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MULTIPLE SOLUTIONS OF PERTURBED SUPERQUADRATIC
SECOND ORDER HAMILTONIAN SYSTEMS

YIMING LONG

Abstract. In this paper we prove the existence of infinitely many distinct T-
periodic solutions for the perturbed second order Hamiltonian system q +
V(q) = /(') under the conditions that V:RN —» R is continuously difter-
entiable and superquadratic, and that / is square integrable and 7-periodic.
In the proof we use the minimax method of the calculus of variation combining
with a priori estimates on minimax values of the corresponding functionals.

1. Introduction and main results

Recently multiple existence results of variational problems which are invari-
ant under a group of symmetries have been studied extensively. For forced
vibration problems this kind of symmetry breaks down. Our paper is devoted
to such perturbation problems for superquadratic second order Hamiltonian
systems

(1.1) q + V(q) = f(t).
Our main result is the following

Theorem 1.2. Assume V satisfies
(VI)  FgC'(R",R),
(V2) there are constants p > 2, r0 > 0 such that

0<pV(q)<V'(q).q   for\q\>r0.

Then for any given T, R > 0 and T-periodic function f E L2([0 ,T],RN), the
Hamiltonian system (1.1) possesses a T-periodic solution q(t) with

max \q(t)\ > R.
7€[0,r]'

Here q = d q/dt , V is the gradient of V, and we denote by p • q the
scalar product in R^ .
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750 YIMING LONG

For the autonomous case of (1.1) (i.e. / = 0 ), the result was first proved by
Rabinowitz [15, 16]. His proof is based on that the corresponding functional,
I{q) = Jo (\\<i\ ~~ V{Q(t)))dt, is invariant under an action of group S . That
is I(q) = I(qe) for any d E [0,T], where qe(t) = q(t + 6). But in (1.1) the
forcing term /(/) destroys the group symmetry. In [4], Bahri and Berestycki
used a Morse theory type argument and finite dimensional approximation to
treat the system (1.1). They proved the above result by assuming (VI ' ): V e
C (R , R) and (V2). In [18] Rabinowitz also considered such perturbation
problems and established a functional framework, which works more directly
on infinite dimensional spaces. He proved this result by assuming (VI), (V2)
and some polynomial growth condition on V.

In this paper we follow the basic functional framework of [ 18], but we modify
the treatment of the 5 -action and derive some new a priori estimates. These
allow us to get Theorem 1.2. More precisely we prove Theorem 1.2 via the
following steps.

1 °. In §§2 and 3, we define a modified functional J corresponding to (1.1)
and an auxiliary space X with a simpler S '-action on it than on Wx ,2(SX , R ).
With the aid of X we define two sequences of minimax values, {bk ¡} and
{ak ¡} for k E N, i = I , ... ,N, of J, which satisfy bk ¡ > ak ¡. We prove
that if bk . > ak ¡ then J possesses a critical value not less than bk . and
corresponding critical points of J are solutions of (1.1).

2°. In §4 we prove that if bk (. = ak i for all large enough k and i =
1.N, then this implies that

(1.3) akj<ak^-X)

for some q > 0, large enough k and i - 1.N. The proof depends on
the properties of the 5'-action we defined on X .

3 ° . In §5 we prove a lower estimate for the growth of {ak (}

(1.4) lim -X± = +oo,        i = I, ... ,N
k^oo   k

(1.4) improves the corresponding estimate obtained in [18]. In (1.4), the expo-
nent "2" is crucial, since if p > 2, (1.4) contradicts (1.3) and completes the
proof of Theorem 1.2. The method we used to prove (1.4) is different from
earlier known methods (for example [4, 18]).

In §6, we briefly describe some further extensions.
In the appendix wë make a detailed study of a single ODE to get estimates

used in §5.
This paper is a part of my doctoral thesis. I wish to express my sincere

thanks to my advisor Professor Paul H. Rabinowitz for his guidance, help and
encouragement.

2.  A MODIFIED FUNCTIONAL

In order to prove the main Theorem 1.2, firstly, without loss of generality,
we may assume T = 2n , so f E L2(SX , RN). Define E=WX 2(SX , RN) withLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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the norm
r2n \ 1/2

\E ~

We consider the following functional on E,
r2n

E= [j\\q\2 + \q\2)d

I(Q) = Jn (yj\Q\2-V(q)+f-qjdt.

By standard results [20], we know that I EC (E , R) and the critical points of
I in E will be weak solutions of (1.1). We define an 5 -action Tg on E by

(2.1) (Teq)(t) = q(t + 6)   for 0 E [0, 2n\

We say a functional L:E —► R is 51 (£)-invariant if

(2.2) L(Teq) = L(q),       Vq E E , 0 E [0, 2n].

If / = 0 in (1.1), then the corresponding functional I is S (¿^-invariant.
This important property was used by Rabinowitz (cf. [15, 16]) and others (cf.
[6, 17]) to prove the existence of multiple solutions of the autonomous problem.
But when / does depend on /, these proofs break down. In order to measure
and control the asymmetry caused by /(/), in [18], Rabinowitz introduced the
following modified functional J. For the proofs of its properties we refer to
[18].

It is easy to check that (V2) implies that there are constants Kx , K2, K3 > 0,
such that

(2.3) Uv'(q)-q + Kx)>V(q) + K2>Ki\qf   Vq E RN.

Lemma 2.4 (Lemma 2.6 [18]). If q is a critical point of I, then there exists a
constant K4>0 depending on ||/||¿2 such that

(2.5)       / \v(q) + K2)dt<X-  Í \v'(q) -q + Kx)dt< K4(I2(q) + I)
Jo P Jo

Let ^gC°°(R,R) suchthat

X{t)={o     i>2      and    -2<*'<0   for/G (1,2).

Let v(q) = X((2K4(I2(q) + l)x/2)~x ¡02n(V(q) + K2)dt). Define for q E E

J{Q) = j" Qltfl2 - V(q) + tp(q)f • ̂  dt.
Let supp ip denote the closure of the set {q E E\ ip(q) / 0} in E.

Lemma 2.6 (Lemma 2.11 [18]). There is a constant K5>0 dependingon \\f\\L:
such that

(2.7) |/(c7)-7(r,(7)|<A'5(|y(c7)|'//' + l)

for all q E E and 0 G [0 , 2tt] .

,1/2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



752 YIMING LONG

Lemma 2.8 (Lemma 2.14 [18]). J E CX(E, R) and there is a constant K6 > 0
such that J(q) > K6 and J'(q) = 0 implies that J(q) = I(q) and l'(q) = 0.

For a given Banach space 3S , we say a functional L E C (¿¡§ , R) satisfies
the Palais-Smale cpndition (P.S) if whenever a sequence {um} c ¿% satisfies
that L(um) is uniformly bounded and L'(um) —► 0, then {um} is precompact.

Let [J]c = {q E E \ J(q) < c} , [J]c = {q E E \ J(q) > c} for any ceR.

Lemma 2.9 (Lemma 2.15 [18]). There is a constant K7 > 0 such that J satisfies
(P.S) on [J]Ki.

3. A MINIMAX FRAMEWORK

In this section using the properties of the functional J we define two se-
quences of minimax values of J, {bk ¡} and {ak ¡}, such that bk ( > ak r
We prove that whenever bk ¿ > ak ., J possesses a critical value not less than
bk i and corresponding critical points of J are solutions of (1.1).

To define {bk ¡} and {ak .}, we introduce an auxiliary space X with an
S -action Te . This structure will be used in §4 to get the estimates from above
for the growth of {ak .} . The definitions of bk . and ak . involve the Fadell-
Rabinowitz cohomological index which will be used in §5 to get the estimates
from below for the growth of {ak ¡} .

We define the usual lexicographical order for 2-tuples (k , i) E 3¡ as follow-
ing, where S = ({0} U N) x {1.N} .

(j ,m) = (k, i),    if j = k  and m — i,
(j ,m) <(k , i),    if j < k or j = k and m < i.

For convenience, we write (k , i) = (k + [^f] , i — [jj]N) for any / e N, where
[a] is the integer part of a , (k , 0) = (k - 1 , N) for k E N.

Let t\m, m — I, ... ,N, denote the usual orthonormal basis in R   . Define

Vj m = (sinjt)im ,       Wj m = (cosjt)Cm   for (j ,m)E3¡.

These functions form an orthogonal basis for E. Let

Ek . = span{^. m , Wj>m |(0,1) < (j .m)<(k, i)}   for (k , i) E 3.

Let R0 > 0 be a constant, which will be determined later. By (2.5), there is a
constant Rk ¡> RQ+ I for any (k ,ï)E& such that

J(q)<0   if qEEk t and \\q\\E>Rkj,

and
*!U+l >**.<>*    V(/C,/)G^.

We shall impose more conditions on Rk . 's later. Define

Dk.l{E) = Bki(E)nEk¡,

where BkA{E) = BR   {E), Bp(E) = {q E E\ \\q\\E < p} for p>0.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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For the 5'-action T0 defined on E by (2.1), we say a subset B of E is
51(£')-invariant if

(3.1) TeqEB   \/qEB, 6 E [0 , 2«].

If B is an 51(£')-invariant set of E, we say h:B —► E is an 5'1(£)-equivariant
map, if

(3.2) h(Teq) = Tgh(q)   Vq E B , 0 G [0,2«].
Note that the fixed point set of this group of symmetries is

(3.3) Fix{re} = {q EE\ Teq = q V0 G [0,2«]} = EQN.
Let <§* denote the family of closed (in E ) invariant subsets of E\{0} .

In order to analyse the effect of the S -action Te on E, for q E E, we write
its Fourier expansion in the following polar coordinate form,

N

(3.4) Q=Y,P0.mW0,m+        E        Pj.m(C0S<Pj.mVj,m+Sin<Pj,mWj.J
m=l U'.7H)>(1,1)

where p0 m E R for m = 1, ... ,N, pjm > 0, <pjm E [0,2«) for (1,1) <
(j,m). If pj m = 0 then f. m = 0. We also write q = (pjm,9j,m) with
<p0 m = 0 for m = I , ... ,N. Then a computation shows that for 0 G R,

N

(3.5)    Teq = Y,Po .wnm    0 ,m
m=l

+        E        Pj ,m{C0S(<Pj ,m + J'e)vj ,m + Sin(^ m + J6)WJ J-
U.m)>(\,\)

Using the expression (3.4), for q E E, we find

(3.6) \\q\\2E = [2\\q\2 + \q\2)dt = ¿ (2»^.m + ^(1+/)^    Y
J0 m=\  V 7>1 '

In order to define a family of the minimax sets, we introduce a new space X
based on E. We shall define a simpler S -action on X than that on E.

X = RNx C,m,    where C,m=C.
C/.m)>(l,l)

For x G A', we write

(3-7) * = E/Vmío.m+      E      Pim'*'^!*'
m=\ 0."i)>(l.l)

where i = v^T, p0 m gR for w = 1.A/, Pj m>0, <Pj m G [0,2«) and
^.« = 0 implies tpj. m = 0 for {j, m) > ( 1 ,1 ). {(. m \ (j ,m)'e3f) is defined

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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as following
oo    N

i/.m = K,l.aO.N>ai.l'---'ai.N>---)eTlTl •■■■>Rk,n-
k=\n=\

where R^ n = R, a¡ m = 1 and ak n = 0 if (k, n) ^ (j , m). We also write
x = {Pj,m,9j,m).

The norm on X is defined by

(3.8)        iwu = (E(2^o,m+^E(1+>V2.m))1/2-
Xm=l X j>\ ' '

for x E X given by (3.7), and then X becomes a Hubert space under the
corresponding inner products. We define an 5 -action te on X by

(3.9)- 7> = ¿>0mC0,m+     £     Pj,mei{9lm+6)Cj¡m,
m=\ (j.m)>(\.\)

for x E X given by (3.7) and 0 G R. In a similar fashion to what was done
above for E, we use (3.1), (3.2) and (2.4) to define 51(X)-invariant subsets of
X, S (-Y)-equivariant maps and 5 (X)-invariant functionals. Let Sf denote
the family of closed (in X) S1 (^-invariant sets in X\{0} . For fie/,we
say a map h:B —► E is 5" (X, is)-equivariant if

h(tex) = Tgh(x)   \/xeB, 0 g [0,2«).

Let Xk ;. = {x G X | pj m(x) = 0if(k, i) < (j, m)} for any (k,i)E2¡, i.e.

(k ,i)

*k.i = *N*        Il       CJ.m-
U.m)={l,l)

Note that X0 N = Fix{fe} .
On the Cartesian product space X x E, we define an 5'-action by

fg(x , q) = (fex , Teq),    for (x , q) E X x E and 0 G [0,2«).

We define S'(ATx.E)-invariant sets, equivariant maps, and invariant functionals
similarly. Let !F denote the family of closed (in X x E ) S (XxE )-invariant
subsets in (X x £)\{0} . Then &~ contains sets in 3? x {0} and {0} x <T. We
introduce the Fadell-Rabinowitz cohomological index theory (cf. [10]) on &.
Its properties we need are summarized in the following Lemma,

Lemma 3.10. There is an index theory on A?', i.e. a mapping f:/-»{0}uNu
{oo} such that if A, Be A7',

1 °.   y(A) < y(B), if there exists h E C(A,B) with h being SX(X x E)-
equivariant.

2°.  y(AuB)<y(A) + y(B)-
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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3°. If B c (X x E)\(X0 N x E0 N) and B is compact, then y(B) < oo,
and there exists a constant ô > 0 such that y(AVs(B, X x E)) = y(B), where
yTs(B , X x E) = {z E X x E | \\z - B\\XxE < 0} .

4°. //yc(Ix E)\(X0 N x E0 N) is a 2« - 1 dimensional invariant sphere,
then y(S?) = n.

Define
y= y\j?x{o} •    y = y\{o}x&-

They induce index theories y, y on S? and % separately by identifying at?
with SI? x {0} and f with {0} x %. y and y possess the properties listed in
Lemma 3.10 too. Furthermore on the relationship between y and y, we have

Lemma 3.11. For A E S?, B E%, if there exists h E C(A , B) with h being
Sx (X , E)-equivariant, then y(A) < y(B).
Proof. This is a direct consequence of 1 ° of Lemma 3.10.   Q.E.D.

Let Dk .(X) = Bk A(X)nXk ., where Bk .(X) = BRk{X) = {xeX\ \\x\\x <
Rk ,} . For x G X, q E E we write x ~ q if Pj m(x) = p} m(q) and <Pj m(x) =
Vj.mÚ) for any (j ,m)E3 .

The usual "identity map", id(x) = q if x ~ q, is not SX(X, £')-equivariant.
We need to define a new map which is S (X, £')-equivariant and which will
play the role of the identity map in the (X, E) setting. For any x E X with
expression (3.7) we define a map h as follows
(3.12)

N

h(x) = ^2 Po ,mW0 ,m +        E        Pj ,m(COSU<Pj ,m)Vj ,m + SÍnU<Pj ,„>, ,J-
m=l [j,m)>{l ,1)

Concerning this map h , we have

Lemma 3.13. The map h defined by (3.12) possesses the following properties,
Io. hEC(X,E).

2° .  h is S (X,E)-equivariant.
3 °. h(dBp(X) n Xk .) = dBp(E) n Ek ., V(/V ,í)e3¡ and p > 0.
4°. If q~xEX0 N, h(x) = q.

Proof. 1 °. By (3.6) and (3.8), x E X implies that ||A(x)||£ = \\x\\x < oo, i.e.
h(x) E E. Hence h maps X into E. It is clear h(X) = E. We only prove the
continuity of h for the case N = 1. The general case can be done similarly.
Suppose xn , x E X, xn —> x in X as n —> oo. Write xn = (pn(n), <pk(n)),
x = {Pk> Vk) ' wnere <Po(n) — Vo — ° • Tnen

oo

2n(p0(n) - p0)2 + nJ2(l+ k2)(p2k(n) + p2k- 2pk(n)pk cos(tpk(n) - <pk))
Jt=i

= \\xn - x\\x —<■ 0   as n —► oo.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Since ||x||2 = 2np0 + «D^O + k2)p\ < oo, given any e > 0, there is an
Nxe~N such that

oo

(3.14) nJ2(l+k2)p¡<e.
k=N,

Since
oo oo

(3.15) « E (! + k2)P2k(") <^E(1+ k2^2Pl + 2(^(") - Pkf)
k=Nt k=N¡

oo

<2«£(l+/c2)^ + 2||x„-x|£,

there is /V2eN such that for any n > N2
oo        ,

(3.16) « ^(l+/c2)/>2(«)<3e.

Since xn —► x in X as «-»oo, there is N3 E N such that for « > N3,

(3.17) /,(«) = 2«(/>0(«) -/>0)2
tV,-1

+ n^2(l+ k2)(p2k(n) + p2k- 2pk(n)pkcosk(tpk(n) - <pk)) < e.
7C=1

Let /V4 = max{A/2, N3} . From (3.14)-(3.17), we get that for any n>N4,

\\h(xn) - h(x)\\2E
oo

= /,(«) + « J2 (1 + k2)(p\(n) + p2k- 2pk(n)pk cosk(<pk(n) - <pk))
k=N,

oo

</,(») +2* £(l + *2)(/£(«)+ /£)<*«■
fc=JV|

Thus h E C(X, E).

2°. For any x = (pjim,<Pj,m) € X, h(x) = (Pj m ,jtp. J eE. Then for
any 0gR,

h(tex) = h((pJm,<pjm + d)) = (Pj,m,j(<pjm + d))

= Tg{P],m.J9j,m) = Teh(x).

Therefore h is S (X, £')-equivariant on X.
3 ° and 4 ° are direct consequences of the definition of h . This completes

the proof.   Q.E.D.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Definition 3.18. We denote the above map h by "id" : X —► E.
With the aid of the map id, we can now define a minimax framework. For

(rC,/)> (1,1), define

Tk ¡ = {hE C(Dk ((X), E) | h is SX (X , £)-equivariant on Dk .(X) and
h = id on (Dk t(X) n X0 N) u (dBk .(X) n Xk .)} ,

Ak. = {h E C(Dki+x(X),E)\h\DkÁX) E Tki and h = id on

(dBkMX(X)nxkj+x)u((BkMX(X)\Bk.(X))nxk.)},

■** ,i = iWj .m W\y) I U .m)>(k,i),he T. m and Y E &
with y(Y) < (jN + m)- (kN + /)} ,

&k .i = Wj ,77,+! W\f) I U ,m)>(k,i),hE A. m and Ye ä?
with y(Y) < (jN + m) - (kN + /)}.

We define two sequences of minimax values of J as follows

a. ,. =   inf maxJ(q),       b, ,:=   inf  maxJ(q).
"■'       A€tfk., q&A fc''       B€£Bk,¡ q€B

Remark 3.19. 1 °.   Since id erjmnAjm, I\ m ¿ 0, A. m ¿ 0 for any
(j,m)>(l,l).

2°. In §5 we shall prove that ak i, bk i are finite for (k ,i) > (1,1).

Lemma 3.20.   1° . ak ¡< ak . , for any (k , i) > (1,1).
2°-  ak.i^bk.if°rany (k,i)>(l.l).

Proof. 1 ° follows since ^4 (+1 citj and 2° holds since for any B e 3§k ¡
there is a set Ac B with Áe sfk ¡.   Q.E.D.

In [18], Rabinowitz proved an important existence result (Lemmas 1.57 and
2.29 [18]), which shows that if bk ( > ak i then the asymmetric functional J
possesses a critical value bk ¡(a) > bk ¡. The following proposition is a variant
of this result in our setting, which is one of the three key steps in the proof of
Theorem 1.2.

Proposition 3.21. Let (k , i) > (1, 1). Ifbki > ak ¡ > K7, let Ö E (0,bki-aki)
and

^kl(ô) = {h(Djm+x(X)\Y)E^kl\J(q)<ak. + ô, if q E h(Dj m(X)\Y)} ,
let

bv Aß) =     inf    maxJ(q).
*•' Bz£BkA(8) q&B

Then bk ¡(Ô) is a critical value of J.
Remark 3.22. 1 ° . Since for any h G Ty m , we can extend it to a map in Ay m ,
&k ¡(S) ¿ 0. In fact for h E r\ m , extending h as id on

(^,+lWn^,m + l)u((ilj.m+1(l)\fijim(i))nI,J
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and using the Dugundji Extension Theorem [8] to further extend h to the whole
Djm+x(X),weêttthat heAjm.

2°. bkJ(3)>bki>akJ>K7.
For the proof of Proposition 3.21, we require the following standard "defor-

mation theorem" (cf. [14]).

Lemma 3.23. Let J eCx(E,R) satisfy ( P.S) on [J]a. Then if c> a, 5>0
and c is not a critical value of J, there exists e E (0, E) and tj E C([0,1 ] xE, E)
such that

1°.   r](t ,q) = q if q <£ J~x(c -E.c + E).
2°.   7/(l,[/f+£)Ç[7]c_£.

Proof of Proposition 3.21. Choose E = \(bk . -ak . -S) > 0. If bk ¡(S) is not a
critical value of / then there exist e and r\ as given by Lemma 3.23. Choose
BeâSkA(ô) suchthat

(3.24) ma\J(q)<bk l(Ô) + E.
(¡ÇlB '

By the definition of 3Sk iß), there are (j ,m)>(k,i), He A; m and Y E%?
with y(Y) < (jN + m)- (kN + i) such that B = H(Dj m+x(X)\Y). Now we
define a new map h as following

(3.25) h = n(l,H)    on DJ m+x(X)\Y ,
(3.26) h = H   onBjm+x(X)nXjmnY,
(3.27) A=id    ondBjm+x(X)nXjm+x.
Let

Q = (DJ,m+x(X)\Y)u(Bjm+x(X)nxjmnY)u(dBjm+x(X)nxjm+x),

P = (DJ,m+x(X)nY)\xjm.

For any x E D~JX)\Y, since B E &k Aß),

(3.28) J(H(x)) <aki + S< bk , - 2ë < bk ¡(S) - E,

so by Io of Lemma 3.23, n(l ,H(x)) = H(x).
For any x in

&Bi.777+.(*) nXj,m+1) u ((BJ,m+x(X)\B] JX)) nXj J,

since H E A.    , H(x) — id(x), so

J(H(x)) = J(id(x)) <0<bk ¡(S) - e.

Thus r¡(l,H(x)) = H(x) by 1° of Lemma 3.23.
The above arguments show that the definitions (3.25), (3.26) and (3.27) are

consistent and h E C(Q , E). From the above proof, we also get that

(3.29) h = H   <m(BJwm+l(X)nXjM)U(dBjM+1(X)nXJjn+l).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Since dP ç Q = Q, where "3" is taken within X■ m+x, by the Dugundji
Extension Theorem [8] we can extend h to all of P continuously. This shows
that h G C(Dj m+x (X) ,E).By (3.29) and that H E A; m , /¡6A/ffl, and thus
Bx = h(Dj m+x(X)\Y) E 3Bk, . By (3.28), Bx e A%k Aß)'.

Now (3.24), (3.25) and 2° of Lemma 3.23 show that

(3.30) max J(q)<bk AÔ) - e.

But (3.30) contradicts the definition of bk .(Ô).
The proof is complete.   Q.E.D.

4. AN UPPER ESTIMATE FOR THE GROWTH OF  {flfc .}

If the system (1.1) possesses only finitely many solutions, for at most finitely
many (k, i), bk ¡> ak .. In this section we prove that if for all large enough
k and i = 1,... , N, bk ¡ = ak ., then using the inequality (2.7) we have

and this inequality implies the following estimate on the growth of {ak .}

ak,<ßxe'^
By (2.7), we get that

(4.1) J(Teq)<J(q) + K5(\J(q)\X/li-rl)   Vq E E, 0 G [0,2«].

Since p > 1, there is A"g > 0 depending on K5 and p only such that

(4.2) J(q) + K5(\J(q)\X/f + l)<0   if J(q) < -K%.

We shall prove the following claim in §5,

(4.3) ak ( —► +00   as k —» +00 for any 1 < / < N.

So there is a k0 e N such that

(4.4) aki>Ks   V(k,i)>(k0,l).
Proposition 4.5. Assume that there is a constant kx > kQ such that bk . = ak .
for every k > kx and 1 < i < N. Then there exists a constant ßx - ßx(kx) > 0
such that

(4.6) ak ,. < ßxkM/{ti~X),   fork>kx, I < i < N.
Proof. For (k, i) > (kx, 1), we get that

(4-7) at ¡4.1 =    inf   maxJ(q)<    inf   maxi   max J(T„q)).
*',+ 1       A&¡/kJ+í  q€A A€s/kl+l q€A   \ ö€[0,2n) 6     J

Assuming the following inequality for a moment

(4.8) inf   max (   max J(T„q) ) <   inf max (   max J(T„q) ) ,
Aesfk.M q£A   \ez[0,2n] °     J       Be&k, «€fi   \ 0€[0,2»] °     J
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we get that

(4.9) a. .... <   inf max [   max J(Taq)\.
*',+1 ~ B£&kAq€B   Vö€[0,27r] "     /

For any e > 0, by the definition of bk ., there is a B e â§k t such that

(4.10) maxJ(q) <bki + e = akj + e.

For this choice of B, using (4.1), (4.2), (4.4), and (4.10), we get

(4.11) J(Teq)<a¡
(4.9) and (4.11) yield

ak

Let e -+ 0, we get that

(4.11)        j(Teq)<aki + e-rK5((aki + e)X/M + l)   Vq E B , 0 G [0,2«].

«fc.l+1 *«*.!+«+ *S«qu+«>I/', +!>-

Then a slight extension of the argument of [2] gives (4.6).

Thus we have reduced the proof of (4.6) to proving the inequality (4.8), i.e.
the following lemma.

Lemma 4.12. If L is a continuous Sx (E)-invariant functional on E, then

(4.13) inf   maxL(û) <   inf  maxL(<?)
Aesfk,M  qeA BÇ.âSki q€B

is true for (k,i) >(1,1).
Proof. It suffices to prove that for every B E^Sk ¡, there is an A E s¡¿k /+1 such
that

(4.14) maxL(<?) < maxL(^).
q&A q€B

Given B E¿Bk ,, by the definition of 3Sk i, there is (;' ,m)>(k,i), He A; m
and Ye 3? with y(Y) < (jN + m)-(kN + i), such that B = H(Dj m+x(X)\Y).
Let

uj,m(x) = {*£ Djm+x(X)\x = x + Pjm+xCj,m+x ,x E Xjm ,
Pj.m+l >0and||x||^<A>iM+I}.

Now we define a map h from which we shall get an A E s/k i+x . Let

(4.15) h(x) = H(x)   for xEUjm(X),

(4.16) h(tex) = Tgh(x)   forxEUjm(X)anddE[0,2n).

We need to show that h eT. m+x. Since for any v G Dj m+x(X), there exists
only one x E Uj m(X) and only one 0 G [0,2«) such that

(4.17) v = 7>,
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h is well defined on Dj m+x(X). Since H E A, m , h = H e C(Uj JX),E)
and h = H is 5'1(X,£')-equivariant on D. m+x(X) nl-ffl. The Sx action is
continuous and (4.16) does not change the values of h on Z). m+x(X) nljm.
Thus h E C(D. m+x(X), E). By the above argument and the definition (4.15),
(4.16), we have that h is SX(X, £')-equivariant on Dj m+l(X) and h = H = id
on (J^iW nIM) U (a^.|W+1(AT) fll; m+1). Therefore h E Y]m+X . Let
A = h(Djm+x(X)\Y), then A E s/kM . For any y G Z>,.M+l(X)\Y, there
exists x G Uj m(X)\Y and 0 G [0,2«) such that fex = y. So

h(y) = h(fex) = Teh(x) = TeH(x):
Since

Ujjn(X)\YCDjm+x(X)\Y,
we get that

L(h(y)) = L(T8H(x)) = L(H(x)) < maxL(q).
q€B

Thus
maxL(^) < maxL(^).
q&A q€B

The proof is complete.   Q.E.D.
Remark 4.18. A result like Proposition 4.5 was given by Rabinowitz (Lemma
2.31 [18]). Unfortunately the proof there is not complete. By introducing the
space X we get a unique expression y = tex in (4.17), which guarantees the
map h constructed in the proof is well defined, and enables us to complete the
proof. We are indebted to Professor Paul H. Rabinowitz who pointed out the
shortcoming in the proof of Lemma 2.31 [18] to us.

5. A LOWER ESTIMATE FOR THE GROWTH OF  {ak ¡}

In this section, we shall prove the following estimate on the minimax value
sequence {ak .} of J.

Proposition 5.1.

(5.2) lim   ^i = +00,   for i =1,2.N.
ÍC —+oo   k

At the end of this section, we shall complete the proof of our main result,
Theorem 1.2.

We will prove Proposition 5.1 in several steps. These steps reduce the esti-
mates to successively simpler situations, the final one being an estimate of mini-
max values for functional associated with a single ordinary differential equation.

Step 1. Reducing to the estimate to a sequence of minimax values {ck .} for a
functional ®(q) = £*, <p(qt).

We need the following lemma, which was proved by Bahri and Berestycki,
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Lemma 5.3 (Lemma 5.1 [4]). Let U E C(RxRN ,R) and U(t, q) is T-periodic
in t, then there exists GeC (R,R) such that

1° .  G1 = g is odd.
2°.  G(Q) = g(0) = g'(0) = 0.
3°. g is increasing and convex on [0, + oo).
4° .  0 < 3C7(r) <« rg(r) for all r E R\{0} .
5°. U(t,q) < £¡Ii <?(«,) + U0 for all (t,q) E RxR*, where q =

(qx, ... , qN) and the constant U0= 1 + max^^, Q<l<T \U(t, q)\.
Proof. For completeness, we sketch the proof here. For n E N, set mn =
maX| ,<n o<kt ^(* - i) • Choose a sequence of positive numbers a0,ax , ... ,
a„, ... ,  such that Y\" na, > m„J_. . For r > 0, define77 ¿—'1 = 0      I   — 77+1 — '

OO

g(r) = 3jÑ¿2an((JÑr-n+l)+)2,
77=1

where C+ = max(0, C), and G(r) - /Qr g(s) ds. For r < 0, define g(r) =
-g(-r), and G(r) = G(-r). This G does the job.   Q.E.D.

We define a Sobolev space W = Wx ' (Sx , R) with norm
r-2t \ 1/2

= [j\\ù\2 + \u\2)dtj        Vu EW.

Then £ = IV     (a Cartesian product of spaces).   In Lemma 5.3, let  U =
V(q) + 2l#|2 f°r ? € R^ , let r = 2« , to define G and g . Then we define

(5.4) 4>{u)= Í K (hù\2-G(u))dt   VueW,

and

*>(q) = J n (||4|2 - E^-)) dt =EM) -    for « = (a, , ... ,«?„) G £.

We have the following standard result.

Lemma 5.5.   cp e C2( W , R), <ï> g C2(E , R), and both satisfy the corresponding
Palais-Smale condition (P.S).
Remark. Cf. the proof of Theorem 2.61 of [15] and [20].

We require one more condition on the Rk ¡ 's,

(5.6) G>(fl)<0   if qEEk¡ and \\q\\E>Rkr

This is possible by 4° of Lemma 5.3 and inequalities similar to (2.3) for G.
We define for (Jk,i)>(l ,1)

c,    =   inf max<P(<7).
*•'       Ae.9/k , q&A

We shall show that c*k t > -oo . Firstly we have the following lemma:
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Lemma 5.7. For (k , i) > (1, 1)

ck.l^ck.M

and

(5.8) aki>c*ki-2nCl,

where C, = \\\f\\2L1 + 2«(1 + maxk|<, \V(q) + {-\q\2\).
Proof. The first inequality follows from that s/k i+l ç s/k .. Since

J(Q) = j * (jlil2 - V(q) + W(q)f • ̂  dt

>£* (¿\à\2-V(q)")dt-\\f\\L2\\q\\L2

Therefore by the choice of C7, for <? g Z? we have that

J(q) > J * (À\q\2 - E G^i)) dt - 2nCi = *(«) - lnCv

This yields (5.8).   Q.E.D.
Step 2. Reducing to the estimate to a sequence of minimax values {ck ¡} for
<f>.

In [19], Rabinowitz proved the following intersection result, which is essential
for the lower bound estimate of the ak ¡ 's.

Lemma 5.9 (Proposition 1.19 and Corollary 1.25 [19]). If (j ,m) > (k,i) >
(1,1), hEAj m, Y eS? with y(Y) < (jN + m)-(kN+i), and 0 < p < Rj m ,
then

(5.10) h(Djm(X)\Y)ndBp(E) n (Eki_xt * 0.
Remark. Note that h(dBj m(X)nXj m) = dBj m(E)nEj m plays the role of the
identity map from dB. m(E)nEj m onto itself in the proof of Proposition 1.19
[19]. The proof there used an S -action version of the Borsuk-Ulam theorem
proved by Fadell, Husseini and Rabinowitz [9].  We refer the readers to [19]
and [9], and omit the proof here.

In W, we define subspaces

Wk = span{sin./7 , cos;7 10 < j < k}   forkE {0} u N.

Then
F        d F d WN^k .7-1  - C-k-X ,S -  rrk-\-

Thus
Jk,i-\)     - y" k-l>      ~ ^r' k-\

(^,_1)xç(<_,)± = (<_,)A'.
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So we can rewrite (5.10) as follows

(5.11) h(Dj m(X)\Y)ndBp(E)n(Wk_xY ¿0.

For elements in (Wk_x)   , we have the following results

Lemma 5.12. For k > 1, q = (qx , ... ,qN) e (IVk_x)N, we have that

(5.13) *ll*llL2<||tf||L2.
and

1/2
(5.14) H*'»*-* (*FTÏ))   >"'""  * = ».-.*
/Voo/.   1° . If q E (Wk_xf , then by (3.5),

? =      E      />; .77,(cos P; lM»j ,m + sin <Pj ,mWj J
U.m)>(k,l)

where Pj m>0 and 0 < tp  m < 2«, Pj m = 0 implies $?, m = 0. Therefore a
computation shows that

(5.15) Mit-* E A2,777

2 V^ 2.    ,2 v-^ 2 ; 2,|    |,2

(j,m)>(fc,l)

This is (5.13).

2  .    By the same computation as in (5.15), we get that for every  i
1.N

(5.16) H<?,llL = *EA2,
}>k

and
I/2 / 1  \ '/2

Iff/Hi.«
j>k Xj>k Xj>kJ   '

-\W^\))
1/2

(by (5.16)). This yields (5.14) and completes the proof.    Q.E.D.
Using the intersection Lemma 5.9 and estimates (5.13) and (5.14), we can

get a positive lower bound for ck . with large enough (k , i).

Lemma 5.17. Fix Z?0 = 4. Then there is k{ > 1 such that
1   . For any (k , i) > (kx , 1 ) and A Es/k ., there exists q E A such that

2_
Ñ(5.18) 4>(?)>2   and   cp(qn)>-^-   \/n = l,...,N.
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2°. For (k,i)>(kx,l)

(5.19) c*ki>2.
Proof.   1° . For A E s/k _., there are (j ,m)>(k,i), heTj m, Yeä? with
y(Y) < UN + m)- (kN + i) such that

A = h(DJm(X)\Y).

By Lemma 5.9 and (5.11), there exists x G ZX m(X)\Y such that

q = h(x)EdBRo(E)n(Wk±_xf ,

<IneWk-\    for« = 1,... ,/V,       q = (qx, ... ,qN).
so

By (5.13)
a5-ii«iií^(i+p)iwiií

Thus
/vo ̂  II4IIL ̂ 2Äu and Htf„llL2 < *o   for n = 1, ... , /Y

By (5.14)

(«O) |W|t- < (^)"!||i„||t! <Ä0(-^)"2.

Fix RQ — 4. Then there is fc, > 1 such that if k > kx

(5.21) C2=        max        G(s) < j_
|i|<4Vr,2/(B(¿-l)) ~   N7t

If (A:, /') > (kx , 1), we have that

*(i) = ^ * (^l2 - ¿G(o) dt > 4 - 2V«C2 > 2.

For n = 1,... , TV, by (5.20) and (5.21) we get that

This proves (5.18).
2° . Denote the above # of A by g^ . From Io we get that

max Oto) > ®(q.) > 2   VA es/. ,.

Thus ck ¿>2 if (A;, i) > (/c,, 1). This completes the proof.     Q.E.D.

Remark 5.22. In the above proof, if we let R0 = y/n(k - l)/2, then for (k , i) >
(2,1) it yields that

®(<l)> l'-r-i(k- I) - 2NnmaxG(s)
yHI - 2   k2+l    2V m<>

> %(k- I) - 2NnmaxG(s),- 5V |i|<i
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and

(5.23) cl , > J(rc- 1) - 2NnmaxG(s).*■'     5 |í|<i

For the case k = 1, (5.14) becomes

lk,||L» < \Jy ll^llz.2    for every i = 1, ..

Let R0 = yfnfh . Then a similar computation proves that

_3_
4«     " '" ]"\<\

,N

c* t > — - 2NnmaxG(s)   for every i = I, ... ,N

Therefore for (k ,/')>( 1,1), cki, ak ., bk ¡ are all finite.
(5.23) also shows that ck . grows at least linearly in k as k —► +00. This

implies (4.3). But we need a much stronger estimate, i.e.
*

lim   -Í4Í = +00   for 1 = 1..... Ai
/V-.+OC    k

Now we can define a sequence of minimax values of <f>. For (k , i) > (kx, I ),
where kx is given by Lemma 5.17, and A e s/k (, we define

S (A) — {qn e W I there exists q = (qx , ... ,qn, ... qN) e A such that

*(9) > 1 - <t>(ln) > jf and <f>'q.) >-2 for j = I , ... ,N}.

Define
c, . =   inf    max <f>(q)   for (k , i) > (k. , 1).

kj       A€tfk, q„£S(A)        "' l

Then we have the following result on ck ¡ 's,

Lemma 5.24. For (k ,i)>(kx,l):
1° .  A G s/k i implies S(A) ¿ 0 .
2°-  c'kl>cki-2(N-l).

Proof.   1°. Since (/c, /") > (/c,, 1), by Lemma 5.17, for any A e s/k .,, there is
?6^ such that

(5.25) 4>(q) > 1 and 4>'q.) > -2   for > = 1./V ,

and this implies that there is an n e {1 , ... ,N} such that 4>(qn) > j¡, i.e.
qneS(A). So S(A)¿0.

2° is a direct consequence of the definitions of S(A) and ck (.
3°. For every Aes/k i

1
max cp(q) > ,q„eS(A)^n' - N

Thus c^ . > j..    Q.E.D.
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Step 3. The properties of critical values of cp.

Bahri and Berestycki proved the following result about the critical values
and critical points of cp on IV. Consider the ordinary differential equation
corresponding to cp,

(5.26) Q + g(v) = 0   forv(t)eR.

Lemma 5.27 (Propositions 4.1 and 4.2 [4]). 1° . The nontrivial critical values of
cj> on W form a sequence {yk}, which possesses the following properties

0<yx<y2<-<yk<yk+x<...,        ^lim^ jj| = +00.

2°. There exists a sequence of nontrivial 2«-periodic solutions {uk} of (5.26)
such that uk(0) = uk(2n) — 0, uk has exactly 2k - 1 zeros (all are simple)
in (0,2«) for kelS, and for k e N

^n = (cí>')-x(0)ncí>-X(qk) = {Teuk\eE[0,2n]}.
Remark. In the appendix we give a more direct proof of Lemma 5.27 via phase
plane analysis.

Step 4. The properties of {ck ¡} .

Since we can identify the space W with the subspace IV x {O}^-1 of E, we
get the induced S '-action Te on IV. We define Sx ( ̂ -invariant set, SX(W)-
equivariant map and S' ( W)-invariant functional in the same way as in (3.1),
(3.2) and (2.2), and Fix{Te | w} = {u E W \ Tgu = u V0 g [0,2«]} = W0 . Let
W be the family of closed (in IV) 5'1(W/)-invariant sets in W\{0} . From the
index theory y:% —» ÑU {oo} we also get an induced index theory on W. We
still denote it by y . It possesses the four properties listed in Lemma 3.10.

In order to study the properties of {ck ,}, we need the following deformation
lemma for cp and <I>. We are rather sketchy here. For details of the proof we
refer to Theorem 1.9 [14].

Lemma 5.28. Let <p E C2(W,R), be Sx(W)-invariant and satisfy (P.S) on
W. For c ER, let 3?c = (cp')~x(0) n cp~x(c). Suppose JV is any neighborhood
of JTC in IV. Let <&(«?) = £f=1 <j>'q.), for q = (qx , ... ,qN) eWn' = E. Then
there exists t] e C([0,1] x E, E) and a constant E > 0 such that for e E (0, E),

1°.  t](0,q) = q for q EE.
2° . rj(t, •) is S (E)-equivariant.
3°.  cp(r\.(t,q))< Mriiis.q)) for q E E, 0<s<t<l and i = 1, ... , N.
4°. 0>(t7(í , q)) < ®(ti(s ,q)),for qeE, 0 < s < t < 1.
5° . If <P(<7) < 0, t](t,q) = q for every t E [0 , 1].
6°. Let q = (qx, ... ,qN) E E, <&(rj(t ,q)) > 1 for every t E [0, 1] and

3?c = 0. Thenforany iE{l,... ,N},ifq{E[cP]c+e, »/,-(! .?) e [flc_i.
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7°.   More generally, let q = (qx, ... ,qN) E E, <b(t\(t ,q)) > 1 for every
t E [0,1]. Then for any i E {I.N}, if q. g [<P]C+\JV~, 77.(1 ,q) E [cP]c~E.
Here r¡(l ,q) = (nx(I ,q), ... ,nN(l ,q)).
Proof. Assume 3PC ¿ 0. If 3?c = 0, the proof is simpler. By (P.S) for tp, 3Tc
is compact. So there is Ô > 0 such that M& = intJr6(^Ac ,W) c/. Thus it
suffices to prove 7° with JV replaced by Ms .

There are b , E > 0 depending on S such that

(5.29) \\<ß'(u)\\w>b   Vue[cP]c+£\([cP]c-£uMs/&).
Since (5.29) remains valid if E decreases, we can take E such that

n     -        ■   I«   b2   ,10<£<min|-,y,l|.

Let e G (0, E).   Let A = {u E W \ cp(u) > c + E or tp(u) < c - E} and
B = {ueW\c-e< <p(u) < c +'e} . Thus A n B = 0. Define

#,(«) = ||m - A\\w(\\u - A\\w + \\u - B\\wfX   V« G W.
Then gx is Lipschitz continuous with gx — 0 on A, gx = 1 on 5 and
0 < ^i(m) < 1 ■ Similarly there is a Lipschitz continuous g2: IV —► R with
g2 = 0 on Ms/i, g2 = 1 on H^NA^^ and 0 < g2(u) < 1. Since <p is SX(W)-
invariant, gx and g2 can be taken to be 5,'(W/)-invariant. Define

il    if 0 < s < 1,
^(S) = {i    ifK,

Then g3 is Lipschitz continuous. Choose g4GC°°(R,R) suchthat g4(s) - 0
if s < 0, g4(s) = 1 if j > 1, and 0 < gA(s) < 1 for 0 < j < 1 . For u e W,
define

«OÍ«) = -á'1(")o'2(")o'3(ll'76'(")l^)'?;,'(")-
For q = (qx, ... ,qN)EWN = E, define

£l(q) = g4(<S>(q))(co(qx).co(qN)).

Then co and Q are 5 -equivariant, locally Lipschitz continuous vector fields
on IV and E respectively, and we have

0 < \\(0(u)\\w < I    for UE IV,
0 < \\a(q)\\E < y/Ñ   for q E E.

We consider the following ordinary differential equation on E

fon, (dn(t,q)/dt = n(r,(t,q))(5.30) ^ for^GZi.
[n(0,q) = q

By the basic existence theory for such equations and the properties of Q de-
scribed above, we obtain the existence of n(t, q) on (-00, + 00) x E, and in
particular we have ^(i, q) E C([0 ,l]xE,E).
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From (5.30) we get 1° to 5° easily. Under the condition ®(r](t ,q)) > 1
for every / G [0,1], by the definition of g4, (5.30) yields
(5 / dni(t,q)/dt = œ(ni(t,q))(dni(t,q)/dt--

l rli(0,q)=qi.
Viewing (qx , ... , qt_x , q¡+x , ... , qN) as parameters in (5.31), using the defini-
tion of E, and following the proof in [14], we can get 6° and 7° .

Therefore we have completed the proof of Lemma 5.28.   Q.E.D.

With the aid of the above deformation lemma, we get the following multi-
plicity result for {ck ¡} ,

Lemma 5.32. For (k , i) > (kx, 1) :
l°-  ckj*ckj+i-
2° . ck ¡ is a critical value of cp.
3°. Any critical point of cp corresponding to ck ¡ lies in W\WQ.
4° • V ck m = • ■ ■ = ck ,+/ = c and Ji = (cP')~'x(0) n tp-\c), then y'JT) >

W + i.
Proof. 1° holds since s/k /+1 ç s/k ... By 3 ° of Lemma 5.28, ck ¡ > j¡, and
therefore 5? nWQ = 0. So 3° holds. To prove 2° , it suffices to prove the
stronger multiplicity assertion 4°.

Since cp satisfies (P.S) on IV, X is compact. By 3°, 3? c W\WQ. By
Lemma 3.10 for W, there is à > 0 such that y(Ms) = y(3Z), where Ms =
J^ffi, IV). Let JV - Mg,2, then by Lemma 5.28, we get a deformation flow
r\ E C([0,1] x E, E) and a constant e > 0, which possess properties 1°- 7° of
Lemma 5.28. Assume y(A%) < [^-] ■ Choose A E s/k ¡+¡ such that

(5.33) max cp(q) < c + e.

Then by the definition of s/k ¡+¡, there are (j ,m) > (k ,i + l), h E I\. m,
Y e 8? with y(Y) < (jN + m) - (kN + i + I) such that

A = h(Dj JX)\Y).
Let Z = UjL, h~x(Mô), where h = (hx, ... ,hN):X - E = IVN.  Then by
Lemmas 3.10 and 3.11, we get that

N N
HZ) <Ey(A;'W) < j>(A/¿) = Ny(3T)

p=\ p=i
r/-r< N

N </- 1.

Let B = h(Dj m(X)\(Y u Z)). Since by Lemma 3.10

y(YöZ)<y(Y) + y(Z)
< (jN + m)-{kN + i + l) + (l-l) = (jN + m) - (kN + i + 1).

So BES/k.+x.
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Since BEA, S(B) ç S(A), so by (5.33)

(5.34) max cp(q)<c + e.
q»€S(B)        "

We define
H(x) = //(l ,h(x))    for every x G Dj m(X).

Then H E C(Dj m(X), E), since h and r¡( 1, •) are continuous. ZZ is S1 (X, £)-
equivariant, since so is A and r\(l ,■) is 51(£')-equivariant.

For x G dBj m(X) n Xj m , since /z G Tj m , h(x) E dB. JE) n E. m and

«(Ai*)) < 0.

For q ~ x G Z); m(X) nI0Ar, since /i G T;. m , h(x) = q and

<p(A(x)) = <ï>(tf) < 0.
Therefore in both cases by 5° of Lemma 5.28, H(x) = r¡(l ,h(x)) = h(x) =
id(x). This shows that H = tj(l ,'h) G T. m . Therefore

Q = H(Djm(X)\(YuZ)) G s/ki+x.

By the definition of S(Q), for any qn E S(Q), there exists

xEDjm(X)\(YöZ)

such that q = (qx, ... ,qn, ... , qN) = t](l ,h(x)). From the definition of S(Q)
and 3° , 4° of Lemma 5.28, we get that

(5.35) 1 < <Dfo) = <D(?7(1 ,h(x))) < <&(«((, h(x))) < <D(r?(0 ,h(x))) = <D(A(x))
for every / G [0 , 1 ],

^ < 4>(qn) = cP(nn(l,h(x))) < cP(nn(0,h(x))) = <f>(hn(x)),

-2 < cP(qp) = cP(r,p( 1 , h(x))) < <P(r,p(0, h(x))) = <P(hp(x))

for p = 1.N . Thus hn(x) E S(B). By (5.34)

cp(hn(x))<c + e.

Since x £ Z = U    , A" (A/,), hn(x) cf yT = M&j2. Therefore

(5.36) hn(x) E [<PV\^.
Now (5.35), (5.36) and 7° of Lemma 5.28 imply that

qn = tln(l,h(x))E[cP]c-£.

Since qn is arbitrarily chosen from S(Q), this shows that

max  cp(q ) < c - e.
i„€S(C2) "
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But since Q E s/k j+x, we get that

c = c. ... =    inf     max <p(q„) <   max cp(q)<c-e.

This contradiction completes the proof of Lemma 5.32.   Q.E.D.
Step 5. Proof of Proposition 5.1. By Lemmas 5.24 and 5.32, for any (k, i) >
(kx, 1), ck i is a positive critical value of cp. Let A% = (tp')~ (0)ncp~ (ck ¡).
Then by Lemma 5.27,

Jf    C If \H^,     dim^l    = 1ck,¡ —        x     0 ck j

and 3?c    is an 5'1(Ií/)-invariant circle. Thus by Lemma 3.10 (for W)

(5.37) y^ckJ=l    for (k,i)>(kx, I).

Now (5.37) and 4° of Lemma 5.32 show that

°<citl,i^cit,(<^+i.i   * (*..!)< (*•»')■

Suppose for some k2 E N, ck , = yk . Then combining with 1° of Lemma
5.32 we get that

ck ,¡>ckx> yk2+{k-kl) = yk+m   V(^ - 0 > (*i . i).

where m = k2- kx . Therefore by Lemma 5.27, for i = I, ... ,N,

(5.38) fLi>_JVtm    AA±p_[^+cx   ask^+oc.
k2 - (k + m)2        k2

Now the inequalities (5.8), 2° of Lemma 5.24 and (5.38) imply (5.2). The
proof is complete.   G
Remark 5.39. Io. If in addition, V satisfies the following condition (V3)
There are p > 1, and a, b > 0 such that

V(q)<a\q\p+X +b    for q E RN ,

then we can get more precise estimates for the growth rate of {ak ¡} . Since by
Holder's inequality

V(q) + l^\q\2 <(a+ l)N{p-X)/2 ¿ \qf+X + (b + 1).
77=1

Thus in the proof of Proposition 5.1, we may take

G(s) = a\s\p+X ,        g(s) = a(p + l)\s\"~Xs   for 5 G R

where a = (a+ l)N{p~x)/2. Then

cP(u) = j' (j\ù\2-a\u\p+X\dt.
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By Remark 4.1 of [4], there is a constant ß > 0 such that the corresponding
critical value

So we get that there exists m E N, ß > 0 such that for any (k , i) > (kx , 1)
(5-40) V, * ^77, ~ß>ß(k + m)2(p+X)l(p-x) - ß

i.e. there are constants a, ,a2 > 0 such that

aki>axk2{p+mp-X)-a2   \/(k, i) > (k,, 1).

2° . For the functional

J(q) = J* [j\q\2-U(t,qf)dt   Vq E E,
if U E C(RxR , R) and is 2«-periodic in /, then the minimax value sequence
{äk ¡} , which is defined by

a. ,'=   inf max7(fl),
"•'       Aesfku q€A

possesses the same lower bound estimate for its growth rate as (5.2).
3° . In their setting, Bahri and Berestycki obtained an estimate like (5.2) via

Morse theory type arguments. See §5 of [4]. For us (5.2) is true for the whole
sequence {ak ¡} , not only for one of its subsequences as in [4].

Finally, we can give the
Proof of Theorem 1.2. We assume T = 2« . A simple change of variables gives
us the general case of T. Since p > 2 implies p/(p - 1) < 2, (5.2) and (4.6)
imply that there exist infinitely many (k,i)e2> such that

bk ,. > ak .   for (k,i)e3¡,
where 2¡ is the set of all such (k , i) 's. Proposition 3.21 gives us an infinite
sequence of critical values, bk ¡(S) for (k , i) e 2¡ , of J, and

(5.41) bk ¡(S) >bki> ak ; —► +oo   as k —► +oo along 3>.

By Lemma 2.8, there is m e N such that for any k > m, (k , i) e31, bk Aß)
is also a critical value of I. Let qk i be a critical point of I corresponding
to bk iß) for k > m, (k ,i) e 2¡. If {\\qk ,||LOo} were bounded, then the
numbers

** .iW = '(«* ,) = fj QW* / - V(°k.,) + / • ft ,) dt
= I'" (yk,, • V'tik ,,) - V{qk,,) + \f - qk,,) dt

would also be bounded. Contrary to (5.41). Now the qk ¡ 's are IVX ' (Sx, RN)
solutions of (1.1). Since / G L2(SX ,RN), qkie IV2 2 (Sx ,RN ). The proof is
complete.   Q.E.D.

With the estimate (5.2), we can replace (V2) by a milder condition (V2')
and still get the conclusion of Theorem 1.2. That is,
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Theorem 5.42. Let V satisfy (VI) and the following condition,
(V2')

a- V'(q)(5.43) lim   2-^- = +00
kl-H-oo     \q\¿

and there are a,b>0 such that

(5.44) \q-V(q)-V(q)>a\q\2-b   VqeRN.

Then the conclusion of Theorem 1.2 still holds.

We refer the readers to a related density result [12, Theorem 1.5], where we
prove that (VI) and (5.43) implies that ( 1.1 ) is solvable if / belongs to a certain
dense subset of the space of all T-periodic functions in L ([0, T], R ).

6. More general forced systems

Firstly we consider a more general non-autonomous Hamiltonian system

(6.1) a + Uq(t,q) = 0

where í/:RxR"-»R.  U   is its gradient with respect to q . We have

Theorem 6.2. Let U satisfy the following conditions
(Ul) U G c'fRxR^.R) and U(t,q) is T-periodic in t for some given

T>0.
(U2) There exist V:RN -> R satisfying (VI), (V2) and constants C > 0,

1 < a < p/2 such that

(6.3) \Uq(t,q)-Vq(q)\<C(l + \q\°-X)   for (t, q) e R x RN

Then (6.1) possesses infinitely many distinct T-periodic solutions.

To prove Theorem 6.2. We consider a functional

I(q) = Jo" (^\q\2-V(q) + D(t,q)^dt,

where D(t, q) = V(q) - U(t ,q). In §§3 and 5 replacing / • q by D(t,q), we
can go through the proofs and get

(6.4) ak ,. < y?F/(//_<T)   VÂ: > kx , I < i < N

(6.4), (5.2), and 2° of Remark 5.42 show that to get Theorem 6.2 we need
p/(p - o) < 2, i.e. o < p/2.

Similarly we have
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Theorem 6.5. If in addition V satisfies (V3) in Remark 5.42, then the conclu-
sion of Theorem 6.2 holds with o < p(p + 3)/(2(p + 1)), (a < (p + 2)/2, if
p+l=p).

Next we consider a forced Lagrangian system

<6'6> áf£(«.«-f<«.«>-A0
where the Lagrangian function L is given by

N N
L(q , P) = E tf,7(<7)/>,P, + E bM)Pi - V^)   V(<? ,P)eRN x RN

i'.J = l 1=1

We assume the following conditions on L,
(LI) aij,bi,VeCx(RN ,R) and a¡j = aJt, for i J = 1,... ,N.
(L2) There are constants p > 2, r > 0 such that

0<pV(q)<q-V'(q)   \/\q\ > f.
(L3) There are constants k> 0, tg(0,/i-2) such that

¿v
E fly(9)P,-^- ̂  ¿M*   V(<? >P)eRNxRN ,

and

(L4)

'.7 = 1

T E aijti)PiPj ^ E (« • a'ij(Q))PiPj   v(? - P) e R^ x R*
' .7=1 7.7=1

ün,    !*MÍ=0    and       lin,    ^ - 0.
|?|-» + 00   K(i) l?H+oo 4 • F (<?)

Assume /(/) is T-periodic in í and f E L2([0 ,T],RN). Then we have the
following

Theorem 6.7. Under the above conditions, for any R > 0, (6.6) possesses a
solution qEW2 '2([0, T], RN) with period T such that \\q\\Loo > R.

We omit the proofs of above theorems.

Remark 6.8. 1° . Theorem 6.2 gives a result different from Bahri and Beresty-
cki's Theorem 6 [4].

2° . Greco gave a result for (6.6) [11, Theorem 1.1]. In addition to (L1)-(L3)
he assumed (V3) and that \b(q)\, \b'(q)q\ were bounded.

3°. We also refer to Benci, Cappozzi, and Fortunato [5] for a related result.

Appendix. A detailed study of a single equation

In this appendix, we give a direct proof of Lemma 5.27 for the equation

(A.l) v + g(v) = 0
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corresponding to the functional cp defined by (5.4). We are indebted to Profes-
sor Paul H. Rabinowitz who suggested this argument.

In the proof of Lemma 5.3 we further require that an+x > 50n2 £"=1 ai, V« G
N. Then G and g satisfy the following conditions:

(A.2) G E C2(R ,R), G" = q is odd and G(0) = g(0) = g'(0) = 0 .
(A3) There is a constant p > 2 such that 0 < pG(r) < g(r)r for r =¿ 0.
(A.4) 2G(r)g'(r) - g2(r) > 0 for r > 0.
(A.5) C7(r)/(r2)^0 as r^O.
Conditions (A.2), (A.3) and (A.4) imply that g(r) > 0,   g'(r) > 0 and

&(g(r)/r)
> 0 for r > 0, and that G is even.

Define F by

(A.6) F = {y2 + G(x).

The simple closed curves F — constants are the trajectories of (A.l) in the
phase plane so all solutions of (A. 1 ) are periodic and the periods satisfy

dA(F)
(A.7) T(F) = dF
where A(F) is the area of the region enclosed by the curve for fixed F . It is
easy to see that all T-periodic solutions of (£
Note that for any given value of F , by (A.6)
easy to see that all T-periodic solutions of (A.l) in Wx ,2([0, T] ,R) are C2

y = ±y/2(F - G(x)),
so since G is even in x , the solutions of (A.l) spend equal amounts of time in
each quadrant in the phase plane and the solution v of (A. 1 ) with the energy
F , period T = T(F) and initial value v(0) = 0 is odd about 0 and even about
7/4. From (A.6) we also have that v(t) = 0 only at / = zT/2 for i e Z and
for such t, \v(t)\ = y/2F .

Since
rxo(F)

A(F) = 4 y(F,x)dx
Jo

where G(x0(F)) = F and y(F , x0(F)) = 0, from (A.7) we get that

dxJF) ftoA"! dy
(A.8)

dx (F) fxo(r> av
T(F) = 4y(F,x0(F))-^ + 4j ^(F ,x)dx

Jo
{F) -1/2{2(F-G(x))}  x,2dx.

Remark A.9. For any constant F > 0, t = ¡0V{2(F - G(x))} x/1 dx defines a
function / of v on [0,C7~'(F)]. Since dt/dv = {2(F - G(v))}~x'2 ± 0 for
v E (0, G~ (F)), by the implicit function theorem, we get its inverse function
v = v(t) defined on (0, T/4) with dv/dt = y/2(F - G(v)), where T = T(F) is
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defined by (A.8). Define v(0) = 0, v(T/4) = G~X(F), v(0) = y/2F , i)(T/4) =
0 and define v(t) = v(T/2-t) for T/4 < t < T/2, v(t) = -v(T-t) for T/2 <
t < T . Extend v T-periodically to R. Then we have that v E C (R, R), is
T-periodic, odd about 0, even about T/4 and is a weak solution of (A.l), i.e.
for every T-periodic q> E C°°(R, R),

f   v -<pdt =       g(v)cpdt.
o Jo

It then easily follows that v e C2(R, R), has the energy F and minimal period
T(F). We denote this solution by vF .

Lemma A.10.   1°.   T is a strictly monotone decreasing continuous function of
F on (0, + oo).

2° .   T^O as F ^+oo.

3°.   r^+oo as F-+0.

Proof.   1°. The continuity of T is a direct consequence of (A.8).

Assume that there are Fx < F2 such that Tx = T(FX) < T(F2) = T2. For
1=1,2 let v( = vF be the solution of (A.l) defined in (A.9) with the energy
Fr Then v¡ has period Tt and vÄJ) = 0 at t = 0, TJ2 and T¡, v¡(t) > 0
on (0, TJ2), V¡(t) < 0 on (TJ2 , T,). vx (0) = y/Wx < ^2~F¡ = v2(0), since
vi satisfies

v + ip(v)v = 0,

where y/(v) = g(v)/v satisfies »/(O) = 0 by (A.2) and is strictly monotone
increasing since d/dr(g(r)/r) > 0 for r > 0. Hence by Sturm Comparison
Theorem (cf. Theorem 1.1, Chapter 8 of [7]), it is impossible that v2(t) > vx(t)
for every / G (0,r,/2), i.e. there is a first t\ E (0,Tx/2) such that vx(c¡) =
v2(f). By (A.6), |t>2(i)| > |*,({)|. If ¿T > Tx/4, v2(t) > vx(t) on (0,TJ4\.
Then by the symmetricities about Tx/4 and r2/4 separately, v2(t) > vx(t)
on (0, Tx/2) contrary to ¿; G (0, T,/2). If ^ < T,/4, since vi is even about
7)/4 and is convex on (0, TJ2) by (A.l), we have v2(c;) > vx(c;). Therefore
v2(t) < vx (t) for t <¿¡ and near ¿¡. This contradicts the definition of ¿;. Thus
T must be a strictly monotone decreasing function of F .
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2° . In (A.8), let s = G(x), then

\J0 JF/2y/F^g(G-l(s))       J

<«. r*(G-x(s))ds+ 2fF r * *

(since g oG~   is strictly increasing)
_   4  ^i/F\ , ,«      v/F/I(Ï)C7-1   £■    +472"VF       V2; g(G~l(F/2))
<AG-\F!2)+^2^Ff2G-x(FI2)

y/F pG(G~x(F/2))

<zG~x(F/2)
*      yfFJ2

By (A.3), there are constants a,ß>0 such that <7(r) > arß - ß for r > 0. So
r<((G(r) + ß)/a)xltl. Let r = (T'(F/2), then G'x(F/2) < ((F/2 +ß)/a)x/ft.
Thus

rs8(KT+i))""(f)""2-° asf-+œ-
3°. In (A.5) let r = GTX(F) then y/F/G~x(F) - 0 as F -> 0 and from

(A.8)
/■G~,(/r)     -1/2 ^cr'(F)

(A.11) r>4/ (2F)  1/2 dx = 4v/2^-t==-^ - +oo   as F — 0.
io VF

This completes the proof.   Q.E.D.

Therefore for any given T> 0 there is a unique F(T) which gives a solution
v of (A.l) with the energy F(T) and period T.

Now we consider all 2«-periodic solutions of (A.l). Let Fk be the energy
level corresponding to the period 2«//c. Let uk = vF defined in Remark A.9
and let

yk = <P(uk) = j ' (\\ùk\2 - G(uk)\ dt   for k E N.

Lemma A. 12.

ík>±.G-\Fk)   fork EIS.
k       «

Proof. By (A.11),  2n/k > 4G~x(Fk)(2Fk)~x'2 and this implies the lemma.
Q.E.D.
Lemma A. 13.

Ll > 4ÍL2ic7 \F\   and   y  > o   for k e N.k2 np k' 'k
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Proof. Since /0" \uk\ dt = f0* g(uk)uk dt and by (A.3), we have that

''=r{(î"?)"i'|2+(ïs("iK-c("'))}'"

>
Ft>0./i k

Combining with Lemma A. 12 we complete the proof.   Q.E.D.
Lemmas A. 10 and A. 13 yield

(A.14) lim   hr > 4(/l ~ 2)   lim  G~'(F.) = +oo.
A:—+oo k Itp        k-*+oo k

Lemma A.15.  yk < yk+x for k e N.
Proof. We have that f0" \uk\ dt = f0*g(uk)ukdt, uk has minimal period
2«/A; , is odd about 0 and even about n/(2k), is positive and strictly increasing
on (0, «/(2A;)]. Therefore

yk = I " (¿SKK - GK)) dt = 4kj*> C (^KK - GK)) dt.
Let

y = yj2[Fk - G(uk(t))]   for te [0,n/(2k)]
and h(x) = (g(x)x/2 - G(x))/g(x) for x > 0, then

4k "M  *°°-'M>>
Since h'(x) = (2G(x)g'(x) - g2(x))/(2g2(x)) > 0 and (d/dx)G~x(x) =

l/g(G~x(x)) > 0 for x > 0. h ,G~X and h o G~x are strictly increasing on
[0 , + oo).

By Lemma A. 10, Fk+X > Fk . So for s e [0, y/ZF^]

*M - ¿(y^ - *)2 > Fk - Î(\M - 5)2'
Therefore for fceN

y,    , /•v/2f*+' fy/2Fk+i-y/2~Fk   r / 1    ?\ 1Wfvr-Í^.^AÍ {>-°<r'(FM-¡y>)}ay
>-íVm{h°°"(^-l2y2)}dy
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This yields that yk < yk+x for fceN and completes the proof.   Q.E.D.

For k e N, we define 3tn = ((p')~X(0)ncP'x(yk).

Lemma A.16. For keN, J?n = {Tguk | 0 G [0,2«]} .
Proof. If v £ 0 is a 2«-periodic solution of (A.l), then there is k E N such
that v has minimal period 2n/k. We claim that there exists at least a 0 G
[0,2n/k] such that v(6) = 0. For otherwise, integrating (A.l) from 0 to
2n/k we get f0n g(v)dt — 0. This is a contradiction. Let u = Tev, then
u(0) — 0,u has minimal period 2«/A;, by Lemma A. 10 « has the energy Fk .
From (A.6) u is odd about 0 and even about n/(2k), on [0, n/(2k)]u satisfies
either du/dt = y/2(Fk - G(u)) or du/dt - -y/2(Fk - G(u)). Therefore either
u — uk or u = -uk. That is either v = T_euk or v - TJt/k_euk . Since cp is
S '-invariant, combining with Lemma A. 15 the proof is complete.   Q.E.D.

Now Remark A.9, (A. 14), Lemmas A. 15 and A.16 give us the conclusion of
Lemma 5.27.
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