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- Abstract 

The two-dimensional transonic potential flow 
equation, when solved in discrete form for steady 
flow over an airfoil, has been found to yield more 
than one solution in certain bands of angle of 
attack and Mach number. The most striking ex- 
ample of this is the appearance of nonsymmetric 
solutions with large positive or  negative lift, for 
symmetric airfoils at zero angle of attack. The 
behavior of these "anomalous" solutions is exam- 
ined as grid size is varied by large factors and 
found to be not qualitatively different from that 
of %ormalrf solutions (outside the nonuniqueness 
band). Thus it appears that the effect is not due 
to discretization error, and that the basic tran- 
sonic potential flow partial differential equation 
admits nonunique solutions for certain values of 
angle of attack and Mach number. 

Introduction 

The full potential equation is widely used for 
computing transonic flow over aircraft. It ex- 
presses conservation of mass, neglecting effects 
due to viscosity, vorticity and entropy produc- 
tion. For flow without massive separated regions, 
where the shocks are not too strong, the equation 
is a good approximation to the Navier-Stokes equa- 
tions outside of a thin boundary layer and wake 
region. In combination with boundary layer 
methods, it has been used to give very accurate 
solutions for flow over airfoils in two dimensions.1 

Recently, the authors discovered that in 
certain bands of angle of attack and Mach num- 
ber ,  the full potential equation, when solved in 
discrete form for steady flow over airfoils, yields 
multiple solutions. These solutions have very dif- 
ferent values of lift and drag. Preliminary results 
appear in Ref ( 2 ) .  

The purpose of this paper is to present re- 
sults of numerical experiments designed to test 
whether the non-uniqueness appears as  a result 
of the discretization procedure, or whether the 
continuum problem admits a corresponding non- 
uniqueness. Even if these solutions are caused 
by discretization error, it may be important to 
know that a small perturbation can result in a 
very different solution. @ 

The paper consists of three basic parts. In 
the first, details of the difference scheme are 
described. In the second, results are presented 
for a symmetric Joukowski airfoil at zero angle 
of attack (a) and fixed free-stream Mach number 
(M,) . Here, in addition to the expected sym- 
metric solution, two (mirror-image) unsymmetric 
solutions appear with large absolute value of lift 
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coefficient (CL). In this section we attempt to 
validate these solutions by checking that bound- 
ary conditions and the Kutta condition are satis- 
fied, and by studying the variation of the solu- 
tions as the computational grid and artificial 
viscosity are varied. In the third part,  the be- 
havior of the llanomalous" solutions is studied as 
M, and a are varied. 

Difference Scheme 

In a curvilinear coordinate system, the full 
potential equation can be written3 

where 

h = det (H) . 

The isentropic relation for the density 

where q is the speed and y is the ratio of specific 
heats. The basic transformation from physical 
(x ,  y) to computational ( X ,  Y) frames is ex- 
pressed by the matrix 

The physical velocities are derived from a 
potential, @ 

and the contravariant velocities required for the 
transformed flux balance equation are 



We use the "finite volume" discretization scheme 
described in Ref ( 3 ) .  Here, two interlocking 
meshes are used. On one, the potential $ and 
the coordinates (x ,y ,  X,Y) are defined and the 
flux balance i s  satisfied (at convergence). On 
the other, which coincides with the cell centers 
of the first, the density and velocities are 
defined. 

Except for one case computed with a 
parabolic mapping, all of our calculations use an 
"O" type grid. A Joukowski transformation is 
used to map the airfoil to a near circle which is 
then mapped to a circle by a shearing transforma- 
tion (for a Joukowski airfoil this shearing is not 
needed). 

A stretching and inversion are then used 

where R1 is the radius of a point in the initial 
mapped plane, R is the radius in the computa- 
tional plane, and A is a small parameter which 
controls the far field boundary. 

The compressible vortex solution 
r GF =G t ad t@ t a d ) ,  ( 1) 

p = (1 - M ~ ' Z ,  

is used for the far field boundary co~iditio~ls, 
where r is the value of the circulation. The 
requirement that there be no flow around the 
trailing edge determines I' . 

The calculation of the supersonic zone is sta- 
bilized by the addition of artificial viscosity to pro- 
vide an upwind bias. This has the form 

where P and Q are defined as follows. 

A switching function is defined: 

This vanishes when the local Mach number, M, is 
less than a cutoff, Mc . 
Also, let 

Then 

with corresponding-formulas for Q i ,  j + 4 '  

If the coefficient E = 1 - O(AX), then P = O(AX) 
and the added terms are O(AXZ), since the dif- 
ference in P is not divided by A X .  Accordingly 
this coefficient is defined 

The density difference acts as a shock detector, 
causing the scheme to revert to a first order accu- 
rate form near a shock have. In the calculations 
presented in this paper, the artificial viscosity is 
cut off at Mach number, Mc % .8. 

A multigrid - approximate factorization scheme 
( 4 )  is used to solve the discrete equations. This 
provides strong dampine: for error comDonents in 
all frequency bands and allows us to converge to 
machine accuracy, if desired. The far field bound- 
ary conditions are updated to allow for changes of 
circulation after each iteration on each grid. 

Multiple Solutions 

Figures 1 and 2 show the pressure distribu- 
tion (Cp)  over the upper and lower surfaces for 
two alternative solutions of the flow past an 11.8% 
thick Joukowski airfoil at a Mach number of . 832  and 

I 
zero angle of attack. One solution is symmetric, as i 
expected. The other is unsymmetric, with the i 
shock wave on the upper surface displaced rearward ! 
to a point near but not at the trailing edge, and the t 
shock wave on the lower surface displaced forward. I 

The lift coefficient, C , i s  +. 5544 for this unsym- t 

metric solution and thkre is a corresponding mirror 
image solution with a lift coefficient of -.5544. The 
grid for these calculations was an "0" mesh, depict- 
ed in Fig. 3 ,  with 256 cells around the airfoil and , 

I 
64 cells between the airfoil and the outer boundary. 

The first test made on the l'anomolous" solu- ! 
tions was that they accurately satisfy the difference 
equations. The decay of the average residual for i 
this grid and a similar solution on a 128 x 32 grid 
is plotted in Fig. 4. The multigrid scheme allows 
us to converge to machine accuracy, if desired, and 
there is no doubt that the difference equations are 
satisfied. Tests were made to verify that the same 
code would converge to either the + CL , the - CL or 
the symmetric solution is started close enough to 
each. 

The next check was to verify that the far field 
boundary conditions are properly satisfied. With 
the free stream subtracted out,  these are Dirichlet 
conditions corresponding to a compressible vortex 
(eq. 1). The computed solution was found to decay 
smoothly in the far field like a vortex and doublet 
in a uniform stream at zero angle of attack, exactly 
as expected. As a further check, the distance to 
the outer boundary was reduced from 25 chords to 
8 chords by reducing the grid stretching. This 
caused only a 5% change (increase) in the lift 
coefficient. 

Another check on these solutions concerned 
the Kutta condition. The pressures on the upper 
and lower surfaces smoothly went to the same 
value at the trailing edge and the streamline left 
the trailing edge smoothly. 

The final test was to verify the convergence 
of the solution with grid refinement. In Fig. 5, 
values of CL are plotted for the unsymmetric solu- 



tion on grids with 96 x 24 ,  128 x 32, 192 x 48 ,  
256 x 64 and 384 x 192 cells. For comparison, CL 
is also plotted for the same airfoil at M m  = . 7 5 ,  
a = 20,  where only one solution was found. It can 
be seen that CL converges at comparable rates for 
the two solutions. The reason that CL decreased 
as the grid was refined for the a = 0 solution was 
that the lower shock, which was weaker than the 
upper one, became stronger and moved backward, 
increasing the magnitude of the negative contribu- 
tion of the lower part of the airfoil to CL. The up- 
per shock did not change as  much as the grid was 
refined. For the a = 2 O  case, there was only a 
single shock located at the upper surface, which 
moved backward as the grid was refined. 

The artificial viscosity in these calculations 
had the second order form defined in the previous 
section. It was verified that the unsymmetric 
solutions could also be obtained with the first order 
accurate form of artificial viscosity obtained by 
setting E = 0 .  

In order to check whether the solution is a 
peculiarity depending on the form of the grid, cal- 
culations were also performed on a ''C" mesh gen- 
erated by mapping to parabolic coordinates. The 
solution is  displayed in Fig. 6 for a grid with 
128 x 32 cells. With this type of mesh, the cell 
width near the trailing edge was 400 times the width 
on the 256 x 64 "0" mesh. It can be seen that the 
unsymmetric solution persists. 

Hysteresis 

The unsymmetric solutions have been found 
only in a narrow Mach number band. In the case 
of the 11.8% thick Joukowski airfoil at zero angle 
of attack, only the symmetric solution could be 
found below . 8 2  and above - 8 5 .  The lift coeffi- 
cient for the unsymmetric solution at a = 0 is plot- 
ted in Fig. 7 for Mach numbers between these 
Limits. In this band the non-uniqueness was as- 
sociated with a hysteresis. In Fig. 8 ,  CL as a 
function of ci is plotted for a series of Mach num- 
bers. The curves for Mach number less than . 8 2  
show the expected behavior. Above . 8 2 ,  on the 
other hand, we find the hysteresis. On the . 832  
Mach number curve, the two intercepts of the 
CL axis at a = 0 correspond to the two unsym- 
metric solutions discussed in the previous section. 
Starting from the upper right hand part of this 
curve, which corresponds to the upper shock 
being close to the trailing edge, we can generate 
the rest of the curve by incrementally de- 
creasing a and, at each step, computing a new 
solution from the previous one. Once we de- 
crease a below about - .14O the solution "flips" to 
the negative CL one. We can then generate this 
part of the curve in the same way. The sym- 
metric solution (CL = 0 ,  a = 0) proved to be un- 
stable to small perturbations, and went over to 
either the positive or  negative CL ( a  = 0) 
solution. 

Below the Mach number where hysteresis ap- 
pears, it can be seen that the change in CL for a 
small change in a at a = 0 increases as we increase 
M, and becomes large as we approach a critical 
value, Merit. 

Thinking of a as a function of CL, we see 
that the slope of a vs. CL at CL = 0 goes smoothly 
to zero at Merit, and there is  the possibility that 

it can become negative beyond Merit, where the 
hysteresis is found. 

The hysteresis occurs in a rather narrow 
band of angle of attack. If this band were to be- 
come smaller as the mesh was refined, there is  a 
possibility that instead of a non-unique solution 
there would be a rapid switch from large negative 
to large positive Cr, as the angle of attack passed - 
through zero. Refinement of the mesh did not in- 
dicate any significant narrowing of the band, how- 
ever. Its width was also insensitive to the far field 
stretching and placement of the outer boundary. 
Also, the value of Merit was not sensitive to mesh 
refinement or far field stretching. 

A final result is presented in Fig. 9. Values 
of CL vs. a for an RAE 2822 airfoil at .725 Mach 
number were computed using a "C" mesh with the 
first order form of artificial viscosity. A similar 
hysteresis band can be seen. Similar results have 
also been found for an N Y  U 82-06-09 airfoil. Here, 
a conservative finite difference rather than finite 
volume scheme was used (details of this scheme 
are presented in Ref. 5 ) .  

Conclusions 

Multiple solutions of the discrete full poten- 
tial equation have been found for steady two di- 
mensional flow over airfoils. The most striking 
example is the appearance of unsymmetric solu- 
tions with large positive or  negative values of 
lift for a symmetric airfoil at zero angle of attack. 
This occurs only in a narrow band of Mach num- 
ber ,  between .82  and . 8 5  in the case of an 11.8% 
thick Joukowski airfoil. 

Extensive numerical experiments, including 
the use of alternative grids and extreme grid re- 
finement, have confirmed the persistence of these 
solutions. Hence, it appears likely that they 
actually correspond to a non-uniqueness of the 
continuum problem, and are not a consequence 
of discretization error. Since the rearward shock 
wave in the unsymmetric solution is not quite 
at the trailing edge, it seems that the non-uni- 
queness is not caused by interference between 
a shock wave at the trailing edge and the Kutta 
condition. 

The multiple solutions may have a physical 
counterpart. The Mach number band in which 
they appear is just the band in which an airfoil 
of this thickness typically experiences buffeting, 
with the upper and lower shocks alternately 
reaching a forward and rearward position similar 
to our positive and negative lift solutions. While 
buffeting may be triggered by boundary layer 
separation, this raises the question of whether 
an instability of the outer inviscid part of the 
flow may also be a contributing factor to this 
phenomenon. 

The non-unique solutions were found by 
a sophisticated iterative method, and it is not 
known whether they correspond to stable equi- 
librium points of the true time dependent equa- 
tion. Also, it is not known whether they are 
only associated with the potential flow approxi- 
mation, or whether a similar non-uniqueness can 
also occur in solutions to the Euler or Navier 
Stokes equations. An investigation of these 



questions would shed more light on the possible 
physical significance of this phenomenon. 
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MQCH .= 0.832 ALPHA = 0.0 MACH = 0.832 RLPHR = 0.0 

Fig. 1 Symmetric Solution Fig. 2 Unsymmetric Solution 



Fig. 3 Computational Grid 
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Fig. 4 Residual Decay 

Fig. 5 Lift Convergence 



MACH = 0.840 AI-PHA = 0.0 

Fig. 6 Unsymmetric Solution 
Parabolic Coordinates 

Fig. 7 Hysteresis 

Fig. 8 Unsymmetric Solution Fig. 9 Hysteresis RAE 2822 
cr = 0. Airfoil 


