
Multiple-source shortest paths in planar graphs

Philip N. Klein*
Depar tment of Computer Science

Brown University

1 Introduction

Given an n-node planar graph with nonnegative
edge-lengths, our algorithm takes O(n log n) time to
construct a data structure that supports queries of the
following form in O(Iog n) time: given a destination
node t on the boundary of the infinite face, and given
a start node s anywhere, find the s-to-t distance.

The data structure requires O(n log n) space. To
avoid using more than O(n) space, if the pairs (s, t)
are known in advance, the corresponding distances
can be computed during the execution of the algo-
rithm at a cost of O(logn) time per distance. The
algorithm can also produce an O(n) structure that,
for any node s and any node t on the boundary,
finds the first edge on the shortest s-to-t path in
O(ioglogdegree(t)) time. Using this structure, one
can for example obtain the shortest s-to-t path P in
time O(IPI) if the graph has constant degree.

Using our algorithm, we obtain asymptotically
faster algorithms for prfeprocessing to facilitate quick
exact or approximate point-to-point distance queries
in planar graphs (for arbitrary start and end nodes)
and the corresponding shortest-path queries.

1.1 Previous work In the area of multiple-source
shortest paths in planar graphs, there have been
results of three kinds. We mention representa-
tive work. Fredefickson [5] gave an O(n 2) algo-
rithm for all-pairs shortest paths. The special case
where the boundary of an n-node planar graph has
O(x/n) nodes arises in applications of Lipton and
Tarjan's planar separator theorem. [11] For this case,
Fakcharoenphol and Rao [4] gave an O(n log 3 n) al-
gorithm for computing what they called the dense
distance graph, which is a recursive structure ob-

- - - ~ 1 support provided by NSF Grant CCR-97000146

tained using separators. I Finally, for the special case
of a grid with arcs directed north and east and north-
east, Schmidt [15] gave an O(n log n) algorithm that
builds a data structure that, supports u-to-v distance
queries in O(log n) time for any node u in in the west-
most column of the grid and any node v.

1.2 Applications The multiple-source algorithm
can be used to reduce the preprocessing time to
construct data structures supporting exact and ap-
proximate point-to-point distance queries (i.e., for
any nodes u and v, "what is the u-to-v distance?")
Fakcharoenphol and Rao show that their dense dis-
tance graph supports O(x/~log2n) queries. We
improve the construction time for this graph from
O(nlog 3 n) to O(nlog 2 n) for the special case of
nonnegative lengths. Fakcharoenphol and Rao give
a dynamic algorithm that supports point-to-point
distance queries and single-edge length-changes
in amortized O(n 2/3 logT/3n) time per operation.
Our algorithm yields a simpler dynamic algorithm
for which the worst-case time per operation is
O(n 2/3 log 5/3 n). See Section 6.

Thorup [17] shows how to construct data struc-
tures supporting fast e-approximate point-to-point
distance queries. He gives a preprocessing algorithm
requiring O(ne -I log 2 n log A) time to build a struc-
ture supporting queries in O(Iog log A + e- l log n)
time, where A is an upper bound on the largest fi-
nite distance. We show how to improve the prepro-
cessing time to O(n(e-I + log n) log nlog A). See
Section 7. (Thorup also gives a structure supporting
faster queries, but the preprocessing time is higher,
and our method seems inapplicable.)

Once an exact or approximate distance query has
been answered, our algorithm can be used to find

~ o t e , however, that their algorithm solved a more difficult problem,
one where negative lengths are allowed.

146

the corresponding path P in time O(]PI) for constant-
degree graphs. 2 No additional preprocessing time or
storage are required. 3

1.3 Related work Ripphausen-Lipa, Wagner, and
Weihe [14, 19] have given algorithms for flow prob-
lems in planar graphs using an approach that con-
siders orientation and crossing and rightmost paths,
ideas that inform the present work.

Eppstein, Italiano, Tamassia, Tarjan, Westbrook,
and Yung [3] give a dynamic algorithm to maintain
a minimum spanning forest in a planar embedded
graph in the presence of edge deletions and inser-
tions. They use a dynamic tree in the primal and the
dual graphs, an idea we use in the present paper.

2 Background and terminology

In this paper we are concerned with directed graphs.
If y is a node on a path P that starts at x, the to-y
prefix of P is the x-to-y subpath of P. The from-y
stofix of P is defined similarly. A path is simple if no
node occurs more than once in the path. A nonsimple
path contains a cycle. One can remove cycles from
a nonsimple u-to-v path P, obtaining a simple u-to-v
path whose edge-set is a proper subset of that of P.
Given an r-rooted tree T and a node v, T[v] denotes
the simple path from r to v in T (which is unique if it
exists). If u is an ancestor of v (or if T is considered
as an undirected tree), T[u, v] denotes the simple u-
to-v path in T.

2.1 Shortest paths In this section, we discuss
background concerning shortest paths in arbitrary di-
rected graphs. We use g(e) to denote the length of an
edge e. For a path or cycle P, g(P) = ~ e c p g(e). We
assume no cycle has negative length.

It follows from this assumption that removing
cycles from a nonsimple path does not increase its
length. Hence if there is a shortest u-to-v path, there
is one that is simple.

For any labeling d(-) of the nodes of a graph with
numbers, there is a new length assignment / defined
by [(uv) = d(u) + g(uv) - d(v)

. ' , . r '7"7--- .
-More generally, the time is O(Iog log degree(x)) per node x in the

path.
3Thorup showed how to achieve O(IPl) time for approximate shortest

paths, but his approach requiles an additional O(log n) factor in time and
space.

We refer to the lengths g(uv) as reduced lengths
with respect to d. For any nodes s and t, for any s-to-t
path P,
(2.1) g(P) = g(P) + d(s) - d(t)

It follows that an s-to-t path is shortest according to
if and only if it is shortest according to g.

An edge uv is a relaxed edge with respect to d if
its reduced length is nonnegative, i.e. if

(2.2) d(u) + g(uv) <_ d(v)

and is an unrelaxed edge otherwise. An edge is tight
with respect to d if its reduced length is zero, i.e.
if (2.2) is satisfied with equality.

Suppose that every edge is relaxed and, for some
nodes r and v, d(r) = 0 and d(v) is the length
of some r-to-v path P,,. It follows by (2.1) that
g(Pv) = 0. Every edge and hence every r-to-v path
has nonnegative reduced length, so Pv is a shortest
path with respect to the reduced lengths g, and hence
also with respect to the original lengths g.

2.1.1 Network simplex Our algorithm, like the
network-simplex algorithm, 4 maintains an r-rooted
directed spanning tree T. For each node v ~ r
reachable from r, there is a unique incoming edge in
T, called the parent edge of v in T. The tree induces
an assignment dT(') of distance estimates, namely
dT(v) = g(T[v]). For each edge uv in T, g(T[v]) =
g(T[u]) + g(uv), whence dT(v) = tiT(U) + g(uv), so uv
is tight.

The nonexistence of negative-length cycles im-
plies that v is not an ancestor of u in T if uv is un-
relaxed. A pivot step consists of selecting an unre-
laxed edge uv and modifying T by removing the par-
ent edge of v and adding the edge uv. We call this
step relaxing the edge uv. If there are no edges that
are unrelaxed with respect to T, it follows that the
distance estimates dT(v) are true distances from r. In
this case T is a shortest-path tree.

2.2 Planar embeddings We assume basic knowl-
edge of planar embedded graphs, faces, and the dual.
For a node v on the boundary of the infinite face z,
it would not violate planarity to embed an artificial
node ~ and an artificial edge ~v, both inside z. For

7rwe am indebted to F. Barahona for pointing out the simplex
interpretation of our algorithm.

147

, /

/ \

1

Figure 1: The boundary of the infinite face is indi-
cated by the circle. A right-first search tree rooted
at r is indicated by the bold edges. For each node
v other than the root, the parent edge is the edge by
which v was first visited.

a node v with incoming edge uv and outgoing edges
vw and vx, we say vx is left o f vw with respect to uv

if vx occurs strictly between vw and uv in counter-
clockwise order. Given a simple path P containing
an edge vw, we say an edge vx emanates left from P
if (a) the edge preceding vw in P is uv, and vx is left
of vw with respect to uv, or (b) v is the first node of
P, and v lies on the boundary of the infinite face, and
vx is left of vw with respect to the artificial edge ~,v.

For a primal edge e, the corresponding dual edge
points from e's left face (the face to e's left when e is
oriented upwards) to e's fight face.

3 Ingredients and the algorithm

3.1 Rightmost shortest-path tree Right-first

search [14] is depth-first search on a planar graph,
with the restriction that, for each node v visited, the
edges vw out of v are explored in right-to-left order
with respect to the the edge uv by which v was first
visited (or, if v is the root and is on the boundary of
the infinite face, with respect to the artificial edge
~v). Right-first search induces a right:first search

tree consisting of the set of such edges uv (see
Figure 1).

The rightmost shortest-path tree rooted at r0
(formally defined in Section 4.3) can be obtained
from the set of from-r0 distances d(.) by finding a
right-first search tree in the subgraph of edges that
are tight with respect to d(-).

Figure 2: On the left is a primal graph. A spanning
tree is indicated in bold. On the right is shown the
primal graph and the dual graph not including the
nontree dual edges.

3.2 Leafmost unrelaxed edge Let T* denote the
set of edges not in the current tree T. As noted in
Subsection 2.1, every edge of T is relaxed, so T*
includes all unrelaxed edges. The fact that T is a
spanning tree of the planar primal implies that T*
is a spanning tree of the planar dual (ignoring edge
orientations). Consider T* as a dual spanning tree
rooted at the node of the planar dual corresponding to
the infinite face (see Figure 2). A leajmost unrelaxed

edge xy is an unrelaxed edge none of whose proper
descendent edges in T* is unrelaxed.

3.3 The algorithm Let r0, rl rs be the nodes
on the boundary of the infinite face, in clockwise
order. First we add auxiliary edges 5 of infinite

length: r s r s - l , r s - i r s - 2 r2r l , r l ro . We then
carry out the following:

let T be a r ightmost shortest-path tree rooted at r0.

f o r / : = 1 s,
remove the edge of T entering ri-1,

and add r i r i - j .

(Now T is rooted at ri.)
While there exists an unrelaxed edge,

relax a leafmost unrelaxed edge.

Our pivot selection rule is to choose a leafmost

unrelaxed edge. The motivation for this selection
rule is as follows. Let e be an edge not in the primal
spanning tree T. There is a unique simple undirected

----Y-These can be added without destroying planarity since the ri's are
on the boundm'y of the infinite lace.

148

path in T connecting e's endpoints, which together
with e forms a simple cycle Ce in the primal. The
nontree edges embedded interior to Ce are precisely
the strict descendents of e in the dual spanning tree
rooted at the infinite face. In particular, if e is a
leafmost unrelaxed edge then no unrelaxed edges
are strictly interior to Ce.

We will show that the algorithm takes O(n log n)
time. In Section 4, we show that each edge is
relaxed at most once. In Section 5, we show how
each iteration can be implemented in O(tog n) time
where n is the number of nodes. At the end of
iteration i of the for-loop, the current tree is an ri-
rooted shortest-path tree. We note in Section 5 that
the distance in this tree from ri to any node can be
queried in O(Iogn) time. In addition, by using the
persistence technique of [2], the algorithm's history
can be recorded in O(n log n) space so as to permit
the subsequent querying of any of the shortest-path
trees. 6

Each edge appears in the shortest-path trees of a
contiguous subsequence of the cycle of roots around
the boundary of the planar graph. This fact follows
from the fact that each edge is relaxed at most once,
and can be proved more directly without reference
to the algorithm. It generalizes a lemma of Freder-
ickson (see [6]) for outerplanar graphs. It implies
a size-O(n) representation of multiple shortest-path
trees: for each node v, organize [12, 18] the outgo-
ing edges according to the disjoint intervals of roots
whose shortest-path trees they belong to. Given a
node v and a boundary node ri, one can find the first
edge on the shortest v-to-ri path.

4 Analysis

4.1 Flows, potentials, and circulations The ma-
terial in this subsection is adapted from [10] except
for the lemma, which is new.

For a graph G, an integral flow assignment f is
a function from the edges of G to the integers. We
adopt the antisymmetry convention: if .~V is an edge,
f(yx) is defined to be -f(xy). Thus f assigns integral
flow values to the edges and the reverses of edges.
For an edge e, let e n denote the reverse of e. For a
path P, let pR denote the reverse path, i.e. consisting
of the reverses of the edges of P in the reverse order.

61 am indebted to R. Tarjan for this observation.

Note that flow assignments can be added and
subtracted. For flow assignments fl and f2, the flow
assignment fl +f2 assigns fl (xy) +f2(xy) to the edge
xy.

For G an embedded planar graph, let ~ be a
function from the faces of G to the integers such
that the infinite face maps to zero. 7 We call q~(z) the
potential of face z. We call q5 a potential function.
The corresponding flow assignment is

f~(e) = qS(face to e's right) - qS(face to e's left)

This flow assignment is a circulation, i.e. for each
node v, ~ , f (uv) = 0 where the sum is over all nodes
u for which f(uv) is defined (i.e. uv or (uv) R is an
edge).

The sum of circulations corresponds to the sum
of potential functions, i.e. for potential functions
qSi and q52, the sum fl +f2 of the corresponding
flow assignments corresponds to the sum q51 + q52 of
potential functions.

We say the circulation is clockwise if every po-
tential is nonnegative, and counterclockwise if every
potential is negative. For example, for a clockwise
simple cycle C of edges and reverses of edges, the
circulation assigning 1 to the edges/reverse edges of
C and zero to all others corresponds to assigning a
potential of I to every face enclosed by C and 0 to all
other faces, and hence the circulation is clockwise.

LEMMA 4.1. Consider a potential assignment f3.
If the corresponding flow assignment f contains a
counterclockwise simple cycle of positive flow that is
not enclosed in a clockwise simple cycle of positive
flow, the circulation is not clockwise.

4.2 "Is left of" and "is right of" Weihe [19]
defined a relation "is more left than" between s-
t flows in a planar directed graph. We specialize
his definition to get a relation between s-to-t paths.
A path P corresponds to a flow assignment fp that
assigns 1 to each edge of P and zero to other edges.
For s-to-t paths P and Q, we say P is left of Q (and Q
is right of P) iffp-fQn is a clockwise circulation. It is
straightforward to show that the "is left of" relation
is reflexive, transitive, and antisymmetric.

[10], there is a distinguished lace. In this paper, we use the
infinite face as the distinguished face, and change the terminology
accordingly.

149

LEMMA 4.2. (DISJOINTNESS) If PI and P2 are
simple u-to-v paths that share no nodes except u and
v, then either PI is to the left of P2 or vice versa.

LEMMA 4.3. (CONCATENATION) Let Pt and P2 be
simple u-to-x paths, and let P] and P~ be simple x-
to-v paths. I f P2 is left o f P! and P~ is left of P~ then
P2P~ is left of PiPe1.

LEMMA 4.4. Suppose P and Q start and end at the
same nodes, and their common start node is o n the
boundary of the infinite face. Then P is left of Q iff
no edge of Q emanates left from P.

We define "left of" for spanning trees in terms of
"left of" for paths. For two r-rooted spanning trees
Tl and T2, we say Ti is left of T2 if, for every node v,
the path TI [v] is left of T2[v].

4.3 Rightmost shortest-path tree An r-rooted
shortest-path tree is a rightmost shortest-path tree if
in addition every other r-rooted shortest-path tree is
left of T. A r-rooted fightmost search tree T of a
graph G has the property [14] that, for every node v,
T[v] is a fightmost r-to-v path in G. It follows that the
r-rooted fightmost search tree of the subgraph of G
consisting of tight edges is a fightmost shortest-path
t ree .

4.4 The right-shortness invariant, and maintain-
ing it while relaxing edges We define an r-rooted
tree T to be right-short if the following condition
holds for every node v: if P is a simple r-to-v path
that is fight of T[v] and g(P) _< g(T(v)) then P = T[v].
That is, there is no simple r-to-v path strictly fight of
T[v] that is as short as T[v] itself.

A nontree edge xy is left-to-right (with respect to
T) if the r-to-y path consisting of T[x] and xy is left
of the r-to-y path T[v].

LEMMA 4.5. Suppose T is an r-rooted right-short
tree, and e is an unrelaxed edge. Then e is left-to-
right with respect to T.

THEOREM 4.1. (BASIC STEP) Suppose T is an r-
rooted right-short tree, and e is a leafmost unrelaxed
edge. Then relaxing e yields an r-rooted right-short
tree T ~ that is left of T.

X X

r r

Figure 3: Two possible embeddings. The bold edges
are edges of T. The light edge is the edge xv relaxed
to obtain T ~. The last node common to T[x] and T[v]
is z. The node v is a descendent of y in T. R is the
region bounded by the z-to-x and z-to-y paths in T
and the edge xy.

Proof Let e = xy. We first prove that T ~ is left of
T. By Lemma 4.5, TIL v] is left of TD,]. Let v be
any node. If v is not a descendent of y in T then
T~[v] = T[v], so T~[v] is left of T[v]. Suppose v
is a descendent of y, and let P be the y-to-v path
in T (which is also the y-to-v path in T~). Then
T[v] = T[y]P and Tt[v] = T~[y]P. It follows from
Lemma 4.3 that T~[v] is left of T[v].

Now we prove that T ¢ is fight-short. Assume
for a contradiction that, for some node v, there is a
simple r-to-v path P that is right of T¢[v] and distinct
from T~[v] such that P has length no more than T¢[v].
Choose P to be the shortest such path. If T~[v] = T[v]
then P would violate the fight-shortness of T. Hence
T~[v] must use the one edge in T ~ - T, namely xv, the
edge relaxed. It follows that v must be a descendent
o f y in T ~, and therefore in T as well. (See Figure 3.)

First suppose that P = PlxyP2 for some paths
Pt and P2- By Lemma 4.4, P contains no edge
that emanates from the left of Tt[v], so no edge
of Pl emanates left of T~[x] and no edge of xyP2
emanates left ofxyT[y, v]. The former implies, again
by Lemma 4.4, that T~[x] is left of Pl. But T~[x] =
T[x], so T[x] is left of PI. By fight-shortness of T, it
follows that either Pl = T[x] or g(P~) > g(T[x]).

Let P~ = T[y]P2. Since no edge of xyP2
emanates left of xyT[y, v], and T[v] = T[y]T[y, v],
no edge of P~ emanates left of T[v], so T[v] is left

150

of P~. Hence either P~ = T[v] or g(P~) > g(T[v]).
Since g(P~) = g(T[y]) + g(P2), either P2 = T[y, v] or

g(P2) > g([Y, v]).
Combining these two facts, we infer that either

P = T[x]xyT[y,v] or g(P) > g(T[x]) + g(xy) +
g(T[y, v]). Recall that T;[v] = T[x]xyT[y, v]. We
assumed P 4 Tl[v] and g(P) <_ g(T;[v]), so this is
a contradiction.

Hence P cannot contain the edge xy. The fol-
lowing claim shows that g(P) >_ g(T[v]). Since
g(T[v]) > g(T~[v]), this contradicts the choice of P,
completing the proof of the theorem.

CLAIM 4.5.1. For each node u of P that also ap-
pears on T[v], the to-u prefix of P is no shorter than
T[u].

The proof of the claim is by induction. The claim is
trivial for the root r. Let u ~¢ r be a node of P on
T[v], and let w be the previous node of P that is also
on T[v]. By the inductive hypothesis, the to-w prefix
of P is no shorter than T[w].

Let Pl be the w-to-u subpath of P. Using the
inductive hypothesis, the length of the to-u prefix
of P is no less than g(T[w]) + g(Pl). Note that u
and w are the only nodes common to Pl and T[v].
By the Disjointness Lemma, there are three cases,
corresponding to the relative placement of Pl and
T[v]. Case 1 holds when u occurs before w in T[v],
Case 2 holds when Pj is to the fight of T[w, u], and
Case 3 holds when PI is to the left of T[w,u] and
does not coincide with T[w,u]. Cases 2 and 3 are
illustrated in Figure 4.
Case 1: If g(T[w]) + g(Pl) were less than g(T[u]),
then Pi together with T[u, w] would form a negative
length cycle, a contradiction.
Case 2: In this case PI is fight of T[w,u]. Let
P2 = T[w]Pi. By the Concatenation Lemma, P2 is
fight of T[u]. The right-shortness of T implies that
g(P2) _> g(T[u]). It follows that g(Pi) > g(T[w,u]).
Combining this with the inductive hypothesis com-
pletes the inductive step.
Case 3: in this case PI is left of T[w, u]. We first
show that every edge of Pj lies in the region R
enclosed by the edge xy and the simple undirected
path in T connecting x and y. Suppose not, and let
st be the first edge of Pl not in R. The boundary
of R consists of a subpath of T'[v] on the left and a
subpath of T[v] on the right. Since PI is internally

(')
/

Case 2 Case 3

Figure 4: This figure illustrates examples of the cases
in the induction proof. In each case, the bold path
is T[v] and the light path is P1. The two leftmost
drawings represent Case 1, in which PI is to the
right of the subpath of T[v], and the two rightmost
drawings represent Case 2, in which Pl is to the left.

node-disjoint from T[v], the node s must belong to
Tt[v] and st must emanate to the left of T~[v]. This
contradicts the fact that P contains no such edge.

We conclude that every edge of Pl lies in the
region R. By the leafmost selection rule, every edge
in this region except xy itself is relaxed, and Pi does
not contain xy. Hence every edge of PI is relaxed.
Let the nodes of P1 be w = z0,z l , . . . ,zk = u, and
let o~ i denote the length of the to-zi prefix of P.
The inductive hypothesis states that o~0 > dy(zo).
Assuming oq_ 1 _> dy(zi- l), since dT(Zi) _< dT(Zi- I)+
g(Zi- lZi) , w e get OL i ~ dT(Zi). For i = k, then, the
length of the to-u prefix of P is _> dy(u). •

4.5 Applying right-shortness We show by induc-
tion that every tree T arising in the algorithm is right-
short. The initial tree is a rightmost shortest-path
tree, so is trivially right-short. Suppose that at the
beginning of iteration i the tree T rooted at ri-i is
right-short. Lemma 4.6 shows that the modification
to obtain an ri-rooted tree preserves right-shortness.
The Basic-Step Theorem shows that each iteration of
the inner loop preserves right-shortness.

LEMMA 4.6. Suppose T is a right-short tree rooted
at ri-l, and T; is obtained by removing the parent
edge of ri and adding the edge riri-I. Then T ~ is
right-short.

Proof Suppose P is an ri-to-v path to the right of
Tt[v], and P is no longer than T;[v]. We claim that

151

~+! r i

Figure 5: In both figures, the circle represents the
boundary of the infinite face. In the left figure, the
bold path is Ti+l [v], which starts with the edge ri+l ri,
and the light edge is e. In the fight figure, the solid
arrows denote the auxiliary edges

the first edge e of P is riri_ 1 . Once we prove the
claim, note that the rest of P is to the fight of T[v]
and is no longer than T[v], hence is itself T[v]. The
Concatenation Lemma implies that P is itself Tt[v].

To prove the claim, assume for a contradiction
that e : / r i r i - I . Then e must be embedded as shown
on the left of Figure 5. Lemma 4.4 shows that P is
not to the right of T?+ l [v]. •

LEMMA 4.7. Let T be the initial shortest-path tree,
let T be a any tree arising in the algorithm, and let v
be any node. No edge ofT[v] emanates left o f T"[v].

Proof Suppose an edge xy of T[v] emanates left of
7"[v], and let z be the first node of 7"[v] to occur after x
on T[v]. Since 7"[x, z] and T[x, z] are internally node-
disjoint, by the Disjointness Lemma either T[x, z] is
left of T[x, z] or vice versa. By Lemma 4.4, T[x, z]
is left of 7"[x,z]. Let P = T[x]7"[x,z]. By the
Concatenation Lemma, P is fight of T[z]. However,
because 7" is a shortest-path tree, 7"[x, z] is a shortest
x-to-z path, so g(P) = g(T[x]) + g(T[x, z]) _< g(T[x]) +
g(T[x, z]) = g(T[z]), contradicting the right-shortness
of T. •

For the purpose of analyzing the algorithm,
embed an artificial node z and artificial edges
zro, zrl,zr2 zrs in the infinite face, preserving
planarity. Suppose the algorithm performs k relax-
ations in total. For 0 < i < k, let Ti denote the tree

T after i relaxations, modified by adding the artifi-
cial edge from z to the root of T. For any node v and
0 < i < k, l e t f f denote the flow corresponding to
Ti[v]. Let q~. denote be the potential function corre-
sponding to the circulation f r - f f . W e leave out the
superscript when it is clear.

COROLLARY 4.1. I f i > j, ~ assigns at most 1 to
every face.

Proof sketch. A contradiction would give rise to two
cycles Cl and C2 of flow, the former enclosing the
latter. One then shows there is an edge el of (Tj[v]) R
on or enclosed by C2 whose successors in (Tj[v]) R
are all external to C2. Hence the successor o fe j in C2
emanates left from Tj[v]) R, contradicting Lemma 4.7.

THEOREM 4.2. For any edge e, the set {i • e C Ti}
is a consecutive subsequence o f the cycle (0 1 . . . k).

Proof Assume the theorem is false for e = uv, so
there exist integers 0 _< a < b < c < d < k such
that either e E T,, T~. and e ~ Tt,, Ta or e E Tb, Td
and e ~ Ta, Tc. Assume the former without loss of
generality. Let e' be the last edge in Tb[V]. Then
the circulation f [- f ~ contains one edge entering
v, namely e I, and one edge leaving v, namely e.
The circulation f , - f b contains one edge entering v,
namely e, and one edge leaving v, namely e ~. Hence
the circulation fc - fb + fb -- f~ contains no edges
incident to v.

Note that q~. and q~'~'+ each assign potential 1 to
some faces that have v on their boundary. Since the
circulation f . - f b + j b - f , contains no edges incident to
v, the corresponding potential q~.. assigns potential 1
to all the faces that have v on their boundary.

The circulation fd - - f , contains one edge entering
v and one edge (namely e) leaving v. However,
this circulation corresponds to the potential q~d. +
q~... Since q~,.. assigns 1 to all faces that have v
on their boundary, and 4'd~. assigns only nonnegative
potentials (since Pd is left of P,,) and by Corollary 4.1
the potential q~d, = ~d,: + ~,'a assigns at most 1
to each face, it follows that Od, corresponds to a
circulation that contains no edges incident to v. This
contradiction completes the proof. •

152

It follows that each edge gets relaxed at most
once, for a total of O(n) relaxations. It remains
to show that each iteration can be implemented in
O(Iog n) time.

5 Implementing a basic step

Our data structure consists of two representations of
spanning trees, one for the modified input graph (the
primal), representing T, and one for its planar dual,
representing T*, the spanning tree of the dual graph
consisting of the edges not in T. The primal spanning
tree is used for computing shortest-path distances
from the various roots, and the dual spanning tree
is used to locate edges that need to be relaxed.

A dynamic-tree data structure [16] represents
a set of rooted or unrooted trees under structure-
modifying and weight-related operations at O(log n)
time per operation. Top trees [1] build on [16] via
topology trees [8] and make new operations easy to
implement.

The structure-modifying operations are:
link(v, w) where v and w are nodes of different trees,
links the trees by adding the edge vw, and cut(e),
which removes the edge e. One can also obtain for
any node v the parent edge of v.

The data structure can also maintain weights
on nodes/edges. For the primal tree, we use the
edge-lengths as weights. The operation we need is
sum(x), which returns the sum of weights on the
root-to-x path in the forest. This is used to find the
distance from ri to any desired node as mentioned in
Section 3.3.

For the dual, we maintain an implicit represen-
tation of the reduced lengths of the edges in T* (the
edges not in T* have reduced length zero). Note that
edges in T* are not oriented consistently, so paths to
the root can have edges in both directions. One oper-
ation needed is find(), which returns a leafmost unre-
laxed edge e in T* (i.e. g(e) < 0 and, for each proper
descendent edge e ~ of e, g(e ~) _> 0) and its reduced
length g(e). The other operation is change(x ,A),
which changes the g values of all edges e on the path
between x and the root as follows:

A if e points towards root
g(e) := g(e) + - A if e points away from root

To implement a basic step, the algorithm pro-
ceeds as follows. Use find to find a leafmost unre-

Figure 6: The dark edges are in T. The dashed edge
is being relaxed, changing the distances to nodes of
the inner tree. This requires changing the reduced
lengths of edges to and from the inner tree. Edges
pointing to the inner tree from the left correspond to
dual edges pointing toward the root.

laxed edge uv. Let A = -g(uv) . Let wv be the parent
edge of v in T, and let xy = (wv)* be the correspond-
ing dual edge.

The algorithm must update the g values to re-
flect a reduction by A in the distance estimates of
nodes in the primal tree's v-rooted subtree T ~. Val-
ues for edges pointing from nodes not in T ~ to nodes
in T ~ should increase by A, and edges pointing in
the opposite direction should decrease by A. See
Figure 6. Let z denote the least common ances-
tor of x and y. By the right-hand-rule, a left-to-
right nontree edge of the primal corresponds to a
dual edge that points towards the root in the dual
spanning tree. Therefore the dual edges whose val-
ues must increase are those edges in T*[x,z] that
point towards the root and those in T*[y,z] that
point away. The edges whose values must decrease
are the edges in these same paths but pointing the
opposite direction. The algorithm therefore calls
changeValue(x, A) and changeValue(y, - A) . This
achieves the desired changes, leaving unchanged the
values on the edges in the undirected path between z
and the root.

Next the algorithm uses cut and link operations
to change the primal and dual trees to reflect the
substitution of primal edge uv for wv.

6 Exact point-to-point distances

We are given a planar embedded graph G and c Jor-
dan curves whose strict interiors are disjoint and are
contained in faces of G. The Jordan curves inter-
sect no edges, and intersect O(x/~) nodes, called bor-

der nodes. The task is to compute all border-node-

153

to-border-node distances. For each Jordan curve J,
use the multiple-source algorithm to find distances
from/to border nodes on J to/from all other border
nodes in O(c(n + ~/~2) log n) time.

By repeated use of this algorithm, one can
compute the dense distance graph defined by
Fakcharoenphol and Rao [4] in O(nlog 2 n) time.
They show that this structure supports exact point-
to-point distance queries.

For a dynamic algorithm, divide [5, 13] the graph
into O (n / r) edge-disjoint regions each with O(r)
nodes and O(~/7) border nodes (nodes belonging to
other regions) such that border nodes in a region lie
on O(1) faces. The dynamic algorithm maintains
for each region (1) an implicit representation of
all x-to-y distances where either x or y is a border
node, and (2) explicit distances where x and y are
both border nodes. When an edge's length changes,
the algorithm recomputes (1) and (2) for the region
containing that edge in O(r log r) time. To compute
u-to-v distance: (A) Assuming u is not a border
node, compute the distances within u's region from
u to the set S, of border nodes of this region. (B)
Run Fakcharoenphol and Rao's implementation of
Dijkstra's algorithm, initialized with the distances
computed for S,, obtaining distances d(.) in G to all
border nodes. (C) Assuming v is not a border node,
compute the distances in v's region from the border
nodes of that region to v, and combine this with the
distances d(.) assigned to these nodes to obtain the
u-to-v distance.

The time for the query algorithm is
O ((n / v / 7) l o g 2 n) , and the time for the update
algorithm is O(rlogr) . We can choose r to get
O(n 2/3 log 2/3) time for queries and updates, im-

proving on the previous bound by a factor of
O(log5/3).

7 Approximate point-to-point distances

Let G be an n-node planar graph G with a shortest
path P = r s . . . r o of length < c~ along a face
boundary, where o~ and e are parameters. For i =
0 s, define ~(ri) = length of subpath rs. • • ri of
P, and define 6i(v) = "7(i) + ri-to-v distance. A set S
of pairs (ri, v) called connect ions is said to cover a
vertex v if S contains some connection (ri*, v) such
that ~i* (v) < mini ~i(v) + ~o~. The core problem is to

find a set S of connections that cover all nodes v such
that mini 6i(v) < 2o~. We give an algorithm to find
such a set S such that ISI = O(n(c + logn)). Using
Lemma 18 of [17], S can then be pruned in O(ISI)
time to contain O(e - l) connections per node.

To compute S, we run an augmented version
of the multiple-source algorithm. The algorithm
starts with the shortest-path tree rooted at r0, and
in successive iterations of the for-loop computes the
shortest-path trees rooted at rl rs. We augment
the algorithm so that, in each such iteration i, it
identifies some nodes v and adds the connections
(ri, v) to S.

To this end, the algorithm maintains an im-
plicit representation of a node-labeling cr(-)giving the
amount by which the 6 distance of v must decrease
for there to be a new connection involving v.

To initialize, for each node v, if 60(v) < 2c~, a
connection (r0, v) is added to S and or(v) is assigned
ec~; otherwise, or(v) is assigned 60(v) - 2c~.

When an edge uv is relaxed, reducing by A
the distance to descendents of v in T, the value of
~r is reduced by A for all these nodes. Because
of the implicit representation, this takes O(logn)
time. At the end of each iteration i, the algorithm
repeatedly searches for a rootmost node v* with
~r(v*) _< 0. When it finds such a node v*, it visits a
maximal subtree T' rooted at v* consisting of nodes
v with or(v) _< 0, and, for each such node v, adds a
connection (ri, v) and resets or(v) to ec~ if IT'I _> Iogn
and to or(parent of v*) otherwise. The time to find v*
is O(logn) and the time to visit T' is O(IT'I). The
~r searches continue until there is no node v* with
~r(v*) < 0, at which point the next iteration of the
algorithm commences.

Now for the analysis. Say a a search is special if
it leads to resetting or(v) to ~7(parent of v*) for nodes
v in v*'s subtree. For the purpose of the analysis, we
place a'token on each such node v when this happens.
The next time a connection for v is added, we remove
that token (though a new one might be placed on v
immediately after).

For a vertex v, define 6T(V) = "),(root of T) +
g(root-to-v path in T). At any point during the algo-
rithm's execution, say v is active if an edge uv into
v was relaxed but since that happened no connection
to v has been added to S. Consider the partition de-
fined by connected regions of T with same cr value.

154

The algorithm maintains the following invariant: (1)
For any block of the partition, either the root of the
block is active or the block's size > log n. (2) If no
connection in S involves v then ~r(v) = 6T(v) - 2c~.
(3) If the most recent connection for v is (i*, v), then
the value of a(v) is (a) equal to 6T(V) -- 3i* (v) + ec~ if
v has no token, or (b) at most that amount if v has a
token.

Let S be the value of S when the algorithm
finishes. The invariant implies that S coves all nodes
v such that mini 6i(v) < 2c~. The time for visiting
all subtrees T / is because each node visited gets
a new connection. The number of a searches that
find active nodes v* is O(n) because the number of
activations is the number of relaxation steps. The
number of cr searches that find the root of a block
of size > log n is < ISl/log n. The time for all ~r
searches is thus o(IsI + niogn) .

Each special cr search reduces the number of
blocks by one. The number of blocks is initially at
most n and increases by at most one per relaxation
step. Hence the total number of special o- searches
is O(n). Each such search results in < log n tokens
being placed. Thus the total number of tokens placed
is O(n log n).

Finally, we bound [SI. Definef(v) = 6i* (v) where
(ri, v) is the most recent connection for v added to S.
Each new connection (ri, v) reduces f (v) by at least
ec~ except if it is the first connection for v or a token
was removed from v when adding the connection.
Since f (v) always lies between 0 and 2c~, there are
at most O(e - l) nonexceptional connections per node
v. The total number of exceptional connections is
O(n log n). Thus IS[= O(n(e- l + log n)).

Acknowledgements
Thanks to Francisco Barahona, Sarah Bell, Maurice
Herlihy, Satish Rao, David Reiss, Robert Tarjan, and
Mikkel Thorup.

References

[1] S. Alstrup, J. Holm, K. de Lichtenberg, M. Thorup,
"Maintaining information in fully-dynamic trees
with top trees;' ArXiv cs.DS/0310065.

[2] J. R. Driscoll, N. Sarnak, D. D. Sleator, R. E.
Tarjan, "Making data structures persistent," JCSS 38
(1989), pp. 86-124.

[3] D. Eppstein, G. E Italiano, R. Tamassia, R. E.
Tarjan, J. Westbrook, and M. Yung, "Maintenance
of a minimum spanning forest in a dynamic plane
graph;' J. Alg. 13 (1992), pp. 33-54.

[4] J. Fakcharoenphol and S. Rao, "Planar graphs, neg-
ative weight edges, shortest paths, near linear time,"
FOCS (2001), pp. 232-241.

[5] G. N. Frederickson, "Fast algorithms for shortest
paths in planar graphs, with applications," SIAM J.
Comput. 16 (1987), pp. 1004-1022.

[6] G. N. Frederickson, "Planar graph decomposition
and all pairs shortest paths, J. ACM 38 (1991),
pp. 162-204.

[7] G. N. Frederickson, "Using cellular graph embed-
dings in solving all pairs shortest paths problems,"
J. Algor. 19 (1995), pp. 45-85.

[8] G. N. Frederickson, "Ambivalent data structures for
dynamic 2-edge-connectivity and k smallest span-
ning trees, SIAM J. Comput 26 (1997), pp. 484-538.

[9] R. Hassin, "Maximum flows in (s,t) planar net-
works," hzform. Process. Lett. 13 (I 981), pp. 107.

[10] S. Khuiler, J. Naor and P. N. Klein, "The lattice
structure of flow in planar graphs," SlAM J. Disc.
Math. 6 (3) pp. 477-490, (1993).

[i I] R.J. Lipton and R. E. Tarjan, "A separator theorem
for planar graphs," SIAM J. Appl. Math. 36 (i 979),
pp. 177-189.

[12] K. Mehlhorn, S. N~iher, "Bounded ordered dictio-
naries in O(log log N) time and O(n) space," IPL 35
(1990), pp. 183-189.

[13] G. L. Miller, "Finding small simple cycle separators
for 2-connected planar graphs;' J. Comput. Syst. Sci.
32 (I 986), pp. 265-279.

[14] H. Ripphausen-Lipa, D. Wagner, and K. Weihe,
"The vertex-disjoint menger problem in planar
graphs," SlAM J. Comput. 26 (1997), pp. 331-349.

[15] J. P. Schmidt, "All shortest paths in weighted grid
graphs and its application to finding all approximate
repeats in strings," SIAM J. Comput. 27 (1998),
pp. 972-992.

[16] D. D. Sleator and R. E. Tarjan, "A data structure for
dynamic trees," J. Comput. System Sci. 26 (1983),
pp. 362-39 I

[17] M. Thorup, "Compact oracles for reachability and
approximate distances in planar digraphs. FOCS
(2001), pp. 242-251

[18] P. van Emde Boas, "Preserving order in a forest in
less than logarithmic time and linear space," IPL 6
(1977), pp. 80-82.

[19] K. Weihe, "Maximum (s, 0-flows in planar networks
in o(Iv[ZoglVl) time;' JCSS 55 (1997), pp. 454-476

155

