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1 Introduction 

Given an n-node planar graph with nonnegative 
edge-lengths, our algorithm takes O(n log n) time to 
construct a data structure that supports queries of the 
following form in O(Iog n) time: given a destination 
node t on the boundary of the infinite face, and given 
a start node s anywhere, find the s-to-t distance. 

The data structure requires O(n log n) space. To 
avoid using more than O(n) space, if the pairs (s, t) 
are known in advance, the corresponding distances 
can be computed during the execution of the algo- 
rithm at a cost of O(logn) time per distance. The 
algorithm can also produce an O(n) structure that, 
for any node s and any node t on the boundary, 
finds the first edge on the shortest s-to-t path in 
O(ioglogdegree(t)) time. Using this structure, one 
can for example obtain the shortest s-to-t path P in 
time O(IPI) if the graph has constant degree. 

Using our algorithm, we obtain asymptotically 
faster algorithms for prfeprocessing to facilitate quick 
exact or approximate point-to-point distance queries 
in planar graphs (for arbitrary start and end nodes) 
and the corresponding shortest-path queries. 

1.1 Previous work In the area of multiple-source 
shortest paths in planar graphs, there have been 
results of three kinds. We mention representa- 
tive work. Fredefickson [5] gave an O(n 2) algo- 
rithm for all-pairs shortest paths. The special case 
where the boundary of an n-node planar graph has 
O(x/n ) nodes arises in applications of Lipton and 
Tarjan's planar separator theorem. [11 ] For this case, 
Fakcharoenphol and Rao [4] gave an O(n log 3 n) al- 
gorithm for computing what they called the dense 
distance graph, which is a recursive structure ob- 

- - - ~ 1  support provided by NSF Grant CCR-97000146 

tained using separators. I Finally, for the special case 
of a grid with arcs directed north and east and north- 
east, Schmidt [15] gave an O(n log n) algorithm that 
builds a data structure that, supports u-to-v distance 
queries in O(log n) time for any node u in in the west- 
most column of the grid and any node v. 

1.2 Applications The multiple-source algorithm 
can be used to reduce the preprocessing time to 
construct data structures supporting exact and ap- 
proximate point-to-point distance queries (i.e., for 
any nodes u and v, "what is the u-to-v distance?") 
Fakcharoenphol and Rao show that their dense dis- 
tance graph supports O(x/~log2n) queries. We 
improve the construction time for this graph from 
O(nlog 3 n) to O(nlog 2 n) for the special case of 
nonnegative lengths. Fakcharoenphol and Rao give 
a dynamic algorithm that supports point-to-point 
distance queries and single-edge length-changes 
in amortized O(n 2/3 logT/3n) time per operation. 
Our algorithm yields a simpler dynamic algorithm 
for which the worst-case time per operation is 
O(n 2/3 log 5/3 n). See Section 6. 

Thorup [17] shows how to construct data struc- 
tures supporting fast e-approximate point-to-point 
distance queries. He gives a preprocessing algorithm 
requiring O(ne -I log 2 n log A) time to build a struc- 
ture supporting queries in O(Iog log A + e-  l log n) 
time, where A is an upper bound on the largest fi- 
nite distance. We show how to improve the prepro- 
cessing time to O(n(e-I + log n) log nlog A). See 
Section 7. (Thorup also gives a structure supporting 
faster queries, but the preprocessing time is higher, 
and our method seems inapplicable.) 

Once an exact or approximate distance query has 
been answered, our algorithm can be used to find 

~ o t e ,  however, that their algorithm solved a more difficult problem, 
one where negative lengths are allowed. 
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the corresponding path P in time O(]PI) for constant- 
degree graphs. 2 No additional preprocessing time or 
storage are required. 3 

1.3 Related work Ripphausen-Lipa, Wagner, and 
Weihe [14, 19] have given algorithms for flow prob- 
lems in planar graphs using an approach that con- 
siders orientation and crossing and rightmost paths, 
ideas that inform the present work. 

Eppstein, Italiano, Tamassia, Tarjan, Westbrook, 
and Yung [3] give a dynamic algorithm to maintain 
a minimum spanning forest in a planar embedded 
graph in the presence of edge deletions and inser- 
tions. They use a dynamic tree in the primal and the 
dual graphs, an idea we use in the present paper. 

2 Background and terminology 

In this paper we are concerned with directed graphs. 
If y is a node on a path P that starts at x, the to-y 
prefix of P is the x-to-y subpath of P. The from-y 
stofix of P is defined similarly. A path is simple if no 
node occurs more than once in the path. A nonsimple 
path contains a cycle. One can remove cycles from 
a nonsimple u-to-v path P, obtaining a simple u-to-v 
path whose edge-set is a proper subset of that of P. 
Given an r-rooted tree T and a node v, T[v] denotes 
the simple path from r to v in T (which is unique if it 
exists). If u is an ancestor of v (or if T is considered 
as an undirected tree), T[u, v] denotes the simple u- 
to-v path in T. 

2.1 Shortest paths In this section, we discuss 
background concerning shortest paths in arbitrary di- 
rected graphs. We use g(e) to denote the length of an 
edge e. For a path or cycle P, g(P) = ~ e c p  g(e). We 
assume no cycle has negative length. 

It follows from this assumption that removing 
cycles from a nonsimple path does not increase its 
length. Hence if there is a shortest u-to-v path, there 
is one that is simple. 

For any labeling d(-) of the nodes of a graph with 
numbers, there is a new length assignment / defined 
by [(uv) = d(u) + g(uv) - d(v) 

. ' , . r '7"7--- .  
-More generally, the time is O(Iog log degree(x)) per node x in the 

path. 
3Thorup showed how to achieve O(IPl) time for approximate shortest 

paths, but his approach requiles an additional O(log n) factor in time and 
space. 

We refer to the lengths g(uv) as reduced lengths 
with respect to d. For any nodes s and t, for any s-to-t 
path P, 
(2.1) g(P) = g(P) + d(s) - d(t) 

It follows that an s-to-t path is shortest according to 
if and only if it is shortest according to g. 

An edge uv is a relaxed edge with respect to d if 
its reduced length is nonnegative, i.e. if 

(2.2) d(u) + g(uv) <_ d(v) 

and is an unrelaxed edge otherwise. An edge is tight 
with respect to d if its reduced length is zero, i.e. 
if (2.2) is satisfied with equality. 

Suppose that every edge is relaxed and, for some 
nodes r and v, d(r) = 0 and d(v) is the length 
of some r-to-v path P,,. It follows by (2.1) that 
g(Pv) = 0. Every edge and hence every r-to-v path 
has nonnegative reduced length, so Pv is a shortest 
path with respect to the reduced lengths g, and hence 
also with respect to the original lengths g. 

2.1.1 Network simplex Our algorithm, like the 
network-simplex algorithm, 4 maintains an r-rooted 
directed spanning tree T. For each node v ~ r 
reachable from r, there is a unique incoming edge in 
T, called the parent edge of v in T. The tree induces 
an assignment dT(') of distance estimates, namely 
dT(v) = g(T[v]). For each edge uv in T, g(T[v]) = 
g(T[u]) + g(uv), whence dT(v) = tiT(U) + g(uv), so uv 
is tight. 

The nonexistence of negative-length cycles im- 
plies that v is not an ancestor of u in T if uv is un- 
relaxed. A pivot step consists of selecting an unre- 
laxed edge uv and modifying T by removing the par- 
ent edge of v and adding the edge uv. We call this 
step relaxing the edge uv. If there are no edges that 
are unrelaxed with respect to T, it follows that the 
distance estimates dT(v) are true distances from r. In 
this case T is a shortest-path tree. 

2.2 Planar embeddings We assume basic knowl- 
edge of planar embedded graphs, faces, and the dual. 
For a node v on the boundary of the infinite face z, 
it would not violate planarity to embed an artificial 
node ~ and an artificial edge ~v, both inside z. For 

7rwe am indebted to F. Barahona for pointing out the simplex 
interpretation of our algorithm. 
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Figure 1: The boundary of the infinite face is indi- 
cated by the circle. A right-first search tree rooted 
at r is indicated by the bold edges. For each node 
v other than the root, the parent edge is the edge by 
which v was first visited. 

a node v with incoming edge uv and outgoing edges 
vw and vx, we say vx is left o f  vw with respect to uv 

if vx occurs strictly between vw and uv in counter- 
clockwise order. Given a simple path P containing 
an edge vw, we say an edge vx emanates  left from P 
if (a) the edge preceding vw in P is uv, and vx is left 
of vw with respect to uv, or (b) v is the first node of 
P, and v lies on the boundary of the infinite face, and 
vx is left of vw with respect to the artificial edge ~,v. 

For a primal edge e, the corresponding dual edge 
points from e's left face (the face to e's left when e is 
oriented upwards) to e's fight face. 

3 Ingredients and the algorithm 

3.1 Rightmost shortest-path tree Right-first 

search [14] is depth-first search on a planar graph, 
with the restriction that, for each node v visited, the 
edges vw out of v are explored in right-to-left order 
with respect to the the edge uv by which v was first 
visited (or, if v is the root and is on the boundary of 
the infinite face, with respect to the artificial edge 
~v). Right-first search induces a right:first search 

tree consisting of the set of such edges uv (see 
Figure 1 ). 

The rightmost  shortest-path tree rooted at r0 
(formally defined in Section 4.3) can be obtained 
from the set of from-r0 distances d(.) by finding a 
right-first search tree in the subgraph of edges that 
are tight with respect to d(-). 

Figure 2: On the left is a primal graph. A spanning 
tree is indicated in bold. On the right is shown the 
primal graph and the dual graph not including the 
nontree dual edges. 

3.2 Leafmost unrelaxed edge Let T* denote the 
set of edges not  in the current tree T. As noted in 
Subsection 2.1, every edge of T is relaxed, so T* 
includes all unrelaxed edges. The fact that T is a 
spanning tree of the planar primal implies that T* 
is a spanning tree of the planar dual (ignoring edge 
orientations). Consider T* as a dual spanning tree 
rooted at the node of the planar dual corresponding to 
the infinite face (see Figure 2). A leajmost  unrelaxed 

edge xy  is an unrelaxed edge none of whose proper 
descendent edges in T* is unrelaxed. 

3.3 The algorithm Let r0, rl . . . . .  rs be the nodes 
on the boundary of the infinite face, in clockwise 
order. First we add auxiliary edges 5 of infinite 

length: r s r s - l , r s - i r s - 2  . . . . .  r2r l , r l ro .  We then 
carry out the following: 

let T be a r ightmost  shortest-path tree rooted at r0. 

f o r / : =  1 . . . . .  s, 
remove the edge of T entering ri-1,  

and add r i r i - j .  

(Now T is rooted at ri.) 
While there exists an unrelaxed edge, 

relax a leafmost unrelaxed edge. 

Our pivot selection rule is to choose a leafmost  

unrelaxed edge. The motivation for this selection 
rule is as follows. Let e be an edge not in the primal 
spanning tree T. There is a unique simple undirected 

----Y-These can be added without destroying planarity since the ri's are 
on the boundm'y of the infinite lace. 
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path in T connecting e's endpoints, which together 
with e forms a simple cycle Ce in the primal. The 
nontree edges embedded interior to Ce are precisely 
the strict descendents of e in the dual spanning tree 
rooted at the infinite face. In particular, if e is a 
leafmost unrelaxed edge then no unrelaxed edges 
are strictly interior to Ce. 

We will show that the algorithm takes O(n log n) 
time. In Section 4, we show that each edge is 
relaxed at most once. In Section 5, we show how 
each iteration can be implemented in O(tog n) time 
where n is the number of nodes. At the end of 
iteration i of the for-loop, the current tree is an ri- 
rooted shortest-path tree. We note in Section 5 that 
the distance in this tree from ri to any node can be 
queried in O(Iogn) time. In addition, by using the 
persistence technique of [2], the algorithm's history 
can be recorded in O(n log n) space so as to permit 
the subsequent querying of any of the shortest-path 
trees. 6 

Each edge appears in the shortest-path trees of a 
contiguous subsequence of the cycle of roots around 
the boundary of the planar graph. This fact follows 
from the fact that each edge is relaxed at most once, 
and can be proved more directly without reference 
to the algorithm. It generalizes a lemma of Freder- 
ickson (see [6]) for outerplanar graphs. It implies 
a size-O(n) representation of multiple shortest-path 
trees: for each node v, organize [12, 18] the outgo- 
ing edges according to the disjoint intervals of roots 
whose shortest-path trees they belong to. Given a 
node v and a boundary node ri, one can find the first 
edge on the shortest v-to-ri path. 

4 Analysis 

4.1 Flows, potentials, and circulations The ma- 
terial in this subsection is adapted from [10] except 
for the lemma, which is new. 

For a graph G, an integral flow assignment f is 
a function from the edges of G to the integers. We 
adopt the antisymmetry convention: if .~V is an edge, 
f(yx) is defined to be -f(xy). Thus f  assigns integral 
flow values to the edges and the reverses of edges. 
For an edge e, let e n denote the reverse of e. For a 
path P, let pR denote the reverse path, i.e. consisting 
of the reverses of the edges of P in the reverse order. 

61 am indebted to R. Tarjan for this observation. 

Note that flow assignments can be added and 
subtracted. For flow assignments fl and f2, the flow 
assignment fl  +f2 assigns fl (xy) +f2(xy) to the edge 
xy. 

For G an embedded planar graph, let ~ be a 
function from the faces of G to the integers such 
that the infinite face maps to zero. 7 We call q~(z) the 
potential of face z. We call q5 a potential function. 
The corresponding flow assignment is 

f~(e) = qS(face to e's right ) - qS(face to e's left) 

This flow assignment is a circulation, i.e. for each 
node v, ~ , f (uv )  = 0 where the sum is over all nodes 
u for which f(uv) is defined (i.e. uv or (uv) R is an 
edge). 

The sum of circulations corresponds to the sum 
of potential functions, i.e. for potential functions 
qSi and q52, the sum fl +f2 of the corresponding 
flow assignments corresponds to the sum q51 + q52 of 
potential functions. 

We say the circulation is clockwise if every po- 
tential is nonnegative, and counterclockwise if every 
potential is negative. For example, for a clockwise 
simple cycle C of edges and reverses of edges, the 
circulation assigning 1 to the edges/reverse edges of 
C and zero to all others corresponds to assigning a 
potential of I to every face enclosed by C and 0 to all 
other faces, and hence the circulation is clockwise. 

LEMMA 4.1. Consider a potential assignment f3. 
If the corresponding flow assignment f contains a 
counterclockwise simple cycle of positive flow that is 
not enclosed in a clockwise simple cycle of positive 
flow, the circulation is not clockwise. 

4.2 "Is left of" and "is right of" Weihe [19] 
defined a relation "is more left than" between s- 
t flows in a planar directed graph. We specialize 
his definition to get a relation between s-to-t paths. 
A path P corresponds to a flow assignment fp that 
assigns 1 to each edge of P and zero to other edges. 
For s-to-t paths P and Q, we say P is left of Q (and Q 
is right of P) iffp-fQn is a clockwise circulation. It is 
straightforward to show that the "is left of" relation 
is reflexive, transitive, and antisymmetric. 

[10], there is a distinguished lace. In this paper, we use the 
infinite face as the distinguished face, and change the terminology 
accordingly. 
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LEMMA 4.2. (DISJOINTNESS) If PI and P2 are 
simple u-to-v paths that share no nodes except u and 
v, then either PI is to the left of  P2 or vice versa. 

LEMMA 4.3. (CONCATENATION) Let Pt and P2 be 
simple u-to-x paths, and let P] and P~ be simple x- 
to-v paths. I f  P2 is left o f  P! and P~ is left of  P~ then 
P2P~ is left of  PiPe1. 

LEMMA 4.4. Suppose P and Q start and end at the 
same nodes, and their common start node is o n  the 
boundary of  the infinite face. Then P is left of  Q iff 
no edge of  Q emanates left from P. 

We define "left of" for spanning trees in terms of 
"left of" for paths. For two r-rooted spanning trees 
Tl and T2, we say Ti is left of  T2 if, for every node v, 
the path TI [v] is left of T2[v]. 

4.3 Rightmost shortest-path tree An r-rooted 
shortest-path tree is a rightmost shortest-path tree if 
in addition every other r-rooted shortest-path tree is 
left of T. A r-rooted fightmost search tree T of a 
graph G has the property [14] that, for every node v, 
T[v] is a fightmost r-to-v path in G. It follows that the 
r-rooted fightmost search tree of the subgraph of G 
consisting of tight edges is a fightmost shortest-path 
t ree .  

4.4 The right-shortness invariant, and maintain- 
ing it while relaxing edges We define an r-rooted 
tree T to be right-short if the following condition 
holds for every node v: if P is a simple r-to-v path 
that is fight of T[v] and g(P) _< g(T(v)) then P = T[v]. 
That is, there is no simple r-to-v path strictly fight of 
T[v] that is as short as T[v] itself. 

A nontree edge xy is left-to-right (with respect to 
T) if the r-to-y path consisting of T[x] and xy is left 
of the r-to-y path T[v]. 

LEMMA 4.5. Suppose T is an r-rooted right-short 
tree, and e is an unrelaxed edge. Then e is left-to- 
right with respect to T. 

THEOREM 4.1. (BASIC STEP) Suppose T is an r- 
rooted right-short tree, and e is a leafmost unrelaxed 
edge. Then relaxing e yields an r-rooted right-short 
tree T ~ that is left of  T. 

X X 

r r 

Figure 3: Two possible embeddings. The bold edges 
are edges of T. The light edge is the edge xv relaxed 
to obtain T ~. The last node common to T[x] and T[v] 
is z. The node v is a descendent of y in T. R is the 
region bounded by the z-to-x and z-to-y paths in T 
and the edge xy. 

Proof Let e = xy. We first prove that T ~ is left of 
T. By Lemma 4.5, TIL v] is left of  TD,]. Let v be 
any node. If  v is not a descendent of y in T then 
T~[v] = T[v], so T~[v] is left of T[v]. Suppose v 
is a descendent of y, and let P be the y-to-v path 
in T (which is also the y-to-v path in T~). Then 
T[v] = T[y]P and Tt[v] = T~[y]P. It follows from 
Lemma 4.3 that T~[v] is left of T[v]. 

Now we prove that T ¢ is fight-short. Assume 
for a contradiction that, for some node v, there is a 
simple r-to-v path P that is right of T¢[v] and distinct 
from T~[v] such that P has length no more than T¢[v]. 
Choose P to be the shortest such path. If T~[v] = T[v] 
then P would violate the fight-shortness of T. Hence 
T~[v] must use the one edge in T ~ - T, namely xv, the 
edge relaxed. It follows that v must be a descendent 
o f y  in T ~, and therefore in T as well. (See Figure 3.) 

First suppose that P = PlxyP2 for some paths 
Pt and P2- By Lemma 4.4, P contains no edge 
that emanates from the left of Tt[v], so no edge 
of Pl emanates left of T~[x] and no edge of xyP2 
emanates left ofxyT[y, v]. The former implies, again 
by Lemma 4.4, that T~[x] is left of Pl.  But T~[x] = 
T[x], so T[x] is left of PI. By fight-shortness of T, it 
follows that either Pl = T[x] or g(P~) > g(T[x]). 

Let P~ = T[y]P2. Since no edge of xyP2 
emanates left of xyT[y, v], and T[v] = T[y]T[y, v], 
no edge of P~ emanates left of T[v], so T[v] is left 
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of P~. Hence either P~ = T[v] or g(P~) > g(T[v]). 
Since g(P~) = g(T[y]) + g(P2), either P2 = T[y, v] or 

g(P2) > g([Y, v]). 
Combining these two facts, we infer that either 

P = T[x]xyT[y,v] or g(P) > g(T[x]) + g(xy) + 
g(T[y, v]). Recall that T;[v] = T[x]xyT[y, v]. We 
assumed P 4 Tl[ v] and g(P) <_ g(T;[v]), so this is 
a contradiction. 

Hence P cannot contain the edge xy. The fol- 
lowing claim shows that g(P) >_ g(T[v]). Since 
g(T[v]) > g(T~[v]), this contradicts the choice of P, 
completing the proof of the theorem. 

CLAIM 4.5.1. For each node u of  P that also ap- 
pears on T[v], the to-u prefix of  P is no shorter than 
T[u]. 

The proof of the claim is by induction. The claim is 
trivial for the root r. Let u ~¢ r be a node of P on 
T[v], and let w be the previous node of P that is also 
on T[v]. By the inductive hypothesis, the to-w prefix 
of P is no shorter than T[w]. 

Let Pl be the w-to-u subpath of P. Using the 
inductive hypothesis, the length of the to-u prefix 
of P is no less than g(T[w]) + g(Pl). Note that u 
and w are the only nodes common to Pl and T[v]. 
By the Disjointness Lemma, there are three cases, 
corresponding to the relative placement of Pl and 
T[v]. Case 1 holds when u occurs before w in T[v], 
Case 2 holds when Pj is to the fight of T[w, u], and 
Case 3 holds when PI is to the left of T[w,u] and 
does not coincide with T[w,u]. Cases 2 and 3 are 
illustrated in Figure 4. 
Case 1: If g(T[w]) + g(Pl) were less than g(T[u]), 
then Pi together with T[u, w] would form a negative 
length cycle, a contradiction. 
Case 2: In this case PI is fight of T[w,u]. Let 
P2 = T[w]Pi. By the Concatenation Lemma, P2 is 
fight of T[u]. The right-shortness of T implies that 
g(P2) _> g(T[u]). It follows that g(Pi) > g(T[w,u]). 
Combining this with the inductive hypothesis com- 
pletes the inductive step. 
Case 3: in this case PI is left of T[w, u]. We first 
show that every edge of Pj lies in the region R 
enclosed by the edge xy and the simple undirected 
path in T connecting x and y. Suppose not, and let 
st be the first edge of Pl not in R. The boundary 
of R consists of a subpath of T'[v] on the left and a 
subpath of T[v] on the right. Since PI is internally 

(') 
/ 

Case 2 Case 3 

Figure 4: This figure illustrates examples of the cases 
in the induction proof. In each case, the bold path 
is T[v] and the light path is P1. The two leftmost 
drawings represent Case 1, in which PI is to the 
right of the subpath of T[v], and the two rightmost 
drawings represent Case 2, in which Pl is to the left. 

node-disjoint from T[v], the node s must belong to 
Tt[v] and st must emanate to the left of T~[v]. This 
contradicts the fact that P contains no such edge. 

We conclude that every edge of Pl lies in the 
region R. By the leafmost selection rule, every edge 
in this region except xy itself is relaxed, and Pi does 
not contain xy. Hence every edge of PI is relaxed. 
Let the nodes of P1 be w = z0,z l , . . . ,zk  = u, and 
let o~ i denote the length of the to-zi prefix of P. 
The inductive hypothesis states that o~0 > dy(zo). 
Assuming oq_ 1 _> dy( zi- l ), since dT( Zi ) _< dT( Zi- I )+ 
g(Zi- lZi) ,  w e  get OL i ~ dT(Zi). For i = k, then, the 
length of the to-u prefix of P is _> dy(u). • 

4.5 Applying right-shortness We show by induc- 
tion that every tree T arising in the algorithm is right- 
short. The initial tree is a rightmost shortest-path 
tree, so is trivially right-short. Suppose that at the 
beginning of iteration i the tree T rooted at ri-i is 
right-short. Lemma 4.6 shows that the modification 
to obtain an ri-rooted tree preserves right-shortness. 
The Basic-Step Theorem shows that each iteration of 
the inner loop preserves right-shortness. 

LEMMA 4.6. Suppose T is a right-short tree rooted 
at ri-l, and T; is obtained by removing the parent 
edge of  ri and adding the edge riri-I. Then T ~ is 
right-short. 

Proof Suppose P is an ri-to-v path to the right of 
Tt[v], and P is no longer than T;[v]. We claim that 

151 



~+! r i 

Figure 5: In both figures, the circle represents the 
boundary of  the infinite face. In the left figure, the 
bold path is Ti+l [v], which starts with the edge ri+l ri, 
and the light edge is e. In the fight figure, the solid 
arrows denote the auxiliary edges 

the first edge e of  P is riri_ 1 . Once we prove the 
claim, note that the rest of  P is to the fight of  T[v] 
and is no longer than T[v], hence is itself T[v]. The 
Concatenation Lemma implies that P is itself Tt[v]. 

To prove the claim, assume for a contradiction 
that e : / r i r i - I .  Then e must be embedded as shown 
on the left of  Figure 5. Lemma 4.4 shows that P is 
not to the right of T?+ l [v]. • 

LEMMA 4.7. Let T be the initial shortest-path tree, 
let T be a any tree arising in the algorithm, and let v 
be any node. No edge ofT[v] emanates left o f  T"[v]. 

Proof Suppose an edge xy of T[v] emanates left of 
7"[v], and let z be the first node of  7"[v] to occur after x 
on T[v]. Since 7"[x, z] and T[x, z] are internally node- 
disjoint, by the Disjointness Lemma either T[x, z] is 
left of  T[x, z] or vice versa. By Lemma 4.4, T[x, z] 
is left of  7"[x,z]. Let P = T[x]7"[x,z]. By the 
Concatenation Lemma, P is fight of T[z]. However, 
because 7" is a shortest-path tree, 7"[x, z] is a shortest 
x-to-z path, so g(P) = g(T[x]) + g(T[x, z]) _< g(T[x]) + 
g(T[x, z]) = g(T[z]), contradicting the right-shortness 
of  T. • 

For the purpose of  analyzing the algorithm, 
embed an artificial node z and artificial edges 
zro, zrl,zr2 . . . . .  zrs in the infinite face, preserving 
planarity. Suppose the algorithm performs k relax- 
ations in total. For 0 < i < k, let Ti denote the tree 

T after i relaxations, modified by adding the artifi- 
cial edge from z to the root of  T. For any node v and 
0 < i < k, l e t f f  denote the flow corresponding to 
Ti[v]. Let q~. denote be the potential function corre- 
sponding to the circulation f r  - f f .  W e  leave out the 
superscript when it is clear. 

COROLLARY 4.1. I f  i > j, ~ assigns at most 1 to 
every face. 

Proof sketch. A contradiction would give rise to two 
cycles Cl and C2 of flow, the former enclosing the 
latter. One then shows there is an edge el of  (Tj[v]) R 
on or enclosed by C2 whose successors in (Tj[v]) R 
are all external to C2. Hence the successor o fe j  in C2 
emanates left from Tj[v]) R, contradicting Lemma 4.7. 

THEOREM 4.2. For any edge e, the set {i • e C Ti} 
is a consecutive subsequence o f  the cycle (0 1 . . .  k). 

Proof Assume the theorem is false for e = uv, so 
there exist integers 0 _< a < b < c < d < k such 
that either e E T,, T~. and e ~ Tt,, Ta or e E Tb, Td 
and e ~ Ta, Tc. Assume the former without loss of  
generality. Let e' be the last edge in Tb[V]. Then 
the circulation f [  - f ~  contains one edge entering 
v, namely e I, and one edge leaving v, namely e. 
The circulation f ,  - f b  contains one edge entering v, 
namely e, and one edge leaving v, namely e ~. Hence 
the circulation fc - fb + fb -- f~ contains no edges 
incident to v. 

Note that q~. and q~'~'+ each assign potential 1 to 
some faces that have v on their boundary. Since the 
circulation f . - f b + j b - f ,  contains no edges incident to 
v, the corresponding potential q~.. assigns potential 1 
to all the faces that have v on their boundary. 

The circulation fd - - f ,  contains one edge entering 
v and one edge (namely e) leaving v. However,  
this circulation corresponds to the potential q~d. + 
q~... Since q~,.. assigns 1 to all faces that have v 
on their boundary, and 4'd~. assigns only nonnegative 
potentials (since Pd is left of  P,,) and by Corollary 4.1 
the potential q~d, = ~d,: + ~,'a assigns at most 1 
to each face, it follows that Od, corresponds to a 
circulation that contains no edges incident to v. This 
contradiction completes the proof. • 
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It follows that each edge gets relaxed at most 
once, for a total of O(n) relaxations. It remains 
to show that each iteration can be implemented in 
O(Iog n) time. 

5 Implementing a basic step 

Our data structure consists of two representations of 
spanning trees, one for the modified input graph (the 
primal), representing T, and one for its planar dual, 
representing T*, the spanning tree of the dual graph 
consisting of the edges not in T. The primal spanning 
tree is used for computing shortest-path distances 
from the various roots, and the dual spanning tree 
is used to locate edges that need to be relaxed. 

A dynamic-tree data structure [16] represents 
a set of rooted or unrooted trees under structure- 
modifying and weight-related operations at O(log n) 
time per operation. Top trees [1] build on [16] via 
topology trees [8] and make new operations easy to 
implement. 

The structure-modifying operations are: 
link(v, w) where v and w are nodes of different trees, 
links the trees by adding the edge vw, and cut(e), 
which removes the edge e. One can also obtain for 
any node v the parent edge of v. 

The data structure can also maintain weights 
on nodes/edges. For the primal tree, we use the 
edge-lengths as weights. The operation we need is 
sum(x), which returns the sum of weights on the 
root-to-x path in the forest. This is used to find the 
distance from ri to any desired node as mentioned in 
Section 3.3. 

For the dual, we maintain an implicit represen- 
tation of the reduced lengths of the edges in T* (the 
edges not in T* have reduced length zero). Note that 
edges in T* are not oriented consistently, so paths to 
the root can have edges in both directions. One oper- 
ation needed is find(), which returns a leafmost unre- 
laxed edge e in T* (i.e. g(e) < 0 and, for each proper 
descendent edge e ~ of e, g(e ~) _> 0) and its reduced 
length g(e). The other operation is change(x  ,A), 
which changes the g values of all edges e on the path 
between x and the root as follows: 

A if e points towards root 
g(e) := g(e) + - A  if e points away from root 

To implement a basic step, the algorithm pro- 
ceeds as follows. Use find to find a leafmost unre- 

Figure 6: The dark edges are in T. The dashed edge 
is being relaxed, changing the distances to nodes of 
the inner tree. This requires changing the reduced 
lengths of edges to and from the inner tree. Edges 
pointing to the inner tree from the left correspond to 
dual edges pointing toward the root. 

laxed edge uv. Let A = -g(uv) .  Let wv be the parent 
edge of v in T, and let xy = (wv)* be the correspond- 
ing dual edge. 

The algorithm must update the g values to re- 
flect a reduction by A in the distance estimates of 
nodes in the primal tree's v-rooted subtree T ~. Val- 
ues for edges pointing from nodes not in T ~ to nodes 
in T ~ should increase by A, and edges pointing in 
the opposite direction should decrease by A. See 
Figure 6. Let z denote the least common ances- 
tor of x and y. By the right-hand-rule, a left-to- 
right nontree edge of the primal corresponds to a 
dual edge that points towards the root in the dual 
spanning tree. Therefore the dual edges whose val- 
ues must increase are those edges in T*[x,z] that 
point towards the root and those in T*[y,z] that 
point away. The edges whose values must decrease 
are the edges in these same paths but pointing the 
opposite direction. The algorithm therefore calls 
changeValue(x, A) and changeValue(y, - A ) .  This 
achieves the desired changes, leaving unchanged the 
values on the edges in the undirected path between z 
and the root. 

Next the algorithm uses cut and link operations 
to change the primal and dual trees to reflect the 
substitution of primal edge uv for wv. 

6 Exact point-to-point distances 

We are given a planar embedded graph G and c Jor- 
dan curves whose strict interiors are disjoint and are 
contained in faces of G. The Jordan curves inter- 
sect no edges, and intersect O(x/~ ) nodes, called bor- 

der nodes. The task is to compute all border-node- 
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to-border-node distances. For each Jordan curve J, 
use the multiple-source algorithm to find distances 
from/to border nodes on J to/from all other border 
nodes in O(c(n  + ~/~2) log n) time. 

By repeated use of this algorithm, one can 
compute the dense distance graph defined by 
Fakcharoenphol and Rao [4] in O(nlog 2 n) time. 
They show that this structure supports exact point- 
to-point distance queries. 

For a dynamic algorithm, divide [5, 13] the graph 
into O ( n / r )  edge-disjoint regions each with O(r) 
nodes and O(~/7) border nodes (nodes belonging to 
other regions) such that border nodes in a region lie 
on O(1) faces. The dynamic algorithm maintains 
for each region (1) an implicit representation of 
all x-to-y distances where either x or y is a border 
node, and (2) explicit distances where x and y are 
both border nodes. When an edge's length changes, 
the algorithm recomputes (1) and (2) for the region 
containing that edge in O(r  log r) time. To compute 
u-to-v distance: (A) Assuming u is not a border 
node, compute the distances within u's region from 
u to the set S, of border nodes of this region. (B) 
Run Fakcharoenphol and Rao's implementation of 
Dijkstra's algorithm, initialized with the distances 
computed for S,, obtaining distances d(.) in G to all 
border nodes. (C) Assuming v is not a border node, 
compute the distances in v's region from the border 
nodes of that region to v, and combine this with the 
distances d(.) assigned to these nodes to obtain the 
u-to-v distance. 

The time for the query algorithm is 
O ( ( n / v / 7 ) l o g 2 n ) ,  and the time for the update 
algorithm is O(rlogr) .  We can choose r to get 
O(n 2/3 log 2/3) time for queries and updates, im- 

proving on the previous bound by a factor of 
O(log5/3). 

7 Approximate point-to-point distances 

Let G be an n-node planar graph G with a shortest 
path P = r s . . . r o  of length < c~ along a face 
boundary, where o~ and e are parameters. For i = 
0 . . . . .  s, define ~(ri) = length of subpath rs. • • ri of 
P, and define 6i(v) = "7(i) + ri-to-v distance. A set S 
of pairs (ri, v) called connect ions is said to cover a 
vertex v if S contains some connection (ri*, v) such 
that ~i* (v) < mini ~i(v) + ~o~. The core problem is to 

find a set S of connections that cover all nodes v such 
that mini 6i(v) < 2o~. We give an algorithm to find 
such a set S such that ISI = O(n(c + logn)). Using 
Lemma 18 of [17], S can then be pruned in O(ISI) 
time to contain O(e - l )  connections per node. 

To compute S, we run an augmented version 
of the multiple-source algorithm. The algorithm 
starts with the shortest-path tree rooted at r0, and 
in successive iterations of the for-loop computes the 
shortest-path trees rooted at rl . . . . .  rs. We augment 
the algorithm so that, in each such iteration i, it 
identifies some nodes v and adds the connections 
(ri, v) to S. 

To this end, the algorithm maintains an im- 
plicit representation of a node-labeling cr(-)giving the 
amount by which the 6 distance of v must decrease 
for there to be a new connection involving v. 

To initialize, for each node v, if 60(v) < 2c~, a 
connection (r0, v) is added to S and or(v) is assigned 
ec~; otherwise, or(v) is assigned 60(v) - 2c~. 

When an edge uv is relaxed, reducing by A 
the distance to descendents of v in T, the value of 
~r is reduced by A for all these nodes. Because 
of the implicit representation, this takes O(logn) 
time. At the end of each iteration i, the algorithm 
repeatedly searches for a rootmost node v* with 
~r(v*) _< 0. When it finds such a node v*, it visits a 
maximal subtree T' rooted at v* consisting of nodes 
v with or(v) _< 0, and, for each such node v, adds a 
connection (ri, v) and resets or(v) to ec~ if IT'I _> Iogn 
and to or(parent of v*) otherwise. The time to find v* 
is O(logn) and the time to visit T' is O(IT'I).  The 
~r searches continue until there is no node v* with 
~r(v*) < 0, at which point the next iteration of the 
algorithm commences. 

Now for the analysis. Say a a search is special  if 
it leads to resetting or(v) to ~7(parent of v*) for nodes 
v in v*'s subtree. For the purpose of the analysis, we 
place a'token on each such node v when this happens. 
The next time a connection for v is added, we remove 
that token (though a new one might be placed on v 
immediately after). 

For a vertex v, define 6T(V) = "),(root of T) + 
g(root-to-v path in T). At any point during the algo- 
rithm's execution, say v is active if an edge uv into 
v was relaxed but since that happened no connection 
to v has been added to S. Consider the partition de- 
fined by connected regions of T with same cr value. 
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The algorithm maintains the following invariant: (1) 
For any block of the partition, either the root of the 
block is active or the block's size > log n. (2) If  no 
connection in S involves v then ~r(v) = 6T(v) - 2c~. 
(3) If the most recent connection for v is (i*, v), then 
the value of a(v) is (a) equal to 6T(V) -- 3i* (v) + ec~ if 
v has no token, or (b) at most that amount if v has a 
token. 

Let S be the value of S when the algorithm 
finishes. The invariant implies that S coves all nodes 
v such that mini 6i(v) < 2c~. The time for visiting 
all subtrees T / is because each node visited gets 
a new connection. The number of a searches that 
find active nodes v* is O(n) because the number of 
activations is the number of relaxation steps. The 
number of cr searches that find the root of a block 
of size > log n is < ISl/log n. The time for all ~r 
searches is thus o(IsI + niogn) .  

Each special cr search reduces the number of 
blocks by one. The number of blocks is initially at 
most n and increases by at most one per relaxation 
step. Hence the total number of special o- searches 
is O(n). Each such search results in < log n tokens 
being placed. Thus the total number of tokens placed 
is O(n log n). 

Finally, we bound [SI. Definef(v) = 6i* (v) where 
(ri, v) is the most recent connection for v added to S. 
Each new connection (ri, v) reduces f (v )  by at least 
ec~ except if it is the first connection for v or a token 
was removed from v when adding the connection. 
Since f ( v )  always lies between 0 and 2c~, there are 
at most O(e - l )  nonexceptional connections per node 
v. The total number of exceptional connections is 
O(n log n). Thus IS[ = O(n(e- l + log n)). 
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