with social network dif-
fusion. In real systems, inertia e�ects, such as delays in creating or detecting local environmental  change34, may 
slow change driven by such social-ecological mechanisms.

Furthermore, the results indicate that the strong combined e�ect of spatial knowledge di�usion and peer 
in�uence cancelled out that of cross-scale actors. Although in our model we assume a positive in�uence from 
cross-scale actors on landowner decisions to protect land, desired environmental outcomes occurred less o�en 
as the cross-scale actor in�uence on landowner decision-making increased (negative correlation in Fig. 4). �at 
the weighting of other stronger drivers must decrease as the in�uence of cross-scale groups, which each had their 
own weighting, increases (because all in�uences were scaled to collectively sum to one), may explain the nega-
tive e�ect of these cross-scale groups. However, the relative weight of each in�uence is mediated by the social-
ecological context of the decision-making, such as landowners’ self-reported connectivity and susceptibility to 
cross-scale actors, or spatial patterns of the landscape. It is most likely that the weak and negative in�uence of 
cross-scale actors was due to the low number of landowners connected to cross-scale actors. In our sample of 
600 landowners, only 11 (1.8%) reported in�uential environmental conversations with indigenous groups, 143 
(28.3%) with local councils and 18 (3.0%) with central government representatives.

Finally, we included actor attributes both as a separate driver in decision-making and through actor attribute-
based similarity in the survey-based network construction. Hence, connectivity in the actor similarity-based 
networks propagates the in�uence of actor attributes.

None of the social in�uence types correlated with the area of covenanted land in any of the experiments 
(Fig. 4). Since covenanted land cannot legally be unprotected and returned to agricultural use, increases in 
covenanted areas in our model were mainly in�uenced by the extent of covenanted areas at the beginning of 
the model simulations (Supplementary Materials, Figure S1a–d). �is outcome implies that in the model the 
landowners rarely made the decision to covenant land. �e extent of conserved and covenanted areas at the 
beginning of the simulations was determined by survey responses of the landowners randomly selected for each 
simulation, contributing to the initial landscape composition being aligned with the characteristics of landown-
ers in the experiments.

Unanticipated environmental outcomes in social network studies can result from treating social networks 
as “closed systems”, i.e. failing to consider social in�uences from outside the network under study. In our study, 
inclusion of multiple social in�uences in landowner decision-making increased the variety of collectively 
achieved environmental outcomes and led more o�en to extreme environmental outcomes than a setting where 
only actor attributes and peer in�uence a�ected land-owners’ decision-making. Importantly, our study suggests 
that the e�ects of multiple social in�uences, when included in analysis of an SES, should not be assumed to be 
additive. �ese e�ects are mediated by social network structure, actor diversity and the presence of other types 

Figure 5.  Peer in�uence networks for the two network models, each captured from one of the simulations with 
multiple social in�uences. Blue nodes represent landowners who have protected natural habitat on their land, 
red nodes are landowners without protected land. Note the mix of blue and red landowners in structures where 
network in�uence alone would have produced clusters of unicolor nodes. �e isolates (unconnected nodes) 
represent landowners who did not report in�uential environmental conversations with other landowners. �e 
network was visualized using the Fruchterman-Reingold layout in iGraph R  package77,80.
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of social in�uences. In this context, multiple social in�uences may interact antagonistically or synergistically 
and, in so doing, create unanticipated social-ecological mechanisms for environmental change. Consequently, 
the presence of multiple social in�uences can create more unpredictability in emerging environmental outcomes 
than when only one social in�uence (e.g. peer in�uence) is included in individual decision-making. Detecting 
these e�ects requires situating environmental decision-making in a dynamic social-ecological context in which 
human behavior and its context are ever evolving and in�uencing each  othercf.15.

Numerous studies of social networks representing a single type of connectivity have linked network struc-
ture to environmental behavior or  outcomes9,12,54, but few studies have measured the e�ect of micro-scale social 
interactions on environmental  outcomes55. Although based on a national survey of New Zealand landowners 
and land managers, our model provides generalizable insights on potential social in�uence leverage points 
for conservation. �e strong in�uence of spatial knowledge di�usion suggests that visible pro-environmental 
 behavior46 provides a feedback between the ecological and social subsystems, which could change the behavior of 
people who lack social connections or whose social connections may not promote pro-environmental behavior. 
In so doing, spatial knowledge di�usion can produce spatial clusters of conservation activity that would bene�t 
biodiversity and other environmental conditions. Purposefully establishing such ‘seeds’ of conservation could 
trigger willingness of others to adopt pro-environmental behavior(s), especially if seed landowners commit to 
long-term conservation via mechanisms such as legally binding covenants.

A social network with stronger peer in�uence links and fewer isolates could, in another setting, outweigh the 
in�uence of spatial knowledge di�usion. Intriguingly, a social-ecological feedback loop including environmental 
change, emergence of clustered protected areas or strong in�uence links between spatially decoupled landowners, 
could potentially provide early warning signs for accelerating landscape-level change. Alternatively, the pattern 
could provide an opportunity for network  intervention56. For example, landowners encouraging their neighbors 
to undertake private land conservation integrates both ecological feedbacks and peer group network in�uence. 
�is type of intervention has recently been tested with successful outcomes for landscape-level  conservation36. In 
our study, the inclusion of multiple social in�uences and simultaneous spread of undesired and desired behaviors 
likely hindered clusters of behavior from emerging in ingroup networks (Fig. 5). However, we did not assess 
the presence of behavior-based clusters in our analysis as the aim was to measure environmental outcomes of 
landowners’ behavior.

Our results are based on allowing undesired and undesired behaviors to spread simultaneously. �is context, 
together with the interplay of multiple social in�uences, will produce uncertainty in social network interventions. 
Identifying change agents (e.g. opinion  leaders56) based on their network position is only the �rst step in using 
network interventions to accelerate behavior change. �e ability of change agents to trigger behavioral change 
also depends on their positions in a wider, evolving social-ecological  context57–59. Furthermore, while involve-
ment of cross-scale actors in environmental decision-making commonly increases the diversity of information 
in the network, relying on them to encourage pro-environmental behavior may be insu�cient if they have few 
strong connections to landowners.

Finally, the important role played by isolates in our study highlights the need for careful setting of network 
 boundaries60, i.e. who to include as network actors when preparing social network research or interventions. 
Snowball data collection  methods60, for example, may lead to the inappropriate exclusion of isolates, as the 
sampling technique is based on recruiting acquaintances of network members. Network in�uence research 
resulting in unexpected environmental outcomes may bene�t from testing the boundaries of social networks 
under study. Considering information �ows from multiple sources is important, especially when social actors 
make decisions that require social reinforcement in the form of social norms or demonstration of bene�ts, in 
contrast to situations where behavioral change is easy and non-costly19.

Our model is necessarily a simpli�ed representation of decision-making in SES and SES dynamics. We 
assumed that all landowners can allocate a fraction of their land to conservation, and we do not consider temporal 
changes in social or economic conditions, or habitat quality. Our representation of spatial knowledge di�usion is 
based on the idea that social norms and/or demonstration of conservation action generate a reinforcing feedback. 
However, a balancing feedback may also result from a decrease in protected areas triggering pro-environmental 
behavior as landowners observe an increased need for  conservation61,62. While using synthetic social networks 
is common practice in agent-based modelling when research questions are di�cult to test with other methods 
or empirical data are  limited50,63, this approach may in�uence our results as the structure of our actor similarity-
based network varied only modestly. Furthermore, our actor similarity-based network model generation might 
not capture all topological features of real-world networks, and we therefore can only conclude that this mecha-
nism matters in the context of our study, without identifying the network structural or other pathways through 
which this e�ect is realised. To address this caveat, future research should test network-centric or structurally 
explicit  analyses50. Such analyses could show that speci�c network structures, such as clustering, signi�cantly 
in�uence behavioral di�usion in a social network even under multiple social in�uence types. Assessing the in�u-
ence of network structures and the location of speci�c social actors in the network could enable the detection of 
causality between di�erent social in�uences and social network structures. For example, if most landowners with 
connections to cross-scale actors tended to be clustered together with few links to other landowners, then cross-
scale in�uence would be limited at landscape extents. Although these issues remain unexplored in our study, the 
identi�cation of these caveats through our research highlights the importance of developing complex simula-
tion models to better understand how social networks function when embedded in social-ecological dynamics.

To facilitate comparison with previous social network research, we treated the networks as static, although 
complex adaptation in SES will most likely include rewiring of social in�uence links and learning that changes the 
strength of in�uence among social actors. Studies that allow the social network structure to adapt to a changing 
social and ecological context during the simulation are needed. We also hope to see multi-level and multiplex 
network approaches adopted in studies considering multiple social in�uences in  SESe.g.64,65. Finally, by scaling 
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the total in�uence of the behavioral drivers to always sum to one, we assumed that there is a maximum extent to 
which individual decision-making can be in�uenced. Hence, an increase in the importance of one driver results 
in a commensurate decrease for the others, which may explain the negative correlation between some drivers 
and environmental outcomes in the presence of strong drivers.

Studying social networks as part of larger social-ecological frameworks and drawing on interdisciplinary 
theory will improve our understanding of complex human and environmental dynamics. A critical step in this 
process is considering social in�uence networks as open systems that interact with other networks and the deci-
sion-making  environment15,66. It is known, for example, that failure of nodes in one network leads to the failure 
of nodes in other networks through dependency links (e.g. problems in �nancial systems cascade to work places 
and, through unemployment, to families)66,67. Our study provides a step in this development path by considering 
the interplay of di�erent types of social in�uences, embedding behavioral decisions into a dynamic SES context 
and evaluating the environmental outcomes of social in�uences with biodiversity-relevant landscape indicators.

Conclusions
Our research emphasizes how the presence of multiple social in�uence types can produce unexpected environ-
mental outcomes in environmental decision-making. Likewise, to understand links between social in�uence 
networks and environmental outcomes it is important to consider social in�uence as embedded in complex 
adaptive social-ecological systems, in which human behavior consistently adapts to changing social and ecological 
contexts. Social networks are not closed systems, but rather have potentially important feedbacks between the 
environment and di�erent components of the social system. Considering social networks as adaptive elements 
of complex and dynamic social-ecological systems will improve our capacity to fully understand how social 
in�uence contributes to generating desired environmental outcomes.

Materials and methods
General model concept. We developed an agent-based model to evaluate the impact of multiple, interact-
ing social in�uences on landowners’ conservation action on agricultural land, and consequently on landscape-
scale environmental outcomes (Fig.  2). A detailed Overview, Design concepts and Details (ODD) protocol 
(Grimm et al.68) of the model is available in the Supplementary Materials (SM). Data for the study were collected 
in the 2015 Survey of Rural Decision  Makers37, which is a large, internet-based survey covering more than 3300 
farmers across all primary industries and regions of New Zealand. Due to question randomisation and survey 
branching, the usable data set for this survey included 600 private landowners and land managers involved in 
primary production. Isolates may emerge in survey data  collectione.g.,69 and we retained them in our study net-
works because of their potentially important role in environmental or resource collectives.

Model simulations began with 200 landowners, randomly selected for each simulation from the 600 landown-
ers with complete survey data. �ese landowners were assigned at random to 200 farms on the model landscape. 
At the start of each simulation, protected natural habitat was present only on the farms of the landowners who 
reported having native forest or covenanted land. During each time step, a changing subset of landowners 
decided whether to protect natural habitat on their land; if they decided to protect the land, they also decided 
whether to covenant. (Covenanting land is a practice increasingly adopted by landowners in New Zealand. It is 
an agreement between a private landowner and the QE II National Trust to protect land, even if the property is 
sold to a new  owner70). Landowners with self-reported barriers, such as fear of losing rights to own land, could 
not commit land to covenants. Landowners could decide against protecting land only if the habitat was not 
covenanted. �e conservation landscape and conservation status of each landowner were updated according to 
landowners’ environmental behavior, so that during the subsequent time-step decisions took place in an updated 
social-ecological context. We simulated a period of 150 time-steps, which represents approximately 50 years. 
�e model was run for a 50 time step burn-in period before data were collected.

�e landscape component of the model was represented on a toroidally wrapped grid, i.e. a lattice. Each cell 
in the landscape could occupy one of three states: protected, unprotected, or covenanted. For habitat connectivity 
variables (number of habitat fragments, entropy), connected protected cells formed a non-fragmented habitat 
area; any non-protected cells between protected patches indicate the presence of habitat edges. Because our model 
landscape consists only of areas available for conservation, the percentages discussed in the study are not directly 
comparable to suggested critical thresholds in habitat declines that lead to abrupt biodiversity losses, e.g.71. We 
chose to model the land available for conservation, which we set to be 10% of each land-owner’s land with an 
assumption that the farm would remain �nancially viable. Accordingly, the model landscape consisted only of 
land potentially available for conservation (i.e. only land where at least partial protection for conservation is a 
feasible option), and is subdivided into farms owned by the 200 landowners represented in the simulation. Hence, 
fragmentation was determined relative to the maximum possible area, given the availability of farmland for 
protection. �e amount of land available for conservation (10%) was arbitrary but was �xed across experimental 
treatments. �is simpli�cation avoided the possibility of unlikely outcomes such as landowners protecting 100% 
of their land, while allowing us to avoid further complicating the model by including economic processes and 
parameters. We assumed that the extent to which landowners prioritise pro�t over conservation are captured 
by the actor attributes, which were measured in the survey. �e size of each farm was based on the survey data, 
scaled to be consistent in every run.

To determine a set of actor attributes that could in�uence native habitat protection, we performed logistic 
regression analyses on variables from the survey that described landowners’ views and values for conservation 
and covenants, their farming industry, land-use and whether they live on the farm (Supplementary Materials 
Table S5a–d, a detailed examination of the diversity of survey respondents can be found  in13). �e set of 28 
variables (Supplementary Materials Table S7) included in the regression was used to calculate pairwise Gower’s 
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 dissimilarity72 for the 600 landowners (to be used in network generation below), which was used to construct 
actor similarity-based networks.

In peer group social networks, nodes represent landowners and directed links represent in�uential environ-
mental conversations between peers. Each land-user’s in-degree and link weight were reported in the survey 
as the number of landowners with whom they had environmental conversations and a categorical evaluation 
of the in�uence of these conversations (SM: Network Questions), respectively. We removed links for which the 
level of in�uence was reported as “not in�uential”. Because the survey captured the number and level of in�u-
ence but not the identity of in�uence partners, we evaluated two methods for allocating these in�uence links 
to other landowners: Erdős–Rényi (ER)  randomization52 or link allocation based on actor similarity to mimic 
homophily. Homophily is in�uence-based contagion driven by similar people adopting similar ideas and, over 
time, actor attributes can become correlated with the structure of social  networks10,73,74. In actor similarity-based 
networks, like-minded landowners in�uence one another, such that the probability of each pair of landowners 
(with indegree > 0) being connected was inversely proportional to the dissimilarity in their attributes from the 
survey. As a null comparison against these networks, ER networks allocate links at random according to the 
Erdős–Rényi random graph  models52. We used the mean link density of > 6500 model-generated actor similarity-
based networks (0.0035) as the probability of assigning a link between any two landowners in the ER networks. 
In ER networks, categorical weights representing slight/moderate/high in�uence were assigned to each link at 
random, whereas in actor similarity-based networks, the link weights are those self-reported by landowners 
for each social group in the survey. We included three cross-scale groups, which were included in the survey: 
central government representatives, local council representatives and an indigenous group. Links to cross-scale 
groups and their in�uence were reported by survey respondents as with peer links. In both network structures, 
the number of nodes was �xed at 200.

Simulations. �e e�ect of each type of social in�uence or actor attribute on decision making was scaled to 
sum to one (Table 1). To determine sensitivity of the results to model structure, and since it is unlikely that land-
owners would frequently change land-use, we varied the percentage of landowners who make a decision during 
each time-step (30, 70 or 100%) and the minimum time interval between land use changes (0, 2 or 6 time-steps) 
for each parameter combination. One simulation was run for each parameter value combination for the experi-
ments, including all social in�uence types or actor attributes, resulting in 6561 simulations per experiment. 
Ingroup In�uence experiments (which had fewer unique combinations due to fewer drivers) were run with 
repeated simulations (n = 75) to total 6561 and have a consistent number of simulations for each experiment.

Land‑use decision making. Each landowner’s decision to protect, or unprotect, habitat on their land was 
calculated using the weighted sum of the factors included in the decision making. Each social in�uence or actor 
attribute had a value between 0 and 1, with higher values indicating a higher likelihood of protecting land. Peer 
in�uence indicates the number and in�uence (weight) of links that a landowner had to other landowners across 
all the actor’s weighted links; it is based on weighted indegree and was calculated for actor i as:

where n is the number of nodes in the network, nc is number of nodes currently conserving habitat on their land, 
x is the value of the link (1 if the nodes are connected) to actor j and w is the link weight.

�e in�uence from each cross-scale actor group was calculated relative to the maximum cross-scale in�uence 
(Cmax) in the land-owner network:

where k is the landowner’s in-degree to that cross-scale group and wc is the in�uence of those links (both derived 
from survey data).

�e spatial information in�uence for respondent i was calculated as:

where Nc is the count of adjacent farms with protected habitat and N is the total number of adjacent farms.
Respondent attribute in�uence was calculated from a logistic regression with the probability of protection 

native forest as the outcome variable and survey responses as predictors (X):

where βn is the regression coe�cient for variable Xn.
�e probability of land being covenanted was calculated in a similar way to land protection, with the excep-

tion that if the respondent had reported reasons for not covenanting land (e.g., no suitable land available on 
farm or concerns over covenant regulations or losing the right to change covenanted land), they would always 
decide against it.

(1)Cd(i) =

∑nc
j=1

xijwij
∑n

j=1
xijwij

(2)Ccs(i) =

kwc

Cmax

(3)E(i) =

Nc

N

(4)P(Y) =
1

1 + e(β0+β1iX1i+β2X2i+···βnXn)
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Finally, in our representation of decision making, the in�uence of each social in�uence or actor attribute is 
weighted by the landowner’s individual parameter values. �e probability of a landowner protecting land is the 
weighted sum of n behavioral drivers:

where yj denotes the weight (parameter value in our model) of importance of each social in�uence type or 
respondent attribute in decision -making, and fj denotes the value of the in�uence.

Data and software availability. We used NetLogo 6.0.3.75 for model programming and simulations, 
including the R  extension76, and R Studio version 1.1.463 environment for supporting coding and  analysis77. 
Pseudocode for the model and needed data input �les for the model are available in Supplementary Materials, 
including a sample data for actor attributes. �e full dataset can be requested from the authors with considera-
tion to survey respondents’ anonymity. Simulated, simpli�ed landscapes and subsamples of landowners make 
the survey respondents unidenti�able in the model.
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