Multiple-source shortest paths in planar graphs

Philip N. Klein*
Department of Computer Science
Brown University

1 Introduction

Given an n-node planar graph with nonnegative edge-lengths, our algorithm takes $O(n \log n)$ time to construct a data structure that supports queries of the following form in $O(\log n)$ time: given a destination node t on the boundary of the infinite face, and given a start node s anywhere, find the s-to- t distance.

The data structure requires $O(n \log n)$ space. To avoid using more than $O(n)$ space, if the pairs (s, t) are known in advance, the corresponding distances can be computed during the execution of the algorithm at a cost of $O(\log n)$ time per distance. The algorithm can also produce an $O(n)$ structure that, for any node s and any node t on the boundary, finds the first edge on the shortest s-to- t path in $O(\log \log \operatorname{degree}(t))$ time. Using this structure, one can for example obtain the shortest s-to- t path P in time $O(|P|)$ if the graph has constant degree.

Using our algorithm, we obtain asymptotically faster algorithms for preprocessing to facilitate quick exact or approximate point-to-point distance queries in planar graphs (for arbitrary start and end nodes) and the corresponding shortest-path queries.
1.1 Previous work In the area of multiple-source shortest paths in planar graphs, there have been results of three kinds. We mention representative work. Frederickson [5] gave an $O\left(n^{2}\right)$ algorithm for all-pairs shortest paths. The special case where the boundary of an n-node planar graph has $O(\sqrt{n})$ nodes arises in applications of Lipton and Tarjan's planar separator theorem. [11] For this case, Fakcharoenphol and Rao [4] gave an $O\left(n \log ^{3} n\right)$ algorithm for computing what they called the dense distance graph, which is a recursive structure ob-

[^0]tained using separators. ${ }^{1}$ Finally, for the special case of a grid with arcs directed north and east and northeast, Schmidt [15] gave an $O(n \log n)$ algorithm that builds a data structure that, supports u-to-v distance queries in $O(\log n)$ time for any node u in in the westmost column of the grid and any node v.
1.2 Applications The multiple-source algorithm can be used to reduce the preprocessing time to construct data structures supporting exact and approximate point-to-point distance queries (i.e., for any nodes u and v, "what is the u-to- v distance?") Fakcharoenphol and Rao show that their dense distance graph supports $O\left(\sqrt{n} \log ^{2} n\right)$ queries. We improve the construction time for this graph from $O\left(n \log ^{3} n\right)$ to $O\left(n \log ^{2} n\right)$ for the special case of nonnegative lengths. Fakcharoenphol and Rao give a dynamic algorithm that supports point-to-point distance queries and single-edge length-changes in amortized $O\left(n^{2 / 3} \log ^{7 / 3} n\right)$ time per operation. Our algorithm yields a simpler dynamic algorithm for which the worst-case time per operation is $O\left(n^{2 / 3} \log ^{5 / 3} n\right)$. See Section 6 .

Thorup [17] shows how to construct data structures supporting fast ϵ-approximate point-to-point distance queries. He gives a preprocessing algorithm requiring $O\left(n \epsilon^{-1} \log ^{2} n \log \Delta\right)$ time to build a structure supporting queries in $O\left(\log \log \Delta+\epsilon^{-1} \log n\right)$ time, where Δ is an upper bound on the largest finite distance. We show how to improve the preprocessing time to $O\left(n\left(\epsilon^{-1}+\log n\right) \log n \log \Delta\right)$. See Section 7. (Thorup also gives a structure supporting faster queries, but the preprocessing time is higher, and our method seems inapplicable.)

Once an exact or approximate distance query has been answered, our algorithm can be used to find

[^1]the corresponding path P in time $O(|P|)$ for constantdegree graphs. ${ }^{2}$ No additional preprocessing time or storage are required. ${ }^{3}$
1.3 Related work Ripphausen-Lipa, Wagner, and Weihe $[14,19]$ have given algorithms for flow problems in planar graphs using an approach that considers orientation and crossing and rightmost paths, ideas that inform the present work.

Eppstein, Italiano, Tamassia, Tarjan, Westbrook, and Yung [3] give a dynamic algorithm to maintain a minimum spanning forest in a planar embedded graph in the presence of edge deletions and insertions. They use a dynamic tree in the primal and the dual graphs, an idea we use in the present paper.

2 Background and terminology

In this paper we are concerned with directed graphs. If y is a node on a path P that starts at x, the to- y prefix of P is the x-to- y subpath of P. The from-y suffix of P is defined similarly. A path is simple if no node occurs more than once in the path. A nonsimple path contains a cycle. One can remove cycles from a nonsimple u-to-v path P, obtaining a simple u-to- v path whose edge-set is a proper subset of that of P. Given an r-rooted tree T and a node $v, T[\nu]$ denotes the simple path from r to v in T (which is unique if it exists). If u is an ancestor of v (or if T is considered as an undirected tree), $T[u, v]$ denotes the simple u to v path in T.
2.1 Shortest paths In this section, we discuss background concerning shortest paths in arbitrary directed graphs. We use $\ell(e)$ to denote the length of an edge e. For a path or cycle $P, \ell(P)=\sum_{e \in P} \ell(e)$. We assume no cycle has negative length.

It follows from this assumption that removing cycles from a nonsimple path does not increase its length. Hence if there is a shortest u-to- v path, there is one that is simple.

For any labeling $d(\cdot)$ of the nodes of a graph with numbers, there is a new length assignment $\hat{\ell}$ defined by $\hat{\ell}(u v)=d(u)+\ell(u v)-d(v)$

[^2]We refer to the lengths $\hat{\ell}(u v)$ as reduced lengths with respect to d. For any nodes s and t, for any s-to- t path P,

$$
\begin{equation*}
\hat{\ell}(P)=\ell(P)+d(s)-d(t) \tag{2.1}
\end{equation*}
$$

It follows that an s-to- t path is shortest according to $\hat{\ell}$ if and only if it is shortest according to ℓ.

An edge $u v$ is a relaxed edge with respect to d if its reduced length is nonnegative, i.e. if

$$
\begin{equation*}
d(u)+\ell(u v) \leq d(v) \tag{2.2}
\end{equation*}
$$

and is an unrelaxed edge otherwise. An edge is tight with respect to d if its reduced length is zero, i.e. if (2.2) is satisfied with equality.

Suppose that every edge is relaxed and, for some nodes r and $v, d(r)=0$ and $d(v)$ is the length of some r-to-v path P_{v}. It follows by (2.1) that $\hat{\ell}\left(P_{v}\right)=0$. Every edge and hence every r-to- v path has nonnegative reduced length, so P_{v} is a shortest path with respect to the reduced lengths $\hat{\ell}$, and hence also with respect to the original lengths ℓ.
2.1.1 Network simplex Our algorithm, like the network-simplex algorithm, ${ }^{4}$ maintains an r-rooted directed spanning tree T. For each node $v \neq r$ reachable from r, there is a unique incoming edge in T, called the parent edge of v in T. The tree induces an assignment $d_{T}(\cdot)$ of distance estimates, namely $d_{T}(v)=\ell(T[v])$. For each edge $u v$ in $T, \ell(T[v])=$ $\ell(T[u])+\ell(u v)$, whence $d_{T}(v)=d_{T}(u)+\ell(u v)$, so $u v$ is tight.

The nonexistence of negative-length cycles implies that v is not an ancestor of u in T if $u v$ is unrelaxed. A pivot step consists of selecting an unrelaxed edge $u v$ and modifying T by removing the parent edge of v and adding the edge $u v$. We call this step relaxing the edge $u v$. If there are no edges that are unrelaxed with respect to T, it follows that the distance estimates $d_{T}(v)$ are true distances from r. In this case T is a shortest-path tree.
2.2 Planar embeddings We assume basic knowledge of planar embedded graphs, faces, and the dual. For a node v on the boundary of the infinite face z, it would not violate planarity to embed an artificial node \hat{v} and an artificial edge $\hat{v} v$, both inside z. For

[^3]

Figure 1: The boundary of the infinite face is indicated by the circle. A right-first search tree rooted at r is indicated by the bold edges. For each node v other than the root, the parent edge is the edge by which v was first visited.
a node v with incoming edge $u v$ and outgoing edges $v w$ and $v x$, we say $v x$ is left of $v w$ with respect to $u v$ if $v x$ occurs strictly between $v w$ and $u v$ in counterclockwise order. Given a simple path P containing an edge $v w$, we say an edge $v x$ emanates left from P if (a) the edge preceding $v w$ in P is $u v$, and $v x$ is left of $v w$ with respect to $u v$, or (b) v is the first node of P, and v lies on the boundary of the infinite face, and $v x$ is left of $v w$ with respect to the artificial edge $\hat{v} v$.

For a primal edge e, the corresponding dual edge points from e 's left face (the face to e 's left when e is oriented upwards) to e 's right face.

3 Ingredients and the algorithm

3.1 Rightmost shortest-path tree Right-first search [14] is depth-first search on a planar graph, with the restriction that, for each node v visited, the edges $v w$ out of v are explored in right-to-left order with respect to the the edge $u v$ by which v was first visited (or, if v is the root and is on the boundary of the infinite face, with respect to the artificial edge $\hat{v} v$). Right-first search induces a right-first search tree consisting of the set of such edges $u v$ (see Figure 1).

The rightmost shortest-path tree rooted at r_{0} (formally defined in Section 4.3) can be obtained from the set of from- r_{0} distances $d(\cdot)$ by finding a right-first search tree in the subgraph of edges that are tight with respect to $d(\cdot)$.

Figure 2: On the left is a primal graph. A spanning tree is indicated in bold. On the right is shown the primal graph and the dual graph not including the nontree dual edges.
3.2 Leafmost unrelaxed edge Let T^{*} denote the set of edges not in the current tree T. As noted in Subsection 2.1, every edge of T is relaxed, so T^{*} includes all unrelaxed edges. The fact that T is a spanning tree of the planar primal implies that T^{*} is a spanning tree of the planar dual (ignoring edge orientations). Consider T^{*} as a dual spanning tree rooted at the node of the planar dual corresponding to the infinite face (see Figure 2). A leafmost unrelaxed edge $x y$ is an unrelaxed edge none of whose proper descendent edges in T^{*} is unrelaxed.
3.3 The algorithm Let $r_{0}, r_{1}, \ldots, r_{s}$ be the nodes on the boundary of the infinite face, in clockwise order. First we add auxiliary edges ${ }^{5}$ of infinite length: $r_{s} r_{s-1}, r_{s-1} r_{s-2}, \ldots, r_{2} r_{1}, r_{1} r_{0}$. We then carry out the following:
let T be a rightmost shortest-path tree rooted at r_{0}. for $i:=1, \ldots, s$,
remove the edge of T entering r_{i-1},
and add $r_{i} r_{i-1}$.
(Now T is rooted at r_{i}.)
While there exists an unrelaxed edge, relax a leafmost unrelaxed edge.

Our pivot selection rule is to choose a leafmost unrelaxed edge. The motivation for this selection rule is as follows. Let e be an edge not in the primal spanning tree T. There is a unique simple undirected

[^4]path in T connecting e 's endpoints, which together with e forms a simple cycle C_{e} in the primal. The nontree edges embedded interior to C_{e} are precisely the strict descendents of e in the dual spanning tree rooted at the infinite face. In particular, if e is a leafmost unrelaxed edge then no unrelaxed edges are strictly interior to C_{e}.

We will show that the algorithm takes $O(n \log n)$ time. In Section 4, we show that each edge is relaxed at most once. In Section 5, we show how each iteration can be implemented in $O(\log n)$ time where n is the number of nodes. At the end of iteration i of the for-loop, the current tree is an $r_{i-}{ }^{-}$ rooted shortest-path tree. We note in Section 5 that the distance in this tree from r_{i} to any node can be queried in $O(\log n)$ time. In addition, by using the persistence technique of [2], the algorithm's history can be recorded in $O(n \log n)$ space so as to permit the subsequent querying of any of the shortest-path trees. ${ }^{6}$

Each edge appears in the shortest-path trees of a contiguous subsequence of the cycle of roots around the boundary of the planar graph. This fact follows from the fact that each edge is relaxed at most once, and can be proved more directly without reference to the algorithm. It generalizes a lemma of Frederickson (see [6]) for outerplanar graphs. It implies a size- $O(n)$ representation of multiple shortest-path trees: for each node v, organize $[12,18]$ the outgoing edges according to the disjoint intervals of roots whose shortest-path trees they belong to. Given a node v and a boundary node r_{i}, one can find the first edge on the shortest v-to- r_{i} path.

4 Analysis

4.1 Flows, potentials, and circulations The material in this subsection is adapted from [10] except for the lemma, which is new.

For a graph G, an integral flow assignment f is a function from the edges of G to the integers. We adopt the antisymmetry convention: if $x y$ is an edge, $f(y x)$ is defined to be $-f(x y)$. Thus f assigns integral flow values to the edges and the reverses of edges. For an edge e, let e^{R} denote the reverse of e. For a path P, let P^{R} denote the reverse path, i.e. consisting of the reverses of the edges of P in the reverse order.

[^5]Note that flow assignments can be added and subtracted. For flow assignments f_{1} and f_{2}, the flow assignment $f_{1}+f_{2}$ assigns $f_{1}(x y)+f_{2}(x y)$ to the edge $x y$.

For G an embedded planar graph, let ϕ be a function from the faces of G to the integers such that the infinite face maps to zero. ${ }^{7}$ We call $\phi(z)$ the potential of face z. We call ϕ a potential function. The corresponding flow assignment is

$$
f_{\phi}(e)=\phi(\text { face to } e \text { 's right })-\phi(\text { face to } e \text { 's left })
$$

This flow assignment is a circulation, i.e. for each node $v, \sum_{u} f(u v)=0$ where the sum is over all nodes u for which $f(u v)$ is defined (i.e. $u v$ or $(u v)^{R}$ is an edge).

The sum of circulations corresponds to the sum of potential functions, i.e. for potential functions ϕ_{1} and ϕ_{2}, the sum $f_{1}+f_{2}$ of the corresponding flow assignments corresponds to the sum $\phi_{1}+\phi_{2}$ of potential functions.

We say the circulation is clockwise if every potential is nonnegative, and counterclockwise if every potential is negative. For example, for a clockwise simple cycle C of edges and reverses of edges, the circulation assigning 1 to the edges/reverse edges of C and zero to all others corresponds to assigning a potential of 1 to every face enclosed by C and 0 to all other faces, and hence the circulation is clockwise.

Lemma 4.1. Consider a potential assignment ϕ. If the corresponding flow assignment f contains a counterclockwise simple cycle of positive flow that is not enclosed in a clockwise simple cycle of positive flow, the circulation is not clockwise.
4.2 "Is left of" and "is right of" Weihe [19] defined a relation "is more left than" between s t flows in a planar directed graph. We specialize his definition to get a relation between s-to- t paths. A path P corresponds to a flow assignment f_{P} that assigns 1 to each edge of P and zero to other edges. For s-to-t paths P and Q, we say P is left of Q (and Q is right of P) if $f_{P}-f_{Q^{k}}$ is a clockwise circulation. It is straightforward to show that the "is left of" relation is reflexive, transitive, and antisymmetric.

[^6]Lemma 4.2. (Disjointness) If P_{1} and P_{2} are simple u-to-v paths that share no nodes except u and v, then either P_{1} is to the left of P_{2} or vice versa.

Lemma 4.3. (Concatenation) Let P_{1} and P_{2} be simple u-to-x paths, and let P_{1}^{\prime} and P_{2}^{\prime} be simple x -to-v paths. If P_{2} is left of P_{1} and P_{2}^{\prime} is left of P_{1}^{\prime} then $P_{2} P_{2}^{\prime}$ is left of $P_{1} P_{1}^{\prime}$.

Lemma 4.4. Suppose P and Q start and end at the same nodes, and their common start node is on the boundary of the infinite face. Then P is left of Q iff no edge of Q emanates left from P.

We define "left of" for spanning trees in terms of "left of" for paths. For two r-rooted spanning trees T_{1} and T_{2}, we say T_{1} is left of T_{2} if, for every node v, the path $T_{1}[\nu]$ is left of $T_{2}[\nu]$.
4.3 Rightmost shortest-path tree An r-rooted shortest-path tree is a rightmost shortest-path tree if in addition every other r-rooted shortest-path tree is left of T. A r-rooted rightmost search tree T of a graph G has the property [14] that, for every node v, $T[v]$ is a rightmost r-to-v path in G. It follows that the r-rooted rightmost search tree of the subgraph of G consisting of tight edges is a rightmost shortest-path tree.

4.4 The right-shortness invariant, and maintain-

 ing it while relaxing edges We define an r-rooted tree T to be right-short if the following condition holds for every node v : if P is a simple r-to v path that is right of $T[\nu]$ and $\ell(P) \leq \ell(T(v))$ then $P=T[\nu]$. That is, there is no simple r-to-v path strictly right of $T[\nu]$ that is as short as $T[\nu]$ itself.A nontree edge $x y$ is left-to-right (with respect to T) if the r-to- y path consisting of $T[x]$ and $x y$ is left of the r-to- y path $T[y]$.

Lemma 4.5. Suppose T is an r-rooted right-short tree, and e is an unrelaxed edge. Then e is left-toright with respect to T.

Theorem 4.1. (Basic Step) Suppose T is an r rooted right-short tree, and e is a leafmost unrelaxed edge. Then relaxing e yields an r-rooted right-short tree T^{\prime} that is left of T.

Figure 3: Two possible embeddings. The bold edges are edges of T. The light edge is the edge $x y$ relaxed to obtain T^{\prime}. The last node common to $T[x]$ and $T[\nu]$ is z. The node v is a descendent of y in $T . R$ is the region bounded by the z-to- x and z-to- y paths in T and the edge $x y$.

Proof. Let $e=x y$. We first prove that T^{\prime} is left of T. By Lemma 4.5, $T^{\prime}[y]$ is left of $T[y]$. Let v be any node. If v is not a descendent of y in T then $T^{\prime}[v]=T[v]$, so $T^{\prime}[\nu]$ is left of $T[v]$. Suppose v is a descendent of y, and let P be the y-to- v path in T (which is also the y-to- v path in T^{\prime}). Then $T[\nu]=T[y] P$ and $T^{\prime}[\nu]=T^{\prime}[y] P$. It follows from Lemma 4.3 that $T^{\prime}[\nu]$ is left of $T[\nu]$.

Now we prove that T^{\prime} is right-short. Assume for a contradiction that, for some node v, there is a simple r-to-v path P that is right of $T^{\prime}[\nu]$ and distinct from $T^{\prime}[\nu]$ such that P has length no more than $T^{\prime}[\nu]$. Choose P to be the shortest such path. If $T^{\prime}[\nu]=T[\nu]$ then P would violate the right-shortness of T. Hence $T^{\prime}[v]$ must use the one edge in $T^{\prime}-T$, namely $x y$, the edge relaxed. It follows that v must be a descendent of y in T^{\prime}, and therefore in T as well. (See Figure 3.)

First suppose that $P=P_{1} x y P_{2}$ for some paths P_{1} and P_{2}. By Lemma 4.4, P contains no edge that emanates from the left of $T^{\prime}[\nu]$, so no edge of P_{1} emanates left of $T^{\prime}[x]$ and no edge of $x y P_{2}$ emanates left of $x y T[y, v]$. The former implies, again by Lemma 4.4, that $T^{\prime}[x]$ is left of P_{1}. But $T^{\prime}[x]=$ $T[x]$, so $T[x]$ is left of P_{1}. By right-shortness of T, it follows that either $P_{1}=T[x]$ or $\ell\left(P_{1}\right)>\ell(T[x])$.

Let $P_{2}^{\prime}=T[y] P_{2}$. Since no edge of $x y P_{2}$ emanates left of $x y T[y, \nu]$, and $T[\nu]=T[y] T[y, \nu]$, no edge of P_{2}^{\prime} emanates left of $T[\nu]$, so $T[\nu]$ is left
of P_{2}^{\prime}. Hence either $P_{2}^{\prime}=T[v]$ or $\ell\left(P_{2}^{\prime}\right)>\ell(T[v])$. Since $\ell\left(P_{2}^{\prime}\right)=\ell(T[y])+\ell\left(P_{2}\right)$, either $P_{2}=T[y, v]$ or $\ell\left(P_{2}\right)>\ell([y, v])$.

Combining these two facts, we infer that either $P=T[x] x y T[y, v]$ or $\ell(P)>\ell(T[x])+\ell(x y)+$ $\ell(T[y, v])$. Recall that $T^{\prime}[v]=T[x] x y T[y, v]$. We assumed $P \neq T^{\prime}[\nu]$ and $\ell(P) \leq \ell\left(T^{\prime}[\nu]\right)$, so this is a contradiction.

Hence P cannot contain the edge $x y$. The following claim shows that $\ell(P) \geq \ell(T[v])$. Since $\ell(T[v])>\ell\left(T^{\prime}[v]\right)$, this contradicts the choice of P, completing the proof of the theorem.

Claim 4.5.1. For each node u of P that also appears on $T[v]$, the to-u prefix of P is no shorter than $T[u]$.

The proof of the claim is by induction. The claim is trivial for the root r. Let $u \neq r$ be a node of P on $T[v]$, and let w be the previous node of P that is also on $T[\nu]$. By the inductive hypothesis, the to- w prefix of P is no shorter than $T[w]$.

Let P_{1} be the w-to- u subpath of P. Using the inductive hypothesis, the length of the to- u prefix of P is no less than $\ell(T[w])+\ell\left(P_{1}\right)$. Note that u and w are the only nodes common to P_{1} and $T[v]$. By the Disjointness Lemma, there are three cases, corresponding to the relative placement of P_{1} and $T[v]$. Case 1 holds when u occurs before w in $T[v]$, Case 2 holds when P_{1} is to the right of $T[w, u]$, and Case 3 holds when P_{1} is to the left of $T[w, u]$ and does not coincide with $T[w, u]$. Cases 2 and 3 are illustrated in Figure 4.
Case 1: If $\ell(T[w])+\ell\left(P_{1}\right)$ were less than $\ell(T[u])$, then P_{1} together with $T[u, w]$ would form a negative length cycle, a contradiction.
Case 2: In this case P_{1} is right of $T[w, u]$. Let $P_{2}=T[w] P_{1}$. By the Concatenation Lemma, P_{2} is right of $T[u]$. The right-shortness of T implies that $\ell\left(P_{2}\right) \geq \ell(T[u])$. It follows that $\ell\left(P_{1}\right) \geq \ell(T[w, u])$. Combining this with the inductive hypothesis completes the inductive step.
Case 3: In this case P_{1} is left of $T[w, u]$. We first show that every edge of P_{1} lies in the region R enclosed by the edge $x y$ and the simple undirected path in T connecting x and y. Suppose not, and let st be the first edge of P_{1} not in R. The boundary of R consists of a subpath of $T^{\prime}[v]$ on the left and a subpath of $T[v]$ on the right. Since P_{1} is internally

Figure 4: This figure illustrates examples of the cases in the induction proof. In each case, the bold path is $T[v]$ and the light path is P_{1}. The two leftmost drawings represent Case 1 , in which P_{1} is to the right of the subpath of $T[v]$, and the two rightmost drawings represent Case 2, in which P_{1} is to the left.
node-disjoint from $T[v]$, the node s must belong to $T^{\prime}[v]$ and $s t$ must emanate to the left of $T^{\prime}[v]$. This contradicts the fact that P contains no such edge.

We conclude that every edge of P_{1} lies in the region R. By the leafmost selection rule, every edge in this region except $x y$ itself is relaxed, and P_{1} does not contain $x y$. Hence every edge of P_{1} is relaxed. Let the nodes of P_{1} be $w=z_{0}, z_{1}, \ldots, z_{k}=u$, and let α_{i} denote the length of the to- z_{i} prefix of P. The inductive hypothesis states that $\alpha_{0} \geq d_{T}\left(z_{0}\right)$. Assuming $\alpha_{i-1} \geq d_{T}\left(z_{i-1}\right)$, since $d_{T}\left(z_{i}\right) \leq d_{T}\left(z_{i-1}\right)+$ $\ell\left(z_{i-1} z_{i}\right)$, we get $\alpha_{i} \geq d_{T}\left(z_{i}\right)$. For $i=k$, then, the length of the to- u prefix of P is $\geq d_{T}(u)$.
4.5 Applying right-shortness We show by induction that every tree T arising in the algorithm is rightshort. The initial tree is a rightmost shortest-path tree, so is trivially right-short. Suppose that at the beginning of iteration i the tree T rooted at r_{i-1} is right-short. Lemma 4.6 shows that the modification to obtain an r_{i}-rooted tree preserves right-shortness. The Basic-Step Theorem shows that each iteration of the inner loop preserves right-shortness.

Lemma 4.6. Suppose T is a right-short tree rooted at r_{i-1}, and T^{\prime} is obtained by removing the parent edge of r_{i} and adding the edge $r_{i} r_{i-1}$. Then T^{\prime} is right-short.

Proof. Suppose P is an r_{i}-to $-v$ path to the right of $T^{\prime}[v]$, and P is no longer than $T^{\prime}[v]$. We claim that

Figure 5: In both figures, the circle represents the boundary of the infinite face. In the left figure, the bold path is $T_{i+1}[\nu]$, which starts with the edge $r_{i+1} r_{i}$, and the light edge is e. In the right figure, the solid arrows denote the auxiliary edges
the first edge e of P is $r_{i} r_{i-1}$. Once we prove the claim, note that the rest of P is to the right of $T[\nu]$ and is no longer than $T[\nu]$, hence is itself $T[\nu]$. The Concatenation Lemma implies that P is itself $T^{\prime}[\nu]$.

To prove the claim, assume for a contradiction that $e \neq r_{i} r_{i-1}$. Then e must be embedded as shown on the left of Figure 5. Lemma 4.4 shows that P is not to the right of $T_{i+1}^{0}[\nu]$.

Lemma 4.7. Let \hat{T} be the initial shortest-path tree, let T be a any tree arising in the algorithm, and let v be any node. No edge of $T[\nu]$ emanates left of $\hat{T}[\nu]$.

Proof. Suppose an edge $x y$ of $T[\nu]$ emanates left of $\hat{T}[\nu]$, and let z be the first node of $\hat{T}[\nu]$ to occur after x on $T[\nu]$. Since $\hat{T}[x, z]$ and $T[x, z]$ are internally nodedisjoint, by the Disjointness Lemma either $\hat{T}[x, z]$ is left of $T[x, z]$ or vice versa. By Lemma 4.4, $T[x, z]$ is left of $\hat{T}[x, z]$. Let $P=T[x] \hat{T}[x, z]$. By the Concatenation Lemma, P is right of $T[z]$. However, because \hat{T} is a shortest-path tree, $\hat{T}[x, z]$ is a shortest x-to-z path, so $\ell(P)=\ell(T[x])+\ell(\hat{T}[x, z]) \leq \ell(T[x])+$ $\ell(T[x, z])=\ell(T[z])$, contradicting the right-shortness of T.

For the purpose of analyzing the algorithm, embed an artificial node z and artificial edges $z r_{0}, z r_{1}, z r_{2}, \ldots, z r_{s}$ in the infinite face, preserving planarity. Suppose the algorithm performs k relaxations in total. For $0 \leq i \leq k$, let T_{i} denote the tree
T after i relaxations, modified by adding the artificial edge from z to the root of T. For any node v and $0 \leq i \leq k$, let f_{i}^{v} denote the flow corresponding to $T_{i}[\nu]$. Let $\phi_{i j}^{v}$ denote be the potential function corresponding to the circulation $f_{i}^{v}-f_{j}^{v}$. We leave out the superscript when it is clear.

Corollary 4.1. If $i \geq j, \phi_{i j}^{V}$ assigns at most 1 to every face.

Proof sketch. A contradiction would give rise to two cycles C_{1} and C_{2} of flow, the former enclosing the latter. One then shows there is an edge e_{1} of $\left(T_{j}[\nu]\right)^{R}$ on or enclosed by C_{2} whose successors in $\left(T_{j}[\nu]\right)^{R}$ are all external to C_{2}. Hence the successor of e_{1} in C_{2} emanates left from $\left.T_{j}[v]\right)^{R}$, contradicting Lemma 4.7.

Theorem 4.2. For any edge e, the set $\left\{i: e \in T_{i}\right\}$ is a consecutive subsequence of the cycle ($01 \ldots k$).

Proof. Assume the theorem is false for $e=u v$, so there exist integers $0 \leq a<b<c<d \leq k$ such that either $e \in T_{a}, T_{c}$ and $e \notin T_{b}, T_{d}$ or $e \in T_{b}, T_{d}$ and $e \notin T_{a}, T_{c}$. Assume the former without loss of generality. Let e^{\prime} be the last edge in $T_{b}[v]$. Then the circulation $f_{b}^{v}-f_{a}^{v}$ contains one edge entering v, namely e^{\prime}, and one edge leaving v, namely e. The circulation $f_{c}-f_{b}$ contains one edge entering v, namely e, and one edge leaving v, namely e^{\prime}. Hence the circulation $f_{c}-f_{b}+f_{b}-f_{a}$ contains no edges incident to v.

Note that $\phi_{b a}^{v}$ and $\phi_{c b}^{v}$ each assign potential 1 to some faces that have v on their boundary. Since the circulation $f_{c}-f_{b}+f_{b}-f_{a}$ contains no edges incident to v, the corresponding potential $\phi_{c a}$ assigns potential 1 to all the faces that have v on their boundary.

The circulation $f_{d}-f_{a}$ contains one edge entering v and one edge (namely e) leaving v. However, this circulation corresponds to the potential $\phi_{d c}+$ $\phi_{c a}$. Since $\phi_{c a}$ assigns 1 to all faces that have v on their boundary, and $\phi_{d c}$ assigns only nonnegative potentials (since P_{d} is left of P_{c}) and by Corollary 4.1 the potential $\phi_{d a}=\phi_{d c}+\phi_{c a}$ assigns at most 1 to each face, it follows that $\phi_{d a}$ corresponds to a circulation that contains no edges incident to v. This contradiction completes the proof.

It follows that each edge gets relaxed at most once, for a total of $O(n)$ relaxations. It remains to show that each iteration can be implemented in $O(\log n)$ time.

5 Implementing a basic step

Our data structure consists of two representations of spanning trees, one for the modified input graph (the primal), representing T, and one for its planar dual, representing T^{*}, the spanning tree of the dual graph consisting of the edges not in T. The primal spanning tree is used for computing shortest-path distances from the various roots, and the dual spanning tree is used to locate edges that need to be relaxed.

A dynamic-tree data structure [16] represents a set of rooted or unrooted trees under structuremodifying and weight-related operations at $O(\log n)$ time per operation. Top trees [1] build on [16] via topology trees [8] and make new operations easy to implement.

The structure-modifying operations are: link (v, w) where v and w are nodes of different trees, links the trees by adding the edge $v w$, and $\operatorname{cut}(e)$, which removes the edge e. One can also obtain for any node v the parent edge of v.

The data structure can also maintain weights on nodes/edges. For the primal tree, we use the edge-lengths as weights. The operation we need is $\operatorname{sum}(x)$, which returns the sum of weights on the root-to- x path in the forest. This is used to find the distance from r_{i} to any desired node as mentioned in Section 3.3.

For the dual, we maintain an implicit representation of the reduced lengths of the edges in T^{*} (the edges not in T^{*} have reduced length zero). Note that edges in T^{*} are not oriented consistently, so paths to the root can have edges in both directions. One operation needed is find(), which returns a leafmost unrelaxed edge e in T^{*} (i.e. $\hat{\ell}(e)<0$ and, for each proper descendent edge e^{\prime} of $e, \hat{\ell}\left(e^{\prime}\right) \geq 0$) and its reduced length $\hat{\ell}(e)$. The other operation is change (x, Δ), which changes the $\hat{\ell}$ values of all edges e on the path between x and the root as follows:

$$
\hat{\ell}(e):=\hat{\ell}(e)+ \begin{cases}\Delta & \text { if } e \text { points towards root } \\ -\Delta & \text { if } e \text { points away from root }\end{cases}
$$

To implement a basic step, the algorithm proceeds as follows. Use find to find a leafmost unre-

Figure 6: The dark edges are in T. The dashed edge is being relaxed, changing the distances to nodes of the inner tree. This requires changing the reduced lengths of edges to and from the inner tree. Edges pointing to the inner tree from the left correspond to dual edges pointing toward the root.
laxed edge $u v$. Let $\Delta=-\hat{\ell}(u v)$. Let $w v$ be the parent edge of v in T, and let $x y=(w v)^{*}$ be the corresponding dual edge.

The algorithm must update the $\hat{\ell}$ values to reflect a reduction by Δ in the distance estimates of nodes in the primal tree's v-rooted subtree T^{\prime}. Values for edges pointing from nodes not in T^{\prime} to nodes in T^{\prime} should increase by Δ, and edges pointing in the opposite direction should decrease by Δ. See Figure 6. Let z denote the least common ancestor of x and y. By the right-hand-rule, a left-toright nontree edge of the primal corresponds to a dual edge that points towards the root in the dual spanning tree. Therefore the dual edges whose values must increase are those edges in $T^{*}[x, z]$ that point towards the root and those in $T^{*}[y, z]$ that point away. The edges whose values must decrease are the edges in these same paths but pointing the opposite direction. The algorithm therefore calls changeValue (x, Δ) and changeValue $(y,-\Delta)$. This achieves the desired changes, leaving unchanged the values on the edges in the undirected path between z and the root.

Next the algorithm uses cut and link operations to change the primal and dual trees to reflect the substitution of primal edge $u v$ for $w v$.

6 Exact point-to-point distances

We are given a planar embedded graph G and c Jordan curves whose strict interiors are disjoint and are contained in faces of G. The Jordan curves intersect no edges, and intersect $O(\sqrt{n})$ nodes, called border nodes. The task is to compute all border-node-
to-border-node distances. For each Jordan curve J, use the multiple-source algorithm to find distances from/to border nodes on J to/from all other border nodes in $O\left(c\left(n+\sqrt{n}^{2}\right) \log n\right)$ time.

By repeated use of this algorithm, one can compute the dense distance graph defined by Fakcharoenphol and Rao [4] in $O\left(n \log ^{2} n\right)$ time. They show that this structure supports exact point-to-point distance queries.

For a dynamic algorithm, divide [5, 13] the graph into $O(n / r)$ edge-disjoint regions each with $O(r)$ nodes and $O(\sqrt{r})$ border nodes (nodes belonging to other regions) such that border nodes in a region lie on $O(1)$ faces. The dynamic algorithm maintains for each region (1) an implicit representation of all x-to- y distances where either x or y is a border node, and (2) explicit distances where x and y are both border nodes. When an edge's length changes, the algorithm recomputes (1) and (2) for the region containing that edge in $O(r \log r)$ time. To compute u-to $-v$ distance: (A) Assuming u is not a border node, compute the distances within u 's region from u to the set S_{u} of border nodes of this region. (B) Run Fakcharoenphol and Rao's implementation of Dijkstra's algorithm, initialized with the distances computed for S_{u}, obtaining distances $d(\cdot)$ in G to all border nodes. (C) Assuming v is not a border node, compute the distances in v 's region from the border nodes of that region to v, and combine this with the distances $d(\cdot)$ assigned to these nodes to obtain the u-to- v distance.

The time for the query algorithm is $O\left((n / \sqrt{r}) \log ^{2} n\right)$, and the time for the update algorithm is $O(r \log r)$. We can choose r to get $O\left(n^{2 / 3} \log ^{2 / 3}\right)$ time for queries and updates, improving on the previous bound by a factor of $\Theta\left(\log ^{5 / 3}\right)$.

7 Approximate point-to-point distances

Let G be an n-node planar graph G with a shortest path $P=r_{s} \ldots r_{0}$ of length $\leq \alpha$ along a face boundary, where α and ϵ are parameters. For $i=$ $0, \ldots, s$, define $\gamma\left(r_{i}\right)=$ length of subpath $r_{s} \ldots r_{i}$ of P, and define $\delta_{i}(v)=\gamma(i)+r_{i}$-to- v distance. A set S of pairs (r_{i}, v) called connections is said to cover a vertex v if S contains some connection (r_{i}, v) such that $\delta_{i^{*}}(v) \leq \min _{i} \delta_{i}(v)+\epsilon \alpha$. The core problem is to
find a set S of connections that cover all nodes v such that $\min _{i} \delta_{i}(v) \leq 2 \alpha$. We give an algorithm to find such a set S such that $|S|=O\left(n\left(\epsilon^{-1}+\log n\right)\right)$. Using Lemma 18 of [17], S can then be pruned in $O(|S|)$ time to contain $O\left(\epsilon^{-1}\right)$ connections per node.

To compute S, we run an augmented version of the multiple-source algorithm. The algorithm starts with the shortest-path tree rooted at r_{0}, and in successive iterations of the for-loop computes the shortest-path trees rooted at r_{1}, \ldots, r_{s}. We augment the algorithm so that, in each such iteration i, it identifies some nodes v and adds the connections $\left(r_{i}, v\right)$ to S.

To this end, the algorithm maintains an implicit representation of a node-labeling $\sigma(\cdot)$ giving the amount by which the δ distance of v must decrease for there to be a new connection involving v.

To initialize, for each node v, if $\delta_{0}(v) \leq 2 \alpha$, a connection $\left(r_{0}, v\right)$ is added to S and $\sigma(v)$ is assigned $\epsilon \alpha$; otherwise, $\sigma(v)$ is assigned $\delta_{0}(v)-2 \alpha$.

When an edge $u v$ is relaxed, reducing by Δ the distance to descendents of v in T, the value of σ is reduced by Δ for all these nodes. Because of the implicit representation, this takes $O(\log n)$ time. At the end of each iteration i, the algorithm repeatedly searches for a rootmost node v^{*} with $\sigma\left(v^{*}\right) \leq 0$. When it finds such a node v^{*}, it visits a maximal subtree T^{\prime} rooted at v^{*} consisting of nodes v with $\sigma(v) \leq 0$, and, for each such node v, adds a connection $\left(r_{i}, v\right)$ and resets $\sigma(v)$ to $\epsilon \alpha$ if $\left|T^{\prime}\right| \geq \log n$ and to σ (parent of v^{*}) otherwise. The time to find v^{*} is $O(\log n)$ and the time to visit T^{\prime} is $O\left(\left|T^{\prime}\right|\right)$. The σ searches continue until there is no node v^{*} with $\sigma\left(v^{*}\right) \leq 0$, at which point the next iteration of the algorithm commences.

Now for the analysis. Say a σ search is special if it leads to resetting $\sigma(v)$ to σ (parent of v^{*}) for nodes v in v^{*} 's subtree. For the purpose of the analysis, we place a token on each such node v when this happens. The next time a connection for v is added, we remove that token (though a new one might be placed on v immediately after).

For a vertex v, define $\delta_{T}(v)=\gamma($ root of $T)+$ ℓ (root-to- ν path in T). At any point during the algorithm's execution, say v is active if an edge $u v$ into v was relaxed but since that happened no connection to v has been added to S. Consider the partition defined by connected regions of T with same σ value.

The algorithm maintains the following invariant: (1) For any block of the partition, either the root of the block is active or the block's size $\geq \log n$. (2) If no connection in S involves v then $\sigma(v)=\delta_{T}(v)-2 \alpha$. (3) If the most recent connection for v is $\left(i^{*}, v\right)$, then the value of $\sigma(v)$ is (a) equal to $\delta_{T}(v)-\delta_{i^{*}}(v)+\epsilon \alpha$ if v has no token, or (b) at most that amount if v has a token.

Let \bar{S} be the value of S when the algorithm finishes. The invariant implies that \bar{S} coves all nodes v such that $\min _{i} \delta_{i}(v) \leq 2 \alpha$. The time for visiting all subtrees T^{\prime} is $|\bar{S}|$ because each node visited gets a new connection. The number of σ searches that find active nodes v^{*} is $O(n)$ because the number of activations is the number of relaxation steps. The number of σ searches that find the root of a block of size $\geq \log n$ is $\leq|\bar{S}| / \log n$. The time for all σ searches is thus $O(|S|+n \log n)$.

Each special σ search reduces the number of blocks by one. The number of blocks is initially at most n and increases by at most one per relaxation step. Hence the total number of special σ searches is $O(n)$. Each such search results in $<\log n$ tokens being placed. Thus the total number of tokens placed is $O(n \log n)$.

Finally, we bound $|\bar{S}|$. Define $f(v)=\delta_{i^{*}}(v)$ where $\left(r_{i}, v\right)$ is the most recent connection for v added to S. Each new connection (r_{i}, v) reduces $f(v)$ by at least $\epsilon \alpha$ except if it is the first connection for v or a token was removed from v when adding the connection. Since $f(v)$ always lies between 0 and 2α, there are at most $O\left(\epsilon^{-1}\right)$ nonexceptional connections per node v. The total number of exceptional connections is $O(n \log n)$. Thus $|\bar{S}|=O\left(n\left(\epsilon^{-1}+\log n\right)\right)$.

Acknowledgements

Thanks to Francisco Barahona, Sarah Bell, Maurice Herlihy, Satish Rao, David Reiss, Robert Tarjan, and Mikkel Thorup.

References

[1] S. Alstrup, J. Holm, K. de Lichtenberg, M. Thorup, "Maintaining information in fully-dynamic trees with top trees," ArXiv cs.DS/0310065.
[2] J. R. Driscoll, N. Sarnak, D. D. Sleator, R. E. Tarjan, "Making data structures persistent," JCSS 38 (1989), pp. 86-124.
[3] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung, "Maintenance of a minimum spanning forest in a dynamic plane graph," J. Alg. 13 (1992), pp. 33-54.
[4] J. Fakcharoenphol and S. Rao, "Planar graphs, negative weight edges, shortest paths, near linear time," FOCS (2001), pp. 232-241.
[5] G. N. Frederickson, "Fast algorithms for shortest paths in planar graphs, with applications," SIAM J. Comput. 16 (1987), pp. 1004-1022.
[6] G. N. Frederickson, "Planar graph decomposition and all pairs shortest paths, J. ACM 38 (1991), pp. 162-204.
[7] G. N. Frederickson, "Using cellular graph embeddings in solving all pairs shortest paths problems," J. Algor. 19 (1995), pp. 45-85.
[8] G. N. Frederickson, "Ambivalent data structures for dynamic 2 -edge-connectivity and k smallest spanning trees, SIAM J. Comput 26 (1997), pp. 484-538.
[9] R. Hassin, "Maximum flows in (s, t) planar networks," Inform. Process. Lett. 13 (1981), pp. 107.
[10] S. Khuller, J. Naor and P. N. Klein, "The lattice structure of flow in planar graphs," SIAM J. Disc. Math. 6 (3) pp. 477-490, (1993).
[11] R. J. Lipton and R. E. Tarjan, "A separator theorem for planar graphs," SIAM J. Appl. Math. 36 (1979), pp. 177-189.
[12] K. Mehlhorn, S. Näher, "Bounded ordered dictionaries in $\mathrm{O}(\log \log \mathrm{N})$ time and $\mathrm{O}(\mathrm{n})$ space," IPL 35 (1990), pp. 183-189.
[13] G. L. Miller, "Finding small simple cycle separators for 2-connected planar graphs," J. Comput. Syst. Sci. 32 (1986), pp. 265-279.
[14] H. Ripphausen-Lipa, D. Wagner, and K. Weihe, "The vertex-disjoint menger problem in planar graphs," SIAM J. Comput. 26 (1997), pp. 331-349.
[15] J. P. Schmidt, "All shortest paths in weighted grid graphs and its application to finding all approximate repeats in strings," SIAM J. Comput. 27 (1998), pp. 972-992.
[16] D. D. Sleator and R. E. Tarjan, "A data structure for dynamic trees," J. Comput. System Sci. 26 (1983), pp. 362-391
[17] M. Thorup, "Compact oracles for reachability and approximate distances in planar digraphs. FOCS (2001), pp. 242-251
[18] P. van Emde Boas, "Preserving order in a forest in less than logarithmic time and linear space," IPL 6 (1977), pp. 80-82.
[19] K. Weihe, "Maximum (s, t)-flows in planar networks in $O(|V| \log |V|)$ time," JCSS 55 (1997), pp. 454-476

[^0]: *Partial support provided by NSF Grant CCR-97000146

[^1]: Note, however, that their algorithm solved a more difficult problem, one where negative lengths are allowed.

[^2]: ${ }^{2}$ More generally, the time is $O(\log \log$ degree $(x))$ per node x in the path.
 ${ }^{3}$ Thorup showed how to achieve $O(|P|)$ time for approximate shortest paths, but his approach requires an additional $O(\log n)$ factor in time and space.

[^3]: ${ }^{4}$ We are indebted to F . Barahona for pointing out the simplex interpretation of our algorithm.

[^4]: ${ }^{5}$ These can be added without destroying planarity since the r_{i} 's are on the boundary of the infinite face.

[^5]: ${ }^{6} 1$ am indebted to R. Tarjan for this observation.

[^6]: ${ }^{7}$ In [10], there is a distinguished face. In this paper, we use the infinite face as the distinguished face, and change the terminology accordingly.

