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Abstract. We examine multiple responses of a vibrational energy harvester composed of a vertical beam
and a tip mass. The beam is excited horizontally by a harmonic inertial force while mechanical vibrational
energy is converted to electrical power through a piezoelectric patch. The mechanical resonator can be
described by single or double well potentials depending on the gravity force from the tip mass. By changing
the tip mass we examine the appearance of various solutions and their basins of attraction. Identification
of particular solutions of the energy harvester is important as each solution may provide a different level
of power output.

1 Introduction

The fast development in the miniaturisation of electron-
ics and new trends in monitoring of systems and struc-
tures has motivated the development of small scale of
small energy harvesting to power these small electronic
devices and extend their lifetime and/or remove the need
to charge batteries [1]. Ambient vibration energy harvest-
ing is one potential solution. In this field, linear devices
are only efficient at resonance, i.e. they are only sensi-
tive to a single frequency are not efficient for variable
excitation conditions. On the other hand nonlinear vi-
bration energy harvesters showing broadband frequency
transduction are based on nonlinear phenomena. Conse-
quently these material and/or geometrical nonlinearities
improve the efficiency of energy harvesting from variable
ambient sources via synchronization and nonlinear reso-
nance. However, the nonlinearity also allows the appear-
ance of multiple solutions.

A range of vibration energy harvesting devices have
been proposed [2–5]. Recently, in the context of broad-
band energy harvesting, bifurcations and chaotic vibra-
tions have been studied in several papers. Cao et al. [6,7]
studied chaos in the fractionally damped broadband piezo-
electric energy generator in a system with additional
magnets. Syta et al. [8] analysed the dynamic response
of piezoelectric material attached to a bistable laminate
plate. In this paper we study the response of a vibra-
tional energy harvester composed of a vertical beam and

a e-mail: g.litak@pollub.pl

a tip mass where the gravitational acceleration introduces
a double well potential. This system has shown a num-
ber of possible solutions with different power outputs [9].
The appearance of periodic or chaotic solutions, or so-
lutions with single and cross potential well motions, de-
pend on the initial conditions. In this paper we identify
these different motions and investigate their dynamics us-
ing basins of attraction and Fourier spectrum tools.

2 The model

The proposed nonlinear harvester model is a vertical flex-
ible beam of length L with piezoelectric layers and a tip
mass, shown schematically in Figure 1. The base is ex-
cited in the transverse direction with harmonic base exci-
tation z(t) = z0 cosωt. The beam carries a concentrated
tip mass, Mt, with moment of inertia, It, at the end of the
beam. The horizontal and vertical elastic displacements at
the tip mass are v and u respectively, and s represents the
distance along the neutral axis of the beam. The model of
this system was described and verified experimentally in
our previous paper [9].

The beam is assumed to have uniform inertia and stiff-
ness properties, although a non-uniform beam is easily
modeled by including the mechanical beam properties in
the energy integrals. The beam has cross sectional area A,
mass density ρ, equivalent Young’s modulus E, and second
moment of area I.

Assuming a single mode approximation the equation
of motion of the beam-mass system is derived in terms of
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Table 1. Parameter values used in the simulation.

Beam and tip mass Energy harvester

ρ 7850 kg/m3 Lc 28 mm
E 210 GN/m2 bc 14 mm
b 16 mm hc 300 µm
h 0.254 mm γc −4.00 × 10−5 Nm/V
L 300 mm Cp 51.4 nF
It/Mt 40.87 mm2 Rl 100 kΩ

P

z t z t
0

u

v

vp

up

Mt

s

Fig. 1. Schematic representation of the vertical flexible beam
with piezoelectric layer and a tip mass. Here, Mt denotes the
tip mass, v and u are is the horizontal and vertical displace-
ments, P is an arbitrary point on the beam, and z(t) is the
harmonic base excitation, while s represents the distance along
the neutral axis of the beam.

the displacement of the tip mass using Lagrange’s equa-
tions [9–11] as:

[

N2

5
It + Mt + ρAN1 +

(

ρAN3 + MtN
2

4
+ N4

5
It

)

v2
]

v̈

+
[

ρAN3+MtN
2

4 +N4

5 It

]

vv̇2+[EIN6−N9ρAg−N4Mtg

+2EIN7v
2
]

v − Θ1U − Θ2v
2U = − [ρAN2 + Mt] z̈ (1)

where U is output voltage. The derivation of this equa-
tion and the definitions of the constants are outlined in
Appendix. The electrical equation of motion is:

CpU̇ +
U

Rl

+ Θ1v̇ + Θ2v
2v̇ = 0 (2)

where Cp is the capacitance of the piezoelectric patch and
Rl is the load resistance.

The system is base excited by the harmonic horizontal
displacement

z = z0 cos(ωt), (3)

where z0 and ω are amplitude and frequency of excitation.
The equilibrium positions with no forcing are obtained

by setting the velocity and acceleration terms to zero in

equation (1) to give

[

EIN6 − N9ρAg − N4Mtg + 2EIN7v
2
]

v = 0. (4)

This equation has either one or three solutions, and v = 0
is always a solution. Since N4 > 0, there are three solu-
tions if

Mt >
EIN6 − N9ρAg

N4g
= Mtb, (5)

where Mtb is the tip mass so that the beam is about to
buckle.

We use the same set of system parameters as Friswell
et al. [9], as given in Table 1. The post buckled response
has two stable equilibrium positions above the critical tip
mass, Mtb = 10g.

3 Numerical solutions

The energy harvesting system given by equations (1)
and (2) is simulated using the Runge-Kutta fourth or-
der method with a fixed time step δt = 0.01 s. Figure 2
shows the six different solutions obtained with the system
parameters from Table 1 and a tip mass of Mt = 10.19 g.
Note that our choice of Mt implies the beam is buckled
with two equilibrium points. The average harvested power,
P , for a given solution is calculated from the voltage time
series, Ui, by:

P =
1

NRl

N
∑

i=1

U2

i (6)

where N denotes number of samples.
The different solutions in Figure 2 represent differ-

ent attractors, obtained from different initial conditions.
The excitation amplitude was defined by z0 = 16 mm
and the driving frequency was fixed to 0.5 Hz. Attrac-
tors (a) and (b) are nonresonant period one single well
solutions, and the resulting energy harvested is very low.
Attractors (c) and (d) are period three cross well solutions
that produce increased harvested power. In contrast solu-
tion (e) is chaotic and (f) is a period one resonant solution,
both of which give increased power output.

To fully understand the different solutions, Figure 3
shows the corresponding time series, and Figure 4 shows
the Fourier spectra, for both displacement and voltage
time series. The low energy solutions (a) and (b), and
the medium energy solutions (c) and (d), have trajecto-
ries that represent the reflections in corresponding equiv-
alent pairs. This is due to the symmetry of the double
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Fig. 2. The response of the system with a tip mass Mt = 10.19 g, with kinematic forcing of the fixed amplitude, z0 = 16 mm,
and frequency, f = ω/2π = 0.5 Hz. The lines give the phase portraits, and the points give the corresponding Poincaré sections.
The initial conditions and the average harvested power for each case are: (a) (x0, y0) = (−0.2990 m, −0.1805 m/s), P = 1.7 µW,
(b) (−0.2430 m, −0.2145 m/s), 1.7 µW, (c) (−0.2105 m, −0.2135 m/s), 4.9 µW, (d) (−0.2949 m, −0.1930 m/s), 4.9 µW,
(e) (−0.2765 m, −0.1775 m/s), 21 µW, (f) (−0.2985 m, 0.2399 m/s), 150 µW.

well potential. More power output can be harvested from
the larger trajectories (e) and (f). The Fourier transforms
confirm that trajectories (a) to (d) and (f) are regular.
The single peaks for solutions (a) and (b) correspond to
the excitation frequency. The three discrete peaks for so-
lutions (c) and (d) correspond to the excitation frequency
and two subharmonics at 1/3 and 2/3. Interestingly, pe-
riod three implies chaos [12], and hence it is not surprising
that the next solution (e) is chaotic. The non-periodicity
is clearly visible in the time series (Fig. 3e) and also in the
Fourier transform (Fig. 4e) where discrete peaks change
to a continuous spectrum.

A similar mechanical system (without the coupling to
the piezoceramic) was investigated by Litak et al. [13];
this system showed Melnikov chaos with Wada patterns of

complex mixtures of three basins of attraction. The Wada
pattern is a generalization of two mixed areas separated
by a fractal border [14]. To investigate this possibility we
study the corresponding basins of attraction.

4 Influence of initial conditions

To investigate the global dynamical properties of the en-
ergy harvester model one can use basins of attraction.
In this approach, the stability of particular solutions can
be measured by the volume of their basins of attraction,
and the borders between them. Consider first the solu-
tions for the harvester with tip mass Mt = 10.19 g,
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Fig. 3. Displacement and voltage time series corresponding to the solutions presented in Figure 2.

corresponding to the solutions in Figures 2 to 4. Fig-
ure 5 shows the initial conditions that lead to the at-
tractors, which have very different levels of power out-
put. The grid of initial conditions considered in Figure 5
is (x0, y0) ∈ [−0.3, 0.3] m×[−0.3, 0.3] m/s and V = 0.
The percentage area for the different attractors is as fol-
lows: Attractor (f), 61%; attractor (e), 32%; attractors (a)
and (b), 6.99%; attractors (c) and (d), 0.01%. Obviously,
the resonant regular attractor (f) is the most common.
This attractor has regions of the basin with intensive mix-
ing with other attractors, but also has has a compact
region. For small ranges of tip mass displacement and
velocities, the single well solutions (a) and (b), are mixed
with the regular cross-well solutions (c) and (d), and
also with the chaotic cross-well solution (e). Interestingly,

large amplitude solutions (f) are also present in these re-
gions. In a larger scale, the compact region of solution
(f) has a definite border to the mixed solution regions.
Additionally, single well solutions (a) and (b) are most
probable in the center of studied area (represented by the
two red islands), while (c) and (a) can be classified as rare
attractors [15]. Finally, one can distinguish the Wada pat-
terns with the mixture of all attractors (a) to (f) embedded
in the compact area of the resonant regular solution (f).

By increasing the tip mass Mt to 10.24 g (Fig. 6) we
observe the quantitative change of the basins of attraction
plotted in Figure 5 with small changes to the probability
of their appearance.

However for Mt = 10.39 g the change is more signif-
icant (Fig. 7). The cross well non-resonant solutions (a)
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Fig. 4. Displacement and voltage Fourier spectra corresponding to the solutions presented in Figure 2.

to (d) disappear. Consequently, the percentage appear-
ance of the attractors is now: attractor (f), 57%; and at-
tractor (e), 43%. Note that the Wada pattern is changed
to a more simple Melnikov chaos [16] with a fractal border
between the two basins of attraction.

5 Conclusions

The examined energy harvester exhibited six coexisting vi-
bration responses with regular and chaotic solutions. The
power output increased once the system changed from a
single well solution to a cross well solution. Further in-
creases in power were related to increases in the size of

the trajectory of the tip mass. The corresponding basins
of attraction penetrated each other creating Wada pat-
terns with complex mixtures of three or more basins of
attraction. We observe these transitions in the basins of
attraction by changing the tip mass. The system was ex-
cited by an harmonic inertial force at a constant frequency,
and the harvester responded at this frequency and also
with additional subharmonics dependent on the value of
the tip mass.

It is clear that solutions of topologically different at-
tractors would lead to different power outputs in the en-
ergy harvesting process. The given basins of attraction
enable the stability of the solution to be determined. By
combining the distributions of the probability of particular
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Fig. 5. Basins of attraction calculated for the tip mass Mt =
10.19 g: attractors (a) and (b), red; attractors (c) and (d),
black; attractor (e), green; attractor (f), blue.

Fig. 6. Basins of attraction calculated for the tip mass Mt =
10.24 g: attractors (a) and (b), red; attractors (c) and (d),
black; attractor (e), green; attractor (f), blue.

Fig. 7. Basins of attraction calculated for the tip mass Mt =
10.39 g: attractor (e), green; attractor (f), blue.

solutions occurring, and the associated power output, one
can estimate the effective power output of the nonlinear
harvester.
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Appendix

We assume the mode shape of the beam (Fig. 1) ψ(s) is

ψ(s) = 1 − cos

(

πs

2l1

)

. (A.1)

With this assumed mode shape, the displacements v and u
(Fig. 1) are not independent, and u can be expressed in
terms of v. Using this single mode approximation [9–11],
the kinetic and potential energies of the system in terms
of the transverse displacement of the tip mass, v, are

T =
1

2
ρA

∫ L

0

[

(v̇ψ(s) + ż)
2

+

(

vv̇

∫ s

0

(ψ′(ξ))2dξ

)2
]

ds

+
1

2
Mt

⎡

⎣(v̇ + ż)2 +

(

vv̇

∫ Lt

0

(ψ′(s))2ds

)2
⎤

⎦

+
1

2
It

[

v̇ψ′(Lt) +
1

2
v2v̇(ψ′(Lt))

3

]2

(A.2)

=
1

2
ρA

[

N1v̇
2 + 2N2v̇ż + ż2L + N3 (vv̇)

2
]

+
1

2
Mt

[

(v̇ + ż)2 + N2

4 (vv̇)
2
]

+
1

2
It

[

N5v̇ +
1

2
N3

5 v2v̇

]2

(A.3)

and

Π =
1

2
EI

∫ L

0

[

vψ(s)′′ +
1

2
v3(ψ′(s))2ψ′′(s)

]2

ds

−
1

2
ρAgv2

∫ L

0

[
∫ s

0

(ψ′(ξ))2dξ

]

ds

−
1

2
Mtgv2

∫ Lt

0

(ψ′(s))2ds (A.4)

=
1

2
EI

[

N6v
2 + N7v

4 +
1

4
N8v

6

]

−
1

2
N9ρAgv2

−
1

2
N4Mtgv2 (A.5)
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where the beam is assumed to have uniform inertia and
stiffness properties. A non-uniform beam is easily mod-
eled by including the mechanical beam properties in the
energy integrals. The constants N1 to N9, are based on
the particular integrals of the assumed mode shape ψ(s),
and are given by:

N1 =

∫ L

0

(ψ(s))2ds =

(

3π − 8

2π

)

L,

N2 =

∫ L

0

ψ(s)ds =

(

π − 2

π

)

L,

N3 =

∫ L

0

(
∫ s

0

(ψ′(ξ))2dξ

)2

ds =
π2(2π2

− 9)

384

1

L
,

N4 =

∫ L

0

(ψ′(s))2ds =
π2

8

1

L
,

N5 = ψ′(L) =
π

2

1

L
,

N6 =

∫ L

0

(ψ′′(s))2ds =
π4

32

1

L3

N7 =

∫ L

0

(ψ′(s)ψ′′(s))2ds =
π6

29

1

L5

N8 =

∫ L

0

(ψ′(s))4(ψ′′(s))2ds =
π8

4096

1

L7

N9 =

∫ L

0

[
∫ s

0

(ψ′(ξ))2dξ

]

ds = −
1

4
+

1

16
π2 (A.6)

where s is a variable measured along the beam (Fig. 1).
Similarly, the electromechanical coupling constants (in

Eq. (1)) are

Θ1 = γcψ
′(Lc) and Θ2 =

1

2
γc(ψ

′(Lc))
3

(A.7)
where Lc is the active length of the piezoelectric material,
and γc depends on the properties and arrangement of the
piezoelectric material [9].

The Lagrange equations of the second type lead to
equations (1) and (2).
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