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MULTIPLE SOLUTIONS FOR QUASI-LINEAR PDES
INVOLVING THE CRITICAL SOBOLEV

AND HARDY EXPONENTS

N. GHOUSSOUB AND C. YUAN

Abstract. We use variational methods to study the existence and multiplicity
of solutions for the following quasi-linear partial differential equation:(

−4pu = λ|u|r−2u+ µ
|u|q−2

|x|s u in Ω,

u|∂Ω = 0,

where λ and µ are two positive parameters and Ω is a smooth bounded domain
in Rn containing 0 in its interior. The variational approach requires that
1 < p < n, p ≤ q ≤ p∗(s) ≡ n−s

n−pp and p ≤ r ≤ p∗ ≡ p∗(0) = np
n−p , which we

assume throughout. However, the situations differ widely with q and r, and
the interesting cases occur either at the critical Sobolev exponent (r = p∗) or
in the Hardy-critical setting (s = p = q) or in the more general Hardy-Sobolev

setting when q = n−s
n−pp. In these cases some compactness can be restored by

establishing Palais-Smale type conditions around appropriately chosen dual
sets. Many of the results are new even in the case p = 2, especially those
corresponding to singularities (i.e., when 0 < s ≤ p).

1. Introduction

Consider the following quasi-linear partial differential equation:{
−4pu = λ|u|r−2u+ µ |u|

q−2

|x|s u in Ω,

u|∂Ω = 0,
(Pλ,µ)

where λ and µ are two positive parameters and Ω is a smooth bounded domain in
Rn containing 0 in its interior. We shall assume throughout that 0 ≤ s ≤ p < n.

The starting point of the variational approach to these problems is the following
Sobolev-Hardy inequality, which is essentially due to Caffarelli, Kohn and Nirenberg
[8]. Assume that 1 < p < n and that q ≤ p∗(s) ≡ n−s

n−pp; then there is a constant
C > 0 such that

C(
∫

Ω

|u|q
|x|s )

p
q dx ≤

∫
Ω

|∇u|p dx for all u ∈ H1,p
0 (Ω).

We use µs,q(Ω) to denote the best Sobolev-Hardy constant, i.e. the largest con-
stant C satisfying the above inequality for all u ∈ H1,p

0 (Ω); that is,

µs,q(Ω) = inf
u∈H1,p

0 (Ω),u6=0

∫
Ω |∇u|p dx

(
∫

Ω
|u|q
|x|s )

p
q dx

.
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5704 N. GHOUSSOUB AND C. YUAN

In the important case where q = p∗(s), we shall simply denote µs,p∗(s) as µs.
Note that µ0 is nothing but the best constant in the Sobolev inequality while µp is
the best constant in the Hardy inequality, i.e.,

µp(Ω) = inf
u∈H1,p

0 (Ω),u6=0

∫
Ω
|∇u|p dx∫
Ω
|u|p
|x|p dx

.

We shall always assume that p ≤ r ≤ p∗ ≡ p∗(0) = np
n−p for the non-singular

term in such a way that the functional

Eλ,µ(u) =
1
p

∫
Ω

|∇u|pdx− λ

r

∫
Ω

|u|rdx− µ

q

∫
Ω

|u|q
|x|s dx

is then well defined on the Sobolev space H1,p
0 (Ω). The (weak) solutions of the

problem (Pλ,µ) are then the critical points of the functional Eλ,µ.
Another relevant parameter will be the first “eigenvalue” of the p-Laplacian−∆p,

defined as

λ1(Ω) ≡ µ0,p(Ω) = inf{
∫

Ω

|∇w|pdx : w ∈ H1,p
0 (Ω),

∫
Ω

|w|pdx = 1}.

Here are the main results of this paper.

Theorem 1.1 (Hardy-Sobolev subcritical singular and non-singular terms). Sup-
pose 1 < p ≤ q < p∗(s) and r < p∗. Assume one of the following conditions
holds:

(1) (High order singular term) p < q, p ≤ r, λ > 0 and µ > 0.
(2) (Low order singular term) p = q, p < r, λ > 0 and µs,p > µ > 0.

Then (Pλ,µ) has infinitely many solutions. Moreover, (Pλ,µ) has an everywhere
positive solution with least energy and another one that is sign-changing.

Theorem 1.2 (Hardy-critical singular term). Suppose 1 < p = q = p∗(s) (i.e.,
s = p).

1. (Subcritical non-singular term) If r < p∗, then (Pλ,µ) has infinitely many
solutions –at least one of them being positive– for any λ > 0 and 0 < µ < µp.

2. (Critical non-singular term) If r = p∗ and Ω is star-shaped. Then (Pλ,µ) has
no non-trivial solution for any λ > 0, µ > 0.

Theorem 1.3 (Hardy-Sobolev critical singular term). Suppose 1 ≤ p < q = p∗(s)
(i.e., s < p).

1. (High order non-singular term) Assume p < r < p∗ and λ > 0, µ > 0.
• If n > p(p−1)r+p2

p+(p−1)(r−p) (in particular if n ≥ p2), then (Pλ,µ) has a positive
solution.
• If n > p(p−1)r+p

1+(p−1)(r−p) (in particular if n > p3 − p2 + p), then (Pλ,µ) has
also a sign-changing solution.

2. (Low order non-singular term) Assume p = r < p∗ and 0 < λ < λ1, µ > 0.
• If n ≥ p2, then (Pλ,µ) has a positive solution.
• If n > p3 − p2 + p, then (Pλ,µ) has also a sign-changing solution.

3. (Sobolev-critical non-singular term) Assume r = p∗ and Ω is star-shaped, then
(Pλ,µ) has no non-trivial solution for any λ > 0 and any µ > 0.

Theorem 1.4 (Sobolev-critical non-singular term and subcritical singular term).
Suppose 1 < p ≤ q < p∗(s) and r = p∗.
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1. (High order singular term) Assume that p < q and λ > 0, µ > 0.
• If n > p(p−1)(q−s)+p2

p+(p−1)(q−p) (in particular if n ≥ p2− (p− 1)s), then (Pλ,µ) has
a positive solution.
• If n > p(p−1)(q−s)+p

1+(p−1)(q−p) (in particular if n > p(p−1)(p− s) +p), then (Pλ,µ)
has also a sign-changing solution.

2. (Low order non-singular term) Assume p = q and λ > 0, µs,p > µ > 0.
• If n ≥ p2 − (p− 1)s, then (Pλ,µ) has a positive solution.
• If n > p((p−1)(p−s)+1), then (Pλ,µ) has also a sign-changing solution.

The following tables summarize our results.

Table 1. Sobolev-subcritical non-singular term

Singular term Parameters Non-singular term Dimension # of solutions
(HS-subcritical) Infinite
p < q < p∗(s) λ > 0; µ > 0 1 ≤ p ≤ r < p∗ n > p One positive
p = q < p∗(s) µs,p > µ > 0; λ > 0 1 ≤ p < r < p∗ n > p One positive
(H-critical)
p = q = p∗(s) λ > 0; µp > µ > 0 1 ≤ p < r < p∗ n > p Infinite

(One positive)
(HS-critical)

p < q = p∗(s) λ > 0; µ > 0 1 ≤ p < r < p∗ n > p(p−1)r+p2

p+(p−1)(r−p) One positive

— 2 ≤ p < r < p∗ n >
p(p−1)r+p

1+(p−1)(r−p) Two

λ1 > λ > 0; µ > 0 1 ≤ p = r < p∗ n ≥ p2 One positive
— 2 ≤ p = r < p∗ n > p3 − p2 + p Two

Table 2. Sobolev-critical non-singular term

Singular term Parameters Non-singular term Dimension # of solutions

1 ≤ p = q < p∗(s) µs,p > µ > 0 r = p∗ n > p2 − (p− 1)s One positive
2 ≤ p = q < p∗(s) and λ > 0 — n > p((p− 1)(p − s) + 1) Two

1 ≤ p < q < p∗(s) λ > 0; µ > 0 r = p∗ n >
p(p−1)(q−s)+p2

p+(p−1)(q−p) One positive

2 ≤ p < q < p∗(s) — — n > p(p−1)(q−s)+p
1+(p−1)(q−p) Two

p ≤ q = p∗(s) λ > 0, µ > 0 r = p∗ n > p None

2. A Pohozaev-type identity

In this section, we start by identifying the constraints on the problem of existence
of solutions for (Pλ,µ). Here is the main result.

Theorem 2.1. If Ω is a star-shaped domain in Rn, then problem (Pλ,µ) has no
solution in the doubly critical case: That is, for r = p∗ and q = p∗(s) = n−s

n−pp, the
problem (Pλ,µ) has no non-trivial solution.

Assume Ω is a star-shaped domain. Then, if we let v denote the outwards
normal to ∂Ω, then 〈x, v〉 > 0 on ∂Ω. We assume we have the necessary regularity
in the following operations; otherwise, we can use an approximation argument as
in Guedda and Veron [20].

Multiplying the equation (Pλ,µ) by 〈x, ∇u〉 on both sides and integrate by parts,
we get

p− 1
p

∫
∂Ω

|∇u|p〈x, v〉dx +
n− p
p

∫
Ω

|∇u|pdx = µ
n− s
q

∫
Ω

|u|q
|x|s dx+ λ

n

r

∫
Ω

|u|rdx.
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On the other hand, multiplying the equation by u and integrating, we get∫
Ω

|∇u|p = µ

∫
Ω

|u|q
|x|s dx + λ

∫
Ω

|u|rdx.

Putting the two identities together, we have

p− 1
p

∫
∂Ω

|∇u|p〈x, v〉dσ = µ(
n− s
q
− n− p

p
)
∫

Ω

|u|q
|x|s dx+ λ(

n

r
− n− p

p
)
∫

Ω

|u|r.

So if r = np
n−p = p∗ and q = n−s

n−pp, the problem has no non-trivial solution.

3. The extremal functions in the Hardy-Sobolev inequalities

In this section, we summarize the needed results concerning the Hardy-Sobolev
inequalities. We first recall the Hardy inequality.

Lemma 3.1 ([13]). Assume that 1 < p < n and u ∈ H1,p(Rn). Then:
(1) u

|x| ∈ Lp(Rn).

(2) (Hardy Inequality)
∫
Rn

|u|p
|x|p dx ≤ Cn,p

∫
Rn |∇u|pdx, where Cn,p = ( p

n−p )p.
(3) The constant Cn,p is optimal.

The following extension of the Hardy and Sobolev inequalities is essentially due
to Caffarelli, Kohn and Nirenberg[8].

Lemma 3.2 (Sobolev-Hardy Inequality). Assume that 1 < p < n and that p ≤
q ≤ p∗(s) := n−s

n−pp. Then:

(1) There exists a constant C > 0 such that for any u ∈ Hp
0 (Ω),

(
∫

Ω

|u|q
|x|s )p dx ≤ C(

∫
Ω

|∇u|p)q dx.

(2) The map u→ u
xs/q

from Hp
0 (Ω) into Lq(Ω) is compact provided q < p∗(s).

Proof. (1) For s = 0 or s = p, this is just the Sobolev (resp., the Hardy) inequality.
Since p∗(s) ≥ p, we have 0 ≤ s ≤ p. We can therefore only consider the case where
0 < s < p . By the Hardy, Sobolev and Hölder inequalities, we have∫

Rn

|u|p∗(s)
|x|s =

∫
Rn

|u|s
|x|s · |u|

p∗(s)−s

≤ (
∫

Rn

| |u|
p

|x|p )
s
p (
∫

Rn

|u|(p
∗(s)−s) p

p−s )
p−s
p

= (
∫

Rn

| |u|
p

|x|p )
s
p (
∫

Rn

|u|p∗)
p−s
p

≤ C1(
∫

Rn

|∇u|p) sp (
∫

Rn

|∇u|p)
p∗
p ·

p−s
p

= C1(
∫

Rn

|∇u|p)
n−s
n−p .

Remark 3.1. If Ω is the whole space, one can show that the conditions p ≤ q =
p∗(s) := n−s

n−pp are also necessary for the above inequality to hold. Indeed, a stan-
dard scaling argument shows that q must be equal to p∗(s). On the other hand,
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if we insert into the inequality the following function (ρ and θ ∈ Sn−1 being the
polar coordinates),

u(x) =


0 for |x| ≥ 1,

|x|
p−n
p log 1

|x| for ε ≤ |x| < 1,

ε
p−n
p log 1

ε for |x| ≤ ε,
and

du(x)
dρ

=


0, |x| ≥ 1,
0, |x| ≤ ε,
(1− n

p )ρ−
n
p log 1

ρ − ρ
−np , ε ≤ |x| < 1,

we get ∫
Rn

|∇u|p ∼
∫ 1

ε

ρ−1(1 + (
n

p
− 1) log

1
ρ

)pdρ.

By L’Hospital’s rule, we have

lim
ε→0

∫ 1

ε
ρ−1(1 + (np − 1) log 1

ρ )pdρ

log1+p 1
ε

=
n
p − 1

1 + p
,

and also ∫
Rn

|u|q
|x|s ∼

∫ 1

ε

ρ−s logq
1
ρ
ρ
p−n
p qρn−1 =

∫ 1

ε

1
ρ

logq
1
ρ
∼ log1+q 1

ε
.

Thus from the inequality

log1+ 1
q

1
ε
≤ log1+ 1

p
1
ε
,

we get that q ≥ p.

The following is an extension of what is well known in the case p = 2 and s = 0.

Theorem 3.1. Suppose 1 < p < n, 0 ≤ s < p and q = p∗(s). Then the following
hold:

(1) µs(Ω) is independent of Ω (and will henceforth be denoted by µs).
(2) µs is attained when Ω = Rn by the functions

ya(x) = (a · (n− s)(n− p
p− 1

)p−1)
n−p
p(p−s) (a+ |x|

p−s
p−1 )

p−n
p−s

for some a > 0. Moreover the functions ya are the only positive radial solu-
tions of

−div(|∇u|p−2∇u) =
up
∗(s)−1

|x|s
in Rn. Hence,

µs(
∫

Rn

|ya|q
|x|s )

p
q = ‖∇ya‖pp =

∫
Rn

|ya|q
|x|s = µ

n−s
p−s
s .

Proof. We prove (2). We show the best constants are attained at functions

us(x) = c(λ0 + |x|
p−s
p−1 )−

n−p
p−s (0 ≤ s < p), where λ0 > 0 is a constant.

For any f , let f∗ be its Schwarz symmetrization (or rearrangement) [21]. Then we
have ∫

Rn

|∇f∗|p ≤
∫

Rn

|∇f |p and
∫

Rn

|f∗|q
|x|t ≥

∫
Rn

|f |q
|x|t ,
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assuming the above integrals are well defined (refer to Lieb [21], [22]). By these
inequalities, we may restrict our discussion to radial symmetric functions. Thus we
may consider the following variational problem:

Maximize I(g) =
∫ ∞

0

|g(r)|qrn−s−1dr, when J(g) =
∫ ∞

0

|g′(r)|prn−1dr = C.

where C is a given constant. The Euler-Lagrange equation is

(rn−1|u′(r)|p−2u′(r))r + krn−s−1|u|q−1 = 0.(∗)

It can be easily verified that the functions

us(x) = (λ+ |x|
p−s
p−1 )−

n−p
p−s (0 ≤ s < p)

are solutions of (∗), where λ > 0. To continue, we need the following lemma of
Bliss ([1], [2]).

Lemma 3.3. Let h(x) ≥ 0 be a measurable, real-valued function defined on R
such that the integral J0 =

∫∞
0
hp0(x)dx is finite and given. Set g(x) =

∫ x
0
h(t)dt.

Then I0 =
∫∞

0
gq0(x)xα−q0dx attains its maximum value at the functions h(x) =

(λxα + 1)−
α+1
α , with p0 and q0 two constants satisfying q0 > p0 > 1, α = q0

p0
− 1,

and λ > 0, a real number.

By this lemma and with the change of variables x = r
p−n
p−1 we can deduce that

I(·) attains its maximum at the functions

us(x) = (λ+ |x|
p−s
p−1 )−

n−p
p−s (0 ≤ s < p).

Note that if

h(x) = (λxα + 1)−
α+1
α ,

then

g(x) =
∫ x

0

h(t)dt = (λ+ x−α)−
1
α .

And if q = n−s
n−pp, then α = q

p − 1 = p−s
n−p . The theorem is thus proved.

Remark 3.2. As expected, the compactness of the embedding u→ u
xs/q

in Lemma
3.2.(2) above does not hold when q = p∗(s). Indeed, let

fk(x) = (
1
k

)
n−p
p(p−s) (

1
k

+ |x|
p−s
p−1 )

p−n
p−s ,

and set ‖∇fk(x)‖pp = A and
∫

Ω
|fk(x)|p

∗(s)

|x|s dx = C. Let

hk(x) = fk(x) − (
1
k

)
n−p
p(p−s) (

1
k

+ 1)
p−n
p−s

for |x| ≤ 1, so that hk(x) ∈ H1,p
0 (B) and ‖hk‖H1,p

0 (Ω) → A
1
p . Hence {hk} is bounded

in H1,p
0 (Ω) and ‖ hk

|x|s/p∗(s) ‖Lp∗(s) → C1/p∗(s). Now, hk(x) → 0 for |x| 6= 0 and 0 is

the only possible cluster point of { hk
|x|s/p∗(s) } in Lp

∗(s)(Ω), which is impossible since
C 6= 0.
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4. The compactness lemmas

This section deals with the compactness properties of the functional

Eλ,µ(u) =
1
p

∫
Ω

|∇u|pdx− λ

r

∫
Ω

|u|rdx − µ

q

∫
Ω

|u|q
|x|s dx.

We recall the following standard definition.

Definition 4.1. A C1-functional E on Banach space X satisfies the Palais-Smale
condition at the level c (in short (PS)c), if every sequence (un)n satisfying limnE(un)
= c and limn ‖E′(un)‖ = 0 has a convergent subsequence.

Define the following function:

L(µ, s) =


p−s

p(n−s) (µ
n−s
s

µn−p )
1
p−s if s < p,

+∞ if s = p and µ < µp,
0 if s = p and µ ≥ µp.

Theorem 4.1. Assume 0 ≤ s ≤ p < n, p ≤ q ≤ p∗(s) and p ≤ r ≤ p∗.
(1) If p ≤ q < p∗(s) and r < p∗, then for any λ > 0 and any µ > 0, the functional

Eλ,µ satisfies (PS)c for all c.
(2) If p ≤ q = p∗(s) and r < p∗, then for any λ > 0 and any µ > 0, the functional

Eλ,µ satisfies (PS)c for all c < L(µ, s).
(3) If p ≤ q < p∗(s) and r = p∗, then for any λ > 0 and any µ > 0, the functional

Eλ,µ satisfies (PS)c for all c < L(λ, 0) = 1
n ( µn0

λn−p )
1
p .

Note that statement 2 above yields that Eλ,µ also satisfies (PS)c for all c when
p = q = q∗(s) (i.e., when s = p) as long as µ < µp. This solves a problem in [13]
and [25], where only a certain singular Palais-Smale condition is established. On
the other hand, when µ = 1, p = 2 and s = 0, we recover the (by now well known)
restricted compactness properties that appears in Yamabe-type problems, [4].

We first recall a few known results.

Lemma 4.1 ([25]). Let x, y ∈ Rn, and let 〈·, ·〉e be the standard scalar product in
Rn. Then

〈|x|p−2x− |y|p−2y, x− y〉e ≥
{

Cp|x− y|p, if p ≥ 2,
Cp

|x−y|2
(|x|+|y|)2−p , if 1 < p < 2.

The following result of Brezis and Lieb ([4]) will be useful in the sequel.

Lemma 4.2. Suppose fn → f a.e. and ‖fn‖p ≤ C < ∞ for all n and for some
0 < p <∞. Then

lim
n→∞

{‖fn‖pp − ‖fn − f‖pp} = ‖f‖pp.

Lemma 4.3. Let (un)n be a bounded sequence in H1,p
0 (Ω) and let (qn)n be a se-

quence such that p < qn ≤ p∗(s), qn → p∗(s) as n → ∞. Then there exists a
subsequence (without loss of generality still denoted by (un)n) such that :

(1) un → u weakly in H1,p
0 (Ω).

(2) un → u in Lr(Ω) if 1 < r < p∗ = np
n−p .

(3) un → u almost everywhere.
(4) un

x →
u
x weakly in Lp(Ω).
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(5) For any f ∈ H1,p
0 (Ω),∫

Ω

|un|qn−2un
|x|sn f →

∫
Ω

|u|p∗(s)−2u

|x|s f.

(6) If p ≥ 2, then ∫
Ω

|un|qn ≤
∫

Ω

|u|qn +
∫

Ω

|un − u|qn + o(1).

(7) ∫
Ω

|un − u|p
∗(s)

|x|s =
∫

Ω

|un|p
∗(s)

|x|s −
∫

Ω

|u|p∗(s)
|x|s + o(1).

Proof. These are standard applications of the Hardy-Sobolev embedding theorem
and the Brezis-Lieb result. We just give the proofs of (5) and (6). Without loss of
generality, we may assume that qn < p∗(s). For (5), it is clear that

|un|qn−2un

|x|s
qn−1
qn

→ |u|
p∗(s)−2u

|x|s
p∗(s)−1
p∗(s)

a.e.,

and that the integral∫
Ω

| |un|
qn−1

|x|s(1−
1

p∗(s) )
|
p∗(s)
p∗(s)−1 =

∫
Ω

|un|p
∗(s) qn−1

p∗(s)−1

|x|s
qn−1
p∗(s)−1

· 1

|x|s(1−
qn−1
p∗(s)−1 )

≤ (
∫

Ω

|un|p
∗(s)

|x|s )
qn−1
p∗(s)−1 · (

∫
Ω

1
|x|s )

p∗(s)−qn
p∗(s)−1

is uniformly bounded in n. Since f/|x|
s

p∗(s) ∈ Lp∗(s)(Ω) for any f ∈ H1,p
0 (Ω), the

conclusion follows.

In order to prove (6), we need the following easy lemma.

Calculus Lemma. For every 1 ≤ q ≤ 3, there exists a constant C (depending on
q) such that for α, β ∈ R we have

| |α+ β|q − |α|q − |β|q − qαβ(|α|q−2 + |β|q−2) | ≤
{
C|α||β|q−1 if |α| ≥ |β|,
C|α|q−1|β| if |α| ≤ |β|.

For q ≥ 3, there exists a constant C (depending on q) such that for α, β ∈ R we
have

| |α+ β|q − |α|q − |β|q − qαβ(|α|q−2 + |β|q−2) | ≤ C(|α|q−2β2 + α2|β|q−2).

From this inequality, we can actually deduce the following more convenient result
for any q ≥ 1:

| |α+ β|q − |α|q − |β|q − qαβ(|α|q−2 + |β|q−2) |≤ 2C(|α|q−1β + α|β|q−1).

Now, back to the proof of (6). Let wn = un−u; then wn → 0 weakly in H1,p
0 (Ω).

By the above calculus lemma,

|un|qn
|x|s =

|wn + u|qn
|x|s ≤ |wn|

qn

|x|s +
|u|qn
|x|s + C1

|u||wn|qn−1

|x|s + C2
|wn||u|qn−1

|x|s .

In view of (5), we only need to show that

lim
n

∫
Ω

|wn||u|qn−1

|x|s = lim
n

∫
Ω

|wn||u|qn−2

|x|s(1−
1

p∗(s) )
· |u|
|x|

s
p∗(s)

= 0.
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For that, we check that∫
Ω

(
|wn||u|qn−2

|x|s(1−
1

p∗(s) )
)

p∗(s)
p∗(s)−1 =

∫
Ω

|wn|
p∗(s)
p∗(s)−1

|x|s
1

p∗(s)−1
· |u|

qn−2
p∗(s)−1 p

∗(s)

|x|s
qn−2
p∗(s)−1

· 1

|x|s
p∗(s)−qn
p∗(s)−1

≤ (
∫

Ω

|un|p
∗(s)

|x|s )
1

p∗(s)−1 (
∫

Ω

|u|p∗(s)
|x|s )

qn−2
p∗(s)−1 (

∫
Ω

1
|x|s )

p∗(s)−qn
p∗(s)−1 .

Hence it is uniformly bounded in n, and the claim follows.

Lemma 4.4. Let En(u) = 1
p

∫
Ω
|∇u|pdx − µ

qn

∫
Ω
|u|qn
|x|s dx −

λ
r

∫
Ω
|u|rdx (λ > 0, µ >

0), where qn satisfy the conditions in the previous lemma and 1 < p ≤ r < p∗.
Assume the sequence {un} satisfies En(un)→ c, E′n(un)→ 0. Then, there exists a
subsequence, still denoted by {un}, such that for some u ∈ H1,p

0 (Ω):

(1) un → u weakly in u ∈ H1,p
0 (Ω).

(2) ∇un → ∇u a.e.
(3)

∫
Ω
|∇un −∇u|p =

∫
Ω
|∇un|p −

∫
Ω
|∇u|p + o(1).

(4) |∇um|p−2∇um → |∇u|p−2∇u weakly in [L
p
p−1 (Ω)]n.

Proof. Since

lim
n
En(un) = c and lim

n
E′n(un) = 0,

and

〈E′n(un), un〉 =
∫

Ω

|∇un|p − µ
∫

Ω

|un|qn
|x|s − λ

∫
Ω

|un|r,

we have

o(1)(1 + ‖un‖) + p|c| ≥ pEn(un)− 〈E′n(un), un〉

=


µ(1− p

qn
)
∫

Ω

|u|qn
|x|s dx+ λ(1 − p

r
)
∫

Ω

|un|rdx, r > p,

(1− p
qn

)
∫

Ω

|u|qn
|x|s dx, r = p.

Since Ω is bounded, we have∫
Ω

|un|p =
∫

Ω

|un|p
|x|ps/qn · |x|

ps/qndx ≤M(
∫

Ω

|un|qn
|x|s )p/qn ,

and

‖∇un‖pp = pEn(un) + µ
p

qn

∫
Ω

|un|qn
|x|s dx+ λ

p

r

∫
Ω

|un|rdx.

We conclude that {un} is a bounded sequence in H1,p
0 (Ω).

We therefore can assume that {un} satisfies all of the conclusions in Lemma
4.3. Now we use a technique initiated by Boccardo and Murat and already used by
Garcia and Peral in a related context.

Define the functions

τk(s) =
{
s if |s| ≤ k,
ks/|s| if |s| ≥ k.
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We may assume also that τk(un − u)→ 0 weakly in H1,p
0 (Ω) for any fixed positive

k, since τk(un − u)→ 0 a.e. and it is bounded. Then from the assumption we get

o(1) = 〈E′n(un)− (Epλ)′(u), τk(un − u)〉+ o(1)

=
∫

Ω

〈|∇un|p−2∇un − |∇u|p−2∇u,∇τk(un − u)〉e

−λ
∫

Ω

(
|un|qn−2

|x|s un −
|u|p∗(s)−2

|x|s u)τk(un − u).

Since
|un|qn−2

|x|s un →
|u|p∗(s)−2

|x|s u

in the weak star topology of H−1,p′(Ω) (by Lemma 4.3), we have

|
∫

Ω

(
|un|qn−2

|x|s un −
|u|p∗(s)−2

|x|s u)τk(un − u)| ≤ Ck,

and

lim sup
n→∞

∫
Ω

〈|∇un|p−2∇un − |∇u|p−2∇u,∇τk(un − u)〉edx ≤ Ck.

Let en(x) = 〈|∇un|p−2∇un−|∇u|p−2∇u, ∇τk(un−u)〉e; then en(x) ≥ 0 by Lemma
3.1, and is uniformly bounded in L1(Ω). Take 0 < θ < 1 and split Ω into

Skn = {x ∈ Ω| |un − u| ≤ k}, Gkn = {x ∈ Ω| |un − u| > k}.

Then ∫
Ω

eθndx =
∫
Skn

eθndx+
∫
Gkn

eθndx

≤ (
∫
Skn

endx)θ|Skn|1−θ + (
∫
Gkn

endx)θ|Gkn|1−θ.

Now, for fixed k, |Gkn| → 0 as n→∞, and from the uniform boundedness in L1 we
get

lim sup
n

∫
Ω

eθndx ≤ (Ck)θ|Ω|1−θ.

Letting k → 0, we get that eθn → 0 strongly in L1. By Lemma 4.1,

∇un → ∇u in Lq

for 1 < q < p. By passing to a subsequence, we have

∇un → ∇u a.e.

Thus (1) holds. As for (2), just apply Lemma 4.2. The proof of this lemma is thus
complete.

Proof of Theorem 4.1.(1): If p ≤ q < p∗(s) and r < p∗, it is standard to show that
the compactness of the Hardy-Sobolev embedding and of the Sobolev embedding
imply that for any λ > 0 and any µ > 0, the functional Eλ,µ satisfies (PS)c for all
c.
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Proof of Theorem 4.1.(2): Recall that

L(µ, s) =


p− s

p(n− s) (
µn−ss

µn−p
)

1
p−s if s < p,

+∞ if s = p and µ < µs,
0 if s = p and µ ≥ µs,

and assume that p ≤ q = p∗(s) and r < p∗. We need to show that

Eλ,µ(u) =
1
p

∫
Ω

|∇u|pdx − µ

p∗(s)

∫
Ω

|u|p∗(s)
|x|s − λ

r

∫
Ω

|u|rdx

satisfies the Palais-Smale condition at any energy level less than L(µ, s).
For that, assume {un} is a sequence in H1,p

0 (Ω) satisfying

Eλ,µ(un)→ c < L(µ, s) and E′λ,µ(un)→ 0.

By Lemma 4.4, we may assume that {un} satisfies the conclusions of both Lemma
4.2 and Lemma 4.3. For any v ∈ C∞0 (Ω),

〈E′λ,µ(un), v〉 =
∫

Ω

(〈|∇un|p−2∇un, ∇v〉 − λ|un|r−2unv − µ
|un|p

∗(s)−2un
|x|s v)dx,

which converges as n→∞ to

0 =
∫

Ω

(〈|∇u|p−2∇u, ∇v〉 − λ|u|r−2uv − µ |u|
p∗(s)−2u

|x|s v)dx = 〈E′λ,µ(u), v〉.

Hence u ∈ H1,p
0 (Ω) is a weak solution of (Pλ, µ). Choosing v = u, we have

0 = 〈E′λ,µ(u), u〉 =
∫

Ω

(|∇u|p − λ|u|r − µ |u|
p∗(s)

|x|s )dx,

and thus

Eλ,µ(u) = λ(
1
p
− 1
r

)
∫

Ω

|u|r + µ(
1
p
− 1
p∗(s)

)
∫

Ω

|u|p∗(s)
|x|s dx ≥ 0.

By Lemmas 4.3 and 4.4, we have

Eλ,µ(un) = Eλ,µ(u) + E0,µ(un − u) + o(1)

and

o(1) = 〈E′λ,µ(un), un − u〉 = 〈E′λ,µ(un)− E′λ,µ(u), un − u〉

=
∫

Ω

(|∇un −∇u|p − µ
|un − u|p

∗(s)

|x|s ) + o(1).

If s = p = p∗(s) and µ < µp, then

o(1) =
∫

Ω

(|∇un −∇u|p − µ
|un − u|p
|x|p ) + o(1) ≤ (1− µ

µp
)
∫

Ω

(|∇un −∇u|p + o(1);

that is, un → u strongly.
If s < p (i.e., p < p∗(s)), we have, for large n,

E0,µ(un − u) = Eλ,µ(un)− Eλ,µ(u) + o(1)
≤ Eλ,µ(un) + o(1) ≤ c < L(µ, s).

Thus, for such n,

(
1
p
− 1
p∗(s)

)‖∇un −∇u‖p ≤ c <
p− s

p(n− s)µ
n−s
p−s
s (

1
µ

)
n−p
p−s .
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By the Sobolev-Hardy inequality, we finally get

o(1) =
∫

Ω

(|∇un −∇u|p − µ
|un − u|p

∗(s)

|x|s )dx

≥
∫

Ω

|∇un −∇u|p − µµ
− p
∗(s)
p

s (
∫

Ω

|∇un −∇u|p)
p∗(s)
p

= (
∫

Ω

|∇un −∇u|p)[1− µµ
− p
∗(s)
p

s (
∫

Ω

|∇un −∇u|p)
p∗(s)−p

p ]

≥ C

∫
Ω

|∇un −∇u|p dx.

So again un → u in H1,p
0 (Ω) strongly.

Proof of Theorem 4.1.(3): Suppose now that p ≤ q < p∗(s) and r = p∗; then we
have compactness in the singular term but we will be dealing with a non-singular
term involving the critical Sobolev exponent. We have again

E0(un − u) = Eλ,µ(un)− Eλ,µ(u) + o(1)

≤ Eλ,µ(un) + o(1) ≤ c < L(λ, 0) =
1
n
µ
n
p

0 (
1
λ

)
n−p
p

Thus, for such n,

(
1
p
− 1
p∗

)‖∇un −∇u‖p ≤ c <
1
n
µ
n
p

0 (
1
λ

)
n−p
p ,

so that this time we get, from the Sobolev inequality,

o(1) = 〈E′λ,µ(un), un − u〉 = 〈E′λ,µ(un)− E′λ,µ(u), un − u〉

=
∫

Ω

(|∇un −∇u|p − λ
∫

Ω

|un − u|p
∗
) + o(1)

= (
∫

Ω

|∇un −∇u|p)[1− λµ
−p∗
p

0 (
∫

Ω

|∇un −∇u|p)
p∗
p −1] + o(1)

≥ C
∫

Ω

|∇un −∇u|p dx.

So again un → u in H1,p
0 (Ω) strongly.

5. Min-max principles and dual sets associated to Eλ,µ

For Banach spacesX and Y , we use C(X,Y ) to denote the space of all continuous
maps from X to Y .

Definition 5.1. Let X be a Banach space and B be a closed subset of X . We say
that a class F of compact subsets of X is a homotopy-stable family with boundary
B provided that

(1) every set in F contains B, and
(2) for any set A in F and any η ∈ C([0, 1]×X ;X) satisfying η(t, x) = x for all

(t, x) in ({0} ×X) ∪ ([0, 1]×B) we have that η({1} ×A) ∈ F .

We say that the class F is Z2-homotopy stable if all sets in F are symmetric and
if we only require stability under odd homotopies η (i.e., η(t,−x) = −η(t, x)).
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We say that a closed set M is dual to the family F if

M ∩B = ∅ and M ∩A 6= ∅ for all A ∈ F .

We shall need the following weakened version of the Palais-Smale condition.

Definition 5.2. A C1-functional E on Banach space X satisfies the Palais-Smale
condition at level c and around the set M (in short, (PS)M,c), if every sequence
(un)n satisfying limnE(un) = c, limn ‖E′(un)‖ = 0 and limn dist(un,M) = 0 has a
convergent subsequence.

The following theorem of Ghoussoub [17] will be frequently used in the sequel.

Theorem 5.1. Let E be a C1-functional on X and consider a homotopy stable
family F of compact subsets of X with a closed boundary B. Let M be a dual set
to F such that

inf
x∈M

E(x) = c := c(E,F) = inf
A∈F

max
x∈A

E(x).

If E satisfies (PS)M,c, then M ∩Kc 6= ∅, where Kc is the set of all critical points
of E at level c.

If F is only Z2-homotopy stable, then the result still holds true as long as the
functional E is even and the dual set M is symmetric.

Note that the above theorem includes the classical min-max principle which holds
under the assumption that supx∈B E(x) < c. It is enough to notice that in that
case M = {x ∈ X ;E(x) ≥ c} is a dual set.

Consider again the functional

Eλ,µ(u) =
1
p

∫
Ω

|∇u|pdx− λ

r

∫
Ω

|u|rdx − µ

q

∫
Ω

|u|q
|x|s dx.

Recall that we assume that 1 < p < n, 0 ≤ s ≤ p, 0 ≤ q ≤ p∗(s) ≡ n−s
n−pp and that

p ≤ r ≤ p∗ ≡ np
n−p , so that E is a C1-functional on the Sobolev space H1,p

0 (Ω).

A first dual set: Define the Mountain Pass class to be

F1 = {γ ∈ C([0, 1];H1,p
0 (Ω)); γ(0) = 0, γ(1) 6= 0 and E(γ(1)) ≤ 0},

which is clearly homotopy-stable with boundary B = {E ≤ 0}. Let

M1 = {u ∈ H1,p
0 (Ω);u 6= 0, 〈E′(u), u〉 = 0}.

The following Nehari-type duality property is by now standard.

Theorem 5.2. Assume p ≤ q ≤ p∗(s) and one of the following cases:
(1) p = r, p < q and 0 < λ < λ1, µ > 0.
(2) p < r ≤ p∗, p = q and 0 < µ < µs,p, λ > 0.
(3) p < r ≤ p∗, p < q and µ > 0, λ > 0.

The set M1 is then closed, is dual to F1 and satisfies

inf
M1

Eλ,µ = c1 := c(Eλ,µ,F1)

Proof. By definition,

〈E′λ,µ(u), u〉 =
∫

Ω

(|∇u|p − λ|u|r − µ |u|
q

|x|s )dx.
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Note that B ∩M1 = ∅, since for every u ∈M1 we have

Eλ,µ(u) = λ(
1
p
− 1
r

)
∫

Ω

|u|rdx+ µ(
1
p
− 1
q

)
∫

Ω

|u|q
|x|s dx > 0,

under the assumption that either r or q is different from p. We also show that
under this assumption, we have the estimate c1 ≤ infu∈M1 Eλ,µ(u).

Let u 6= 0 in M1, and consider the straight path γ(t) = tu. We have

Eλ,µ(tu) =
tp

p

∫
Ω

|∇u|p − λtr

r

∫
Ω

|u|r − µt
q

q

∫
Ω

|u|q
|x|s .

Since limt→∞Eλ,µ(tu) = −∞, we have that c1 ≤ sup0≤t<∞Eλ,µ(tu) = Eλ(t0u).
From

dEλ,µ(tu)
dt

= tp−1

∫
Ω

|∇u|p − λtr−1

∫
Ω

|u|r − µtq−1

∫
Ω

|u|q
|x|s

and dEλ,µ(tu)
dt (t0) = 0, we get∫

Ω

|∇u|p = tr−p0 · λ
∫

Ω

|u|r + µtq−p0

∫
Ω

|u|q
|x|s .

Since u ∈M1, we should have∫
Ω

|∇u|p = λ

∫
Ω

|u|r + µ

∫
Ω

|u|q
|x|s .

Thus, t0 must be equal to 1 as long as either r or q is distinct from p. This clearly
shows that under any of the 3 conditions above, we have

c1 ≤ inf
u∈M1

Eλ,µ(u).

For the rest, we have to distinguish the 3 cases.

Case (1). 2 ≤ p = r, p < q and 0 < λ < λ1.

To prove that M1 is closed, use the Sobolev-Hardy inequality and the definition
of λ1 to find a constant c > 0 such that

〈E′λ,µ(u), u〉 = (1 − λ

λ1
)‖u‖p

H1,p
0 (Ω)

− c‖u‖q
H1,p

0 (Ω)

= ‖u‖p
H1,p

0 (Ω)
(1 − λ

λ1
− c‖u‖q−p

H1,p
0 (Ω)

).

Choose some β > 0 such that if ‖u‖ < β, then 1 − λ
λ1
− c‖u‖q−p

H1,p
0 (Ω)

> 0. This
means that we can find some constant β > 0 such that for any u ∈ M1, we have
‖u‖ ≥ β. So M1 is closed.

To prove the intersection property, fix γ ∈ F1 joining 0 to υ, where υ 6= 0 and
Eλ,µ(υ) ≤ 0. Note that since λ < λ1, we have 〈E′λ,µ(γ(t)), γ(t)〉 > 0 for t close to 0
(same proof as for the closedness of M1). On the other hand, since υ 6= 0, we have

〈E′λ,µ(υ), υ〉 < pEλ,µ(υ) ≤ 0.

It follows from the intermediate value theorem that there exists t0 such that γ(t0) ∈
M1. This proves the duality, and consequently c1 ≥ inf{Eλ,µ(u) : u ∈M1}.

Case (2). 1 < p < r ≤ p∗, p = q ≤ p∗(s) and 0 < µ < µs,q.
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To prove that M1 is closed, use the Sobolev-Hardy inequality with its best con-
stant µs,p and the Sobolev inequality to get

〈E′λ,µ(u), u〉 =
∫

Ω

|∇u|p − λ
∫

Ω

|u|r − µ
∫

Ω

|u|q
|x|s

≥
∫

Ω

|∇u|p − c(
∫

Ω

|∇u|p) rp − µ

µs,q

∫
Ω

|∇u|p

= (1− µ

µs,q
)‖u‖p

H1,p
0 (Ω)

− c‖u‖r
H1,p

0 (Ω)

= ‖u‖p
H1,p

0 (Ω)
(1− µ

µs,q
− c‖u‖r−p

H1,p
0 (Ω)

).

Choose some β > 0 such that if ‖u‖ < β, then 1 − µ
µs,q
− c‖u‖r−p

H1,p
0 (Ω)

> 0. This
means that we can find some constant β > 0 such that for any u ∈ M1, we have
‖u‖ ≥ β. So M1 is closed.

To prove the intersection property, fix γ ∈ F1 joining 0 to υ, where υ 6= 0 and
Eλ,µ(υ) ≤ 0. Note that since µ < µs,q, we have 〈E′λ,µ(γ(t)), γ(t)〉 > 0 for t close to
0 (same proof as for the closedness of M1). On the other hand, since υ 6= 0, we have
〈E′λ,µ(υ), υ〉 < pEλ,µ(υ) ≤ 0. It follows from the intermediate value theorem that
there exists t0 such that γ(t0) ∈ M1. This proves the duality, and consequently
c1 ≥ inf{Eλ,µ(u) : u ∈M1}.

Case (3). 2 ≤ p < r ≤ p∗ and λ > 0.

To prove that M1 is closed, again use the Sobolev-Hardy inequality and the
Sobolev embedding to find constants c′ > 0, c′′ > 0 such that

〈E′λ,µ(u), u〉 ≥ ‖u‖p − c′λ‖u‖r − c′′‖u‖q

= ‖u‖p(1− c′λ‖u‖r−p − c′′‖u‖q−p).
Since both r and q are distinct from p, we may choose γ > 0 such that for any
u ∈ Hp,1

0 (Ω) with ‖u‖ < γ, we have 1 − c1λ‖u‖r−p − c2‖u‖q−p > 0. This means
that ‖u‖ ≥ γ for any u ∈M1; hence M1 is closed.

For the intersection property, consider any γ ∈ F1 joining 0 and v. Since p < r,
again the proof above of the closedness of M1 yields that 〈Eλ,µ(γ(t)), γ(t)〉 > 0 for
t close to 0. Also since υ 6= 0, we have

〈E′λ,µ(υ), v〉 < pEλ,µ(υ) 6= 0.

Then again, by the intermediate value theorem, we conclude that there exists t0
such that γ(t0) ∈M1. This proves the duality and the inequality

c1 ≥ inf{Eλ,µ(u), u ∈M1}.

Another dual set: Denote by Sρ the sphere Sρ = {u ∈ H1,p
0 (Ω); ‖u‖H1,p

0 (Ω) = ρ}
and by H the set

H = {h : H1,p
0 (Ω)→ H1,p

0 (Ω) an odd homeomorphism}.
Let γZ2 denote the Krasnoselskii genus, defined for every closed symmetric subset
D of H1,p

0 (Ω) as

γZ2(D) = inf{n; there exists an odd and continuous map h : D → Rn \ {0}},

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5718 N. GHOUSSOUB AND C. YUAN

and consider the class

F2 = {A;A closed symmetric with γZ2(h(A) ∩ Sρ) ≥ 2, ∀h ∈ H}.
It is easy to verify that F2 is a Z2-homotopy stable class. Let

c2 = inf
A∈F2

sup
A
Eλ,µ.

We shall now consider an appropriate dual set to F2. First, we recall a few facts
about the following weighted eigenvalue problem (1 < p <∞):{

−4pu = λb(x)|u|p−2u,

u ∈ H1,p
0 (Ω), u 6= 0.

(∗)

We will say that λ ∈ R is the eigenvalue and u ∈ H1,p
0 (Ω), u 6= 0, is the corre-

sponding eigenfunction of the above problem if the equality∫
Ω

|∇u|p−2∇u∇ϕdx = λ

∫
Ω

b(x)|u|p−2uϕdx

holds for any ϕ ∈ H1,p
0 (Ω). The following lemma is well known.

Lemma 5.1 ([25] [11]). Assume b(x) ≥ 0, b(x) ∈ Lt(Ω), and |{x ∈ Ω : b(x) > 0}|
6= 0, where t ≥ 1 if p > n, t > 1 if p = n and t > n

p > 1 otherwise. Let
λ0 = inf{

∫
Ω
|∇v|p;

∫
Ω
b(x)|v|p = 1}. Then:

(1) λ0 > 0 is the first eigenvalue of the problem (∗).
(2) λ0 is simple, and there exists precisely one pair of normalized eigenfunctions

corresponding to λ0 which do not change sign in Ω. Here, v being normalized
means that

∫
Ω
b(x)|v|p = 1.

We use the lemma to prove the following fact:

Lemma 5.2. For 2 ≤ p ≤ r < p∗, p ≤ q < p∗(s), λ > 0, µ > 0 and any u ∈
H1,p

0 (Ω), u 6= 0, there exists a unique v = v(u) ∈ H1,p
0 (Ω) such that

(a)
∫

Ω
(λ|u|r−p + µ |u|

q−p

|x|s )vp = 1, υ ≥ 0;

(b) ‖∇v‖pp = inf{‖∇ω‖pp :
∫

Ω(λ|u|r−p + µ |u|
q−p

|x|s )|ω|p = 1}.

Furthermore, the map u→ v(u) is continuous from Lr(Ω)→ H1,p
0 (Ω).

Remark 5.1. It is quite unfortunate that the above lemma is not applicable –unless
p = 2– whenever r = p∗ or when q = p∗(s). This will create additional complica-
tions in the search for a second solution of the critical problems.

Proof. Since np∗

sp∗+(q−p)n > n
p , choose n

p < t < np∗

sp∗+(q−p)n ; then st p∗

p∗−(q−p)t < n.
Because ∫

Ω

|u|(q−p)t
|x|st ≤ (

∫
Ω

|u|p
∗
)
t(q−p)
p∗ (

∫
Ω

1

|x|st·
p∗

p∗−(q−p)t

)
p∗−(q−p)t

p∗ ,

we get that |u|q−p/|x|s ∈ Lt(Ω).
The functional ψ(u) = ‖u‖p =

∫
Ω |∇u|

pdx is clearly weakly lower semicontinuous
and coercive. Moreover, the constraint set

C = {ω ∈ H :
∫

Ω

(λ|u|r−p + µ
|u|q−p
|x|s )|ω|pdx = 1}
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is weakly closed in H1,p
0 (Ω) and ψ(·) is bounded below on C. Therefore, by the

direct methods of the calculus of variations (Struwe [26], p. 4), the infimum in (b)
is achieved and this infimum is the first eigenvalue of (∗) and thus is simple. Any
function where such an infimum is achieved is the eigenfunction corresponding to
the first eigenvalue of (∗). By Lemma 5.1, it cannot changes sign in Ω. This gives
the uniqueness of v(u) and therefore its continuity for non-zero u.

Note that (ν1(u), v(u)) corresponds to the first eigenpair of the (weighted) eigen-
value problem {

−4pv = ν(λ|u|r−p + µ |u|
q−p

|x|s )|v|p−2v in Ω

v = 0 on ∂Ω.
(∗∗)

Now let

M2 = M1 ∩ {u ∈ H1,p
0 (Ω);

∫
Ω

(λ|u|r−p + µ
|u|q−p
|x|s )v(u)p−1u = 0}.

The following duality result was first noticed by G. Tarantello [28] in the case
when s = 0 and p = 2.

Theorem 5.3. Assume p ≤ q < p∗(s) and r < p∗. Then M2 is a closed set that is
dual to F2, and

inf
M2

Eλ,µ = c2 := c(Eλ,µ,F2)

as long as we are in one of the following cases:

(1) p = r, p < q and 0 < λ < λ1, 0 < µ.
(2) p < r, p = q and 0 < µ < µs,p, 0 < λ.
(3) p < r, p < q and 0 < µ, 0 < λ.

Proof. In the 3 cases, we get from Theorem 5.2 (and its proof) that M1 is closed
and that for any u 6= 0, there exists a unique t(u) > 0 such that t(u)u ∈ M1.
Clearly, t(u) = t(|u|) = t(−u) and

Eλ,µ(t(u)u) = max
t≥0

Eλ,µ(tu).

The uniqueness of t(u) and its properties tell us that the map u→ t(u) is continuous
on H1,p

0 (Ω) and that the map u → t(u)u defines an odd homeomorphism between
Sρ and M1 which gives that γZ2(A ∩M1) ≥ 2 for all A ∈ F2.

On the other hand, the map h : A ∩M1 → R given by

h(u) =
∫

Ω

(λ|u|r−p + µ
|u|q−p
|x|s )v(u)p−1udx

defines an odd and continuous map. Since γZ2(h(A ∩M1)) ≥ 2, we get that 0 ∈
h(A ∩M1) which means that A ∩M2 6= ∅ and M2 is dual to F2. In particular,
c2 ≥ infu∈M2 Eλ,µ(u).

To prove the reverse inequality, take u ∈M2 and let v(u) be such that∫
Ω

(λ|u|r−p + µ
|u|q−p
|x|s )v(u)p−1udx = 0.
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Let ω(u) be a minimizer for the problem:

µ2 = inf{ψ(ω); ω ∈ H1,p
0 ,

∫
Ω

(λ|u|r−p + µ
|u|q−p
|x|s )v(u)p−1ω = 0,∫

Ω

(λ|u|r−p + µ
|u|q−p
|x|s )|ω|p = 1}.

Since u ∈M1, we obtain

µ2 ≤
‖∇u‖pp∫

Ω
(λ|u|r + µ |u|

q

|x|s )
= 1.

Define A = span{v(u), ω(u)} ∈ F2. Then, clearly,

1 ≥ µ2 ≥
‖∇ω‖pp∫

Ω(λ|u|r−p + µ |u|
q−p

|x|s )|ω|p
, ∀ω ∈ A,ω 6= 0.

For ω0 ∈ A satisfying Eλ,µ(ω0) = supAEλ,µ ≥ c2, we have ω0 6= 0 and ω0 ∈ M1.
From the above inequality, we derive∫

Ω

(λ|u|r−p + µ
|u|q−p
|x|s )|ω0|p ≥ ‖∇ω0‖pp.

This implies

1
p

∫
Ω

(λ|u|r−p + µ
|u|q−p
|x|s )(|ω0|p − |u|p) ≥

‖∇ω0‖pp
p

−
‖∇u‖pp
p

.

Applying the inequality (valid for t ≥ p and x, y ∈ R)

1
t
(|x|t − |y|t) ≥ 1

p
(|x|p − |y|p)|y|t−p

with t = r (resp. t = q), we conclude that

λ

r

∫
Ω

|ω0|r + µ
1
q

∫
Ω

|ω0|q
|x|s −

λ

r

∫
Ω

|u|r − µ1
q

∫
Ω

|u|q
|x|s ≥

‖∇ω0‖pp
p

−
‖∇u‖pp
p

,

that is,
Eλ,µ(u) ≥ Eλ,µ(ω0) ≥ c2.

This finishes the proof of the theorem.

6. The solutions in the case of an HS-subcritical singular term

In this section, we consider the problem{
−4pu = λ|u|r−2u+ |u|q−2

|x|s u in Ω,

u|∂Ω = 0,
(Pλ,µ)

where 0 ≤ s ≤ p < n, in the presence of a subcritical singular term (1 < p ≤ q <
p∗(s)) and a subcritical non-singular term (1 < p ≤ r < p∗).

Theorem 6.1 (Hardy-Sobolev subcritical singular term). Suppose 1 < p ≤ q <
p∗(s) and r < p∗. Also assume one of the following conditions:

(1) p < q, p ≤ r and λ > 0, µ > 0.
(2) p = q, p < r and λ > 0, µs,p > µ > 0.
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Then the equation (Pλ,µ) has infinitely many solutions. Moreover, it has an ev-
erywhere positive solution u1 with minimal energy and a sign-changing solution u2

that satisfies ∫
Ω

(λ|u2|r−p + µ
|u2|q−p
|x|s )v(u2)p−1u2 = 0,

where v(u2) is the first eigenvector of the (weighted) eigenvalue problem{
−4pv = ν(λ|u2|r−p + µ |u2|q−p

|x|s )|v|p−2v in Ω,
v = 0 on ∂Ω.

Proof. Now that under these conditions the functional Eλ,µ satisfies (PS)c for any
c. It is now enough to apply Theorem 5.1 to F1 and its dual set M1 (resp., to F2

and its dual set M2) to get a solution u1 (resp. u2) which minimizes the energy
functional on M1 (resp. M2).

To obtain other solutions, we need the following result of Rabinowitz ([17]).

Lemma 6.1. Let E be an even C1-functional satisfying the Palais-Smale condition
on a Banach space X = Y ⊕ Z with dim(Y ) < ∞. Assume E(0) = 0, as well as
the following conditions:

(1) There is ρ > 0 such that infSρ(Z)E ≥ 0.
(2) There exists an increasing sequence {Yn}n of finite dimensional subspaces of

X, all containing Y , such that limn dim(Yn) =∞ and for each n, supSRn (Yn)E
≤ 0 for some Rn > ρ.

Then E has an unbounded sequence of critical values.

We now show that the functional

E(u) =
1
p

∫
Ω

|∇u|p − µ

q

∫
Ω

|u|q
|x|s −

λ

r

∫
Ω

|u|r

satisfies the hypothesis of the lemma.
Without loss of generality, we assume that Ω = (0, 1)n. Let Yk be the k-

dimensional subspace of X = H1,p
0 (Ω), generated by the first k functions of the

basis
{(sin k1πx1, · · · , sin knπxn), ki ∈ N, i = 1, · · · , n}.

Let Zk denote the complement of Yk in X , that is, the set generated by the base
vectors not in Yk. For any u ∈ Y ck−1, the topological complement of Yk−1,

‖u‖p ≤ C‖∇u‖p/k
1
n (Peral [25]).

Claim 1. For k sufficiently large, there exists ρ > 0 such that E(u) ≥ 1 for all
u ∈ Zk−1 with ‖u‖H1,p

0
= ρ

Proof of Claim 1. We first consider the case where p = q, p < r and µ < µs,p:

E(u) ≥ (1− µ

µs,p
)
1
p

∫
Ω

|∇u|p − C
∫

Ω

|u|r.

By the Gagliardo-Nirenberg inequality,

(
∫

Ω

|u|r) 1
r ≤ C1(

∫
Ω

|∇u|p) ap (
∫

Ω

|u|p)
1−a
p
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with a = n
p (1 − p

r ). Hence, for u ∈ ∂Bρ ∩ Y ck−1,

E(u) ≥ C2

∫
Ω

|∇u|p − C1(
∫

Ω

|∇u|p)
ra
p (
∫

Ω

|u|p)
r(1−a)
p

= ρp(C2 − C1ρ
ra(

Cρ

k
1
n

)r(1−a)ρ−p)

= ρp(C2 − C3ρ
r−p 1

kr(1−a)/n
).

Choosing ρ = ( C2
2C3

k
r(1−a)
n )

1
r−p , we get that E(u) ≥ 1

2C2ρ
p = C4k

pr(1−a)
n(r−p) ≥ 1, for k

large enough. This completes the proof of Claim 1 in the first case.
We turn to the case where p < q: Since q < p∗(s), choose ε > 0 such that

q < n−s−ε
n−p p; then ∫

Ω

|u|q
|x|s ≤ C0(

∫
Ω

|u|q n
n−s−ε )

n−s−ε
n .

If q n
n−s−ε ≤ r, then ∫

Ω

|u|q n
n−s−ε ≤ C1(

∫
Ω

|u|r)
q n
n−s−ε
r .

Thus ∫
Ω

|u|q
|x|s ≤ C2(

∫
Ω

|u|r)
q
r .

If q n
n−s−ε ≥ r, then ∫

Ω

|u|r ≤ C3(
∫

Ω|u|q n
n−s−ε )

n−s−ε
n · rq .

Because of these relationships, we could combine the last two terms of the functional
E together. In this sense, we may assume that

E(u) ≥ 1
p

∫
Ω

|∇u|p − C
∫

Ω

|u|r,

and the rest is as in case (1).

Let Y = Yk with the k chosen in Claim 1. We now show the following.

Claim 2. In both cases, there exist for each finite dimensional subspace Yk ⊂
H1,p

0 (Ω), positive constants C1, C2 (depending on Yk) such that

sup
u∈∂BR(Yk)

E(u) ≤ C1R
p − C2R

r.

Indeed, for any u ∈ H1,p
0 (Ω) and any R > 0, we have

E(Ru) ≤ Rp

p
‖u‖p

H1,p
0 (Ω)

− Rr

r
‖u‖rr.

Since Yk is a finite dimensional space, it is closed and the two norms ‖ · ‖r and
‖ · ‖H1,p

0 (Ω) on Yk are equivalent. This implies the Claim.
Now we can apply Lemma 6.1 to conclude that Eλ,µ has an unbounded sequence

of critical values. Theorem 6.1 is proved.
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7. The solutions in the case of

a Hardy-critical singular term

Theorem 7.1 (Hardy-critical singular term). Suppose 1 < p = q = p∗(s) (i.e.,
s = p).

(1) If p < r < p∗ (high order non-singular term), then (Pλ,µ) has infinitely
many solutions –at least one of them being positive– for any λ > 0 and any
0 < µ < µp.

(2) If r = p∗ (critical non-singular term) and Ω is star-shaped, then (Pλ,µ) has
no non-trivial solution for any λ > 0, µ > 0.

Proof. If r < p∗, then by Theorem 4.1.2 the functional Eλ,µ satisfies (PS)c for any
c as long as µ < µp. Since p < r, the proof is the same as in Theorem 6.1.(2), while
the second case of the theorem is covered in section 2.

Remark 7.1. The case when p = q = r is really an eigenvalue problem. There are
solutions for (Pλ,µ) as long as λ is an eigenvalue of the problem −∆pu− µ|u|p−2u

|x|p =

λ|u|p−2u in H1,p
0 (Ω).

If 0 ≤ µ < µp, one can show that there is an infinite number of eigenvalues for
the above problem. Indeed, these correspond to the critical levels of the restriction
of the functional

Ẽ(u) =
1
p

∫
Ω

|∇u|p dx− µ

p

∫
Ω

|u|p
|x|p dx

to the submanifold {u;
∫

Ω
|u|p dx = 1}. But a slight variation of Theorem 4.1.(2)

shows that in this case Ẽ has (PS)c for any c, and therefore a standard application
of Ljusternik-Schnirelmann theory applied to the genus γ

Z2
will yield the result.

8. A positive solution in the case of

a Hardy-Sobolev critical singular term

In this section, we consider the first solution for the problem (Pλ,µ) with the
critical Sobolev-Hardy exponent.

Theorem 8.1 (Hardy-Sobolev critical singular term). Suppose 1 < p < q = p∗(s)
(i.e., s < p) in the equation:{

−4pu = λ|u|r−2u+ µ |u|
p∗(s)−2

|x|s u in Ω,
u|∂Ω = 0.

(Pλ,µ)

• If r < p∗, then (Pλ,µ) has a solution that is strictly positive everywhere on Ω,
under any one of the following conditions:
(1) p = r < p∗ and n ≥ p2, 0 < λ < λ1 and µ > 0.
(2) p < r < p∗, λ is large enough and µ > 0.
(3) p < r < p∗ and n > p(p−1)r+p2

p+(p−1)(r−p) , λ > 0, µ > 0.
• If r = p∗ and Ω is star-shaped, then (Pλ,µ) has no non-trivial solution for any
λ > 0, µ > 0.

Proof. Note that the last case (r = p∗) was covered in section 2. Now if r < p∗,
then Theorem 5.2 asserts that any one of the 3 conditions yields that the set

M1 = {u ∈ H1,p
0 (Ω);u 6= 0, 〈E′λ,µ(u), u〉 = 0},
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is closed, that it is dual to the Mountain Pass class

F1 = {γ ∈ C([0, 1];H1,p
0 (Ω)); γ(0) = 0, γ(1) 6= 0 and Eλ,µ(γ(1)) ≤ 0},

and that
inf
M1

Eλ,µ = c1 := c(Eλ,µ,F1).

On the other hand, Theorem 4.1.(2) yields that Eλ,µ satisfies the (PS)c condition
for any

c <
p− s

p(n− s)µ
n−s
p−s
s .

Therefore, we should be able to apply Theorem 5.1 and obtain our desired assertion,
if only we can prove the following case.

Lemma 8.1. In any one of the above three cases, we have

c1 <
p− s

p(n− s) (
µn−ss

µn−p
)

1
p−s .

Proof. We may assume without loss of generality that µ = 1. We first consider the
following case:

Case (1). p < r and λ is large.

In order to estimate the energy level c1, we consider the functions

g(t) = Eλ,µ(tvε) =
tp

p

∫
Ω

|∇vε|p −
tp
∗(s)

p∗(s)
− λtr

r

∫
Ω

|vε|r

and

ḡ(t) =
tp

p

∫
Ω

|∇vε|p −
tp
∗(s)

p∗(s)
,

where vε is the extremal function defined in the appendix. Note that limt→∞ g(t) =
−∞ and g(t) > 0 when t is close to 0, so that supt≥0 g(t) is attained for some tε > 0.
From

0 = g′(tε) = tp−1
ε (

∫
Ω

|∇vε|p − tp
∗(s)−p
ε − λtr−pε

∫
Ω

|vε|r)

we have ∫
Ω

|∇vε|p = tp
∗(s)−p
ε + λtr−pε

∫
Ω

|vε|r > tp
∗(s)−p
ε ,

and therefore
tε ≤ (

∫
Ω

|∇vε|p)
1

p∗(s)−p .

Thus ∫
Ω

|∇vε|p ≤ tp
∗(s)−p
ε + λ(

∫
Ω

|∇vε|p)
r−p

p∗(s)−p (
∫

Ω

|vε|r).

Choose ε small enough so that by (1) and (6) of Lemma 11.1 we have tp
∗(s)−p
ε ≥ µs

2 .
That is, we get a lower bound for tε, which is independent of ε.

Now we estimate g(tε). The function ḡ(t) attains its maximum at

t = (
∫

Ω

|∇vε|p)
1

p∗(s)−p

and is increasing in the interval

[0, (
∫

Ω

|∇vε|p)
1

p∗(s)−p ].
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By Lemma 11.1, we have

g(tε) = ḡ(tε)−
λ

r
trε

∫
Ω

|vε|r

≤ ḡ((
∫

Ω

|∇vε|p)
1

p∗(s)−p )− λ

r
trε

∫
Ω

|vε|r

= (
1
p
− 1
p∗(s)

)(
∫

Ω

|∇vε|p)
p∗(s)
p∗(s)−p − λ

r
trε

∫
Ω

|vε|r

≤ p− s
p(n− s)µ

n−s
p−s
s +O(ε

n−p
p−s )− λ

r
(
µs
2

)
r

p∗(s)−p

∫
Ω

|vε|r.

So for λ large enough, we have

g(tε) <
p− s

p(n− s)µ
n−s
p−s
s .

Case (2). p < r < p∗ and n > p(p−1)r+p2

p+(p−1)(r−p) , λ > 0.

Note first that the above condition is equivalent to max{p, p∗ − p
p−1} < r < p∗

and λ > 0.
For any λ > 0, the above estimate on g(tε) and Lemma 6.1 yield

g(tε) ≤
p− s

p(n− s)µ
n−s
p−s
s +O(ε

n−p
p−s )−O(ε

p−1
p−s (n− r(n−p)

p )),

so that if r is chosen in such a way that

n− p
p− s >

p− 1
p− s (n− r(n− p)

p
),

i.e. r > p∗ − p
p−1 , then

g(tε) <
p− s

p(n− s)µ
n−s
p−s
s .

Case (3). p = r, 0 < λ < λ1 and n ≥ p2.

We still use the function g(t). Since λ < λ1, we have g(t) > 0 when t is close
to 0, and limt→∞ g(t) = −∞. So again g(t) attains its maximum at some tε > 0.
From

g′(t) = tp−1(
∫

Ω

|∇vε|p − tp
∗(s)−p − λ

∫
Ω

|vε|p) = 0

we get

tε = (
∫

Ω

|∇vε|p − λ
∫

Ω

|vε|p)
1

p∗(s)−p .

Thus

g(tε) = (
1
p
− 1
p∗(s)

)(
∫

Ω

|∇vε|p − λ
∫

Ω

|vε|p)
p∗(s)
p∗(s)−p

=


p− s

p(n− s)µ
n−s
p−s
s +O(ε

n−p
p−s )−O(ε

p(p−1)
p−s ), p > p∗(1− 1

p
),

p− s
p(n− s)µ

n−s
p−s
s +O(ε

n−p
p−s )−O(ε

n−p
p−s | log ε|), p = p∗(1− 1

p
).
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In the case where p > p∗(1 − 1
p ), we require that n−p

p−s > p(p−1)
p−s , but both are

equivalent to p2 < n. In the case where p = p∗(1 − 1
p ) we have p2 = n, and the

proof the lemma is now complete.

Remark 8.1. (1) If p2 ≤ n, then p∗ − p
p−1 ≤ p∗(1−

1
p ) ≤ p, so that r > p∗ − p

p−1

whenever p < r. In this case, r can take any value between p and p∗.
(2) If p2 > n, then p < p∗(1− 1

p ) < p∗− p
p−1 , and then we require that p∗− p

p−1 <

p < p∗.

9. A sign changing solution in the Hardy-Sobolev critical case

In this section, we extend the arguments of Tarantello [28] to establish the fol-
lowing.

Theorem 9.1 (Hardy-Sobolev critical singular term). Suppose 2 ≤ p < q = p∗(s)
and r < p∗ in the equation{

−4pu = λ|u|r−2u+ µ |u|
p∗(s)−2

|x|s u in Ω,
u|∂Ω = 0.

(Pλ,µ)

Assume any one of the following conditions:
(1) p = r < p∗, n > p3 − p2 + p, µ > 0 and 0 < λ < λ1.
(2) p < r < p∗, µ > 0 and λ large enough.
(3) p < r < p∗, n > p(p−1)r+p

1+(p−1)(r−p) and µ > 0, λ > 0.

Then (Pλ,µ) has also a changing-sign solution u that satisfies∫
Ω

(λ|u|r−p + µ
|u|p∗(s)−p
|x|s )v(u)p−1u = 0,

where v(u) is the first eigenvector of the (weighted) eigenvalue problem{
−4pv = ν(λ|u|r−p + µ |u|

p∗(s)−p

|x|s )|v|p−2v in Ω,
v = 0 on ∂Ω.

Proof. We assume without loss of generality that µ = 1. Theorem 5.2 asserts that
for any q < p∗(s), any one of the 3 conditions yields that the closed set

M q
2 = M q

1 ∩ {u ∈ H
1,p
0 (Ω);

∫
Ω

(λ|u|r−p +
|u|q−p
|x|s )v(u)p−1u = 0}.

is dual to the class F2, and that

inf
Mq

2

Eλ,q = c2,q := c(Eλ,q ,F2),

where for each q < q∗(s), the sets M q
1 (resp. M q

2 ) denote the dual sets associated
to the functional

Eλ,q :=
1
p

∫
Ω

|∇u|p − 1
q

∫
Ω

|u|q
|x|s −

λ

r

∫
Ω

|u|r.

Eλ will denote Eλ,p∗(s) and M1 (resp. M2) will denote Mp∗(s)
1 (resp. Mp∗(s)

2 ).
Note that by Theorem 5.2, M1 is dual to F1, but the same cannot be said about
M2 and F2 unless p = 2. Therefore, to establish the theorem above, we shall resort
to a limiting argument as q → p∗(s).
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Lemma 9.1. Under any one of the 3 conditions in Theorem 9.1, we have:

(1) ci,q → ci (i = 1, 2) as q → p∗(s).
(2) There exist σ > 0 and δ0 > 0 such that for 0 < |q − p∗(s)| < δ0, we have

c2,q ≤ c1,q + 1
nS

n
p − σ.

Proof. (1) First we prove that (c1,q)q and (c2,q)q are uniformly bounded in q. We
shall only show it for c2,q. For any u ∈M q

2 ,∫
Ω

|∇u|p −
∫

Ω

|u|q
|x|s − λ

∫
Ω

|u|r = 0.

Thus

Eλ,q(u) = λ(
1
p
− 1
r

)
∫

Ω

|u|r + (
1
p
− 1
q

)
∫

Ω

|u|q
|x|s dx ≥ 0,

i.e., c2,q ≥ infMq
2
Eλ,q ≥ 0. Since now

Eλ,q(u) =
1
p

∫
Ω

|∇u|p − 1
q

∫
Ω

|u|q
|x|s −

λ

r

∫
Ω

|u|r

≤ 1
p

∫
Ω

|∇u|p − λ

r

∫
Ω

|u|r ≡ E(u),

and for any u0, v0 ∈ H1,p
0 (Ω),

lim
α→∞,β→∞

E(αu0 + βv0)

= lim
α→∞,β→∞

(
1
p

∫
Ω

|∇(αu0 + βv0)|p − λ

r

∫
Ω

|αu0 + βv0|r) = −∞,

E(αu0 + βv0) attains its maximum at some finite α0 and β0. This means

0 ≤ c2,q ≤ E(α0u0 + β0v0),

which is independent of q.
This implies the existence of constants C1 > 0 and C2 > 0 such that

C1 ≤
∫

Ω

|u1,q|q
|x|s ≤ C2.

Similar estimates also hold for ‖∇u1,q‖p and ‖u1,q‖r. Notice that for every u 6= 0,
there exist unique tq(u) > 0 and t(u) > 0 such that

t(u)u ∈M1 and tq(u)u ∈M q
1 .

Furthermore, tq(u)→ t(u) as q → p∗(s). Set sq = t(u1,q) so that squ1,q ∈ M1. We
have

c1 ≤ Eλ(squ1,q)

=
1
p

∫
Ω

|∇squ1,q|p −
λ

r

∫
Ω

|squ1,q|r −
1

p∗(s)

∫
Ω

|squ1,q|p
∗(s)

|x|s

= (
1
p
− 1
p∗(s)

)
∫

Ω

|∇squ1,q|p + λ(
1

p∗(s)
− 1
r

)
∫

Ω

|squ1,q|r.
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Since u1,q ∈M q
1 , we have

Eλ,q(u1,q) =
1
p

∫
Ω

|∇u1,q|p −
λ

r

∫
Ω

|u1,q|r −
1
q

∫
Ω

|u1,q|q
|x|s

= (
1
p
− 1
q

)
∫

Ω

|∇u1,q|p + λ(
1
q
− 1
r

)
∫

Ω

|u1,q|r.

Thus

c1 ≤ Eλ(squ1,q)

= (
1
p
− 1
q

)
∫

Ω

spq |∇u1,q|p + (
1
q
− 1
p∗(s)

)
∫

Ω

spq |∇u1,q|p

+λ(
1

p∗(s)
− 1
r

)
∫

Ω

|squ1,q|r

= (
1
p
− 1
q

)
∫

Ω

|∇u1,q|p + (
1
p
− 1
q

)(spq − 1)
∫

Ω

|∇u1,q|p

+(
1
q
− 1
p∗(s)

)
∫

Ω

spq |∇u1,q|p + λ(
1

p∗(s)
− 1
r

)
∫

Ω

|squ1,q|r

= Eλ,q(u1,q) + (
1
p
− 1
q

)(spq − 1)
∫

Ω

|∇u1,q|p

+(
1
q
− 1
p∗(s)

)
∫

Ω

spq |∇u1,q|p

λ(
1
q
− 1
r

)(srq − 1)
∫

Ω

|u1,q|r + λ(
1

p∗(s)
− 1
q

)
∫

Ω

srq|u1,q|r.

Note that sq → 1 as q → p∗(s); therefore

c1 ≤ c1,q + o(1).

To obtain the reverse inequality, set tq = tq(u1) > 0. Thus, tqu1 ∈ M q
1 , tq → 1

as q → p∗(s), and

c1,q ≤ Eλ,q(tqu1) = Eλ(tqu1) +
1

p∗(s)

∫
Ω

|u|p∗(s)
|x|s − 1

q

∫
Ω

|u|q
|x|s

= Eλ(u1) + o(1) = c1 + o(1).

This completes part (1) of the lemma.
We prove part (2) by estimating supAε Eλ,q, where Aε = span{u1, vε} ∈ F2 and

u1 is the first solution of the critical problem. For that, we need the smoothness of
u1; but this cannot be guaranteed unless p = 2. However, an easy approximation
argument, and the fact that supt≥0Eλ(tu) → supt≥0E(tu1) as u → u1 strongly,
allow us to assume that u1 has the required smoothness.

Therefore we may suppose that u1, ∇u1 ∈ L∞(Ω). We shall consider the case
where r > p first.

Case (1). Assume p < r < p∗ and λ > 0.
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For ε > 0 and q sufficiently close to p∗(s), and by the calculus lemma,

Eλ,q(α u1 + βvε )

=
1
p

∫
Ω

|∇(αu1 + βvε)|p −
λ

r

∫
Ω

|αu1 + βvε|r −
1
q

∫
Ω

|αu1 + βvε|q
|x|s

≤ 1
p

∫
Ω

|∇(αu1)|p − λ

r

∫
Ω

|αu1|r −
1
q

∫
Ω

|αu1|q
|x|s

+
1
p

∫
Ω

|∇(βvε)|p −
λ

r

∫
Ω

|βvε|r −
1
q

∫
Ω

|βvε|q
|x|s

+ A1[
∫

Ω

|∇αu1||∇βvε|p−1 + |∇αu1|p−1|∇βvε|]

+ B1[
∫

Ω

|αu1||βvε|r−1 + |αu1|r−1|βvε|]

+ C1[
∫

Ω

|αu1|
|βvε|q−1

|x|s + |αu1|q−1 |βvε|
|x|s ]

≤ 1
p

∫
Ω

|∇(αu1)|p − λ

r

∫
Ω

|αu1|r −
1
q

∫
Ω

|αu1|q
|x|s

+
1
p

∫
Ω

|∇(βvε)|p −
λ

r

∫
Ω

|βvε|r −
1
q

∫
Ω

|βvε|q
|x|s

+ A2(|α|p + |β|p)ε
n−p
p(p−s) +B2(|α|r + |β|r)ε

p−1
p−s (n− (r−1)(n−p)

p )

+ C2(|α|q + |β|q)ε
n−p
p(p−s) .

Therefore, for ε sufficiently small,

lim
α,β→∞

Eλ,q(αu1 + βvε) = −∞.

So we may assume that α and β are in a bounded set.
As in the study of the first solution, let us consider the function

g(t) = Eλ(tvε) =
tp

p

∫
Ω

|∇vε|p −
tp
∗(s)

p∗(s)
− λtr

r

∫
Ω

|vε|r

again. As in the previous section, we have

g(tε) ≤
p− s

p(n− s)µ
n−s
p−s
s + Cε

n−p
p−s − λ

r
(
µs
2

)
r

p∗(s)−p

∫
Ω

|vε|r.
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If now r > p∗ − 1
p−1 > p∗ − 1, we have

Eλ,q(αu1 + βvε) ≤ Eλ,q(αu1) + Eλ(βvε) +
|β|p∗(s)
p∗(s)

− |β|
q

q

∫
Ω

|vε|q
|x|s

+ A3ε
n−p
p(p−s) +B3ε

p−1
p−s (n− (r−1)(n−p)

p )

≤ c1,q +
p− s

p(n− s)µ
n−s
p−s
s + Cε

n−p
p−s +

|β|p∗(s)
p∗(s)

−|β|
q

q

∫
Ω

|vε|q
|x|s −

λ

r
(
µs
2

)
r

p∗(s)−p

∫
Ω

|vε|r

+ A3ε
n−p
p(n−s) +B3ε

p−1
p−s (n− (r−1)(n−p)

p )

≤ c1,q +
p− s

p(n− s)µ
n−s
p−s
s + Cε

n−p
p−s +A3ε

n−p
p(p−s)

+B3ε
p−1
p−s (n− (r−1)(n−p)

p ) − C4ε
p−1
p−s (n− r(n−p)

p )

+
|β|p∗(s)
p∗(s)

− |β|
q

q

∫
Ω

|vε|q
|x|s .

Choose ε small enough so that

Cε
n−p
p−s +A3ε

n−p
p(p−s) +B3ε

p−1
p−s (n− (r−1)(n−p)

p ) − C4ε
p−1
p−s (n− r(n−p)

p ) ≤ −2σ

for some constant σ > 0. Now choose δ0 > 0 small enough so that

|β|p∗(s)
p∗(s)

− |β|
q

q

∫
Ω

|vε|q
|x|s < σ for 0 < |q − p∗(s)| < δ0.

Thus the case when r > p is established.

Case (2). r = p, p3 − p2 + p < n and 0 < λ < λ1.

The assumption p3 − p2 + p < n implies that p2 < n, p > p∗(1 − 1
p ) and

p− 1 < p∗(1− 1
p ). We assume that α and β are in a bounded set, and we estimate

Eλ(αu1 + βvε). Again let

g(t) = Eλ(tvε) =
tp

p

∫
Ω

|∇vε|p −
tp
∗(s)

p∗(s)
− λtp

p

∫
Ω

|vε|p;

then the maximum g(tε) of g(t) satisfies

g(tε) =
p− s

p(n− s)µ
n−s
p−s
s +O(ε

n−p
p−s )−O(ε

p(p−1)
p−s ).
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Thus we have

Eλ,q(α u1 + βvε )

=
1
p

∫
Ω

|∇(αu1 + βvε)|p −
λ

p

∫
Ω

|αu1 + βvε|p −
1
q

∫
Ω

|αu1 + βvε|q
|x|s

≤ 1
p

∫
Ω

|∇(αu1)|p − λ

p

∫
Ω

|αu1|p −
1
q

∫
Ω

|αu1|q
|x|s

+
1
p

∫
Ω

|∇(βvε)|p −
λ

p

∫
Ω

|βvε|p −
1
q

∫
Ω

|βvε|q
|x|s

+ A1[
∫

Ω

|∇αu1||∇βvε|p−1 + |∇αu1|p−1|∇βvε|]

+ B1[
∫

Ω

|αu1||βvε|p−1 + |αu1|p−1|βvε|]

+ C1[
∫

Ω

|αu1|
|βvε|q−1

|x|s + |αu1|q−1 |βvε|
|x|s ]

≤ 1
p

∫
Ω

|∇(αu1)|p − λ

p

∫
Ω

|αu1|p −
1
q

∫
Ω

|αu1|q
|x|s

+
1
p

∫
Ω

|∇(βvε)|p −
λ

p

∫
Ω

|βvε|p −
1
q

∫
Ω

|βvε|q
|x|s

+ A2(|α|p + |β|p)ε
n−p
p(p−s) +B2(|α|p + |β|p)ε

(n−p)(p−1)
p(p−s)

+ C2(|α|q + |β|q)ε
n−p
p(p−s)

≤ Eλ,q(αu1) + Eλ(βvε) +
|β|p∗(s)
p∗(s)

− |β|
q

q

∫
Ω

|vε|q
|x|s

+ A3ε
n−p
p(p−s) +B3ε

(n−p)(p−1)
p(p−s)

≤ c1,q +
p− s

p(n− s)µ
n−s
p−s
s + Cε

n−p
p−s +

|β|p∗(s)
p∗(s)

− |β|
q

q

∫
Ω

|vε|q
|x|s −O(ε

p(p−1)
p−s )

+ A3ε
n−p
p(n−s) +B3ε

(n−p)(p−1)
p(p−s)

≤ c1,q +
p− s

p(n− s)µ
n−s
p−s
s + Cε

n−p
p−s +A3ε

n−p
p(p−s) +B3ε

(np)(p−1)
p(p−s)

− C4ε
p(p−1)
p−s +

|β|p∗(s)
p∗(s)

− |β|
q

q

∫
Ω

|vε|q
|x|s .

Since p3 − p2 + p < n, we may choose ε small enough so that

Cε
n−p
p−s +A3ε

n−p
p(p−s) +B3ε

(n−p)(p−1)
p(p−s) − C4ε

p(p−1)
p−s ≤ −2σ

for some constant σ > 0. Now choose δ0 > 0 small enough so that

|β|p∗(s)
p∗(s)

− |β|
q

q

∫
Ω

|vε|q
|x|s < σ for 0 < |q − p∗(s)| < δ0.

The proof of the lemma is now complete.

Proof of Theorem 9.1. In order to get the second solution, we shall consider the
second solutions u2,q of the problems corresponding to q < p∗(s) and we will find a
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limit as q → p∗(s). The location of u2,q on the dual sets M q
2 will be crucial for the

compactness.
Since c2,q is bounded uniformly in q, there is K > 0 such that

‖∇u2,q‖p ≤ K whenever 0 < |q − p∗(s)| < δ0.

For x ∈ Ω, define (u2,q)+(x) = max{u2,q(x), 0} and (u2,q)−(x) = max{−u2,q(x), 0}.
Since u2,q ∈M q

2 , both (u2,q)+ and (u2,q)−(x) are non-zero and belong to H1,p
0 (Ω).

In addition,
‖∇(u2,q)±‖ ≤ K whenever 0 < |q − p∗(s)| < δ0.

Thus, we can find qn such that qn → p∗(s) as n→ +∞, u+, u− ∈ H1,p
0 and

(u2,qn)± ⇀ u± weakly in H1,p
0 as n→ +∞.

We claim that u+ 6= 0 and u− 6= 0. To shorten notation, set u±n = (u2,qn)±, c1,n =
c1,qn , En = Eλ,qn and Γn = M qn

1 . Since un is the solution of the corresponding
sub-critical problem, we have that u±n ∈ Γn. In particular,

En(u±n ) ≥ c1,n.
From Lemma 9.1, we also know that

En(u+
n ) + En(u−n ) = En(un) = c2,qn ≤ c1,n +

p− s
p(n− s)µ

n−s
p−s
s − σ

for n large. Necessarily,

En(u±n ) ≤ p− s
p(n− s)µ

n−s
p−s
s − σ

for n large. From the fact that u±n ∈ Γn and cn1 → c1 > 0, we derive

K1 ≤
∫

Ω

|u±n |qn
|x|s ≤ K2

with suitable positive constants K1 and K2.
Arguing by contradiction, assume, for example, that u+ = 0. From the above

and the fact that u±n ∈ Γn, we obtain

1
p
‖∇u+

n ‖pp −
1
qn

∫
Ω

|u+
n |qn
|x|s ≤ p− s

p(n− s)µ
n−s
p−s
s − σ + o(1)

and

‖∇u+
n ‖pp −

∫
Ω

|u+
n |qn
|x|s = o(1).

Consequently,

µs(
∫

Ω

|u+
n |p
∗(s)

|x|s )
p

p∗(s)

≤ ‖∇u+
n ‖pp =

∫
Ω

|u+
n |qn
|x|s + o(1) =

∫
Ω

|u+
n |qn

|x|
qn
p∗(s) s

· 1

|x|s(1−
qn
p∗(s) )

≤ (
∫

Ω

|u+
n |qn
|x|s )

qn
p∗(s) (

∫
Ω

1
|x|s )

p∗(s)−qn
p∗(s) + o(1).

Since
∫

Ω
|u+
n |qn
|x|s is bounded away from zero, we conclude that

(
∫

Ω

|u+
n |qn
|x|s )

qn−p
p∗(s) ≥ (

∫
Ω

1
|x|s )

qn−p∗(s)
p∗(s) µs + o(1).
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That is, ∫
Ω

|u+
n |qn
|x|s ≥ µ

n−s
p−s
s + o(1).

Thus, we have

p− s
p(n− s)µ

n−s
p−s
s + o(1) ≤ p− s

p(n− s)

∫
Ω

|u+
n |qn
|x|s

=
1
p
‖∇u+

n ‖pp −
1
qn

∫
Ω

|u+
n |qn
|x|s + o(1) ≤ p− s

p(n− s)µ
n−s
p−s
s − σ + o(1).

This is a contradiction, and we conclude that u+ 6= 0. Similarly, u− 6= 0.
Set u = u+ − u−; that is, u changes sign in Ω and

un := uqn ⇀ u weakly in H1,p
0 (Ω).

So, 〈E′λ(u), w〉 = 0 for any w ∈ H1,p
0 (Ω), i.e. u is a weak solution of (Pλ). Now, we

prove that a subsequence of {un} converges to u strongly in H1,p
0 (Ω) and conclude

that u is a solution of (Pλ,p∗(s)) that is located on M2.
Since {E(un)} is bounded and E′n(un)→ 0, we may assume that the conclusions

of Lemma 4.4 hold for the sequence (un)n.
Note that u ∈ M1; hence E(u) ≥ c1. Set un = u + wn, with wn ⇀ 0 weakly in

H1,p
0 . We have

c1,n +
p− s

p(n− s)µ
n−s
p−s
s − σ ≥ En(u + wn)

≥ 1
p
‖∇u‖pp −

1
qn

∫
Ω

|u|qn
|x|s −

λ

r
‖u‖rr +

1
p
‖∇wn‖pp −

1
qn

∫
Ω

|wn|qn
|x|s + o(1)

≥ c1 +
1
p
‖∇wn‖pp −

1
qn

|wn|qn
|x|s + o(1).

Since |c1,n − c1| = o(1), we derive

1
p
‖∇wn‖pp −

1
qn

∫
Ω

|wn|qn
|x|s ≤ p− s

p(n− s)µ
n−s
p−s
s − σ + o(1).

Furthermore,

0 = 〈E′n(un), un〉 = 〈E′(u), u〉+ ‖∇wn‖pp −
∫

Ω

|wn|qn
|x|s + o(1);

i.e.

‖∇wn‖pp −
∫

Ω

|wn|qn
|x|s = o(1).

The last two relations show that the sequence ‖∇wn‖p cannot be bounded away
from zero, and therefore a subsequence of {wn} converges strongly to zero.

10. Sobolev critical non-singular term

In this section, we prove Theorem 1.4. We reformulate it as follows.

Theorem 10.1. Suppose 1 < p ≤ q < p∗(s) and r = p∗ in the equation{
−4pu = λ|u|p∗−2u+ µ |u|

q−2

|x|s u in Ω,
u|∂Ω = 0.

(Pλ,µ)

Then (Pλ,µ) has a positive solution if any one of the following conditions holds:
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(1) p < q, n > p(p−1)(q−s)+p2

p+(p−1)(q−p) and λ > 0, µ > 0.
(2) p = q, n ≥ p2 − (p− 1)s and λ > 0, µs,p > µ > 0.
If one of the following conditions holds:

(1’) p < q, n > p(p−1)(q−s)+p
1+(p−1)(q−p) and λ > 0, µ > 0,

(2’) p = q, n > p((p− 1)(p− s) + 1) and λ > 0, µs,p > µ > 0,
then (Pλ,µ) has also a sign-changing solution.

Remark 10.1. The existence of a positive solution under condition (2) above has
already been noticed in [13] in the case where p = q.

By scaling, we can always assume that λ = 1. The corresponding functional is
again

Eµ(u) =
1
p

∫
Ω

|∇u|p − 1
p∗

∫
Ω

|u|p∗ − µ

q

∫
Ω

|u|q
|x|s .

Recall that under any one of the above conditions, the set

M1 = {u ∈ H1,p
0 (Ω); u 6= 0, 〈E′µ(u), u〉 = 0}

is dual to the class

F1 = {γ ∈ C([0, 1]; H1,p
0 (Ω)); γ(0) = 0, γ(1) 6= 0 and Eµ(γ(1)) ≤ 0}.

Moreover, the energy level c1 = infA∈F1 supu∈AEµ(u) is equal to infu∈M1 Eµ(u).
By Theorem 4.1.(3), Eµ satisfies (PS)c for any c < 1

nµ0
n
p . So, the existence of

the first positive solution follows immediately from the following estimates.

Lemma 10.1. If r = p∗, then c1 <
1
nµ

n
p

0 in any one of the following three cases:
(1) q = p, 0 < µ < µs,p and n ≥ p2 − (p− 1)s.
(2) p < q < p∗(s) and µ large enough.
(3) p < q < p∗(s) and n > p(p−1)(q−s)+p2

p+(p−1)(q−p) .

Proof. Take vε to be the function as in Lemma 11.2 of the appendix. Then, as in
the proof of Lemma 9.1, we consider:

Case q > p. We have

max
0≤t<∞

Eµ(tvε) ≤ 1
n
µ
n
p

0 +O(ε
n−p
p )− µ

q
(
µ0

s
)

q
p∗−p

∫
Ω

|vε|q
|x|s

=
1
n
µ
n
p

0 +O(ε
n−p
p )−O(ε

(n−p)(p−1)
p2 (p∗(s)−q)).

where we require that q > n−s
n−p (p− 1). The estimate then follows.

Case q = p. We have

max
0≤t<∞

Eµ(tvε) =
1
n

(
∫

Ω

|∇vε|p −
|vε|p
|x|s )

n
p

=

 1
nµ

n
p

0 +O(ε
n−p
p )−O(ε

(n−p)(p−1)
p2 (p∗(s)−p)), p > n−s

n−p (p− 1),
1
nµ

n
p

0 +O(ε
n−p
p )−O(ε

n−p
p | log ε|), p = n−s

n−p (p− 1).

Since
(n− p)(p− 1)

p2
(p∗(s)− p) =

(p− s)(p− 1)
p

,

the conclusions now follow immediately.
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For the sign changing solution, we shall proceed as in the case of the Hardy-
Sobolev critical exponent. First we find appropriate sign changing solutions for the
sub-critical problem, i.e. when r < p∗, and then we pass to the limit as r→ p∗.

Write again

Eµ,r(u) =
1
p

∫
Ω

|∇u|p − 1
r

∫
Ω

|u|r − µ

q

∫
Ω

|u|q
|x|s ,

Fr1 = {γ ∈ C([0, 1]; H1,p
0 (Ω)); γ(0) = 0, γ(1) 6= 0 and Eµ,r(γ(1)) ≤ 0},

M r
1 = {u ∈ H1,p

0 (Ω); u 6= 0, 〈(Eµ,r)′(u), u〉 = 0},
and

c1,r = inf
A∈F1

sup
u∈A

Eµ,r(u).

Then, as previously, we know that M r
1 is dual to Fr1 and c1,r = infu∈M1 Eµ(u).

Also define
c2,r = inf

A∈F2
sup
u∈A

Eµ,r(u),

where F2 is defined in section 5. We write c2 (resp. Eµ) for c2,p∗ (resp Eµ,p∗).

Lemma 10.2. Under either one of the following conditions,
(1) p = q, 0 < µ < µs,p and n > p(p− 1)(p− s) + p,
(2) p < q, µ > 0 and n > p(p−1)(q−s)+p

1+(p−1)(q−p) ,

we have
(i) ci,r → ci (i = 1, 2) as r→ p∗,

(ii) c2,r ≤ c1,r + 1
nµ

n
p

0 − σ for some σ > 0 and r sufficiently close to p∗.

Proof. For the first conclusion, the proof is exactly the same as in the last section.
For the second one, we can assume that the first solution u1 is smooth and ∇u1 ∈
L∞(Ω).

For ε > 0 and q sufficiently close to p∗, apply the calculus lemma to obtain

Eµ,r(αu1 + βvε) ≤ Eµ,r(αu1) + Eµ,r(βvε)

+ A1[
∫

Ω

|∇αu1||∇βvε|p−1 + |∇αu1|p−1|∇βvε|]

+ B1[
∫

Ω

|αu1||βvε|r−1 + |αu1|r−1|βvε|]

+ C1[
∫

Ω

|αu1|
|βvε|q−1

|x|s + |αu1|q−1 |βvε|
|x|s ]

≤ Eµ,r(αu1) + Eµ,r(βvε) + A2(|α|p + |β|p)ε
n−p
p2

+B2(|α|r + |β|r)ε
p−1
p (n− (r−1)(n−p)

p )

+ C2(|α|q + |β|q)ε
n−p
p2 .

Again, we note that for ε sufficiently small,

lim
α,β→∞

Eµ,r(αu1 + βvε) = −∞.

So we may assume that α and β are in a bounded set.

Case 1. Assume p < q, 0 < µ and n > p(p−1)(q−s)+p
1+(p−1)(q−p) .
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Then, by the calculus lemma,

Eµ,r(αu1 + βvε)

≤ Eµ,r(αu1) + Eµ(βvε) +
|β|p∗

p∗
− |β|

r

r

∫
Ω

|vε|r

+ A3ε
n−p
p2 +B3ε

p−1
p (n− (r−1)(n−p)

p )

≤ c1,r +
1
n
S
n
p + Cε

n−p
p +

|β|p∗

p∗
− |β|

r

r

∫
Ω

|vε|r −
µ

q
(
S

2
)

q
p∗−p

∫
Ω

|vε|q
|x|s

+ A3ε
n−p
p2 +B3ε

p−1
p (n− (r−1)(n−p)

p )

≤ c1,r +
1
n
S
n
p + Cε

n−p
p +A3ε

n−p
p2 +B3ε

p−1
p (n− (r−1)(n−p)

p )

− C4ε
(n−p)(p−1)

p2 (p∗(s)−q) +
|β|p∗

p∗
− |β|

r

r

∫
Ω

|vε|r,

where we require q > n−s
n−p (p− 1). From

p− 1
p

(n− (r − 1)(n− p)
p

) >
(n− p)(p− 1)

p2
(p∗(s)− q)

we get q > r − 1− ns
n−p . From

n− p
p2

>
(n− p)(p− 1)

p2
(p∗(s)− q),

we get that q > p∗(s)− 1
p−1 . Since

p∗(s)− 1
p− 1

≥ p∗(s)− 1 = p∗ − 1− ps

n− p > r − 1− ns

n− p ,

the hypothesis q > p∗(s) − 1
p−1 (i.e. n > p(p−1)(q−s)+p

1+(p−1)(q−p) ) is sufficient to allow us to
choose ε small enough so that

Cε
n−p
p +A3ε

n−p
p2 +B3ε

p−1
p (n− (r−1)(n−p)

p ) − C4ε
(n−p)(p−1)

p2 (p∗(s)−q) ≤ −2σ

for some constant σ > 0. Now choose δ0 > 0 small enough so that

|β|p∗

p∗
− |β|

r

r

∫
Ω

|vε|r < σ for 0 < |r − p∗| < δ0.

Thus we have proved the case for q > p.

Case 2. q = p, n > p(p− 1)(p− s) + p and 0 < µ < µs,p.
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We assume that α and β are in a bounded set, and we estimate Eλ(αu1 + βvε):

Eµ,r(α u1 + βvε )

≤ Eµ,r(αu1) + Eµ,r(βvε)

+ A1[
∫

Ω

|∇αu1||∇βvε|p−1 + |∇αu1|p−1|∇βvε|]

+ B1[
∫

Ω

|αu1|
|βvε|p−1

|x|s + |αu1|p−1 |βvε|
|x|s ]

+ C1[
∫

Ω

|αu1||βvε|r−1 + |αu1|r−1|βvε|]

≤ Eµ,r(αu1) + Eµ(βvε) +
|β|p∗

p∗
− |β|

r

r

∫
Ω

|vε|r

+ A3ε
n−p
p2 +B3ε

p−1
p (n− (r−1)(n−p)

p )

≤ c1,r +
1
n
S
n
p + Cε

n−p
p +

|β|p∗

p∗
− |β|

r

r

∫
Ω

|vε|r −O(ε
(p−s)(p−1)

p )

+ A3ε
n−p
p2 +B3ε

p−1
p (n− (r−1)(n−p)

p )

≤ c1,r +
1
n
S
n
p + Cε

n−p
p +A3ε

n−p
p2 +B3ε

p−1
p (n− (r−1)(n−p)

p )

− C4ε
(p−s)(p−1)

p +
|β|p∗

p∗
− |β|

r

r

∫
Ω

|vε|r.

Note that we have required that p > n−s
n−p (p−1). By the assumption, we can choose

ε small enough so that

Cε
n−p
p +A3ε

n−p
p2 +B3ε

p−1
p (n− (r−1)(n−p)

p ) − C4ε
(p−s)(p−1)

p ≤ −2σ

for some constant σ > 0. Now choose δ0 > 0 small enough so that

|β|p∗

p∗
− |β|

r

r

∫
Ω

|vε|r < σ for 0 < |q − p∗| < δ0.

The proof of this lemma is now complete.

The rest of the proof of the theorem is now very similar to Theorem 9.1. The
details are left for the interested reader.

11. Appendix: Estimates on the extremal Sobolev-Hardy functions

Assume, without loss of generality, that 0 ∈ Ω, and let

Uε(x) = (ε+ |x|
p−s
p−1 )

p−n
p−s .

Uε(x) is a function in H1,p(Rn) where the best constant in the Sobolev-Hardy
inequality is attained. They are, modulo translation and dilations, the unique
positive ones where the best constant is achieved. (See section 2.)

Let 0 ≤ φ(x) ≤ 1 be a function in C∞0 (Ω) defined as

φ(x) =
{

1 if |x| ≤ R,
0 if |x| ≥ 2R,

where B2R(0) ⊂ Ω. Set uε(x) = φ(x)Uε(x). For ε → 0, the behavior of uε has to
be the same as that of Uε but we need precise estimates of the error terms.
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Lemma 11.1. Assume 0 ≤ s < p, p ≥ 2 and q = n−s
n−pp. By taking

vε =
uε

(
∫

Ω
|uε|q
|x|s )

1
q

so that
∫

Ω
|vε|q
|x|s = 1, we have the following estimates:

(1) ‖∇vε‖pp = µs +O(ε
n−p
p−s ),

(2)
∫

Ω |∇vε|α = O(ε
(n−p)α
p(p−s) ), for α = 1, 2, p− 2, p− 1.

(3) if r > p∗(1− 1
p ), then

C1ε
( p−1
p−s )(n− r(n−p)

p ) ≤ ‖vε‖rr ≤ C2ε
(p−1
p−s )(n− r(n−p)

p ),

(4) if r = p∗(1− 1
p ), then

C1ε
(n−p)r
p(p−s) | log ε| ≤ ‖vε‖rr ≤ C2ε

(n−p)r
p(p−s) | log ε|,

(5) if r < p∗(1− 1
p ), then

C1ε
(n−p)r
p(p−s) ≤ ‖vε‖rr ≤ C2ε

(n−p)r
p(p−s) ,

(6) if p < r < p∗, then ‖vε‖rr → 0 (as ε→ 0),

(7) ∫
Ω

|vε|q−1

|x|s = O(ε
p−1
p (n−pp−s )).

(8) ∫
Ω

|vε|
|x|s = O(ε

n−p
p(p−s) ).

where C1, C2 > 0 are constants.

Proof. Let

k(ε) = (ε · (n− s)(n− p
p− 1

)p−1)
n−p
p(p−s) .

Then yε(x) = k(ε)Uε(x) is the extremal function in the Sobolev-Hardy inequality.
Furthermore,

k(ε)p‖∇Uε(x)‖pp = ‖∇yε(x)‖pp = µ
n−s
p−s
s

The gradient of uε(x) is given by

∇uε(x) = (ε+ |x|
p−s
p−1 )

p−n
p−s∇φ(x) +

p− n
p− 1

· xφ(x)

(ε+ |x|
p−s
p−1 )

n−s
p−s |x|

p−2
p−1

=

{ p−n
p−1 ·

x

(ε+|x|
p−s
p−1 )

n−s
p−s |x|

p−2
p−1

if |x| ≤ R,

0 if |x| ≥ 2R.

Thus we have∫
Ω

|∇uε|p = O(1) +
∫
|x|≤R

|∇Uε(x)|pdx = O(1) +
∫

Rn

|∇Uε(x)|pdx

= O(1) + ‖∇Uε(x)‖pp,
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and ∫
Ω

|uε|p
|x|s = O(1) +

∫
Rn

|Uε|q
|x|s = O(1) +

∫
Rn

|yε|q
|x|s · k

−q(ε) = O(k−q(ε)).

From this we further get

‖∇vε‖pp =
‖∇uε‖pp

(
∫

Ω
|uε|q
|x|s )

p
q

=
O(1) + ‖∇Uε‖pp

(
∫

Ω
|uε|q
|x|s )

p
q

=
O(1) + µ

n−s
p−s
s k(ε)−p

(
∫

Ω
|uε|q
|x|s )

p
q

=
O(1) + µ

n−s
p−s
s k(ε)−p

O(1) + k(ε)−pµ
p(n−s)
(p−s)q
s

= O(k(ε)p) + µ
n−s
p−s−

p(n−s)
(p−s)q

s = µs +O(ε
n−p
p−s ).

(1) is thus proved. For (2), let ωn denote the surface area of the (n − 1)-sphere
Sn−1 in Rn; then∫

Ω

|∇uε|α = O(1) +
∫
|x|≤R

(
n− p
p− 1

)α
|x|α

(ε+ |x|
p−s
p−1 )

α(n−s)
p−s |x|

(p−2)α
p−1

dx

= O(1) + ωn

∫ R

0

(
n− p
p− 1

)α
rα · rn−1

(ε + r
p−s
p−1 )

α(n−s)
p−s r

(p−2)α
p−1

dr

≤ O(1) + ωn

∫ R

0

(
n− p
p− 1

)αrα+n−1−α(n−s)
p−1 −

α(p−2)
p−1 dr,

and the order of r in the integrand is

α+ n− 1− α(n− s)
p− 1

− α(p− 2)
p− 1

=
pn− p− n+ 1− αn+ αs+ α

p− 1

=
pn− n− αn+ αs+ α

p− 1
− 1 > −1

for α = 1, p− 2, p− 1 and α = 2 if p ≥ 3. Thus∫
Ω

|∇uε|α = O(1),

and we conclude that ∫
Ω

|∇vε|α = O(ε
(n−p)α
p(p−s) ).

For (3), (4) and (5),

‖uε‖rr = O(1) + ωn

∫ R

0

(ε + x
p−s
p−1 )−

n−p
p−s rxn−1dx

= O(1) + ωnε
−n−pp−s r+

p−1
p−sn

∫ Rε
− p−1
p−s

0

(1 + x
p−s
p−1 )−

n−p
p−s rxn−1dx
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If r = p∗(1− 1
p ), then −n−pp−s r + p−1

p−sn = 0, and

‖uε‖rr = O(1) + ωn

∫ Rε
− p−1
p−s

0

(1 + x
p−s
p−1 )−

n−p
p−s rxn−1dx

= O(1) + ωn

∫ Rε
− p−1
p−s

0

1
x
dx

= O(1) +O(| log ε|).
So we get

‖vε‖rr = O(| log ε|ε
n−p
p(p−s) ·r).

If r < p∗(1− 1
p ), then −n−pp−1 r + n− 1 > −1. We conclude that

‖uε‖rr = O(1) + ωn

∫ R

0

(ε+ x
p−s
p−1 )−

n−p
p−s rxn−1dx

≤ O(1) + ωn

∫ R

0

x−
n−p
p−1 r+n−1dx = O(1)

and
‖vε‖rr = O(ε

n−p
p(p−s) r).

If r > p∗(1− 1
p ), then −n−pp−1 r + n− 1 < −1 and −n−pp−s r + p−1

p−sn < 0. We have

‖uε‖rr = O(1) + ωnε
−n−pp−s r+

p−1
p−sn

∫ ∞
1

(1 + x
p−s
p−1 )−

n−p
p−s rxn−1dx

= O(ε−
n−p
p−s r+

p−1
p−sn),

and
‖vε‖rr = O(ε−

n−p
p−s r+

p−1
p−sn+ n−p

p(p−s) r) = O(ε
p−1
p−s (n− r(n−p)

p )).
(3), (4) and (5) are thus proved.

For (7) and (8), we have∫
Ω

|uε|α
|x|s dx = O(1) +

∫
|x|≤R

(ε + |x|
p−s
p−1 )−

n−p
p−s α|x|−sdx

= O(1) + ωn

∫ R

0

(ε+ r
p−s
p−1 )−

n−p
p−s αr−s · rn−1dr

= O(1) + ωn

∫ Rε
− p−1
p−s

0

(1 + r
p−s
p−1 )−

n−p
p−s αrn−s−1ε−

n−p
p−s α+(n−s) p−1

p−s dr.

If α = q − 1, then −n−pp−sα+ (n− s)p−1
p−s = −1. We have

∫
Ω

|uε|α
|x|s dx = O(1) +O(ε−1)ωn

∫ Rε
− p−1
p−s

0

(1 + r
p−s
p−1 )−

n−p
p−s αrn−s−1dr

= O(1) +O(ε−1)ωn
∫ ∞

0

(1 + r
p−s
p−1 )−

n−p
p−s αrn−s−1dr = O(ε−1),

since n− s− n−p
p−1 (q − 1) = s−p

p−1 < 0. Then∫
Ω

|vε|α
|x|s dx = O(ε−1) · ε

n−p
p(p−s) (q−1) = O(ε

p−1
p (n−pp−s )).
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If α = 1, since −n−pp−1 + n− s > −n−pp−1 + n− p = (n− p)(1− 1
p−1 ) ≥ 0 for p ≥ 2, we

have ∫
Ω

|uε|
|x|s dx = O(1) + ωn

∫ R

0

(ε + r
p−s
p−1 )−

n−p
p−s rn−s−1dr

≤ O(1) + ω

∫ R

0

r−
n−p
p−1 +n−s−1dr = O(1),

and furthermore ∫
Ω

|vε|
|x|s dx = O(ε

n−p
p(p−s) ).

(7) and (8) are thus proved.

Note that the above results are well known for the extremal functions associated
to the Sobolev embedding, that is, when s = 0. In the following lemma, we prove
additional properties in the case where s > 0.

Lemma 11.2. For 0 ≤ t < p, we have

∫
Ω

|vε|α
|x|t =


O(ε

n−p
p2 α| log ε|), α = n−t

n−p (p− 1),

O(ε
(n−p)(p−1)

p2 (p∗(t)−α)), α > n−t
n−p (p− 1),

O(ε
n−p
p2 α), α < n−t

n−p (p− 1).

Proof. As above, let ωn denote the surface area of the (n− 1) sphere Sn−1 in Rn.
Then ∫

Ω

|uε|α
|x|t = O(1) + ωn

∫ R

0

(ε+ r
p
p−1 )

p−n
p αrn−t−1dr.

Case 1. α = n−t
n−p (p− 1) (then p−n

p−1α+ n− t = 0). Then∫
Ω

|uε|α
|x|t = O(1) + ωn

∫ Rε
− p−1

p

0

(1 + r
p
p−1 )

p−n
p αrn−t−1dr

= O(1) + ωn

∫ Rε
− p−1

p

0

1
r
dr = O(| log ε|).

Case 2. α > n−t
n−p (p− 1) (then p−n

p−1α+ n− t− 1 < −1). Then

∫
Ω

|uε|α
|x|t = O(1) + ωn

∫ Rε
− p−1

p

0

(1 + r
p
p−1 )

p−n
p αrn−t−1drε

p−n
p α+(n−s) p−1

p

= O(1) +O(ε
p−n
p α+(n−s) p−1

p ).

Case 3. α < n−t
n−p (p− 1) (i.e. p−n

p−1α+ n− t− 1 > −1). Then∫
Ω

|uε|α
|x|t = O(1) + ωn

∫ R

0

(ε+ r
p
p−1 )

p−n
p αrn−t−1dr

= O(1) + ωn

∫ R

0

r
p−n
p−1 α+n−t−1dr

= O(1).

Now, the conclusion follows immediately.
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