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Abstract. We study a class of fourth-order nonlinear differential equations arising

in the hydromagnetic flow of a second grade fluid over a stretching or shrinking sheet.

Explicit exact solutions are obtained. Furthermore we show that the differential equation

may admit zero or one or two physically meaningful solutions depending on the values

of the physical parameters of the model. As a special case, we recover the single or

the dual solutions and compare them with the available results in the literature. Also,

the obtained multiple solutions for several sets of values of the parameters are presented

through tables and graphs, and the qualitative behaviors are discussed.

1. Introduction. During the past three decades there have been several studies of

boundary layer flows of non-Newtonian fluids. These investigations have been for non-

Newtonian fluids of the differential type (see [1]). In the case of fluids of differential type,

the equations of motion are an order higher than the Navier-Stokes equations, and thus

the adherence boundary condition is insufficient to determine the solution completely

(see [2]-[4] for a detailed discussion of the relevant issues). The same is also true for the

approximate boundary layer approximations of the equations of motion. In the absence

of a clear means of obtaining additional boundary conditions, Beard and Walters [5], in

their study of an incompressible fluid of second grade, suggested a method for overcoming

this difficulty. They suggested a perturbation approach in which the velocity and the

pressure fields were expanded in a series in terms of a small parameter ε. Though this
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406 ROBERT A. VAN GORDER AND K. VAJRAVELU

approximation reduces the order of the equation, it treats a singular perturbation problem

as a regular perturbation problem.

In 1991, Garg and Rajagopal [6] suggested that it would be preferable to overcome

the difficulty associated with the paucity of boundary conditions by augmenting them

on the basis of physically reasonable assumptions. They thought that it is possible to

do this in the case of flows which take place in unbounded domains by using the fact

that either the solution is bounded or the solution has a certain smoothness at infinity.

To demonstrate this, Garg and Rajagopal [6] studied the stagnation flow of a fluid of

second grade by augmenting the boundary conditions. Their results agreed well with the

results of Rajeswari and Rathna [7] who studied the problem based on the perturbation

approach, for a small value of the perturbation parameter. The advantage of augmenting

the boundary conditions over the perturbation approach is that the analysis is valid

even for large values of the parameter ε, and significant deviations from the Newtonian

behavior are possible for even moderately large values of ε.

The Cauchy stress T in an incompressible homogeneous fluid of second grade has the

form (see [8])

T = −pI+ μA1 + α1A2 + α2A
2
1 , (1)

where

A1 = (gradv) + (gradv)T , (2)

and

A2 =
dA1

dt
+A1 (gradv)

T A1 . (3)

In the above equations, the spherical stress −pI is due to the constraint of incompress-

ibility, μ is the viscosity, α1 and α2 are material moduli and usually referred to as the

normal stress moduli, d/dt denotes the material time derivative, v denotes the velocity

field, and A1 and A2 are the first two Rivlin-Ericksen tensors. The above model has

been studied in great detail. The sign of the coefficient has been the subject of much

controversy, and a thorough discussion of the issues involved can be found in the recent

critical review of Dunn and Rajagopal [9]. We shall not get into a discussion of these

issues here. In this study we shall assume that Eq. (1) models the fluid exactly. If the

fluid modeled by Eq. (1) is to be compatible with thermodynamics, in the sense that all

motions of the fluid meet the Clausius-Duhem inequality and the assumption that the

specific Helmholtz free energy of the fluid is a minimum when the fluid is locally at rest,

then

μ ≥ 0, α1 ≥ 0, andα1 + α2 = 0 . (4)

In 1984, Rajagopal et al. [10] studied the Falkner-Skan flows of a non-Newtonian fluid.

Later, Vajravelu and Rollins [11] studied the flow and heat transfer in an incompressible

second-order fluid due to stretching of a plane elastic surface. Vajravelu and Rollins

examined the effects of viscous dissipation and internal heat generation or absorption in

a viscoelastic boundary layer flow. Recently, Sarma and Rao [12] analyzed the effects

of work due to deformation in the energy equation. In [11, 12] (also see [13]-[16]), the

sign for the material constant α1 (in Eq. (3)) was taken as negative; however, this is

not compatible with the stability criteria (see [9]). Very recently, Vajravelu and Roper

[17] studied the flow and heat transfer in a viscoelastic fluid over a stretching sheet
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HYDROMAGNETIC FLOW OF A SECOND GRADE FLUID 407

with power law surface temperature, including the effects of viscous dissipation, internal

heat generation or absorption, and work due to deformation in the energy equation.

Furthermore, they augmented the boundary conditions and used the proper sign for

the material constant (α1 ≥ 0), and analyzed the salient features of the flow and heat

transfer characteristics. Then, Vajravelu and Rollins [18] extended a specialized case

of Vajravelu and Roper [17] to an electrically conducting fluid permeated by a uniform

transverse magnetic field with uniform suction at the wall. This problem has definite

applications to polymer technology (where one deals with stretching plastic sheets) and

metallurgy where hydromagnetic techniques have been recently used. To be more specific,

it may be pointed out that many metallurgical processes involve the cooling of continuous

strips or filaments by drawing them through a quiescent fluid and that in the process

of drawing, these strips are sometimes stretched. Mention may be made of drawing,

annealing and tinning of copper wires. In all these cases the properties of the final product

depend to a great extent on the rate of cooling. By drawing such strips in an electrically

conducting fluid subject to a magnetic field, the rate of cooling can be controlled and final

products of desired characteristics might be achieved. Another interesting application of

hydromagnetics to metallurgy lies in the purification of molten metals from nonmetallic

inclusions by the application of a magnetic field (see [19]).

In the present paper, we consider a more general boundary value problem than that

considered by Vajravelu and Rollins [18]. In particular, we allow for suction or injection

at the stretching surface. We find that, in instances of injection, there may be multi-

ple physical solutions for the stretching sheet problem. Furthermore, we allow for the

stretching parameter to vary so that we may consider the case of shrinking sheets. The

study of the flow of a fluid over a shrinking sheet has appeared much less in the literature

than that of the corresponding stretching sheet problem, and in some special cases mul-

tiple solutions have been obtained. Some interesting works on shrinking sheet problems

include [20]–[33].

We show that for various physically meaningful values of the suction/injection param-

eter, the magnetic parameter and the viscoelastic parameter, multiple solutions may exist

in either the stretching or shrinking sheet problem, while for other parametric values, we

have no similarity solutions to the flow problem. Furthermore, we are able to prove that

no more than two physically meaningful similarity solutions exist for all physical values

of the parameters.

2. Formulation of the problem. Consider the flow of a second-order fluid obeying

equations (1)–(4) past a flat sheet coinciding with the plane y = 0, the flow being confined

to y > 0. Two equal and opposite forces are applied along the x-axis so that the wall is

stretched, keeping the origin fixed, and a uniform magnetic field B0 is imposed along the

y-axis. The steady two-dimensional boundary layer equations for this fluid in the usual

notation are
∂u

∂x
+

∂v

∂y
= 0 , (5)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σ0B

2
0

ρ
u+ λ

{
∂

∂x

(
u
∂2u

∂y2

)
− ∂u

∂y

∂2u

∂x∂y
+ v

∂3u

∂y3

}
, (6)
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where ν = μ/ρ, σ0 is the electric conductivity, B0 is the uniform magnetic field along the

y-axis and λ = α1/ρ. In deriving these equations, it was assumed that the contribution

due to the normal stress is of the same order of magnitude as that due to the shear stress

(in addition to the usual boundary layer approximations). Thus both ν and λ are O(δ2),

where δ is the boundary layer thickness. Also, the induced magnetic field is neglected

(which is justified for a small magnetic Reynolds number; see [34]). It is also assumed

that the external electric field is zero and that the electric field due to polarization of

charges is negligible.

The appropriate boundary conditions for the problem are given by

u = Bx, v = −v0 at y = 0, B ∈ R , (7)

u → 0,
∂u

∂y
→ 0 as y → ∞ , (8)

where ∂u/∂y → 0 as y → ∞ is the augmented condition. The sign of the parameter B

will determine if the sheet is stretching (B > 0) or shrinking (B < 0). Equations (5) (8)

admit a self-similar solution of the form

u = |B|xf ′(η), v = −
√
|B|νf(η) , (9)

η =

√
|B|
ν

y , (10)

where the prime denotes differentiation with respect to η. Clearly, u and v defined above

satisfy the continuity equation (5). Substituting equations (9) and (10) into equation (6)

gives the similarity equation

f ′′′(η) + f(η)f ′′(η)− (f ′(η))
2
= Mf ′(η) +K

[
2f ′(η)f ′′′(η)− (f ′′(η))

2 − f(η)f (iv)(η)
]
,

(11)

subject to the boundary conditions

f(0) = s, f ′(0) = χ, lim
η→∞

f ′(η) = 0, lim
η→∞

f ′′(η) = 0, (12)

where K = −λB/ν is the viscoelastic parameter and M = σ0B
2
0/(ρB) is the magnetic

parameter. We note that s > 0 corresponds to suction at the surface, while s < 0

corresponds to injection. Furthermore, χ = 1 corresponds to a stretching sheet, while

χ = −1 corresponds to a shrinking sheet. The magnetic parameter is always taken as

M ≥ 0, while various real values of the viscoelastic parameter K have been considered.

In Vajravelu and Rollins [18], the values K ≤ 0 were considered for some special cases,

in the event of χ = 1 (stretching sheet) and s = 0. The study of solutions to the problem

(11)–(12), particularly in the regions of the parametric space in which we have physically

meaningful multiple solutions, shall be the focus of the present paper. Recall from [9]

that physically meaningful scenarios occur when K ≤ 0 (i.e., when λB/ν ≥ 0), so we

shall restrict ourselves to consideration of cases in which M ≥ 0 and K ≤ 0.

We remark that in similar stretching sheet problems where s = K = M = 0, multiple

solution branches have been found. See Liao [35, 36]. Thus, it is not just in the shrinking

sheet case where one may find nonuniqueness of the solutions. We will show that the

boundary value problem (11)–(12) admits multiple solutions in the case of a stretching
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sheet (χ = 1) with injection at the surface (s < 0) for certain values of the parameters.

Furthermore, we show that in the event of a shrinking sheet, problem (11)–(12) may

admit multiple solutions in either the suction (s > 0) or injection (s < 0) regimes.

3. Exact solutions. We obtain exact solutions to (11) which satisfy the boundary

conditions given in (12). We discover that there may be no solutions, one solution, two

solutions or three solutions, depending on the values of the physical parameters s, χ,K

and M . Assume a solution to the nonlinear differential equation (11) of the form

f(η) = A+Be−Cη . (13)

This assumption is often motivated by the result of Crane [37], where a rare exact solution

to the Navier-Stokes equations,

f(η) = 1− e−η ,

was obtained when s = M = K = 0 in (11)–(12), in the case of a stretching sheet

(χ = 1). From the first two boundary conditions in (12), we find that such a solution

(13) must be of the form

f(η) = s+
χ

C

(
1− e−Cη

)
, (14)

while from the latter boundary conditions, we must have that C > 0. Placing this

solution expression into (11) yields the cubic equation

KsC3 + (Kχ− 1)C2 + sC + (χ+M) = 0 . (15)

That is, any constant C in (14) must satisfy (15). Whether or not the solutions to

(15) will be nonnegative reals depends on the values of the parameters s, χ, K and M .

Indeed, we find that, depending on the values of these physical parameters, either zero or

one or two solutions of (15) will give physically meaningful solutions of the form (14) to

(11)–(12). We shall denote the solutions to [15] by C1, C2 and C3: defining the constants

Λ1, Λ2 and Λ3 by

Λ1 = −72K2s2χ− 36Ks2 − 108K2s2M − 8K3χ3 + 24K2χ2 − 24Kχ+ 8 ,

Λ2 = −4M − 4χ+ 36K2s2χM + 4K3Mχ3 − 12K2Mχ2 + 12KMχ− s2 + 4Ks4

+ 12Kχ2 + 8K2s2χ2 + 20Ks2χ+ 4K3χ4 − 12K2χ3 + 18Ks2M + 27K2s2M2 ,

Λ3 = −3Ks2 +K2χ2 − 2Kχ+ 1 ,

(16)
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the solutions C1, C2 and C3 to the equation (15) are explicitly given by

C1 =
1

6Ks

(
Λ1 + 12

√
3Λ2Ks

)1/3

+
2Λ3

3

(
Λ1Ks+ 12

√
3Λ2Ks

)1/3

− Kχ− 1

3Ks
,

C2 =

√
3i− 1

12Ks

(
Λ1 + 12

√
3Λ2Ks

)1/3

+

(√
3i− 1

)
Λ3

3

(
Λ1Ks+ 12

√
3Λ2Ks

)1/3

− Kχ− 1

3Ks
,

C3 = −
√
3i− 1

12Ks

(
Λ1 + 12

√
3Λ2Ks

)1/3

−
(√

3i− 1
)
Λ3

3

(
Λ1Ks+ 12

√
3Λ2Ks

)1/3

− Kχ− 1

3Ks
,

(17)

where i2 = −1. These solutions are clearly not valid for Ks = 0 (indeed, in such a case,

(15) reduces to a quadratic equation in C). Hence we shall consider the cases in which

s = 0 and K = 0, below separately.

3.1. Explicit exact solutions in some special cases. We may consider a number of

special case solutions which do not require solutions to the cubic equation (15). In the

special case χ = 0, we have from (14) that

f(η) = s. (18)

3.1.1. The case when s = 0. When s = 0, we have the single physically meaningful

solution

f(η) =
χ

C

(
1− e−Cη

)
, where C =

√
1 +M

1−Kχ
, (19)

which is valid for Kχ < 1. In the special case of s = 0 and χ = 1, we obtain

f(η) =

√
1−K

1 +M

(
1− exp

{
−

√
1 +M

1−K
η

})
, (20)

a monotonically increasing positive function over η ∈ (0,∞) valid for all M ≥ 0 and all

−1 < K ≤ 0. In the case of M = 0, a corresponding solution was obtained by Troy et al.

[13] and Vajravelu and Rollins [18], while Abel and Nandeppanavar [38] obtained (20)

for M ≥ 0.

When s = 0 and χ = −1, we obtain

f(η) = −
√

1 +K

1 +M

(
1− exp

{
−

√
1 +M

1 +K
η

})
, (21)

a monotonically decreasing negative function over η ∈ (0,∞) valid for all M ≥ 0 and all

−1 < K ≤ 0.

3.1.2. The case when K = 0. This case is well studied in the literature in the case of a

stretching sheet (see, for instance, Wang [39]). When K = 0, we have possible solutions

of the form

f±(η) = s+
χ

C±

(
1− e−C±η

)
, where C± =

s±
√
s2 + 4(χ+M)

2
. (22)
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The special case of Eq. (22) for a stretching sheet (χ = 1) has been obtained by

Chakrabarti and Gupta [40] and others (see, for instance, [41]–[43]). In this case, the

positive root, C+, is taken as the only physically meaningful solution. In the case of

a shrinking sheet (i.e., χ = −1) and in the absence of a magnetic field (M = 0), Eq.

(22) reduces to the result of Miklavcic and Wang [31], where it is shown that there are

two solutions for any s > 2 and there is one solution for s = 2. No solution exists for

s < 2. In the case of a shrinking sheet with magnetic term M > 0, Eq. (22) agrees

with the results given in Fang and Zhang [20], where both C+ and C− may correspond

to physically meaningful solutions, for certain values of the parameters s and M . In

particular, for 0 < M < 1, there are two solution branches corresponding to C+ and

C− in Eq. (22) which exist only for mass suction from the surface (s > 0), such that s

satisfies s2 > 4(χ+M). Note that for the C+-branch, the wall shear stress increases with

the increase of the mass suction and magnetic parameter. However, for the C−-branch,

the wall shear stress decreases with the increase of the mass suction and magnetic pa-

rameters. When M = 1 there exists only one solution when there is suction from the

surface (s > 0), and the wall shear stress for the solution corresponding to M = 1 in-

creases with increasing mass suction parameter s. For M > 1, there is only one solution,

corresponding to the C+-branch; this solution exists for both mass suction (s > 0) and

mass injection (s < 0) (i.e., for all s ∈ R), which also shows that the wall shear stress

increases with the mass suction parameter.

The MHD flow over a shrinking sheet is also greatly different from the MHD flow

over a stretching sheet for Newtonian fluids (see [40]–[43]) and for non-Newtonian fluids

(see, for instance, Liao [44]). Thus, the shrinking sheet MHD flow shows richer nonlinear

behavior in the solution domain, with possible multiple solutions for many physically

meaningful values of the model parameters.

Aside from the exponentially decaying solutions which are the focus of the present

paper, we remark that there is an algebraically decaying solution

f(η) =
6

η +
√
6

in the shrinking sheet case, when s =
√
6 and M = 0 (see Fang and Zhang [20]).

If K = 0 and s < 0, then the solution f+ is physically meaningful provided χ > −M ,

while the solution f− is not physically meaningful. However, if χ < −M when K = 0

and s < 0, neither of f± are physically meaningful. If K = 0 and s > 0, then f+
is a physically meaningful solution provided χ > −M − s2/4 and f− is a physically

meaningful solution provided χ < −M . Thus, when K = 0 and s > 0, there is always

one physically meaningful solution when χ < −M − s2/4 or χ > −M while there are

always two physically meaningful solutions when −M − s2/4 < χ < −M .

3.1.3. The case when χ = −1 and M = 1. When χ = −1 and M = 1, we find that

there is one physically meaningful solution of the form (14) for all K < 0 and all s �= 0

given by

f(η) = s− 1

C

(
1− e−Cη

)
, where C =

K + 1

2Ks
+

1

2

√(
K + 1

Ks

)2

− 4

K
. (23)
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This results from the fact that the cubic equation (15) reduces to a quadratic equation

in C, as the constant term in (15) vanishes in this special case (as χ+M = −1+1 = 0).

3.2. The nonexistence of three physically meaningful solutions. We remark that while

we obtain either no solution, one solution, or two solutions in a number of cases, there

are no cases in which there will be three solutions for physically meaningful parameters.

The cubic equation in C defined by (15) has in general two critical points, say Y±, defined

by the two solutions to the quadratic equation

3KsY 2 + 2(Kχ− 1)Y + s = 0 . (24)

In order for the cubic equation in C defined by (15) to have three positive solutions, it

is necessary for (24) to have two positive solutions; that is to say, we must have Y± > 0.

Explicitly,

Y± =
−(Kχ− 1)±

√
(Kχ− 1)2 − 3Ks2

3Ks
, (25)

so in order for Y± > 0 to hold, either of the following conditions must be satisfied:

(i) Kχ− 1 < 0, Ks > 0, s > 0, (Kχ− 1)2 − 3Ks2 > 0, or

(ii) Kχ− 1 > 0, Ks < 0, s < 0, (Kχ− 1)2 − 3Ks2 > 0.

Notice that Ks > 0 and s > 0 imply that K > 0, while Ks < 0 and s < 0 also imply

that K > 0. Yet, for a physical solution, we must have K ≤ 0. As such, when K ≤ 0, it

will not be true that Y± > 0 and therefore the cubic equation in C defined by (15) will

never have three positive roots corresponding to three physically meaningful solutions.

Graphically, we depict this scenario in Figure 7; we observe three positive solutions for

C in the nonphysical regime of K > 0, while in the physical regime K ≤ 0 we observe

no more than two positive solutions of the form (14).

4. Discussion of the results. As discussed in Vajravelu and Rollins [18], there is

only one physically meaningful solution in the case of a stretching sheet (χ = 1) with

suction (s > 0), for M ≥ 0 and K ≤ 0. However, we find that this is not true for a

stretching sheet with injection (s < 0), or for a shrinking sheet (χ = −1) in general.

Which of the exact solutions actually occurs will depend upon the flow stability, which

we do not investigate in this paper. We remark that, in the case of dual solutions, the

exponential decay rate of each solution (the value of C for each) will differ; as such, the

value of the shear stress at the wall, f ′′(0), will differ between the dual solutions. We

now discuss the influence of the parametric values of s, K and M on the existence of

similarity solutions of the form prescribed in (14).

In Figures 1–4, we observe the influence of the suction/injection parameter s ∈ R on

the number of solutions. In the case of a stretching sheet, we observe one physically

meaningful solution of the form (14) when there is suction (s > 0). Furthermore, the

decay rate of this solution increases with an increase in s when 0 ≤ M ≤ 1, and decreases

with an increase in s when M > 1. In the case of a stretching sheet with injection (s < 0),

we observe dual solutions when 0 ≤ M ≤ 1, and either zero, one or two solutions when

M > 1. In the latter case, we denote the values of s admitting one solution by s∗1 and s∗2,

where s∗1 < s∗2; between these values there are no physical solutions. When 0 ≤ M ≤ 1,

the decay rates of both of the dual solutions are increasing with an increase in s, while
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when M > 1 the decay rate of one solution increases while the other decay rate decreases,

given an increase in s. In the case of the shrinking sheet, let us first consider suction

(s > 0), where we find either zero, one or two solutions in the case that 0 ≤ M ≤ 1

(where one of the dual solutions has decreasing decay rate with an increase in s and the

other dual solution has an increasing decay rate with an increase in s), or a single solution

when M > 1 (where this single solution has a decreasing decay rate for an increase in s).

When we consider a shrinking sheet with injection (s < 0), we observe a single solution

when 0 ≤ M ≤ 1 (which has increasing exponential decay rate as s increases) and either

zero, one or two solutions when M > 1 (with one of the dual solutions having decreasing

decay rate with an increase in s and the other solution having increasing decay rate with

an increase in s). Table 1 summarizes the number of solutions of the form (14) found as

we consider various values of s ∈ R for fixed values of the other parameters.

Observe that for both the stretching and shrinking sheet problems there may exist no

solutions of the form (14) in the case of injection from the surface (s < 0), for sufficiently

large negative K. As shown in Figures 6 and 8, in the case of injection from the surface

(in either the stretching or shrinking sheet problem) there exists someK∗ such that for all

K ∈ (K∗, 0] there exist two physically meaningful solutions of the form (14). However,

for all K ∈ (−∞,K∗), there are no solutions of the form (14) to the boundary value

problem (11)–(12). When K = K∗ < 0, there exists a unique solution of the form (14)

to (11)–(12), in the case of injection for either the stretching or shrinking sheet problems.

In the case of suction from the surface (s > 0), we see that there appears to exist at least

one solution for either the case of a stretching or shrinking sheet for all physical values

of K ≤ 0. This is shown in Figure 2, where we consider the influence of the viscoelastic

parameter K ≤ 0 on the obtained decay rates C for the solutions of the form (14), in

the case of suction (s > 0) and injection (s < 0) from the surface, for both the stretching

and shrinking sheet problems. Note that for the stretching sheet problem with suction

(s > 0), we obtain the result of Vajravelu and Rollins [18]: There exists only one solution

of the form (14) for the stretching problem in the case of suction from the stretching

surface for all M ≥ 0, given physically meaningful values of the viscoelastic parameter

K. In the case of a shrinking sheet, however, we observe two meaningful solutions in the

case of suction. These findings are summarized in Table 2, while the four standard cases

are considered in Figures 5–8.

When we consider the stretching sheet problem with suction at the stretching surface,

we recover the results of Vajravelu and Rollins [18], where it was shown that there exists

a single physically meaningful solution of the form (14) when χ = 1 and s > 0, for any

fixed M ≥ 0 (assuming, of course, physically meaningful values of K; that is, K ≤ 0).

This is in contrast to the case of a stretching sheet with injection from the surface,

where there exists some M∗ > 0 such that for all M ∈ [0,M∗) there exist two physically

meaningful solutions of the form (14) to (11)–(12) and no physically meaningful solutions

when M ∈ (M∗,∞). When M = M∗ for the stretching sheet problem with injection

at the surface, there exists a unique solution of the form (14) to the boundary value

problem (11)–(12). In the case of a shrinking sheet, the region of M ∈ [0,∞) admitting

a fixed number of solutions becomes more complicated; we remark that these findings are

summarized in Table 3. In particular, we find that for the shrinking sheet problem with
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suction from the surface, there exists M∗ > 0 such that for all M ∈ [0,M∗) there exist

no solutions of the form (14), while for all M ∈ (M∗, 1) there exist two solutions of the

form (14). There exists a unique solution of the form (14) to the shrinking sheet problem

(with suction from the shrinking surface) when either M ≥ 1 or M = M∗. However,

for the shrinking sheet problem with injection from the shrinking surface, we find that

there exists M∗ > 0 such that for all M ∈ [0, 1] there exists one physically meaningful

solution of the form (14), while for all M ∈ (1,M∗) there exist two physical solutions

of the form (14). Furthermore, for a shrinking sheet with injection at the surface, there

exist no physical solutions of the form (14) when M > M∗. Notice that M = 1 always

provides a unique solution of the form (14) in the case of a shrinking sheet, regardless of

whether there is suction or injection at the surface (or, neither, i.e. s = 0); this unique

solution decay rate corresponding to M = 1 is shown prominently in Figures 11–12 and

follows from the special case considered in Eq. (23).

In Figure 13, we provide the profiles of f(η) and f ′(η) for several sets of values of the

parameters (see Table 4), to demonstrate cases in which there are single or dual solutions

in the stretching sheet problem (χ = 1). Likewise, we present the profiles of f(η) and

f ′(η) for several sets of values of the physical parameters for the shrinking sheet problem

(χ = −1) in Figure 14. Parameter values selected in each of these figures are given in

Table 4. In those cases where multiple solutions exist, we note that the decay rates of

each solution will differ (as the decay rates are given by the value of C in the solution to

(15)). Thus, in computing the shear stress at the surface, f ′′(0), we find that there will

be two such values in the case of two physically meaningful values CI > 0 and CII > 0;

these are given by f ′′
I (0) = −CIχ and f ′′

II(0) = −CIIχ. As expected in the case of a

stretching sheet, in the event of multiple solutions we have that f ′′
I (0) = −CI < 0 and

f ′′
II(0) = −CII < 0. Similarly, in the shrinking sheet problem, for any given multiple

solutions corresponding to CI > 0 and CII > 0, we have that f ′′
I (0) = CI > 0 and

f ′′
II(0) = CII > 0.

Future work may involve a similar analysis for higher-order fluids. We may attempt to

determine what other physical fluid flow scenarios admit self-similar solutions of the form

(14). Understanding the existence and uniqueness (or nonuniqueness) of such solutions

for general non-Newtonian fluids is worth studying.

Values of s Giving Physically Meaningful Solutions

Parameters No Solutions One Solution Two Solutions

K = −1, M = 0.5, χ = 1 – s ≥ 0 s < 0

K = −1, M = 1.5, χ = 1 s∗1 < s < s∗2 s = s∗1, s = s∗2, s ≥ 0 s < s∗1, s
∗
2 < s < 0

K = −1, M = 0.5, χ = −1 0 ≤ s < s∗ s < 0, s = s∗ s > s∗

K = −1, M = 1.5, χ = −1 s∗ < s ≤ 0 s = s∗, s > 0 s < s∗

Table 1. Number of physically meaningful solutions for various val-
ues of s ∈ R.
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Fig. 1. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the suction/injection
parameter s when K = −1, M = 0.5 and χ = 1.
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Fig. 2. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the suction/injection

parameter s, when K = −1, M = 1.5 and χ = 1.
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Fig. 3. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the suction/injection
parameter s, when K = −1, M = 0.5 and χ = −1.
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Fig. 4. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the suction/injection

parameter s, when K = −1, M = 1.5 and χ = −1.
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Values of K ≤ 0 Giving Physically Meaningful Solutions

Parameters No Solutions One Solution Two Solutions

s = 1, M = 1.1, χ = 1 – K ≤ 0 –

s = −1, M = 1.1, χ = 1 K < K∗ K = K∗ K∗ < K ≤ 0

s = 1, M = 1.1, χ = −1 – – K ≤ 0

s = −1, M = 1.2, χ = −1 K < K∗ K = K∗ K∗ < K ≤ 0

Table 2. Number of physically meaningful solutions for various val-
ues of K ≤ 0.

Values of M ≥ 0 Giving Physically Meaningful Solutions

Parameters No Solutions One Solution Two Solutions

s = 1, K = −1, χ = 1 – M ≥ 0 –

s = −1, K = −1, χ = 1 M > M∗ M = M∗ 0 ≤ M < M∗

s = 1, K = −1, χ = −1 0 ≤ M < M∗ M = M∗, M ≥ 1 M∗ < M < 1

s = −1, K = −1, χ = −1 M > M∗ M = M∗, 0 ≤ M ≤ 1 1 < M < M∗

Table 3. Number of physically meaningful solutions for various val-
ues of M ≥ 0.

χ s K M Physical values of C

I 1 −2 −1 0.5 (a) 0.6053779405; (b) 1.327721191

II 1 2 −1 0.5 0.9330991312

III 1 −7 −1 1.5 (a) 0.3683562397; (b) 0.9442071777

IV 1 −1 −1 1.5 (a) 1.315448807; (b) 1.762713780

V 1 2 −1 1.5 1.058971136

VI −1 −2 −1 0.5 1.107159872

VII −1 3 −1 0.5 (a) 0.1717313046; (b) 0.9030131417

VIII −1 −5 −1 1.5 (a) 0.1010312579; (b) 0.9456492739

IX −1 2 −1 1.5 1.107159872

Table 4. Physical values of decay rate C of solutions given fixed

parameter values of χ, s, K and M .
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Fig. 5. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the viscoelastic parameter
K, when s = 1, M = 1.1 and χ = 1.
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Fig. 6. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the viscoelastic parameter

K, when s = −1, M = 1.1 and χ = 1.
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Fig. 7. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the viscoelastic parameter
K, when s = 1, M = 1.1 and χ = −1.
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Fig. 8. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the viscoelastic parameter
K, when s = −1, M = 1.2 and χ = −1.
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Fig. 9. C-curves. Physically meaningful solutions correspond to C >
0. Curves are plotted for various values of the magnetic parameter
M , when s = 1, K = −1 and χ = 1.

C1

C1

C2

C2

C3

C3

2

1

0

−1

0.5 1.0 1.5 2.0
M M*

Fig. 10. C-curves. Physically meaningful solutions correspond to
C > 0. Curves are plotted for various values of the magnetic param-

eter M , when s = −1, K = −1 and χ = 1.
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Fig. 11. C-curves. Physically meaningful solutions correspond to
C > 0. Curves are plotted for various values of the magnetic param-
eter M , when s = 1, K = −1 and χ = −1.
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Fig. 12. C-curves. Physically meaningful solutions correspond to
C > 0. Curves are plotted for various values of the magnetic param-

eter M , when s = −1, K = −1 and χ = −1.
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Fig. 13. Profiles for f(η) in the case of a stretching sheet (χ = 1).
Parameter values are as given in Table 4. Observe the multiple
solutions for s = −2 and s = −7.
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Fig. 14. Profiles for f(η) in the case of a shrinking sheet (χ = −1).
Parameter values are as given in Table 4. Observe the multiple
solutions for s = 3 and s = −5.
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