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Abstract
This paper deals with some classes of Kirchhoff type problems on a double phase
setting and with nonlinear boundary conditions. Under general assumptions, we pro-
vide multiplicity results for such problems in the case when the perturbations exhibit
a suitable behavior in the origin and at infinity, or when they do not necessarily satisfy
the Ambrosetti–Rabinowitz condition. To this aim, we combine variational methods,
truncation arguments and topological tools.
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1 Introduction

In this paper, we study multiplicity results for some classes of double phase problems
of Kirchhoff type with nonlinear boundary conditions. More precisely, we consider
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(1.2)
where along the paper, and without further mentioning, � ⊂ R

N , N > 1, is a bounded
domain with C1,α- boundary ∂�, α ∈ (0, 1], ν(x) is the outer unit normal of � at the
point x ∈ ∂�, 1 < p < q < N , and

q < p∗, a : � → [0,∞) is in L∞(�), (1.3)

with p∗ = N p/(N − p) being the critical Sobolev exponent, see (2.4) for its definition.
Weassume that M : [0,∞) → [0,∞) is a continuous function satisfying the following
assumptions:

(M1) there exists θ ≥ 1 such that t M(t) ≤ θM (t) for all t ∈ [0,∞), where

M (t) =
∫ t

0
M(τ ) dτ ;

(M2) for all τ > 0 there exists κ = κ(τ) > 0 such that M(t) ≥ κ for all t ≥ τ .

Moreover, h1 : � × R → R and h2 : ∂� × R → R are Carathéodory functions
whose properties will be specified in the sequel, case by case. A classical model for
M verifying (M1)–(M2) due to Kirchhoff is given by M(t) = a + btθ−1, where a,
b ≥ 0 and a + b > 0.

Problems (1.1) and (1.2) are said of double phase type because of the presence of
two different elliptic growths p and q. The study of double phase problems and related
functionals originates from the seminal paper by Zhikov [28], where he introduced
the functional

u 
→
∫

�

(|∇u|p + a(x)|∇u|q) dx with 1 < p < q, a(·) ≥ 0, (1.4)

in order to provide models for strongly anisotropic materials. Indeed, the weight coef-
ficient a(·) dictates the geometry of composites made of two different materials with
distinct power hardening exponents p and q. From the mathematical point of view,
(1.4) is a prototype of a functional whose integrands change their ellipticity according
to the points where a(·) vanishes or not. In this direction, Zhikov found other mathe-
matical applications for (1.4) in the study of duality theory and of the Lavrentiev gap
phenomenon, as shown in [29–31]. Furthermore, (1.4) falls into the class of function-
als with non-standard growth conditions, according to Marcellini’s definition given in
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[22, 23]. Following this line of research, Mingione et al. provide different regularity
results for minimizers of (1.4), see [1, 2, 6, 7]. In [5], Colasuonno and Squassina ana-
lyze the eigenvalue problem with Dirichlet boundary condition of the double phase
operator, explicitly appearing in (1.1), that is,

u 
→ div
(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
, (1.5)

whose energy functional is given by (1.4).
Starting from [5], several authors studied existence and multiplicity results for

nonlinear problems driven by (1.5), such as in [8, 10–14, 17, 18, 21, 26] with the
help of different variational techniques. In particular, in [14] Fiscella and Pinamonti
provide existence and multiplicity results for Kirchhoff double phase problems but
with Dirichlet boundary condition. That is, in [14] we have
⎧
⎨
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+ a(x)

|∇u|q
q

)
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]

div
(|∇u|p−2∇u + a(x)|∇u|q−2∇u

) = f (x, u) in �,

u = 0 in ∂�,

(1.6)
and
⎧
⎨

⎩

−M

(∫

�

|∇u|pdx

)

�pu − M

(∫

�

a(x)|∇u|q dx

)

div
(
a(x)|∇u|q−2∇u

) = f (x, u) in �,

u = 0 in ∂�,

where the nonlinear subcritical term f satisfies the classical Ambrosetti–Rabinowitz
(AR) condition, crucial to prove the boundedness of the so-called Palais-Smale
sequences.

The aim of the present paper is to provide different multiplicity results for some
classes of (1.1) and (1.2), that will heavily depend on the properties of the involved
nonlinearities. More specifically, in the first part of the work, we will study existence
of at least two constant sign solutions (more precisely, one nonnegative and one non-
positive), under the assumption that the nonlinearities satisfy some strong conditions
such as the superlinearity at ±∞. These results are inspired by the truncation argu-
ments used in [10], where the authors studied existence of constant sign solutions in
a double phase setting but without the Kirchhoff coefficient, namely, with M ≡ 1.
However, the presence of the nonlocal Kirchhoff coefficient in (1.1) and (1.2) makes
the comparison analysis more intriguing than [10]. For this, our multiplicity result will
depend on the value M(0), beside the first eigenvalue of the Robin eigenvalue problem
for the p-Laplacian, as required in [10]. Other results for existence of solutions with
sign information in a double phase setting can be found, for example, in [15, 16, 25].

In the second part of the article we will study multiplicity of solutions in the case
when the nonlinearities on the right-hand side do not necessarily satisfy the (AR)
condition. In this direction, we can mention [17, 18] where they consider problems
(1.1) and (1.6) with M ≡ 1, namely without the Kirchhoff coefficient. In [18], Ge et
al. exploit the classical mountain pass theorem and the Krasnoselskii’s genus theory in
order to prove existence andmultiplicity results for (1.6), replacing the (AR) condition
with

123



A. Fiscella et al.

F(x, t) ≤ F(x, s) + C0, where F(x, t) = t f (x, t) − q F(x, t) and C0 > 0

(1.7)

for a.e. x ∈ �, 0 < t < s or s < t < 0, where F is the primitive of f with respect
to the second variable. On the other hand, in [17] Gasiński and Winkert prove the
existence of two solutions of (1.1) with h1(x, t) = f (x, t) − |t |p−2t − a(x)|t |q−2t ,
with the following quasi-monotonic assumption for f

t 
→ t f (x, t) − q F(x, t) is nondecreasing in R+ and nonincreasing in R−, (1.8)

for a.e. x ∈ �. Because of the presence of a nonlocal Kirchhoff coefficient M in (1.1),
similar hypothesis to (1.7) and (1.8) can not work, even if we assume a monotonic
assumption for t 
→ θM (t)− M(t)t . This is a consequence of the fact that M in (1.1)
does not depend on the norm of W 1,H(�), that is the functional space where we look
for the solutions to (1.1) and (1.2). Indeed, as shown in detail in Sect. 2, W 1,H(�) is
a suitable Musielak-Orlicz Sobolev space endowed with a norm of Luxemburg type.
For this reason, we need different conditions for the nonlinearities in (1.1) and (1.2)
than in [17, 18].

The paper is organized as follows. In Sect. 2, we recall the main properties of
Musielak-Orlicz Sobolev spaces W 1,H(�) and we state some technical lemmas con-
cerning theKirchhoff coefficient M . In Sect. 3, for each problemweprove the existence
of two constant sign solutions, more precisely one nonnegative and one nonpositive,
combining the ideas of [10, 14]. In order to show the results, we require some strong
conditions on the nonlinearities, like the superlinearity at ±∞. We also point out
that the proofs depend on the first eigenvalue of the Robin eigenvalue problem for
the p-Laplacian. In the last part of the paper, namely Sect. 4, we show the existence
of infinitely many solutions to a class of (1.1) and (1.2). In particular, we introduce
suitable assumptions for the nonlinearities in order to avoid the (AR) condition.

2 Preliminaries

In this section we introduce the basic notation of our paper, the functional space where
we find the solutions to (1.1), (1.2) and we present some technical lemmas for M that
will be used in the sequel.

For all 1 ≤ r < ∞ we denote by Lr (�) and Lr (�;RN ) the usual Lebesgue
spaces equipped with the norm ‖ · ‖r . The corresponding Sobolev space is denoted
by W 1,r (�), endowed with the norm ‖ · ‖1,r . On the boundary ∂� of � we consider
the (N − 1)-dimensional Hausdorff measure σ and denote by Lr (∂�) the boundary
Lebesgue spacewith corresponding norm ‖·‖r ,∂�. Asmatter of notations, for all t ∈ R

we set t± := max{±t, 0} and similarly we denote by u±(·) := u(·)± the positive and
negative parts of a function u.

The function H : � × [0,∞) → [0,∞) defined as

H(x, t) := t p + a(x)tq for a.e. x ∈ � and for all t ∈ [0,∞),
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with 1 < p < q and 0 ≤ a ∈ L1(�), is a generalized N-function (N stands for nice),
according to the definition in [9, 24], and satisfies the so-called (�2) condition, that is,

H(x, 2t) ≤ 2qH(x, t) for a.e. x ∈ � and for all t ∈ [0,∞).

Then, we introduce the H-modular function �H given by

�H(u) :=
∫

�

H(x, |u|) dx =
∫

�

(|u|p + a(x)|u|q) dx . (2.1)

Therefore, by [24] we can define the Musielak-Orlicz space LH(�) as

LH(�) :=
{

u : � → R
∣
∣ u is measurable and �H(u) < ∞

}
,

endowed with the Luxemburg norm

‖u‖H := inf
{
λ > 0 : �H

(u

λ

)
≤ 1

}
.

From [5, 9], the space LH(�) is a separable, uniformly convex, Banach space. On
the other hand, from [21, Proposition 2.1] we have the following relation between the
norm ‖ · ‖H and theH-modular function.

Proposition 2.1 Assume that u ∈ LH(�), (u j ) j ⊂ LH(�), and c > 0. Then,

(i) If u = 0, then ‖u‖H = c if and only if �H
(u

c

)
= 1;

(ii) ‖u‖H < 1 (resp. = 1, > 1) if and only if �H(u) < 1 (resp. = 1, > 1);
(iii) If ‖u‖H < 1, then ‖u‖q

H ≤ �H(u) ≤ ‖u‖p
H;

(iv) If ‖u‖H > 1, then ‖u‖p
H ≤ �H(u) ≤ ‖u‖q

H;
(v) lim

j→∞ ‖u j‖H = 0 (resp. ∞) if and only if lim
j→∞ �H(u j ) = 0 (resp. ∞).

The related Musielak-Orlicz Sobolev space W 1,H(�) is defined by

W 1,H(�) :=
{

u ∈ LH(�) : |∇u| ∈ LH(�)
}

,

endowed with the norm

‖u‖1,H := ‖u‖H + ‖|∇u|‖H. (2.2)

Along the paper, we write ‖∇u‖H := ‖|∇u|‖H and �H(∇u) := �H(|∇u|) in order
to simplify the notation.

We also define the complete H-modular function �̂H as

�̂H(u) := �H(∇u) + �H(u) =
∫

�

(|∇u|p + a(x)|∇u|q + |u|p + a(x)|u|q) dx .

(2.3)
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Hence, following the proof of [21, Proposition 2.1] we can relate �̂H and the norm
‖ · ‖1,H as follows.

Proposition 2.2 Assume that u ∈ W 1,H(�), (u j ) j ⊂ W 1,H(�), and c > 0. Then,

(i) If u = 0, then ‖u‖1,H = c if and only if �̂H
(u

c

)
= 1;

(ii) ‖u‖1,H < 1 (resp. = 1, > 1) if and only if �̂H(u) < 1 (resp. = 1, > 1);
(iii) If ‖u‖1,H < 1, then ‖u‖q

1,H ≤ �̂H(u) ≤ ‖u‖p
1,H;

(iv) If ‖u‖1,H > 1, then ‖u‖p
1,H ≤ �̂H(u) ≤ ‖u‖q

1,H;
(v) lim

j→∞ ‖u j‖1,H = 0 (resp. ∞) if and only if lim
j→∞ �̂H(u j ) = 0 (resp. ∞).

For all 1 < p < N let p∗ and p∗ denote the critical Sobolev exponents of p,
defined as

p∗ = N p

N − p
as well as p∗ = (N − 1)p

N − p
. (2.4)

Furthermore, we define the weighted space

Lq
a(�) :=

{

u : � → R
∣
∣ u is measurable and

∫

�

a(x)|u|q dx < ∞
}

,

equipped with the seminorm

‖u‖q,a :=
(∫

�

a(x)|u|q dx

)1/q

.

In a similar way we can define Lq
a(�;RN ) and the associated seminorm. Thus, by

[10, Proposition 2.1] we have the following embeddings for LH(�) and W 1,H(�).

Proposition 2.3 Let (1.3) be satisfied. Then, the following embeddings hold:

(i) LH(�) ↪→ Lr (�) and W 1,H(�) ↪→ W 1,r (�) are continuous for all r ∈ [1, p];
(ii) W 1,H(�) ↪→ Lν1(�) is compact for all ν1 ∈ [1, p∗);
(iii) W 1,H(�) ↪→ Lν2(∂�) is compact for all ν2 ∈ [1, p∗);
(iv) Lq(�) ↪→ LH(�) ↪→ Lq

a(�) are continuous;
(v) W 1,H(�) ↪→ LH(�) is compact.

Let us define the operator L : W 1,H(�) → (
W 1,H(�)

)∗
such that

〈L(u), v〉H :=
∫

�

(
|∇u|p−2 + a(x)|∇u|q−2

)
∇u · ∇v dx, (2.5)

for all u, v ∈ W 1,H(�). Here,
(
W 1,H(�)

)∗
denotes the dual space of W 1,H(�)

and 〈· , ·〉H is the related dual pairing. Then we have the following result, see [21,
Proposition 3.1-(ii)].

Proposition 2.4 The mapping L : W 1,H(�) → (
W 1,H(�)

)∗
is of (S+) type, that is,

if u j⇀u in W 1,H(�) and lim sup
j→∞

〈L(u j ) − L(u), u j − u〉 ≤ 0, then u j → u in

W 1,H(�).
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Now, we introduce some technical results related to the Kirchhoff coefficient M ,
under the assumptions that (M1)–(M2) hold true. To this aim, we observe that inte-
grating (M1) on (1, t), when t ≥ 1, gives

M (t) ≤ M (1)tθ for all t ≥ 1. (2.6)

Moreover, we set

φH(u) :=
∫

�

( |u|p

p
+ a(x)

|u|q
q

)

dx . (2.7)

Thus, we have the following lemmas.

Lemma 2.5 Let u ∈ W 1,H(�) be such that ‖u‖1,H > 1. Then, there exist A1, A2 > 0
such that

�H(∇u)M[φH(∇u)] + �H(u) ≥ A1‖u‖p
1,H, (2.8)

and

M(‖∇u‖p
p)‖∇u‖p

p + M(‖∇u‖q
q,a)‖∇u‖q

q,a + �H(u) ≥ A2‖u‖p
1,H. (2.9)

Proof We first prove (2.8). Since ‖u‖1,H > 1, by Proposition 2.2-(ii) and (iv) we have
that

�̂H(u) ≥ ‖u‖p
1,H > 1.

This in particular implies that

‖u‖p
1,H ≤

{
�H(∇u) + �H(u) if �H(∇u) ≥ 1/2,

�H(∇u) + �H(u) ≤ 2�H(u) if �H(∇u) < 1/2 and �H(u) ≥ 1/2.
(2.10)

First suppose that �H(∇u) ≥ 1/2. Then it follows that

φH(∇u) ≥ 1

q
�H(∇u) ≥ 1

2q
.

Therefore we can use hypothesis (M2) with τ = 1

2q
to find κ = κ

(
1

2q

)

> 0 such

that

M(t) ≥ κ for all t ≥ 1

2q
. (2.11)

Then equation (2.11) and the first line of equation (2.10) give

�H(∇u)M[φH(∇u)] + �H(u) ≥ κ�H(∇u) + �H(u)

≥ min{1, κ }̂�H(u)

≥ min{1, κ}‖u‖p
1,H. (2.12)
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Suppose now that �H(∇u) < 1/2 and �H(u) ≥ 1/2. Then the nonnegativity of M
and the second line of (2.10) give

�H(∇u)M[φH(∇u)] + �H(u) ≥ 1

2
‖u‖p

1,H. (2.13)

Combining (2.12) and (2.13) gives (2.8).
Now, we prove (2.9). When �H(∇u) < 1/2, by (2.10) we obtain

M(‖∇u‖p
p)‖∇u‖p

p + M(‖∇u‖q
q,a)‖∇u‖q

q,a + �H(u) ≥ 1

2
‖u‖p

1,H. (2.14)

On the other hand, if �H(∇u) ≥ 1/2 we distinguish among three situations: either
‖∇u‖p

p ≥ 1/4 and ‖∇u‖q
q,a ≥ 1/4; or ‖∇u‖p

p ≥ 1/4 and ‖∇u‖q
q,a < 1/4, which

yields 2‖∇u‖p
p ≥ ‖∇u‖p

p + ‖∇u‖q
q,a ; or ‖∇u‖p

p < 1/4 and ‖∇u‖q
q,a ≥ 1/4, which

yields 2‖∇u‖q
q,a ≥ ‖∇u‖p

p + ‖∇u‖q
q,a . Thus, by (M2) and Proposition 2.1, we get

M(‖∇u‖p
p)‖∇u‖p

p + M(‖∇u‖q
q,a)‖∇u‖q

q,a

≥

⎧
⎪⎨

⎪⎩

κ�H(∇u), if ‖∇u‖p
p ≥ 1/4 and ‖∇u‖q

q,a ≥ 1/4,
κ
2�H(∇u), if ‖∇u‖p

p ≥ 1/4 and ‖∇u‖q
q,a < 1/4,

κ
2�H(∇u), if ‖∇u‖p

p < 1/4 and ‖∇u‖q
q,a ≥ 1/4,

(2.15)

with κ = κ(1/4) > 0 given in (M2)with τ = 1/4. Combining (2.14) and (2.15) gives
(2.9). ��

Lemma 2.6 Let u ∈ W 1,H(�) be such that ‖u‖1,H > 1. Then, there exist B1, B2 > 0
such that

M [φH(∇u)] + �H(u) ≤ B1(1 + ‖u‖q
1,H + ‖u‖qθ

1,H) (2.16)

and

M (‖∇u‖p
p) + M (‖∇u‖q

q,a) + �H(u) ≤ B2(1 + ‖u‖q
1,H + ‖u‖qθ

1,H). (2.17)

Proof Let us fix u ∈ W 1,H(�) such that ‖u‖1,H > 1. We first prove (2.16).
If �H(∇u) ≥ q, then φH(∇u) ≥ 1

q �H(∇u) ≥ 1, and so by (2.6) and Proposi-
tion 2.1 we get

M [φH(∇u)] ≤ M (1)

pθ
[�H(∇u)]θ ≤ M (1)

pθ
‖∇u‖qθ

H . (2.18)

If conversely �H(∇u) ≤ q, then φH(∇u) ≤ �H(∇u) ≤ q. Therefore

M [φH(∇u)] ≤ M, (2.19)
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where M = max
t∈[0,q]M (t) ∈ (0,∞) by (M2) and the continuity of M . Combining

(2.18), (2.19) with Proposition 2.1 we obtain

M [φH(∇u)] + �H(u) ≤ M + M (1)

pθ
‖∇u‖qθ

H + �H(u)

≤ M + M (1)‖u‖qθ

1,H + ‖u‖q
1,H.

In order to prove (2.17) we observe that, since ‖u‖1,H > 1, from Proposition 2.2 we
have that �̂H(u) ≤ ‖u‖q

1,H. We distinguish among four cases. If ‖∇u‖p ≥ 1 and
‖∇u‖q,a ≥ 1, then

M (‖∇u‖p
p) + M (‖∇u‖q

q,a) + �H(u) ≤ M (1)‖∇u‖pθ
p + M (1)‖∇u‖qθ

q,a + �H(u)

≤ 2M (1)̂�H(u)θ + �̂H(u)

≤ max{1, 2M (1)}(‖u‖qθ

1,H + ‖u‖q
1,H).

(2.20)

If ‖∇u‖p < 1 and ‖∇u‖q,a ≥ 1 it holds that

M (‖∇u‖p
p) + M (‖∇u‖q

q,a) + �H(u) ≤ M̃ + M (1)‖∇u‖qθ
q,a + �H(u)

≤ M̃ + M (1)̂�H(u)θ + �̂H(u)

≤ max{1,M̃,M (1)}(1 + ‖u‖qθ

1,H + ‖u‖q
1,H),

(2.21)

with M̃ = max
t∈[0,1]M (t). If ‖∇u‖p ≥ 1 and ‖∇u‖q,a < 1 the estimate is the same as

above. Finally, when ‖∇u‖p < 1 and ‖∇u‖q,a < 1, it holds that

M (‖∇u‖p
p) + M (‖∇u‖q

q,a) + �H(u) ≤ 2M̃ + �̂H(u) ≤ max{2M̃, 1}(1 + ‖u‖q
1,H).

(2.22)

Combining (2.20)-(2.22) we get (2.17). ��

We now recall some basic properties on the spectrum of the negative p-Laplacian
with Robin boundary condition. We refer to the paper of Lê [19] for further details.
The p-Laplacian eigenvalue problem with Robin boundary condition is given by

{ − �pu = λ|u|p−2u in �,

|∇u|p−2∇u · ν = −β|u|p−2u on ∂�,
(2.23)
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with β > 0. It is well known that there exists a smallest eigenvalue λ1,p > 0 of (2.23)
which is isolated, simple, and can be variationally characterized by

λ1,p = inf
u∈W 1,p(�),u =0

∫

�

|∇u|pdx + β

∫

∂�

|u|pdσ

∫

�

|u|pdx
. (2.24)

Moreover, let u1,p be the normalized (that is, ‖u1,p‖p = 1), positive eigenfunction
corresponding to λ1,p. It is known that u1,p ∈ int

(
C1(�)+

)
, where

int
(

C1(�)+
)

:=
{

u ∈ C1(�) : u(x) > 0 for all x ∈ �
}

.

We conclude this section with a result which will enable us to obtain the existence
of infinitely many solutions to (1.1) and (1.2). To this aim, let X be a Banach space.
We recall that a functional E : X → R satisfies the Cerami condition (C) if every
sequence (u j ) j ⊂ X such that

(E(u j )) j is bounded and (1 + ‖u j‖1,H)E ′(u j ) → 0 in X∗ as j → ∞ (2.25)

admits a convergent subsequence in X ; see for instance [3]. We say that (u j ) j is a
Cerami sequence for E if it satisfies (2.25).

Let us now suppose that X is a reflexive and separable Banach space. It is well
known that there exist (e j ) j ⊂ X and (e∗

j ) j ⊂ X∗ such that

X = span{e j : j ∈ N} as well as X∗ = span{e∗
j : j ∈ N} (2.26)

and

〈e∗
i , e j 〉 =

{
1 if i = j,

0 if i = j .
(2.27)

For all j ∈ N we set

X j := span{e j }, Y j :=
j⊕

i=1

Xi , Z j :=
∞⊕

i= j

Xi . (2.28)

We can then state the following result, given in [20, Theorem 2.9], which is a variant
of the classical Fountain theorem [27, Theorem 3.6] for functionals that satisfy the
Cerami condition instead of the Palais-Smale condition.

Theorem 2.7 Let E ∈ C1(X ,R) satisfy the Cerami condition (C) and be such that
E(−u) = E(u). Moreover, suppose that for every j ∈ N there exist ρ j > γ j > 0
such that

(i) b j := inf
u∈Z j ,‖u‖=γ j

E(u) → ∞ as j → ∞,
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(ii) a j := max
u∈Y j ,‖u‖=ρ j

E(u) ≤ 0.

Then, E has a sequence of critical points (u j ) j such that E(u j ) → ∞.

3 Constant sign solutions

In this section we prove the existence of constant-sign solutions to a class of (1.1) and
(1.2) with superlinear nonlinearities. More specifically, we consider

h1(x, t) = (ζ − ϑ)|t |p−2t − a(x)|t |q−2t − f (x, t) for a.e. x ∈ �,

h2(x, t) = −β|t |p−2t for a.e. x ∈ ∂�, (3.1)

for all t ∈ R, where β > 0, ζ > ϑ > 0 are parameters to be further specified, and
f is a Carathéodory function that satisfies suitable structure conditions stated below.
Then problem (1.1) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− M

[∫

�

( |∇u|p

p
+ a(x)

|∇u|q
q

)

dx

]

div
(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)

= (ζ − ϑ)|u|p−2u − a(x)|u|q−2u − f (x, u) in �,

M

[∫

�

( |∇u|p

p
+ a(x)

|∇u|q
q

)

dx

] (
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
· ν = −β|u|p−2u on ∂�.

(3.2)
We assume that the nonlinearity f : �×R → R is a Carathéodory function such that

( f1) f is bounded on bounded subsets of � × R;
( f2) It holds

lim
t→±∞

f (x, t)

|t |q−2t
= ∞ uniformly for a.e. x ∈ �;

( f3) It holds

lim
t→0

f (x, t)

|t |p−2t
= 0 uniformly for a.e. x ∈ �.

A classical model for f satisfying ( f1)–( f3) is given by f (x, t) := w(x)|t |k−2t ,
where k > q and w ∈ L∞(�) with inf� w > 0. We say that u ∈ W 1,H(�) is a weak
solution to (3.2) if it satisfies

M [φH(∇u)]
∫

�

(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
· ∇ϕ dx

+
∫

�

(
ϑ |u|p−2u + a(x)|u|q−2u

)
ϕ dx

=
∫

�

(
ζ |u|p−2u − f (x, u)

)
ϕ dx − β

∫

∂�

|u|p−2uϕ dσ
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for all ϕ ∈ W 1,H(�).
Our existence result for problem (3.2) reads as follows.

Theorem 3.1 Let (1.3), (M1)–(M2), and ( f1)–( f3) hold true. Moreover, assume that
ϑ > 0 and

ζ > ϑ + max{1, M(0)}λ1,p, (3.3)

where λ1,p is the first eigenvalue of the Robin eigenvalue problem given in (2.24).
Then, there exist two nontrivial weak solutions ũ, u ∈ W 1,H(�)∩ L∞(�) to problem
(3.2), such that ũ ≥ 0 and u ≤ 0.

Proof First of all we observe that hypothesis ( f2) allows us to find a constant A =
A(ζ ) > 1 such that

f (x, t)t ≥ ζ |t |q for a.e. x ∈ � and all |t | ≥ A. (3.4)

We start with the existence of a nonnegative solution of (3.2). From (3.4) we can take
a constant function u0 ∈ (A,∞) and use the fact that p < q to achieve

ζu p−1
0 − f (x, u0) ≤ 0 for a.e. x ∈ �. (3.5)

Moreover we consider the cut-off functions b+ : � ×R → R and b+
β : ∂� ×R → R

given by

b+(x, t) =

⎧
⎪⎨

⎪⎩

0 if t < 0

ζ t p−1 − f (x, t) if 0 ≤ t < u0

ζu p−1
0 − f (x, u0) if t ≥ u0

,

b+
β (x, t) =

⎧
⎪⎨

⎪⎩

0 if t < 0

−βt p−1 if 0 ≤ t < u0

−βu p−1
0 if t ≥ u0

, (3.6)

and set

B+(x, t) :=
∫ t

0
b+(x, s) ds as well as B+

β (x, t) :=
∫ t

0
b+
β (x, s) ds, and

F(x, t) :=
∫ t

0
f (x, s) ds. (3.7)

It is easy to verify that the functions in (3.6) and (3.7) are Carathéodory functions.
Moreover we consider the C1-functional J+ : W 1,H(�) → R defined by

J+(u) = M [φH(∇u)]+ ϑ

p
‖u‖p

p + 1

q
‖u‖q

q,a −
∫

�

B+(x, u) dx −
∫

∂�

B+
β (x, u) dσ.

(3.8)
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We aim to apply the direct methods of the calculus of variations to J+. To this end,
we first show that J+ is coercive. Indeed, let u ∈ W 1,H(�) be such that ‖u‖1,H > 1.
Using hypothesis (M1) and taking into account that p < q we have

M [φH(∇u)] ≥ 1

θ
M[φH(∇u)]φH(∇u) ≥ 1

qθ
M[φH(∇u)]�H(∇u).

Furthermore, we see that, thanks to the truncations (3.6) and hypothesis ( f1), we have
that the last two terms in (3.8) are bounded. These facts together with (2.8) yield that
J+ is coercive.

We then show that J+ is also (sequentially weakly) lower semicontinuous. Indeed,
let us take u ∈ W 1,H(�) and (u j ) j ⊂ W 1,H(�) such that u j⇀u in W 1,H(�). By
Propositions 2.1–2.3 and [4, Theorem 4.9] there exists a subsequence, still denoted
by (u j ) j , such that, as j → ∞,

u j → u in L p(�) ∩ Lq
a(�), ∇u j⇀∇u in

[
LH(�)

]N
, φH(∇u j ) → �,

u j (x) → u(x) for a.e. x ∈ �, u j (x) → u(x) for σ -a.e. x ∈ ∂�.

We use the fact thatM is increasing and continuous, φH is sequentially weakly lower
semicontinuous, and B+ and B+

β are Carathéodory functions bounded from below to
apply the Fatou’s lemma and achieve

J+(u) ≤ M

[

lim
j→∞ φH(∇u j )

]

+ lim inf
j→∞

(
ϑ

p
‖u j‖p

p + 1

q
‖u j‖q

q,a

)

−
∫

�

lim
j→∞ B(x, u j ) dx −

∫

∂�

lim
j→∞ B+

β (x, u j ) dσ

≤ lim
j→∞M [φH(∇u j )] + lim inf

j→∞

(
ϑ

p
‖u j‖p

p + 1

q
‖u j‖q

q,a

)

− lim inf
j→∞

∫

�

B(x, u j ) dx − lim inf
j→∞

∫

∂�

B+
β (x, u j ) dσ

≤ lim inf
j→∞ J+(u j ).

Therefore, there exists a function ũ ∈ W 1,H(�) such that

J+(̃u) = inf
{

J+(u) : u ∈ W 1,H(�)
}

. (3.9)

Let us verify that ũ is not trivial. First of all, thanks to hypothesis ( f3), for all ε > 0
there exists δ ∈ (0, 1) such that

F(x, t) ≤ ε

p
|t |p for a.e. x ∈ � and for all |t | ≤ δ. (3.10)
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We further define the function h : [0,∞) → [M(0),∞) such that

h(t) =
⎧
⎨

⎩

M(0) if t = 0

max
s∈(0,t]

M (s)

s
otherwise

. (3.11)

It is easy to see that h is well-defined and continuous. These facts, together with (3.3),
guarantee that there exists t1 ∈ (0, 1) such that

ζ > ϑ + max{1, h(t1)}λ1,p. (3.12)

Let u1,p be the normalized eigenfunction, that is ‖u1,p‖p = 1, corresponding to λ1,p.
Since u1,p ∈ int

(
C1(�)+

)
, we can choose t2 ∈ (0, t1] sufficiently small so that

tu1,p ∈ [0, δ] for all t ∈ (0, t2], which implies that

tu1,p ∈ (0, u0) for all x ∈ � and t ∈ (0, t2]. (3.13)

Moreover, let us choose t3 ∈ (0, t2] such that

φH(∇(tu1,p)) ≤ t1 for all t ∈ [0, t3]. (3.14)

Taking (3.11) into account, (3.14) implies that

M [φH(∇(tu1,p))] ≤ h(t1)φH(∇(tu1,p))

for every t ∈ (0, t3]. Then we use the truncations in (3.6) together with (3.10), (3.13),
(3.14), and ( f2) to achieve

J+(tu1,p) = M
[
φH(∇(tu1,p))

]+ ϑ

p
‖tu1,p‖p

p + 1

q
‖tu1,p‖q

q,a

−
∫

�

B+(x, tu1,p) dx −
∫

∂�

B+
β (x, tu1,p) dσ

≤ h(t1)
t p

p
‖∇u1,p‖p

p + h(t1)
tq

q
‖∇u1,p‖q

q,a + ϑ
t p

p
+ tq

q
‖u1,p‖q

q,a

− ζ
t p

p
+
∫

�

F(x, tu1,p) dx + β
t p

p
‖u1,p‖p

p,∂�

≤ max {1, h(t1)} t p

p

(
‖∇u1,p‖p

p + β‖u1,p‖p
p,∂�

)
+ h(t1)

tq

q
‖∇u1,p‖q

q,a

+ ϑ
t p

p
+ tq

q
‖u1,p‖q

q,a − ζ
t p

p
+ ε

t p

p

≤ t p
(
max {1, h(t1)} λ1,p + ϑ − ζ + ε

p

)

+ tq

(
h(t1)‖∇u1,p‖q

q,a + ‖u1,p‖q
q,a

q

)

,

(3.15)
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for every t ∈ (0, t3]. Since p < q, we can choose t ∈ (0, t3] such that

−t p
(

ζ − ϑ − max {1, h(t1)} λ1,p − ε

p

)

+tq

(
h(t1)‖∇u1,p‖q

q,a + ‖u1,p‖q
q,a

q

)

< 0,

(3.16)
where ε := 1

2 (ζ − ϑ − max {1, h(t1)} λ1,p) > 0 thanks to (3.12).
From (3.15) it follows that J+(tu1,p) < 0, therefore, by (3.9) we have

J+(̃u) ≤ J+(tu1,p) < 0 = J+(0),

which implies that ũ = 0. Let us now show the bound ũ ∈ [0, u0]. We observe that
(3.9) implies that

(
J+)′ (̃u) = 0, that is,

M [φH(∇ũ)]
∫

�

(
|∇ũ|p−2∇ũ + a(x)|∇ũ|q−2∇ũ

)
· ∇ϕ dx

+
∫

�

(
ϑ |̃u|p−2ũ + a(x)|̃u|q−2ũ

)
ϕ dx

=
∫

�

b+(x, ũ)ϕ dx +
∫

∂�

b+
β (x, ũ)ϕ dσ (3.17)

for all ϕ ∈ W 1,H(�). Choosing ϕ = −ũ− ∈ W 1,H(�) in (3.17) and taking into
account the truncations (3.6) we get

M [φH(∇ũ)]
(‖∇ũ−‖p

p + ‖∇ũ−‖q
q,a
)+ ‖ũ−‖p

p + ‖ũ−‖q
q,a = 0. (3.18)

Since all the above terms are nonnegative, the equality in (3.18) is satisfied when
ũ− = 0, which implies that ũ ≥ 0.

We now choose ϕ = (̃u − u0)
+ ∈ W 1,H(�) in (3.17) and take (3.6) once again

into account to achieve

M [φH(∇ũ)]
∫

�

(
|∇ũ|p−2∇ũ + a(x)|∇ũ|q−2∇ũ

)
· ∇ (̃u − u0)

+ dx

+
∫

�

(
ϑ ũ p−1 + a(x )̃uq−1

)
(̃u − u0)

+ dx

=
∫

�

b+(x, ũ)(̃u − u0)
+ dx +

∫

∂�

b+
β (x, ũ)(̃u − u0)

+ dσ

=
∫

�

(ζu p−1
0 − f (x, u0))(̃u − u0)

+ dx +
∫

∂�

(−βu p−1
0 )(̃u − u0)

+ dσ

≤ 0, (3.19)

where the last inequality holds by (3.5) and the fact that u0 > 0. On the one hand, we
see that

M [φH(∇ũ)]
∫

�

(
|∇ũ|p−2∇ũ + a(x)|∇ũ|q−2∇ũ

)
· ∇ (̃u − u0)

+ dx
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= M [φH(∇ũ)]
∫

{̃u>u0}
|∇ũ|p + a(x)|∇ũ|q dx, (3.20)

while on the other hand, exploiting the fact that ũ > u0 > 1, we get

0 ≥
∫

�

(ϑ ũ p−1 + a(x )̃uq−1)(̃u − u0)
+dx

=
∫

{̃u>u0}
ϑ ũ p−1(̃u − u0) + a(x )̃uq−1(̃u − u0) dx

≥
∫

{̃u>u0}
ϑ(̃u − u0)

p + a(x)(̃u − u0)
q dx . (3.21)

Gathering (3.19), (3.20) and (3.21), we see that

M [φH(∇ũ)]
∫

{̃u>u0}
|∇ũ|p + a(x)|∇ũ|q dx

+
∫

{̃u>u0}
ϑ(̃u − u0)

pa(x)(̃u − u0)
q dx ≤ 0,

which gives (̃u − u0)
+ = 0, and therefore ũ ≤ u0. This fact in particular implies that

ũ ∈ L∞(�). By definition of the truncations (3.6), ũ turns out to be a weak solution
to (3.2).

In order to show the existence of a nonpositive solution, we first fix the constant
function u1 ≡ −u0, then use equation (3.4) and the fact that p < q to achieve

ζ |u1|p−2u1 − f (x, u1) ≥ 0 for a.e. x ∈ �.

Then we consider the cut-off, Carathéodory functions b− : �×R → R and b−
β : ∂�×

R → R given by

b−(x, t) =

⎧
⎪⎨

⎪⎩

ζ |u1|p−2u1 − f (x, u1) if t ≤ u1

ζ |t |p−2t − f (x, t) if u1 < t ≤ 0

0 if t > 0

,

b−
β (x, t) =

⎧
⎪⎨

⎪⎩

−β|u1|p−2u1 if t ≤ u1

−β|t |p−2t if u1 < t ≤ 0

0 if t > 0

, (3.22)

set

B−(x, t) :=
∫ t

0
b−(x, s) ds as well as B−

β (x, t) :=
∫ t

0
b−
β (x, s) ds, (3.23)
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and consider the C1-functional J− : W 1,H(�) → R given by

J−(u) = M [φH(∇u)] + ϑ

p
‖u‖p

p + 1

q
‖u‖q

q,a −
∫

�

B−(x, u) dx −
∫

∂�

B−
β (x, u) dσ.

Reasoning in a similar fashion as before we find a global minimizer u ∈ W 1,H(�)

of J− such that u ∈ [u1, 0]. By definition of the truncations (3.22) we see that u is a
nonpositive weak solution to problem (3.2). The proof is complete. ��

Now, we consider problem (1.2) with h1, h2 as in (3.1). Then we get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− M

(∫

�

|∇u|pdx

)

�pu − M

(∫

�

a(x)|∇u|qdx

)

div
(

a(x)|∇u|q−2∇u
)

= (ζ − ϑ)|u|p−2u − a(x)|u|q−2u − f (x, u) in �,
[

M(‖∇u‖p
p)|∇u|p−2∇u + M(‖∇u‖q

q,a)a(x)|∇u|q−2∇u
]

· ν = β|u|p−2u on ∂�.

(3.24)
We say that u ∈ W 1,H(�) is a weak solution to (3.24) if

M
(‖∇u‖p

p
)
∫

�

|∇u|p−2∇u · ∇ϕ dx + M
(‖∇u‖q

q,a
)
∫

�

a(x)|∇u|q−2∇u · ∇ϕ dx

+
∫

�

(
ϑ |u|p−2u + a(x)|u|q−2u

)
ϕ dx

=
∫

�

(
ϑ |u|p−2u − f (x, u)

)
ϕ dx − β

∫

∂�

|u|p−2uϕ dσ

holds for all ϕ ∈ W 1,H(�). The existence result concerning problem (3.24) reads as
follows.

Theorem 3.2 In the same hypotheses of Theorem 3.1, there exist two nontrivial weak
solutions ũ, u ∈ W 1,H(�) ∩ L∞(�) to problem (3.24), such that ũ ≥ 0 and u ≤ 0.

Proof As before, we start by showing the existence of the nonnegative solution, fol-
lowing the proof of Theorem 3.1 until (3.7). Then we consider the C1-functional
J + : W 1,H(�) → R given by

J +(u) = 1

p
M

(‖∇u‖p
p
)+ 1

q
M

(‖∇u‖q
q,a
)+ ϑ

p
‖u‖p

p + 1

q
‖u‖q

q,a

−
∫

�

B+(x, u) dx −
∫

∂�

B+
β (x, u) dσ.

Arguing as in the previous proof and thanks to (2.9) we have that J + is coercive and
lower semicontinuous. Therefore, there exists ũ ∈ W 1,H(�) such that

J +(̃u) = inf{J +(u) : u ∈ W 1,H(�)}.
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In order to show that ũ is nontrivial, we let u1,p ∈ int
(
C1(�)+

)
be the normalized

eigenfunction corresponding to the first eigenvalue λ1,p of problem (2.23), and choose
t1, t2 as in (3.12) and (3.13), respectively. Moreover, we choose t3 ∈ (0, t2] such that

‖∇(tu1,p)‖p
p, ‖∇(tu1,p)‖q

q,a ≤ t1 for all t ∈ [0, t3],

and finally t and ε > 0 in order to satisfy (3.16). It follows that

J +(̃u) ≤ J +(tu1,p) < 0 = J +(0),

therefore ũ ≡ 0. The proof that 0 ≤ ũ ≤ u0 works as in the previous case, and thus ũ
is a weak, nonnegative, and bounded solution to (3.24).

In order tofind thenonpositive solutionweconsider the functionalJ − : W 1,H(�) →
R defined by

J −(u) = 1

p
M

(‖∇u‖p
p
)+ 1

q
M

(‖∇u‖q
q,a
)+ ϑ

p
‖u‖p

p + 1

q
‖u‖q

q,a

−
∫

�

B−(x, u) dx −
∫

∂�

B−
β (x, u) dσ,

with B− and B−
β given as in (3.22), (3.23), and reason as in the previous case. This

completes the proof of the theorem. ��
We conclude this section pointing out that Theorems 3.1 and 3.2 generalize [10,

Theorem 4.2] in a nonlocal Kirchhoff framework. In any case, assumption (3.3) is
consistent with the constraint for ζ requested in [10], when M ≡ 1.

4 Infinitely many solutions

In this section we prove the existence of infinitely many solutions to (1.1) and (1.2)
when h1 and h2 are symmetric. Throughout this section and differently from the
previous one, ∂� is assumed to be only Lipschitz. More precisely, we choose

h1(x, t) = f (x, t) − |t |p−2t − a(x)|t |q−2t for a.e. x ∈ �, for all t ∈ R,

h2(x, t) = g(x, t) for a.e. x ∈ ∂�, for all t ∈ R, (4.1)

where f : � × R → R and g : ∂� × R → R are two Carathéodory functions that
satisfy the following assumptions:

(h1) there exist exponents r1 ∈ (p, p∗) and r2 ∈ (p, p∗), and two constants c1, c2 > 0
such that

| f (x, t)| ≤ c1
(
1 + |t |r1−1

)
for a.e. x ∈ � and all t ∈ R,

|g(x, t)| ≤ c2
(
1 + |t |r2−1

)
for a.e. x ∈ ∂� and all t ∈ R;
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(h2) F(x, t) ≥ 0 and G(x, t) ≥ 0 for a.e. x ∈ � and x ∈ ∂�, respectively, and all
t ∈ R, where

F(x, t) :=
∫ t

0
f (x, s) ds as well as G(x, t) :=

∫ t

0
g(x, s) ds.

Moreover it holds that

lim|t |→∞
F(x, t)

|t |qθ
= ∞ uniformly for a.e. x ∈ �.

(h3) It holds that

F(x, t) := 1

qθ
f (x, t)t − F(x, t) ≥ 0 as well as

G(x, t) := 1

qθ
g(x, t)t − G(x, t) ≥ 0

for a.e. x ∈ � and a.e. x ∈ ∂�, respectively, and for every t ∈ R;
(h4) There exist t0 > 0, d1, d2 > 0, s1 > N/p and s2 > (N − 1)/(p − 1) such that

F(x, t)s1 ≤ d1|t |ps1F(x, t) for a.e. x ∈ �, for all |t | > t0,

G(x, t)s2 ≤ d2|t |ps2G(x, t) for a.e. x ∈ ∂�, for all |t | > t0;

(h5) f (x,−t) = − f (x, t) and g(x,−t) = −g(x, t) for a.e. x ∈ � and a.e. x ∈ ∂�,
respectively, and all t ∈ R.

Remark 4.1 When θ < p∗/q, two simplemodel functions f and g satisfying (h1)–(h5)

are given by f (x, t) = w(x)|t |r1−2t and g(x, t) = z(x)|t |r2−2t , where w ∈ L∞(�)

with inf� w > 0 and z ∈ L∞(∂�) with inf∂� z > 0, and with parameters t0 > 0 and

s1 ∈
(

N

p
,

qθ

qθ − p

)

, r1 ∈
(

qθ,
ps1

s1 − 1

)

,d1 = 1

rs1
1

· ‖w‖s1∞
inf� w

· r1qθ

r1 − qθ
,

s2 ∈
(

N − 1

p − 1
,

qθ

qθ − p

)

, r2 ∈
(

qθ,
ps2

s2 − 1

)

,d2 = 1

rs2
2

· ‖z‖s2∞,∂�

inf∂� z
· r2qθ

r2 − qθ
. (4.2)

We observe that such parameters in (4.2) exist since θ < p∗/q. Moreover, it can be
easily seen that this restriction on the choice of θ is necessary if we want to have
models of this form.

With the choice (4.1) we have that problem (1.1) can be rewritten as
{ − M [φH(∇u)] div

(|∇u|p−2∇u + a(x)|∇u|q−2∇u
) = f (x, u) − |u|p−2u − a(x)|u|q−2u in �,

M [φH(∇u)]
(|∇u|p−2∇u + a(x)|∇u|q−2∇u

) · ν = g(x, u) on ∂�.

(4.3)
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We say that u ∈ W 1,H(�) is a weak solution to (4.3) if it satisfies

M [φH(∇u)]
∫

�

(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
· ∇ϕ dx

+
∫

�

(
|u|p−2u + a(x)|u|q−2u

)
ϕ dx

=
∫

�

f (x, u)ϕ dx +
∫

∂�

g(x, u)ϕ dσ

for all ϕ ∈ W 1,H(�). We see that (4.3) is the Euler-Lagrange equation corresponding
to the functional I : W 1,H(�) → R of class C1 defined as

I (u) := M [φH(∇u)] + 1

p
‖u‖p

p + 1

q
‖u‖q

q,a −
∫

�

F(x, u) dx −
∫

∂�

G(x, u) dσ.

Now, we are ready to state the existence result to (4.3).

Theorem 4.2 Let (1.3), (M1)–(M2), and (h1)–(h5) hold true. Then, problem (4.3) has
infinitely many weak solutions (u j ) j with unbounded energy.

Theorem 4.2 generalizes [17, Theorem 5.9] where problem (4.3) was considered
with M ≡ 1, namely without the Kirchhoff coefficient. Here, the function f satisfies
the crucial assumption (h4), different from the quasi-monotonic assumption (1.8)
assumed in [17]. Indeed, (1.8) can not work for problem (4.3), even if M satisfies some
monotonic condition. This is due to the fact that M in (4.3) depends on φH(∇u) given
in (2.7) and not on the seminorm ‖∇u‖H. Also, we do not have a proper equivalence
between φH(∇u) and ‖∇u‖H, but only the following relation

1

q
min{‖∇u‖p

H, ‖∇u‖q
H} ≤ 1

q
�H(∇u) ≤ φH(∇u)

≤ 1

p
�H(∇u) ≤ 1

p
max{‖∇u‖p

H, ‖∇u‖q
H}

implied by Proposition 2.1.
We aim to prove Theorem 4.2 by means of Theorem 2.7. To this end, we first show

that I satisfies the (C) condition and then that assumptions (i) and (ii) of Theorem 2.7
are satisfied. We start with the following preliminary result.

Lemma 4.3 Any Cerami sequence (u j ) j of I is bounded in W 1,H(�).

Proof Let (u j ) j be a sequence satisfying (2.25) with E = I . Hence, there exist C > 0
and ε j > 0, with ε j → 0, such that

|〈I ′(u j ), ϕ〉| ≤ ε j‖ϕ‖1,H
1 + ‖u j‖1,H for all ϕ ∈ W 1,H(�) and j ∈ N (4.4)

and
|I (u j )| ≤ C for all j ∈ N. (4.5)

123



Multiple solutions to Kirchhoff type double phase problems…

We claim that (u j ) j is bounded in W 1,H(�).
Arguing by contradiction, we assume that ‖u j‖1,H → ∞ as j → ∞ and, without

loss of generality, that ‖u j‖1,H > 1 for j sufficiently large. Set v j := u j/‖u j‖1,H.
It holds that ‖v j‖1,H = 1, therefore there exists v ∈ W 1,H(�) such that, up to a
subsequence,

v j (x) → v(x) for a.e. x ∈ �, v j → v in Lν1(�) ∩ Lν2(∂�) (4.6)

for all ν1 ∈ [1, p∗) and all ν2 ∈ [1, p∗), exploiting the reflexivity of W 1,H(�)

and Proposition 2.3-(ii) and (iii). We aim to show that v = 0. To this end, we set
�∗ = {x ∈ � : v(x) = 0} and assume that |�∗| > 0. Since ‖u j‖1,H → ∞ as
j → ∞, then

|u j | = ∥
∥u j

∥
∥
1,H · |v j | → ∞ a.e. in �∗.

Taking into account (h2), we get

∞ = lim
j→∞

F(x, u j )

‖u j‖qθ

1,H
= lim

j→∞
F(x, u j )

|u j |qθ
· |v j |qθ for a.e. x ∈ �∗.

Then, Fatou’s lemma gives

lim
j→∞

∫

�

F(x, u j )

‖u j‖qθ

1,H
dx = lim

j→∞

∫

�

F(x, u j )|v j |qθ

|u j |qθ
dx = ∞. (4.7)

On the other hand, we use (2.25) together with the nonnegativity of G first and then
(2.16) to achieve

∫

�

F(x, u j ) dx ≤ M [φH(∇u j )] + 1

p
‖u j‖p

p + 1

q
‖u j‖q

q,a + C

≤ B1(1 + ‖u‖q
1,H + ‖u‖qθ

1,H) + C for all j ∈ N.

Dividing by ‖u j‖qθ

1,H, passing to the limit superior as j → ∞ and recalling that θ ≥ 1,
we have

lim sup
j→∞

∫

�

F(x, u j )

‖u j‖qθ

1,H
dx < ∞, (4.8)

which contradicts (4.7). In conclusion, �∗ has zero measure, that is, v = 0 a.e. in �.
Take now j ∈ N large enough so that ‖u j‖1,H > 1. By hypothesis (M1), inequality

(2.25), together with (2.8) and the fact that θ ≥ 1, we have

C ≥ I (u j ) = M [φH(∇u j )] + 1

p
‖u j‖p

p + 1

q
‖u j‖q

q,a

−
∫

�

F(x, u j ) dx −
∫

∂�

G(x, u j ) dσ
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≥ 1

θ
M[φH(∇u j )]φH(∇u j ) + 1

q
�H(u j )

−
∫

�

F(x, u j ) dx −
∫

∂�

G(x, u j ) dσ

≥ A1

qθ
‖u j‖p

1,H −
∫

�

F(x, u j ) dx −
∫

∂�

G(x, u j ) dσ.

Since ‖u j‖1,H → ∞ as j → ∞, from the previous inequality we have

lim inf
j→∞

[∫

�

F(x, u j )

‖u j‖p
1,H

dx +
∫

∂�

G(x, u j )

‖u j‖p
1,H

dσ

]

≥ A1

qθ
> 0. (4.9)

We aim to show that

lim
j→∞

∫

�

F(x, u j )

‖u j‖p
1,H

dx = lim
j→∞

∫

∂�

G(x, u j )

‖u j‖p
1,H

dσ = 0, (4.10)

whichwill eventually contradict (4.9).We first observe that, thanks to hypothesis (M1)

together with (4.4) and (4.5), we have

C ≥ I (u j ) − 1

qθ
〈I ′(u j ), u j 〉

= M [φH(∇u j )] − 1

qθ
M[φH(∇u j )]�H(∇u j )

+
(
1

p
− 1

qθ

)

‖u j‖p
p +

(
1

q
− 1

qθ

)

‖u j‖q
q,a

−
∫

�

[

F(x, u j ) − 1

qθ
f (x, u j )u j

]

dx −
∫

∂�

[

G(x, u j ) − 1

qθ
g(x, u j )u j

]

dσ

≥
∫

�

F(x, u j ) dx +
∫

∂�

G(x, u j ) dσ. (4.11)

For all a ≥ 0 and b > a, we now set� j (a, b) := {
x ∈ � : a ≤ |u j (x)| < b

}
. Thanks

to (h1) and (4.6) it follows that

∫

� j (0,t0)

F(x, u j )

‖u j‖p
1,H

dx ≤ c1

∫

� j (0,t0)

(
|u j |

‖u j‖p
1,H

+ |u j |r1
r1‖u j‖p

1,H

)

dx

≤ c1

(
‖u j‖1

‖u j‖p
1,H

+ 1

r1

∫

� j (0,t0)
|u j |r1−p|v j |p dx

)

≤ c1

(
C

‖u j‖p−1
1,H

+ tr1−p
0

r1
‖v j‖p

p

)

→ 0 as j → ∞, (4.12)
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being v = 0. On the other hand, by (h4), (4.11), and Hölder’s inequality, we have
∫

� j (t0,∞)

F(x, u j )

‖u j‖p
1,H

dx =
∫

� j (t0,∞)

F(x, u j )

|u j |p
|v j |p dx

≤
[∫

� j (t0,∞)

(
F(x, u j )

|u j |p

)s1
dx

]1/s1 (∫

� j (t0,∞)

|v j |ps′
1 dx

)1/s′
1

≤ d1/s1
1

(∫

� j (t0,∞)

F(x, u j ) dx

)1/s1

‖v j‖p
ps′

1

≤ d1/s1
1 C1/s1‖v j‖p

ps′
1

→ 0 as j → ∞, (4.13)

taking once again (4.6) into account, with v = 0, and since ps′
1 < p∗ thanks to (h4).

Combining (4.12) and (4.13), we get

lim
j→∞

∫

�

F(x, u j )

‖u j‖p
1,H

dx = 0.

Reasoning in a similar way and exploiting the fact that ps′
2 < p∗ thanks to hypothesis

(h4), we have

lim
j→∞

∫

∂�

G(x, u j )

‖u j‖p
1,H

dσ = 0.

Therefore, (4.10) follows, giving the desired contradiction. This allows us to conclude
that (u j ) j is bounded in W 1,H(�). ��
Lemma 4.4 The functional I satisfies the (C) condition.

Proof Let (u j ) j ⊂ W 1,H(�) be a sequence satisfying (2.25) with E = I . Thanks to
Lemma 4.3 we have that (u j ) j is bounded in W 1,H(�). Therefore, taking into account
Propositions 2.1–2.3 and the reflexivity of W 1,H(�), there exist a subsequence, still
denoted by (u j ) j , and u ∈ W 1,H(�) such that

u j → u in LH(�), ∇u j⇀∇u in
[

LH(�)
]N

, φH(∇u j ) → �,

u j⇀u in W 1,H(�), u j → u in Lq
a(�) ∩ Lν1(�) ∩ Lν2(∂�), (4.14)

as j → ∞, with ν1 ∈ [1, p∗) and ν2 ∈ [1, p∗).
We aim to show that such (u j ) j is strongly convergent in W 1,H(�). Let us distin-

guish between two possible situations. We first assume that � = 0. Therefore, since
φH(v) ≥ �H(v)/q ≥ 0 for all v ∈ W 1,H(�), thanks to Proposition 2.1-(v) we have

∇u j → 0 in
[
LH(�)

]N
. Thus we can conclude that u j → u in W 1,H(�) as j → ∞,

with u constant a.e. in �.
On the other hand, let us suppose � > 0. Thanks to (4.14) and Proposition 2.4 it

suffices to show that

lim sup
j→∞

〈L(u j ) − L(u), u j − u〉 ≤ 0,
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where L is the functional defined in (2.5). Taking into account hypothesis (h1), the
boundedness of (u j ) j , the convergences in (4.14), and applying Hölder’s inequality
we obtain that, as j → ∞,

∣
∣
∣
∣

∫

�

f (x, u j )(u j − u) dx

∣
∣
∣
∣ ≤ c1

∫

�

(
1 + |u j |r1−1

)
|u j − u| dx

≤ c1
(
‖u j − u‖1 + ∥

∥u j
∥
∥r1−1

r1
‖u j − u‖r1

)
→ 0, (4.15)

as well as
∣
∣
∣
∣

∫

∂�

g(x, u j )(u j − u) dσ

∣
∣
∣
∣ ≤ c2

∫

∂�

(
1 + |u j |r2−1

)
|u j − u| dσ

≤ c2
(
‖u j − u‖1,∂� + ∥

∥u j
∥
∥r2−1

r2,∂�
‖u j − u‖r2,∂�

)
→ 0,

(4.16)

similarly, ∣
∣
∣
∣

∫

�

|u j |p−2u j (u j − u) dx

∣
∣
∣
∣ ≤ ‖u j‖p−1

p ‖u − u j‖p → 0, (4.17)

and finally

∣
∣
∣
∣

∫

�

a(x)|u j |q−2u j (u j − u) dx

∣
∣
∣
∣ ≤ ‖u j‖q−1

q,a ‖u − u j‖q,a → 0. (4.18)

Thus, by means of (2.25) and (4.14)–(4.18) we get

o(1) = 〈I ′(u j ), u j − u〉 = M
[
φH(∇u j )

] 〈L(u j ), u j − u〉
+
∫

�

|u j |p−2u j (u j − u) dx +
∫

�

a(x)|u j |q−2u j (u j − u) dx

−
∫

�

f (x, u j )(u j − u) dx −
∫

∂�

g(x, u j )(u j − u) dσ

= M(�)〈L(u j ), u j − u〉 + o(1) as j → ∞. (4.19)

Moreover, thanks to Hölder’s inequality and Proposition 2.1, given φ ∈ [LH(�)]N

such that ‖φ‖H = 1 it holds that

∣
∣
∣
∣

∫

�

(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
· φ dx

∣
∣
∣
∣

≤
∫

�

|∇u|p−1|φ| dx +
∫

�

a(x)
q−1

q |∇u|q−1a(x)
1
q |φ| dx

≤ ‖∇u‖p−1
p ‖φ‖p + ‖∇u‖q−1

q,a ‖φ‖q,a

≤ max{‖∇u‖p−1
p , ‖∇u‖q−1

q,a }�H(φ)

= max{‖∇u‖p−1
p , ‖∇u‖q−1

q,a }.
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This implies that the functional

P : φ ∈
[

LH(�)
]N 
→

∫

�

(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
· φ dx

is linear and bounded. Therefore, by (4.14) we have

〈L(u), u j − u〉 =
∫

�

(|∇u|p−2∇u + a(x)|∇u|q−2∇u
) · ∇(u j − u) dx → 0 as j → ∞.

(4.20)
Combining (4.19)–(4.20), using Proposition 2.4 and taking into account that M(�) > 0
thanks to (M2), we conclude that u j → u in W 1,H(�) as j → ∞. This completes
the proof. ��

We now point out that, since W 1,H(�) is a reflexive and separable Banach space,
there exist two sequences (e j ) j ⊂ W 1,H(�) and (e∗

j ) j ⊂ (
W 1,H(�)

)∗
that satisfy

(2.26)–(2.28).
Then we can state the following lemma, which is strongly inspired by [21, Lemma

7.1]. First of all, for all j ∈ N we set

β j := sup
u∈Z j , ‖u‖1,H=1

‖u‖r1 as well as ξ j := sup
u∈Z j , ‖u‖1,H=1

‖u‖r2,∂�, (4.21)

where Z j is defined in (2.28) and r1, r2 are chosen as in (h1).

Lemma 4.5 It holds that

lim
j→∞ β j = lim

j→∞ ξ j = 0.

Proof The claim for (β j ) j is the content of [21, Lemma 7.1], then we are left to
show that lim

j→∞ ξ j = 0. From (4.21), for all j ∈ N we choose u j ∈ Z j such that
∥
∥u j

∥
∥
1,H = 1 and

ξ j ≤ ‖u j‖r2,∂� + 1

j
. (4.22)

Since (u j ) j is bounded in the reflexive space W 1,H(�), thanks to Proposition 2.3–(iii)
there exists u ∈ W 1,H(�) such that

u j⇀u in W 1,H(�), u j → u in Lr2(∂�). (4.23)

Moreover, fix k ∈ N. From (2.27) it follows that 〈e∗
k , u j 〉 = 0, for all j ∈ N big

enough. Then we have

〈e∗
k , u〉 = lim

j→∞〈e∗
k , u j 〉 = 0 for all k ∈ N.

This implies that u = 0 in W 1,H(�). Then, by (4.23) it holds that u j → 0 as j → ∞
in Lr2(∂�). Therefore, from (4.22) we have the conclusion. ��
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We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2 Thanks to hypothesis (h5) and Lemma 4.4 we have that I is
an even functional and satisfies the (C) condition. Thus we are left to verify that
conditions (i) and (ii) of Theorem 2.7 hold true. We start with condition (i). By (h1)

we have that

F(x, t) ≤ c1

(

|t | + |t |r1
r1

)

for a.e. x ∈ � (4.24)

as well as

G(x, t) ≤ c2

(

|t | + |t |r2
r2

)

for a.e. x ∈ ∂�, (4.25)

for all t ∈ R. Thus, for all u ∈ Z j with ‖u‖1,H > 1, thanks to (2.8), hypothesis (M1),
(4.21), (4.24), (4.25), and the Hölder’s inequality, we have

I (u) ≥ 1

qθ
(M[φH(∇u)]φH(∇u) + �H(u)) − c1

(

‖u‖1 + ‖u‖r1
r1

r1

)

+ c2

(

‖u‖1,∂� + ‖u‖r2
r2,∂�

r2

)

≥ A1

qθ
‖u‖p

1,H − c1

(

|�|(r1−1)/r1‖u‖r1 + ‖u‖r1
r1

r1

)

+ c2

(

σ(�)(r2−1)/r2 ‖u‖r2,∂� + ‖u‖r2
r2,∂�

r2

)

≥ C
(
‖u‖p

1,H − β j ‖u‖1,H − β
r1
j ‖u‖r1

1,H − ξ j ‖u‖1,H − ξ
r2
j ‖u‖r2

1,H
)

. (4.26)

for a suitable C > 0.
Set now r := max{r1, r2} > p and η j := max{β j , ξ j }, with β j and ξ j given in

(4.21). By Lemma 4.5, we have that η j < 1 if j ∈ N is sufficiently large. Hence, by
(4.26), for all u ∈ Z j with ‖u‖1,H > 1 and j ∈ N big enough, we get

I (u) ≥ C(1 − 4η j ‖u‖r−p
1,H ) ‖u‖p

1,H . (4.27)

Let us choose

γ j :=
(

1

8η j

) 1
r−p

.

Then γ j → ∞ as j → ∞, since η j → 0 as j → ∞ thanks to Lemma 4.5 and the
fact that r > p. Inequality (4.27) yields that, for all u ∈ Z j with ‖u‖1,H = γ j ,

I (u) ≥ C̃

2
γ

p
j → ∞ as j → ∞,

which gives the validity of condition (i).
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In order to prove condition (ii) we argue by contradiction. Therefore we assume
that there exists j > 0 such that for each n ∈ N\{0} we can find a function un ∈ Y j

with ‖un‖1,H > n and I (un) > 0. Let us define, for each n, vn := un/‖un‖1,H. Of
course, ‖vn‖1,H = 1. Since (Y j , ‖ · ‖1,H) is a finite dimensional Banach space, it
follows that there exists v ∈ Y j such that, up to a subsequence,

‖vn − v‖1,H → 0

as n → ∞. Since also ‖v‖1,H = 1, setting A := {x ∈ � : v(x) = 0}, it follows that
|A| = 0. Therefore, arguing as in the proof of Lemma 4.3, thanks to (h2) we conclude
that

lim
n→∞

∫

A

F(x, un(x))

‖un‖qθ

1,H
dx = +∞. (4.28)

On the other hand, as I (un) > 0, and thanks to the nonnegativity of G and (2.16), we
have that
∫

A
F(x, un(x)) dx ≤

∫

�

F(x, un(x)) dx ≤
∫

�

F(x, un(x)) dx + I (un)

= M [φH(∇un)] + 1

p
‖un‖p

p + 1

q
‖un‖q

q,a −
∫

∂�

G(x, un) dσ

≤ M [φH(∇un)] + 1

p
‖un‖p

p + 1

q
‖un‖q

q,a

≤ B1(1 + ‖un‖q
1,H + ‖un‖qθ

1,H). (4.29)

Dividing both extremes of the previous inequality by ‖un‖qθ

1,H and passing to the limit,
a contradiction with (4.28) follows.

Thus, we can apply Theorem 2.7 to obtain a sequence of critical points of I with
unbounded energy. The proof is thus complete. ��

We now aim to show existence of infinitely many solutions to (1.2), where h1 and
h2 are chosen as in (4.1), that is,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− M
(‖∇u‖p

p
)
�pu − M

(‖∇u‖q
q,a
)
div

(
a(x)|∇u|q−2∇u

)

= f (x, u) − |u|p−2u − a(x)|u|q−2u in �,
[

M
(‖∇u‖p

p
) |∇u|p−2∇u + M

(‖∇u‖q
q,a
)

a(x)|∇u|q−2∇u
]

· ν = g(x, u) on ∂�.

(4.30)
We say that a function u ∈ W 1,H(�) is a weak solution to (4.30) if

M(‖∇u‖p
p)

∫

�

|∇u|p−2∇u · ∇ϕ dx + M(‖∇u‖q
q,a)

∫

�

a(x)|∇u|q−2∇u · ∇ϕ dx +
∫

�

(
|u|p−2u + a(x)|u|q−2u

)
ϕ dx

=
∫

�

f (x, u)ϕ dx +
∫

∂�

g(x, u)ϕ dσ,
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is satisfied for all ϕ ∈ W 1,H(�). In this case, (4.30) is the Euler-Lagrange equation
associated with the energy functional I : W 1,H(�) → R given by

I(u) := 1

p
M (‖∇u‖p

p) + 1

q
M (‖∇u‖q

q,a) + 1

p
‖u‖p

p + 1

q
‖u‖q

q,a

−
∫

�

F(x, u) dx −
∫

∂�

G(x, u) dσ.

Our multiplicity result for (4.30) reads as follows.

Theorem 4.6 Let (1.3), (M1)–(M2), and (h1)–(h5) hold true. Then, problem (4.30)
has infinitely many weak solutions (u j ) j with unbounded energy.

Here, we point out that assumption (h3) could allow us to prove the boundedness of
a Palais-Smale sequence forI, but just inW 1,p(�). This fact is not enough considering
I set in W 1,H(�), with W 1,H(�) ↪→ W 1,p(�) by Proposition 2.3-(i). For this reason,
we exploit the same ideas employed in the proof of Theorem 4.2 in order to prove
Theorem 4.6. That is, we start by showing that Cerami sequences of I are bounded.
Then we use this property to show that I satisfies the (C) condition. Finally we apply
Theorem 2.7 to I.
Lemma 4.7 Any Cerami sequence of I is bounded in W 1,H(�).

Proof The proof works exactly as in Lemma 4.4, with (4.8) and (4.11) following from
(2.9) and (2.17), respectively. ��
Lemma 4.8 The functional I satisfies the (C) condition.

Proof Let (u j ) j ⊂ W 1,H(�) be a sequence satisfying (2.25) with E = I. Thanks
to Lemma 4.7, (u j ) j is bounded in W 1,H(�). Hence, by Propositions 2.1–2.3 and
the reflexivity of W 1,H(�), there exist a subsequence, still denoted by (u j ) j , and
u ∈ W 1,H(�) such that

u j → u in LH(�), ∇u j⇀∇u in
[

LH(�)
]N

, ‖∇u j‖p → �p,

‖∇u j‖q,a → �q , u j⇀u in W 1,H(�), u j → u in Lν1(�) ∩ Lν2(∂�),

(4.31)

as j → ∞, with ν1 ∈ [1, p∗) and ν2 ∈ [1, p∗). We apply (2.25) together with
(4.15)–(4.18) and (4.31), to have

o(1) = 〈I ′(u j ), u j − u〉 = M(‖∇u j ‖p
p)

∫

�
|∇u j |p−2∇u j · (∇u j − ∇u) dx

+ M(‖∇u j ‖q
q,a)

∫

�
a(x)|∇u j |q−2∇u j · (∇u j − ∇u) dx

+
∫

�
|u j |p−2u j (u j − u) dx +

∫

�
a(x)|u j |q−2u j (u j − u) dx

−
∫

�
f (x, u j )(u j − u) dx −

∫

∂�
g(x, u j )(u j − u) dσ
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= M(�
p
p)

∫

�
|∇u j |p−2∇u j · (∇u j − ∇u) dx

+ M(�
q
q )

∫

�
a(x)|∇u j |q−2∇u j · (∇u j −∇u) dx+o(1) as j→∞.

(4.32)

We need now to distinguish between two situations, that depend on the behavior of M
at zero.
Case 1: Let M verify M(0) = 0.
Since �p ≥ 0 and �q ≥ 0 in (4.31), we further distinguish among four subcases.
Subcase 1.1: Let �p = 0 and �q = 0.
By (4.31) we have ‖∇u j‖p → 0 and ‖∇u j‖q,a → 0 as j → ∞, which thanks to
(2.1) and Proposition 2.1 implies that ∇u j → 0 in [LH(�)]N . Hence, u j → u in
W 1,H(�) as j → ∞, with u constant a.e. in �.
Subcase 1.2: Let �p = 0 and �q > 0.
From (4.32) and (M2) we have

lim
j→∞

∫

�

a(x)|∇u j |q−2∇u j · (∇u j − ∇u) dx = 0. (4.33)

Moreover, since (∇u j ) j is bounded in (L p(�))N thanks to (4.31), it follows that

lim sup
j→∞

∣
∣
∣
∣

∫

�

|∇u j |p−2∇u j · (∇u j − ∇u) dx

∣
∣
∣
∣ ≤ lim sup

j→∞
‖∇u j‖p−1

p ‖∇u j − ∇u‖p

≤ �
p−1
p lim sup

j→∞
‖∇u j − ∇u‖p = 0.

Then we have

lim
j→∞〈L(u j ), u j − u〉 = 0.

This fact, together with (4.20) and Proposition 2.4, allows to conclude that u j → u
in W 1,H(�).

Subcase 1.3: Let �p > 0 and �q = 0.
The proof works exactly as in Subcase 1.2, hence we omit the details.
Subcase 1.4: Let �p > 0 and �q > 0.
It follows that

lim
j→∞

∫

�

|∇u|p−2∇u · ∇(u j − u) dx = 0, (4.34)

as well as

lim
j→∞

∫

�

a(x)|∇u|q−2∇u · ∇(u j − u) dx = 0. (4.35)
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Therefore (4.32), (4.34), and (4.35) yield

M(�
p
p)

∫

�

(
|∇u j |p−2∇u j − |∇u|p−2∇u

)
· (∇u j − ∇u) dx

+ M(�
q
q)

∫

�

a(x)
(
|∇u j |q−2∇u j − |∇u|q−2∇u

)
· (∇u j − ∇u) dx = o(1)

as j → ∞. (4.36)

Exploiting the convexity of the two Laplacian operators of p and q types and the fact
that a(x) ≥ 0 a.e. in � thanks to (1.3), we get

(
|∇u j |p−2∇u j − |∇u|p−2∇u

)
· (∇u j − ∇u) ≥ 0 a.e. in �,

a(x)
(
|∇u j |q−2∇u j − |∇u|q−2∇u

)
· (∇u j − ∇u) ≥ 0 a.e. in �.

Therefore, from (4.36) we have

min
{

M(�
p
p), M(�

q
q)
}
lim sup

j→∞
〈L(u j ) − L(u), u j − u〉 ≤ 0,

being M(�
p
p), M(�

q
q) > 0 thanks to (M2). Hence we can use Proposition 2.4 and

(4.31) to conclude that u j → u in W 1,H(�) as j → ∞. This completes the proof of
Case 1.
Case 2: Let M verify M(0) > 0.
Since by (M2) we have that M(�

p
p), M(�

q
q) > 0 for �p, �q ≥ 0, we can argue exactly

as in Subcase 1.4 to get the conclusion. ��
Proof of Theorem 4.6 The proof works exactly as for Theorem 4.2, with (4.27) and
(4.29) following from (2.9) and (2.17), respectively. ��
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15. Gasiński, L., Papageorgiou, N.S.: Constant sign and nodal solutions for superlinear double phase

problems. Adv. Calc. Var. 14, 613–626 (2021)
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