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Multiple Sound Source Position Estimation by Drone

Audition Based on Data Association Between Sound

Source Localization and Identification
Mizuho Wakabayashi, Hiroshi G. Okuno , and Makoto Kumon

Abstract—Drone audition, or auditory processing for drones
equipped with a microphone array, is expected to compensate for
problems affecting drones’ visual processing, in particular occlu-
sion and poor-illumination conditions. The current state of drone
audition still assumes a single sound source. When a drone hears
sounds originating from multiple sound sources, its sound-source
localization function determines their directions. If two sources
are very close to each other, the localization function cannot de-
termine whether they are crossing or approaching-then-departing.
This ambiguity in tracking multiple sound sources is resolved by
data association. Typical methods of data association use each label
of the separated sounds, but are prone to errors due to identification
failures. Instead of labeling by classification, this study uses a set
of classification measures determined by support vector machines
(SVM) to avoid labeling failures and deal with unknown signals.
The effectiveness of the proposed approach is validated through
simulations and experiments conducted in the field.

Index Terms—Aerial systems, localization, mapping, perception
and Autonomy, robot audition.

I. INTRODUCTION

D
ISASTER robotics is intended to improve the prompt-

ness and effectiveness of search-and-rescue missions [1].

From the viewpoint of a well-known guidance “First 72 Hour

Response,” drones are considered to be useful for monitoring,

logistics, and search-and-rescue missions, because they are un-

affected by most ground conditions [2]. To improve the per-

formance of search-and-rescue missions, drones require more

sensory capabilities. The current drones use light detection and

ranging (LiDAR) and cameras. Since vision sensors are not a

panacea and have problems such as occlusion and inability to

work without illumination, drones should be able to exploit other

sensor modalities to compensate for such weaknesses.
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In this letter, we focus on sound processing to compensate

for visual processing (hereinafter, drone audition). Nakadai and

Okuno proposed a hearing capability for robots with their own

microphones, i.e., robot audition [3]. Its three main functions

are sound source localization (SSL), sound source separation

(SSS), and recognition of separated sound sources. Assuming

that the speech is captured by microphones close to the speaker,

robust automatic speech recognition (ASR) is possible, thanks to

the recent development of deep learning. However, if speech is

contaminated by noise or other speech signals, the performance

of ASR deteriorates drastically [4]. In fact, there remains a big

gap in performance between clean data and contaminated data,

the latter of which is quite common in robotics and real-world

applications. For bridging a gap, the open-source robot audition

software called “HARK” [5] has been developed, which is used

in this study.

SSL is the most important function because most of the current

applications are based on it. For example, a robot detects the

direction of sound sources, or speakers, and pays attention to

one of them. SSL is also used to estimate the positions of sound

sources. Sasaki [6] proposed to estimate the positions of multiple

sound sources by triangulation using a large microphone array

(hereinafter, a mic array) on a mobile robot. Kumon [7] proposed

a mobile cart control method based on the correlation matrix

of an extended Kalman filter for SSL. Martinson [8] proposed

auditory evidence grids to estimate a position of moving sound

sources in a room. Sekiguchi [9] proposed to estimate the po-

sitions of multiple sound sources by using multiple robots each

equipped with an independent mic array. Since visual, auditory,

and other perception of a robot carries various uncertainties, this

is tackled by simultaneous localization and mapping (SLAM)

in Sasaki [6] and Evers [10]. For drone audition, Basiri [11]

proposed to mount three microphones on a small fixed-wing

aircraft; their system could localize an emergency whistle call

on the ground using particle filters. Wang [12] proposed to

mount a circular 8-ch mic array on a 3DR IRIS quadcopter;

their system was shown by simulation that it could localize

a speech signal by calculating DoA at each time-frequency

bin and filtering time-frequency bins spatially. Hoshiba [13]

proposed to use a 12-channel mic array to localize and estimate

the position of a human caller for help on the ground. It should be

noted that robot audition usually needs the horizontal direction

(hereinafter, azimuth), while drone audition needs the vertical

direction (hereinafter, elevation) in addition to azimuth.
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II. RELATED WORK

A significant problem of drone audition is noise caused mainly

by the rotors and airflow around the drone (hereinafter, ego-

noise). Normal noise suppression algorithms cannot cope with

such dynamically changing ego-noise under a low signal-to-

noise ratio (SNR).

A. Sound Source Localization (SSL)

SSL is extensively surveyed in [14], but most efforts have

been devoted to normal robots, not to drones. The most common

SSL with a mic array is based on multiple signal classification

(MUSIC) [15], which estimates the direction of a sound source

using the subspace method that is based on the orthogonality

between the signal space and noise space and is robust against

directional noise [4]. A practical usage of the original MUSIC

requires the number of sound sources to be given in advance

and that the power of the noise is weaker than that of the sound

sources in order to discriminate sound sources from noise.

Many extensions have been proposed to relax the above

requirements as the power of ego-noise of a drone exceeds

that of the target signal in most cases. Generalized eigenvalue

decomposition for MUSIC (GEVD-MUSIC) can deal with high-

power noise by introducing a noise correlation matrix (NCM)

and GEVD even when the SNR is less than 0 dB [16]. NCM can

be incrementally estimated to adapt to dynamic changes in noise

(iGEVD-MUSIC). However, this has two major drawbacks:

high computational cost and overestimation of NCM. General-

ized singular value decomposition for MUSIC (GSVD-MUSIC)

reduces these two drawbacks [17]. Since (i)GEVD/GSVD-

MUSIC of HARK provides SSL in real-time, we chose to use

GSVD-MUSIC for SSL in our study.

B. Tracking by Data Association

Another critical problem is multiple sound sources from a

wide range of acoustic fields. Since SSL provides temporal

fragments of localization, these fragments must be tracked in

order to estimate the position and trajectory of sound sources.

For example, if two sound sources cross each other, the tracking

function may estimate either that they are crossing or that they

are approaching and then departing, which causes uncertainty in

tracking. This is also the case when the drone is flying and the

relative positions of the two sound sources change. This kind of

ambiguity in tracking multiple sound sources can be dealt with

by data association.

Nakadai [18] proposed to integrate localization and facial

recognition as a means of data association in tracking moving

speakers with binaural mics. The separated sounds are used to

identify the speaker and then direction data of the same speaker

are collected to estimate the trajectory. Data association based

on labeling is prone to malfunction because incorrect labeling

will generate the wrong trajectory.

Multi hypothesis tracking (MHT) [19] and joint probability

data association (JPDA) [20] are sophisticated data associations

for signals with uncertainty. The concept of JPDA takes the all

possible combinations into account, which requires significant

computation. Also, to cope with noisy observations, MHT must

maintain a huge number of hypotheses, which significantly

increases the amount of calculation and makes real-time pro-

cessing difficult. Furthermore, auditory observations are more

uncertain and irregularly obtained, as opposed to the case of

laser-scanned images. Therefore, we propose to extend the

Global Nearest Neighbor (GNN) method [21] that can track

multiple objects with a small amount of computation.

C. Sound Source Separation (SSS)

SSS methods with a mic array are classified into three cat-

egories: beam-former based on spatial sparseness, temporal-

frequency masking based on spatial and temporal sparseness,

and blind separation including independent component analysis

and non-negative matrix factorization (NMF). Blind separation

usually assumes that the number of sound sources is less than

that of microphones and is too computationally expensive to run

in real-time or even with a small latency. Zegers [22] proposed

a method to jointly perform source separation and speaker iden-

tification using NMF. Because of our extensive experience on

real-time SSS with HARK [4], we chose geometric high-order

decorrelation-based source separation (GHDSS) of HARK, a

variation of blind separation with spatial constraints [23].

D. Sound Source Identification (SSI)

Data association needs not only sound source direction but

also various information from acoustic signals. Sound source

identification (SSI) is a promising candidate. If the identification

information is used in data association, an improvement in

tracking accuracy can be expected. Examples of SSI include

Bayesian classifiers [24], fuzzy classifiers [25], artificial neural

networks [26], Gaussian mixture models [27], hidden Markov

models [28], and support vector machine (SVM) [30]. We chose

to use SVM because we need a set of the likelihood for various

sources, not a label of the source.

III. POSITION ESTIMATION SYSTEM

A. System Overview

The system consists of the following modules (see Fig. 2).

1) Drone with a 16-channel mic array (Fig. 1(a)).

2) SSL (Fig. 1(b)).

3) Position estimation (Fig. 1(c)).

4) Single source tracking

5) SSS and extraction of MSLS features

6) SSI and extraction of feature vectors

7) Multiple source tracking by data association

B. Drone and Sound Source Localization (SSL)

A drone (ZION-PG560 of enRoute Inc., Japan) equipped with

a 16-channel mic array (Acoustic Processing Unit, RASP-ZX of

SystemInFrontier Inc., Japan) captures sounds and records them

as a 16-ch 24 bit wave file with 16 kHz sampling (Fig. 1(a)).

GSVD-MUSIC calculates the MUSIC spectrum, and its peaks

are filtered by threshold to determine the directions of the sound
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Fig. 1. Drone, MUSIC spectrum, and geometrical configuration of sound source position estimation.

Fig. 2. Flowchart of the position estimation system.

sources (Fig. 1(b)). Each direction is projected to the ground

to estimate the position on the ground (Fig. 1(c)). Since this

estimation carries with it uncertainty due to ego-noise, the coarse

resolution of SSL (5◦), and the uncertainty of GPS and the IMU,

a Kalman filter with data association is used to remove them.

As shown in Fig. 1(c), let z, ψ, θ, and φ be the observed alti-

tude, yaw, azimuth, and elevation of the drone, respectively. Let

u = (sin(ψ − θ), cos(ψ − θ))T be the unit vector pointing to

the sound source based on SSL, where T indicates the transpose

operator. First, the sound source position, xs = (xs, ys)
T , is

initially estimated using a planar terrain model as in our previous

work [29] as follows:

xs ≈ xh + z̄h tan(φ̄)ū+w, (1)

where w ∼ N (0,P ), that is, w follows a normal distribution

with mean of 0 and variance of P and measured values are de-

noted by .̄. Let v = (cos(ψ − θ),− sin(ψ − θ))T . P is defined

as follows:

P =

(

(σz tan(φ̄)
2 +

(

σφz̄h

cos2 φ̄

)2
)

ūū
T

+ (σθ z̄h tan(θ̄)
T
v̄v̄

T +Σε). (2)

To cope with the uncertainty in the position estimation, an

extended Kalman filter is used to get stable estimates [34].

C. Sound Source Identification (SSI)

The obtained signals are separated by GHDSS for SSI.

GHDSS separates sound sources by using the directions ob-

tained by SSL. A 50-dimensional mel-scale log spectrum

(MSLS) [31] is extracted from the 0∼6,000 Hz band of the

separated sound. The MSLS is obtained in the method of cal-

culating the mel-frequency cepstral coefficient (MFCC) without

applying a discrete cosine transform (DCT). Not applying a DCT

is critical to improving the performance of ASR and SSI of con-

taminated sounds because DCT distributes local contamination

in a frequency region to all frequency regions, which degrades

the performance.

SSI is realized by using a set of SVMs to generate a feature

vector instead of a label of a target sound. First, eight two-class

SVMs are constructed to identify one of the following eight

classes: male voice, female voice, emergency whistle, airplane,

car horn, engine, siren, and rotor noise. Since we use AudioSet,1

the above eight classes are chosen as rather independent bases.

The design of more uncorrelated sound bases will be an impor-

tant future work.

The training data are created by simulation with transfer

functions generated mathematically. First, sound signals at a

distance of 5 m from the drone are simulated, and ego-noise

recorded from a real hovering flight test is added to the signal.

Then, the captured sounds are separated by GHDSS with the

specified direction, and a 50-D MSLS is calculated for each

separated sound.

The multi-class classifier is realized with a set of SVMs. For

a particular class, one SVM returns a positive label and the other

SVMs return a negative label. LetC1, . . . , C8 be the eight classes

and l be the number of MSLS frames used for SSI. MSLS is

represented by a vector M
T = [m1, . . . ,ml]. The MSLS of

the separated sound is applied to all SVM classifiers to obtain

the class posterior probabilitypi = P (y = i|M ). Here, the class

posterior probability is treated as the likelihood P (mi|Cj) of

the observation of the class Cj . Thus, the average log-likelihood

(ALLD) s(Cj) of class Cj is obtained by the following equation.

s(Ci) =
1

l

l
∑

i=1

logP (mi|Cj) (3)

1[Online]. Available: https://research.google.com/audioset/index.html
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Fig. 3. Spectrum and feature vectors of three sounds.

TABLE I
PERFORMANCE OF SSI ESTIMATED BY FIVE-FOLD

CROSS-VALIDATION

The resulting vector s = [s(C1), . . . , s(C8)]
T represents the

feature vector of the separated sound.

To evaluate the performance of each classifier and confirm that

the set of eight base sound sources are mutually independent,

k-fold cross-validation (k = 5) was performed. The results are

shown in Table I. The cross-validation shows that every class

is identified with an accuracy of over 80% and that the set

can be used safely as a set of pseudo-orthogonal base sound

sources.

An evaluation with open data [32] was conducted on male

voices, female voices, and emergency whistle calls with an SNR

of −15 dB. Fig. 3(a)–(c) depicts the spectrum in the upper part

and a color map of the feature vector (ALLD calculated by

Equation (3)) in the lower part for the separated sounds. The

separated male voices had a high ALLD for male voices and low

ALLD for emergency whistle calls, while the separated emer-

gent whistle calls had a small ALLD for both male and female

voices. Therefore, these three sounds were well discriminated.

IV. MULTIPLE SOUND SOURCE POSITION ESTIMATION BY

DATA ASSOCIATION

A. Data Association for Sound Source Tracking

For tracking and estimating the position of multiple sound

sources, data association is used to associate a tracked sound

source with an observation. In this letter, we propose the Global

Nearest Neighbor with classification measurements (GNN-c)

based on GNN [21]. The idea of GNN-c is to incorporate infor-

mation of sound source identification into geometrical criteria

of data association.

1) Single Sound Source Correspondence: First, let us explain

the case when only a single source is detected within a given

range of the tracked target, which is called the effective area.

When the observation j is within the given range of the tracked

source i, i is updated using j.

The above range is computed using a geometric distance and

feature-based distance as follows. The geometric distance at time

step k, d2k,ij
(M), is calculated in terms of the Mahalanobis dis-

tance between the tracked source i and the observation j as fol-

lows: d2k,ij
(M) = z̃

T
k,ijS

−1
z̃k,ij where z̃k,ij is the observation

error of the Kalman filter and S
−1 is its co-variance matrix. The

feature-based distance is measured by the following metric. Let

sk,i and sk,j be feature vectors of the tracked source i and obser-

vation j, respectively. We define the Euclidean distance between

these feature vectors as d2k,ij
(E) = (sk,i − sk,j)

T (sk,i − sk,j).
With these two distances, we in turn define the distance between

the tracked sound source i and the observation j and the thresh-

old, as follows:

d2k,ij = d2k,ij
(M) + wd2k,ij

(E) (4)

G = G(M) + wG(E) (5)

whereG(M) andG(E) are thresholds corresponding to d2k,ij(M)

and d
(E)
k,ij , respectively, and w is a weight that determines the

relative importance of the two measures.

The value of G(M) is determined from a χ-squared distribu-

tion with two degrees of freedom, since the Mahalanobis dis-

tance follows a χ-squared distribution. Because G(E) depends

on the classifier and the number of classes, its value is determined

empirically. We set G(E) = 5.5. Finally, if the condition,

d2k,ij < G (6)

is satisfied, the observation j is assigned to the tracked source i.

Then, the feature vector of the tracked sound sk,i is updated by

taking the average of the feature vectors assigned to i.

2) Multiple Sound Source Correspondence: Next, let us con-

sider the case when multiple observations exist in the effective

area of one tracked source, or when one observation is within the
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effective areas of multiple tracked sources. In such situations,

there remains ambiguity in the data association, which degrades

the performance of the sound-source position estimation.

Suppose that n sources are being tracked at time k and m

observations are obtained under the assumption of multiple

sound sources. In addition to assigning the observation to known

sources, it is also important to determine whether any new

observation is either from the source currently being tracked

or from a new source.

We verify for all combinations of tracked sources and observa-

tions whether Inequality (6) is satisfied and solve the assignment

problem given by the cost matrix C below:

C =

⎡

⎢

⎢

⎣

c11 c12 · · · c1m
...

...
...

cn1 cn2 · · · cnm

⎤

⎥

⎥

⎦

(7)

cij =
{

E (d2ij > G) or d2ij (otherwise)
}

(8)

where E > G is a constant value to indicate a non-active state.

With this cost matrix, we find a solution that minimizes the

sum of distances in Equation (7) by combining the tracked

sources and observations. We solved this problem by Munkres

method [33]. Note that E in Equation (8) is set to a sufficiently

large value.

B. Tracking Multiple Sound Sources

We introduce a management method for stable sound-source

tracking.

1) New Sound-Source Tracking: If there is no sound source

being tracked, or if the observation is not assigned to the sound

source currently being tracked, a new tracking sound source

is generated, and the Kalman filter starts tracking it. To avoid

tracking a short fragment of a sound source, tracking continues

only if consecutive observations exceed a continuous obser-

vation threshold N1. If a tracked sound source is obtained a

sufficient number of times, that is, more than the sound-source

detection threshold N2 (N2 > N1), the tracked sound source is

labeled valid.

2) Maintenance of Multiple Sound Source Tracking: Sound

source tracking continues while observations are being obtained,

and the source is labeled active.

When an observation has not been obtained for a long time,

for example, when no sound source has generated a signal,

or the drone is too far from the sound source to capture any

signal, we face the problem of a large accumulated uncertainty

due to continuous expansion of the effective area. To avoid this

problem, when an observation of a valid sound source that had

been tracked for a sufficient time (N3) has not been obtained

for a period T1, the Kalman filter stops tracking it; the source

is labeled dormant. Then, the effective area is reinitialized to a

constant radius r. If the source is observed again, the tracking

resumes; the source is labeled active again (see Fig. 4).

3) Termination of Sound Source Tracking: If the number of

observations is not less than N1 and not more than N3 and

the sound source tracking is dormant during T2, the tracking

is terminated.

Fig. 4. State transition diagram for tracking.

V. EVALUATION

A. Simulated Experiments

The performance of the proposed system was evaluated by

comparing GNN-c with identification information and GNN

without identification information while changing the power

threshold of the MUSIC spectrum. The power threshold of the

MUSIC spectrum was used to reduce the faulty detections of

the sound source by discarding directions in which the MUSIC

power is less than the threshold due to noise.

In the simulation, two voice sources (denoted as Male and

Female) moved linearly at 0.5 m/s. Their two paths crossed in

the middle (Fig. 5(a)), and the drone was located 5 m from the

crossing point. Ego-noise recorded on actual flights was added

to simulate the acoustic signal, whose SNR was about −15 dB

during the utterances. The speech from the sources contained

pauses, which lead to false detections because of the ego-noise.

G(M) and G(E) were set to 5.991 and 5.5, respectively. The

weightw in Equation (5) was set to 1.4 for the proposed method.

Preliminary tests confirmed that thresholds of 19.5 dB to

20.0 dB were suitable for detecting MUSIC spectrum peaks,

as this range provided appropriate observations with fewer false

positives.

The results of GNN without ID information are shown in

Fig. 5(b) and (c). The figures show a top view of the field, in-

cluding the detected source positions (black dots) and estimated

sources with labels (red lines with numbers). For the case of a

20 dB threshold (Fig. 5(b)), there were three source estimates:

Male was initially detected as ID 0, but it was estimated to be in

the approaching-then-departing scenario; Female was detected

as ID 1, but it was terminated in the middle; and a new estimate

(ID 5) was generated in the second half. Relaxing the threshold

to increase detections (Fig. 5(c), i.e., setting a 19.5 dB threshold)

caused misestimations because of more clutter.

The proposed GNN-c with ID information worked appro-

priately for the 20 dB and 19.5 dB thresholds, as shown in

Fig. 6(a) and (b), respectively. Even the proposed method failed

to associate observations in the very noisy situation with the

19 dB threshold (Fig. 6(c)). In that case, Male was tracked

properly, but Female was lost around the crossing point, and

there were many faulty detections. The effectiveness of the

proposed method can thus be seen by comparing Fig. 5(b), (c)

and Fig. 6(a), (b).

The role of the feature vector can be explained by analyzing

the case of the 19.5 dB threshold (Fig. 6(b)) where false positives

existed. Feature vectors corresponding to the source candidates

that were detected more thanN1 times are displayed in Fig. 7(a),

where ID 0 and 1 correspond to the actual sources. As the figure

shows, all the feature vectors are different from each other,
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Fig. 5. Ground truth and estimated trajectories by GNN without ID information.

Fig. 6. Trajectories estimated by GNN-c with ID information.

Fig. 7. Feature vectors for ID0–15 and tracking errors.

which prevented faulty observations from being integrated into

the detected sources, and the system became robust.

The tracking error of the proposed method is summarized in

Fig. 7(b) and (c). As the Kalman Filter had not converged in the

initial stage of tracking, the error increased in the first several

steps; the method managed to track the target within a 2 m range

for the 20.0 dB and 19.5 dB thresholds once it had converged.

Under noisy conditions (19.0 dB threshold), the system failed to

track Female after 20 sec. when the error increased (Fig. 7(c)).

B. Field-Test Validation

Data obtained in the field test of our previous work [34] were

utilized in a field experiment to validate the proposed approach.

A drone with a 16-ch omnidirectional mic array (Fig. 1(a))

was commanded to fly a path over a field containing two static

sound sources (left: voice, right: whistle), as shown in Fig. 8(a).

The scenario was designed to demonstrate that the proposed

approach was feasible and that the association with sound source

classification would be effective for sound-source localization

from the drone. Although the setup of the experiment was

simpler than the numerical simulations as sound sources were

static and located about 18 m away, it is valuable to test the

system in the field because there were external noise sources

including the reflection of the ego-noise from the ground.

Fig. 8(b–1) and (b–2) show the observations utilized for the

SSL based on the proposed algorithm (c–1) and that without

acoustic signal classification (c–2). Fig. 8(c) shows the evo-

lution of the estimation errors over time, and the final esti-

mated positions are depicted in Fig. 8(d). As fewer observations
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Fig. 8. Field test results. A loud speaker (voice) and a whistle tone were used
as static sound sources emitting intermittent signals. The source at the origin
generated beeps of a whistle while the other source emitted a human voice.

contributed to SSL with the proposed method comparing to the

SSL without classification, the proposed method took longer

time to find the left source (male voice), but the proposed method

provided accurate and stable estimates of both two sources. The

estimates by the SSL without classification deviated because of

improper observations.

This result indicates that the proposed association method

with classification made the localization robust even with a

limited number of observations available under noisy conditions.

This means it will be useful for practical applications, because it

allows the auditory drone to localize targets without having to fly

around them, which is how conventional approaches such as the

one of Washizaki [35] cope with uncertain noisy observations.

Selection of a more restrictive threshold to filter the observa-

tions would suppress false observations and improve estimates

of static sound sources even without classification, but it is worth

emphasizing that the selection of such a threshold is sensitive

and thus not always possible.

The sensor readings from the drone and acoustic signals

were not perfectly synchronized because of the limitation of

the computational resources. This imposes uncertainty in pro-

jecting the DoA on the ground, and it may affect the localiza-

tion performance. Further investigation of such uncertainty is

necessary although we experienced that the proposed method

demonstrated better performance than the localization without

association through multiple runs under different computational

loads.

VI. CONCLUSION

We showed that acoustic information can be used to enhance

sound source localization and tracking of multiple sound sources

by drone audition and proposed data association between lo-

calization and identification of sound sources by GNN-c. The

feature vectors are a set of average log-likelihoods obtained by

multiple SVMs. Since multiple SVMs provide the probability

of the source class with which to characterize any signal, this

approach does not require the target signal in advance. Our claim

is that identification of the target signals even in a significantly

noisy environment helps localization. We expect that better

signal identifiers such as DNN-based sound classifiers would

improve performance, and, hence, it will be one of our future

works to integrate recent machine learning techniques into our

approach. An ongoing detailed evaluation involving more actual

flights will be reported separately.

REFERENCES

[1] S. Tadokoro, “Overview of the ImPACT tough robotics challenge and
strategy for disruptive innovation in safety and security,” Disaster Robotics

- Results from the ImPACT Tough Robotics Challenge, S. Tadokoro Ed.,
Berlin, Germany: Springer, 2019, pp. 3–22.

[2] K. Nonami et al., “Recent R&D technologies & future prospective of flying
robot in tough robotics challenges,” Disaster Robotics - Results from the

ImPACT Tough Robotics Challenge, S. Tadokoro Ed., Berlin, Germany:
Springer, 2019, pp. 77–142.

[3] K. Nakadai, T. Lourens, H. G. Okuno, and H. Kitano, “Active audition for
humanoid,” in Proc. Conf. Amer. Assoc. Artif. Intell., 2000, pp. 832–839.



WAKABAYASHI et al.: MULTIPLE SOUND SOURCE POSITION ESTIMATION BY DRONE AUDITION BASED ON DATA ASSOCIATION 789

[4] H. G. Okuno and K. Nakadai, “Robot audition: Its rise & perspective,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal, 2015, pp. 5610–5614.

[5] K. Nakadai, T. Takahashi, H. G. Okuno, H. Nakajima, Y. Hasegawa, and
H. Tsujino, “Design & implementation of robot audition system
“HARK”,” Adv. Robot., vol. 24, no. 5-6, pp. 739–761, 2010.

[6] Y. Sasaki, S. Kagami, and H. Mizoguchi.,“Multiple Sound source mapping
for a mobile robot by self-motion triangulation,” in Proc. IEEE/RSJ Int.

Conf. Intell. Robots Syst., 2010, pp. 380–385.
[7] M. Kumon and S. Uozumi., “Binaural localization for a mobile sound

source,” J. Biomech. Sci. Eng., vol. 6, no. 1, pp. 26–39, 2011.
[8] E. Martinson and A. Schultz, “Auditory evidence grids,” in Proc. IEEE/RSJ

Int. Conf. Intell. Robots Syst., 2006, pp. 1139–1144.
[9] K. Sekiguchi, Y. Bando, K. Nakamura, K. Nakadai, K. Itoyama, and

K. Yoshii, “Online simultaneous localization & mapping of multiple sound
sources & asynchronous microphone array,” in Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst., 2016, pp. 1973–1979.
[10] C. Evers and P. A. Naylor, “Acoustic SLAM,” IEEE/ACM Trans. Audio,

Speech, Lang. Process., vol. 26, no. 9, pp. 1484–1498, Sep. 2018.
[11] M. Basiri, F. S. Schill, P. U. Lima, and D. Floreano, “Robust acoustic

source localization of emergency signals from micro air vehicles,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012, pp. 4737–4742.
[12] L. Wang and A. Cavallaro, “Time-frequency processing for sound source

localization from a micro aerial vehicle,” in Proc. IEEE Int. Conf. Acoust.,

Speech Signal Process., 2012, pp. 496–500.
[13] K. Hoshiba et al., “Design of UAV-embedded microphone array system

for sound source localization in outdoor environments,” Sensors, vol. 17,
no. 11, Nov. 2017, Art. no. E2535.

[14] C. Rascon and I. Meza, “Localization of sound sources in robotics:
A review,” Robot. Auton. Syst., vol. 96, pp. 184–210, Oct. 2017.

[15] R. Schmidt, “Multiple emitter location & signal parameter estimation,”
IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280, Mar. 1986.

[16] K. Okutani, T. Yoshida, K. Nakamura, and K. Nakadai, “Outdoor au-
ditory scene analysis using a moving microphone array embedded in a
quadrocopter,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012,
pp. 3288–3293.

[17] T. Ohata, K. Nakamura, T. Mizumoto, T. Tezuka, and K. Nakadai, “Im-
provement in outdoor sound source detection using a quadrotor embedded
mmicrophone array,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2017, pp. 5985–5990.

[18] K. Nakadai, K. Hidai, H. Mizoguchi, H.G. Okuno, and H. Kitano, “Real-
time auditory & visual multiple-object tracking for robots,” in Proc. Int.

Joint Conf. Artif. Intell., 2001, pp. 1425–1432.
[19] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking

revisited,” in Proc. IEEE Int. Conf. Comput. Vision, 2015, pp. 4696–4704.
[20] S.H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, and I. Reid, “Joint

probabilistic data association revisited,” in Proc. IEEE Int. Conf. Comput.

Vision, 2015, pp. 3047–3055.

[21] P. Konstantinova, A. Udvarev, and T. Semerdjiev, “A study of a target
tracking algorithm using global nearest neighbor approach,” in Proc.

CompSysTech, 2003, pp. 290–295.
[22] J. Zegers and H. Van hamme, “Joint sound source separation & speaker

recognition,” in Proc. Interspeech, 2016, pp. 2228–2232.
[23] H. Nakajima, K. Nakadai, Y. Hasegawa, and H. Tsujino, “Blind source sep-

aration with parameter-free adaptive step-size method for robot audition,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 6, pp. 1476–1485,
Aug. 2010.

[24] M. F. Duarte and Y. H. Hu, “Vehicle classification in distributed sensor
networks,” J. Parallel Distrib. Comput., vol. 64, no. 7, pp. 826–838,
2004.

[25] Q. Pan, J. Wei, H. Cao, N. Li, and H. Liu, “Improved DS acoustic-seismic
modality fusion for ground-moving target classification in wireless sen-
sor networks,” Pattern Recognit. Lett., vol. 28, no. 16, pp. 2419–2426,
2007.

[26] Q. Huang, T. Xing, and H. T. Liu, “Vehicle classification in wireless sensor
networks based on rough neural network,” in Proc. Int. Symp. Neural Netw.,
2006, pp. 58–65.

[27] Y. Kim, S. Jeong, D. Kim, and T. S. López, “An efficient scheme of target
classification & information fusion in wireless sensor networks,” Pers.

Ubiquitous Comput., vol. 13, no. 7, pp. 499–508, 2009.
[28] W. J. Roberts, H. W. Sabrin, and Y. Ephraim, “Ground vehicle classification

using hidden Markov models,” Defense Tech. Info. Center, Belcamp, MD,
USA, DoD S&T Rep. ADA409368, 2001.

[29] K. Nakadai et al., “Development of microphone-array-embedded uav for
search and rescue task,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2017, pp. 5985–5990.

[30] C. C. Chang and C. J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Tech., vol. 2, no. 3, pp. 27.1–27.27,
2001.

[31] S. Yamamoto et al., “Real-Time robot audition system that recognizes
simultaneous speech in the real world,” in Proc. IEEE/RSJ Int. Conf. Intell.

Robots Syst., 2006, pp. 5333–5338.
[32] J. F. Gemmeke et al., “Audio set: An ontology and human-labeled dataset

for audio events,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2017, pp. 776–780.

[33] J. Munkres, “Algorithms for the assignment & transportation problems,”
J. Soc. Indust. Appl. Math., vol. 5, no. 1, pp. 32–38, 1957.

[34] M. Wakabayashi and M. Kumon, “Position estimation of multiple sound
sources on the ground by multirotor helicopter with microphone array (in
Japanese),” Japanese Soc. Artif. Intell., Tech. Rep. SIG-Chall-049-3, 2017,
pp. 15–22.

[35] K. Washizaki, M. Wakabayashi, and M. Kumon, “Position estima-
tion of sound source on ground by multirotor helicopter with micro-
phone array,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016,
pp. 1980–1985.


