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MULTIPLE STABLE SOLUTIONS OF NONLINEAR BOUNDARY
VALUE PROBLEMS ARISING IN CHEMICAL REACTOR THEORY*

DONALD S. COHEN?

1. Introduction. Recent experimental and theoretical results show that an
adiabatic tubular reactor, in which there is occurring a simple first order irreversible
exothermic chemical reaction, can exhibit multiple stable steady states. The papers
of R. Aris [1] and D. Luss [2] list most of the pertinent chemical engineering
literature. Mathematically, the problem to be studied is the following nonlinear
boundary value problem:

(1.1) flu"- u’ + f(u) O,

(1.2) u’(O)- au(O)= O,

(.3) u’(1) 0.

O<x<l,

The function u represents the dimensionless temperature in the reactor, and fl and
a are known constants. The function f(u), which essentially represents the rates
of chemical production of the species (or equivalently, the rate of heat generation)
in the reactor, is the Arrhenius reaction rate given by

-k
(1.4) f(u) b(c u)exp

1 +---"
The concentrations of the various chemical species involved in the reaction can be
determined in a simple manner from a knowledge of u and the stoichiometric
coefficients of the species.

For simplicity we shall confine our analysis to the problem (1.1)-(1.4).
However, for the most part our results also apply to the more general problem

(1.5) Lu F(x, u), x e D,

(1.6) Bu O, x cD,

where B is a linear boundary operator, L is a uniformly elliptic second order
partial differential operator for which the strong maximum principle holds, and
F(x, u), for fixed x, "resembles" f(u). D and cD denote respectively the domain
and its boundary.

In 2 a formal singular perturbation procedure is applied for one physically
interesting range of the parameters. Our procedure clearly reveals the mechanism
by which one, two or three solutions of (1.1)-(1.4) can occur and also the mechanism
which governs discontinuities or "jump phenomena" in the control ofthe chemical
process.

In 3 we introduce iteration procedures, defined by linear equations, which
yield sequences which converge monotonically to the maximal (largest) golution
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from above and to the minimal (smallest) solution from below. Also, conditions
both for uniqueness and for the appearance of multiple solutions are given.
Taking these together with the results of 2, we can give a simple necessary and
sufficient condition for multiplicity in the reactor.

Finally, in 4 we examine the stability of the different solutions when con-
sidered as steady states of the transient (parabolic) problem for which (1.1)-(1.4)
describes the corresponding steady state. Sufficient conditions for stability are
given, and for certain ranges of the parameters it is shown that a unique solution
is always stable, and when there are three solutions, the upper and lower ones
are stable. Thus the sequences of 2 converge to stable steady state solutions.

2. Multiple solutions. Throughout this section (and only in this section)
we shall assume that 0 </ << 1. (In chemical reactor theory this is the case when
the Peclet number is large.) We now construct asymptotic expansions of the
solutions of(1.1)--(1.4) as// 0 by standard techniques [3. In all casesf(u) O(1),
and there is a boundary layer of thickness O(/) near x 1. Away from this bound-
ary layer the first term of the expansion (the outer expansion) is given by

(2.1) -u’ + f(u)= 0, 0 < x < 1,

(2.2) u’(O) au(O) O.

Evaluating (2.1) at x 0, we find that (2.1) and (2.2) together imply that

(2.3) au(O) f(u(O)).

Clearly, the solutions of (2.3) provide the proper initial conditions for (2.1).
Figure illustrates the solutions of (2.3); we have shown curves of f(u) for five
different sets of values of b and k with c fixed.

It is clear from the figure that u(0) can assume one, two or three values. We
shall discuss the implications and the conditions on a, b and k which determine
the number of intersections later. At present we continue with the construction
of the asymptotic expansion. Denote the solutions of (2.3) by u(0) ei, where
can assume the values 1, 2 and/or 3. Then, the first term in the outer expansion is
given by

(2.4) -v’ + f(0) 0,

(2.5) v(0)

In the boundary layer we introduce a new length 2 (1- x)/ and let
u(x) =_ u(1 -/39?) w(2). Then, the first term ofthe expansion (the inner expansion)
near x 1 is given by

(2.6) w" + w’ 0,

(2.7) w’(0) 0,

(2.8) w(oe) v(1).

The boundary condition (2.8) expresses the proper condition for matching the
inner and outer expansions. The solution of (2.6)-(2.8) is w(2) v(1), and thus the
solution v(x) of (2.4), (2.5) is a uniformly valid expansion on 0 < x < 1 to O(/?).
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We wish to make the following two points" (i) If, as sometimes occurs in
practice, a 0(1/,8) of f’(u) O(1/fl) for some u, our procedure for constructing
the first term of the asymptotic expansion is still valid. Of course, we would then
expect differences in the higher terms. (ii) It is obvious from physical considerations
and we show analytically in 3 that all solutions u(x) of (1.1)-(1.4) are such that
u’(x) > 0 and 0 =< u(x) <= c for 0 __< x =< 1. In order to see that the solution v(x)
of (2.4), (2.5) also possesses these properties, integrate (2.4) with respect to x
from 0 to and use (2.5) to obtain

(1) dv
(2.9) 1.

v(1) is the quantity which must be found from (2.9) to be used in the matching
condition (2.8). If v(1) i, the left-hand side of (2.9) is zero, and if v(1) c,
the left-hand side of (2.9) is infinite since the form (1.4) of f(u) shows that the
integral diverges logarithmically as v(1)---, c. Thus, since the integral is a con-
tinuous monotonic function of v(1), (2.9) has exactly one solution v(1) such that
i < v(1) < c, which then implies that v’(x) >= 0 and 0 < v(x) <= c on 0 < x =< 1.

Equation (2.3) and its geometrical interpretation in Fig. 1 allow us to obtain
in the present problem the same sort of information which has been obtained
for simpler chemical reactors (such as the stirred tank). The curves in the figure
move down as k increases and move up as b increases. Therefore, the number of
intersections of the line au with the curve f(u) can be changed by varying any or
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all of a, b and k. Suppose, for example, that we fix a and k and vary b starting on
the top curve. Proceeding in order with the five curves illustrated in Fig. 1, we
obtain respectively one, two, three, two and one steady states. (In practice the
flow rate in the reactor can easily be changed independent of the other parameters,
and a is directly proportional to the flow rate while b is inversely proportional to
the flow rate. Thus, the multiplicity of solutions proceeds just as we have described
when the flow rate is monotonically changed.)

It is also possible to obtain a "jump phenomenon" typical of many nonlinear
response curves. Suppose we start our process at A and increase the flow rate
so that a increases and b decreases. Clearly, we proceed from A to B to C to D.
Then, the slightest increase in flow rate from that at D gives an intersection near H
which clearly lies at a much lower temperature than D. (This violent jump to
much lower temperatures corresponds to quenching the reaction by too great
a flow rate.) A further increase in flow rate produces the change from H to I.
If we reverse the process by decreasing the flow rate, we proceed through the
sequence I, H, G, F. Then, a further decrease in flow rate forces a jump to an
intersection near B (corresponding to sudden ignition).

3. Maximal and minimal solutions. In this section we shall introduce iteration
schemes which converge to the maximal (largest) solution from above and to the
minimal (smallest) solution from below. Therefore, among other things, we give
rigorous existence proofs of maximal and minimal solutions of(1.1)-(1.4). Further-
more, conditions for uniqueness and for the appearance of multiple solutions
are given. First, for brevity in later arguments we define the linear operator L by
Lu flu" u’, and we refer to the boundary conditions (1.2) and (1.3) as Bu O.
Thus, B is a linear boundary operator, and the problem (1.1)-(1.4) can be written as

(3.1) Lu f(u), Bu O.

Basic for all our work is the following lemma.
POSITIVITY LEMMA. Let f be a nonnegative constant, and let qS(x) be twice

continuously differentiable and satisfy

(3.2) L4 f4, < 0, B4 0.

Then, either 4)(x) 0 on 0 <= x < or eli(x) > 0 for 0 < x < 1.
This result is a consequence of the strong maximum principle for elliptic

equations [4]; or, to prove it directly for the special operators L 17 and B of the
present problem, construct the Green’s function G, write (3.2) as an integral equa-
tion with G as kernel, and note that G is negative.

A further preliminary result is the following theorem.
THEOREM 3.1. Every solution u(x) of (1.1)-(1.4) satisfies 0 <= u(x) <= c and

u’(x) >= O on O <= x <= 1.

Proof. The bound 0 =< u(x) <= c is an immediate consequence of Theorem 2.1
of Cohen and Laetsch [5]. The positivity of u’(x) follows from writing flu" u’ as

xl
d

_XnJu,)(3.3) fie x(e
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integrating (1.1) with respect to x from x to 1, and using (1.3) to obtain

(3.4)
1

e./,o x/f(u(x)) dx

Since f(u) >= 0 for 0 =< u =< c, it follows that u’(x) > 0 on 0 < x < 1.
The a priori bound 0 __< u(x) c can be used to replace f(u) by one which

coincides withf(u) on 0 < u __< c, which is bounded and nonnegative for all u, and
for which the extension is as smooth as we please. We now state that throughout the
remainder of this section we are replacingf(u) by one with these properties. Thus, we
can find positive numbers M and such that for all u,

(3.5) 0 <= f(u) <= M,
(3.6) inf f’(u) > .

O<x<l
u>=O

Now, define sequences {u,(x)} and {v,(x)} by

(3.7)

(3.8)

and

(3.9)

Luo M, Buo 0,

Lu, fu, f(u,_ l) fu,_ Bu, O, n= 1,2,3,.-.

Vo(X) =- O,

Lv, ffZv, -f(v,_ l) fv,_ Bv, O, n= 1,2,3,....

THEOREM 3.2. U,(X) > 0 and v,+ l(x) > 0 for all n >= O.
Proof. The proof is by induction. The Positivity Lemma immediately implies

that Uo(X) > 0. Assume u(x) > 0 for all v __< n 1. Then,

(3.11) Lu, fu, -f(u,_ 1) fu,_ < 0, Bu, O.

Hence, it follows from the Positivity Lemma that u,(x) > 0. Clearly, the same proof
applies for the v,(x) also.

THEOREM 3.3. The sequence {u,(x)} is monotone nonincreasing, and the sequence
{v,(x)} is monotone nondecreasing that is,

u,+ l(x) <= u,(x) and v,+ l(x) >= v,(x) for n =0,1,2,....

Furthermore, v,(x) < Uo(X) for all n >_ O.
Proof The proof is by induction. Equations (3.9) and (3.10) imply

(3.12) L(vl Vo)- (vl Vo)= -f(O) < O, B(vl Vo)= O.

Hence, from the Positivity Lemma we conclude that vl(x) Vo(X) >= O. Now, as-
sume that v(x) v_ l(x) >- 0 for all v =< n. Then, (3.10) implies that

L(v,+ v,) "(Vn+ Vn) f(v,_ 1)- f(v,) f(v, v,_ 1)

(3.13) f’()(v,-1 v,) )(v, v,_ 1)

[f’() + f](v, v,_l)< 0,

where v,_ -<_ <= v. and we have obviously used the mean value theorem and then
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inequality (3.6). Since B(v,+l-v,)= 0, the Positivity Lemma implies
-v,(x) >= O, and thus {v,(x)} is monotone nondecreasing. To show that the
{u,(x)} are monotone nonincreasing, we note that (3.7) and (3.5) imply that
L(u0 u l) ’-’(u0 u l) -(M -f(uo)) <= O, B(uo u l) 0. Thus, Uo(X)

ul(x) => 0, and clearly the rest follows by induction just as for the v,(x).
To prove that the v,(x) are uniformly bounded above by Uo(X) we proceed as

follows"

(3.14) Lvl fvl -f(O) >= -M Luo.
Thus,

(3.5) /(Uo v) __< 0, 3(u0 v)= 0,

so that the Positivity Lemma implies Uo(X)- vl(x)>= O. Now, assume that
Uo(X) vv(x) > 0 for all v __< n 1. Then,

(3.16) Lv,, fv,, -f(v,_ 1) Or,,_ >= M fv,,_ Luo Or,,_

Thus, (3.16) and the monotonicity of the v,,(x) imply that

(3.17) L(uo v,) <= f(v,,_ v,) < O, B(uo u,) O.

Hence, from the Positivity Lemma we conclude that v,(x) <= Uo(X).
The existence of maximal and minimal solutions is established by the next

theorem.
THEOREM 3.4. The sequence {u,(x)} converges to the maximal solution fi(x) of

(1.1)-(1.4) and the sequence v,(x)} converges to the minimal solution v(x) of(1.1)-(1.4)
that is, (x) >_ u(x) and v(x) <= u(x) for any solution u(x).

Proof. We give the proof only for the sequence {u,(x)} with the obvious
modifications the same proof applies to the v,(x).

Having demonstrated in Theorems 3.2 and 3.3 that the sequence {u,(x)} is
monotone nonincreasing and bounded from below, we may immediately conclude
that there is a limit function, say

(3.18) lim [u,(x)] fi(x).

That (x) is a solution of (1.1)-(1.4) follows from the work of R. B. Simpson and
D. S. Cohen [6] for more general problems of the form (1.5), (1.6). They used fixed-
point theorems and Schauder-type estimates from the theory of elliptic equations.
For the special operators L and B of the present problem, however, we can also
give the following simpler proof that/(x) is a solution of (1.1)-(1.4)" Write the
iteration scheme (3.8) equivalently as

u,(x) G(x, )[-f(u,_ 1()) f(u,_ 1() Un())] d, n 1,2, 3,..-

(3.19)

where G(x, ) is the Green’s function for L subject to the boundary conditions that
Bu, 0. Since the u,(x) andf(u,(x)) are bounded, the integrand in (3.19) can clearly
be bounded by an integrable function independent of u,. Thus, the Lebesque
bounded convergence theorem for Riemann integrals implies that the limit can be
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taken under the integral in (3.19) to conclude that

(3.20) (x) G(x, )f(())d.

It follows that O(x) is a solution of (1.1)-(1.4).
We now show that fi(x) is maximal. Assume that u(x) is any solution. Then,

u(x) satisfies Lu -f(u), Bu 0. This fact and (3.7) imply

(3.21) L(uo u) -(M f(u)) < O, B(uo u) O.

The Positivity Lemma immediately implies that Uo(X) u(x) >= O. We now proceed
by induction. Assume that uv(x) u(x) >= 0 for all v =< n 1. Then,

(3.22)
L(u, u) f(u, u,_ x) f(u,_ a) + f(u)

f(u, u + u u,_ a)- f’(rl)(u,-x u),

where we have used the mean value theorem and u < r/=< u,_ 1. Hence,

(3.23)
L(u, u) f(u, u) f(u u,_ 1) f’(tl)(U,_l u)

-[f + f’(ri)](u,-1 u)<= O,

and B(u,- u)= 0. Therefore, from the Positivity Lemma we conclude that
u,(x) u(x) >= 0; that is, {u,(x)} converges to the maximal solution.

The formal analysis of 2 indicates that multiple solutions may exist. In fact,
for certain sets of constants fl, a, b, c, k, L. R. Raymond and N. R. Amundson [10]
and N. R. Amundson and D. Luss [12] have numerically computed three different
solutions. Hence, (x) and _v(x) can represent different solutions. The general prob-
lem (1.5), (1.6) with various classes of nonlinearities F(x, u) has been investigated
recently [5]-[9] with particular regard to existence, uniqueness, multiplicity, and
bifurcation phenomena. It has become clear from these studies that certain quanti-
ties (and their geometrical interpretations) play a crucial role in the answers to
these questions. For the present problem (1.1)-(1.4) an immediate consequence of
Theorem 4.2 of D. S. Cohen and T. W. Laetsch [5] is the following theorem.

THEOREM 3.5. If the constants b, c and k are such that

du
< 0

for 0 < u < c, then the solution of (1.1)-(1.4) is unique.
For the nonlinearity (1.4) the condition (3.24) has the following two interesting

geometrical interpretations (i) any line segment from the origin to the function lies
below the graph of the function; and (ii) the tangent to the curve y f(u) on
0 __< u =< c intersects the axis of ordinates (i.e., the u 0 axis) in y > 0. Our formal
analysis of 2 indicates that it is precisely when these conditions are violated
that uniqueness is lost and multiple solutions appear. Hence, for the present
problem the condition (3.24) for uniqueness is a sharp dividing line. Thus, it

appears to be necessary and sufficient that (d/du)[f(u)/u] change sign for multiple
solutions to exist. We make this claim only for the function f(u) given by (1.4);
counterexamples can easily be constructed for other nonlinearities.
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4. Stability. We shall now give sufficient conditions for the stability of the
different solutions. In particular, for various ranges of the parameters we show
that a unique solution is always stable, and when there are three solutions, the
upper and lower ones can both be stable.

It is shown in [11] that the solutions of (1.1)-(1.4)are the steady state solutions
of the parabolic problem

(4.1) Uxx Ux + f(U) Ut, 0 X 1, O,

(4.2) Ux(O, t) a U(O, t) O,

(4.3) Ux(1, t) O,

(4.4) U(x, O) Uo(x).

We shall give a more precise definition later, but roughly, we say that a solution
u(x) of (1.1)-(1.4) is stable if for all initial data of the form

(4.5) Uo(x) u(x) +
the solution of (4.1)-(4.4) decays exponentially in to u(x) to first order in e.

Assuming a solution of (4.1)-(4.4) of the form

(4.6) U(x, t) u(x) + ev(x)e-t + O(e2),

we find, to first order in e, that a and v(x) must satisfy

(4.7) fly"- v’ + [aft + f’(u)]v O,

(4.8) v’(O) av(O) O,

(4.9) v’(1) O.

Clearly, nontrivial solutions v 0 exist ifand only if a is an eigenvalue of (4.7)-(4.9)
and v v(a, x) is the corresponding eigenfunction. The eigenfunctions are com-
plete, and thus, for some coefficients h,,

(4.10) V(x) h,v(a,, x),

and the solution, to first order in e, of (4.1)--(4.4) is

(4.11) U(x, t) u(x) + h,v(a,, x) e- "’ + O(2).

Thus, we are motivated to adopt the following definition.
DEFINITION. A solution u(x) of (1.1)-(1.4) is stable if the first eigenvalue a a

of (4.7)-(4.9) is positive it is unstable if al is negative; and it is neutrally stable if
0"1 0o

For our analysis it is convenient to let v yex/(2). Then, we find that

(4.12)

(4.13)

(4.14)

y" + [a q(x)]y O,

y’(O)-a--fifl)y(O)=O,
+ o,
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where

(4.15) q(x)
4//2 f’(u(x)).

In the chemical reactor theory it is always the case that a 1/(2/) > 0, and hence
we shall maintain this condition here. Our problem now is to determine sufficient
conditions for the first eigenvalue a of (4.12)-(4.15) to be positive.

It is well known that if q(x) is positive everywhere in the interval 0 __< x < 1,
then all eigenvalues of (4.12)-(4.15) are positive. Hence, an immediate consequence
of this is the result that if the constants b, c and k are such that f’(u) O(1) for
0 < u __< c, then for/ sufficiently small, all solutions of (1.1)-(1.4) are stable. In
practice, it is generally the case that/ small and f’(u) O(1) imply only one solu-
tion of(2.3) and hence a unique solution of(1.1)-(1.4). Thus, in this case the unique
solution is stable.

We shall now show that q(x) is positive for both the upper and lower solutions
in a special case where three solutions exist for/ of moderate size. More precisely,
Amundson and Luss [12] have computed the three solutions for the situation where
/ 5, a 0.2 and

(4.16) f(u) 2(107)(0.4- u)e

(The results are given in Example 1 and Fig. 7 of [12].) Three solutions u3(x)
> Uz(X) > ul(x) are found such that 0.01 < ul(x) < 0.03 and 0.32 < u3(x) < 0.37.
It is a simple computation to show that f’(u3(x)) < 0 and f’(ul(x)) < 1/(4/) for
0 < x < 1. Hence, q(x) is positive for both ul(x) and u3(x), and therefore, both
u l(x) and u3(x) are stable solutions.

A more difficult situation which commonly occurs (see [103 and [12] for
experimental values of the parameters) is the case where//is small and f(u) O(1)
on 0 __< u __< c with f’(u) O(1//3) somewhere in 0 =< u =< c. The function q(x) is
then found to assume negative values on some subinterval of 0 _< x <_ l, and then
both the magnitude of the negative values and the length of the interval on which
they are assumed play critical roles in determining the sign of al. We shall now
study this case.

First, we give a formal analysis correct to terms of order O(/) based on the
singular perturbation procedure of 2. Note that a 1/(2/) > 0 and 0 </ << 1
implies that a is at least of order O(1//), and hence the straight line in Fig. 1 is of
such large slope that (2.3) has only one solution 1, where 1 is close to zero
since a is large. This solution u l(x) and the corresponding q(x) given by

1 1
(4.17) ql(x) -f’(ul(x))

4fl2 #

are sketched in Fig. 2 and Fig. 3 respectively from the asymptotic approximation
given by (2.4), (2.5). (Note that our figures are intended to be roughly accurate
illustrations but not precise graphs.) Clearly, we can find numbers N > 0 and
x0 [0, 1] such that

(4.18) ql(x)>=Q(x)=_{O_ for0 < x < Xo,

N forxo<x< 1.
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3

u(x)

.u2 (x)

u(x)

FG. 2

From the variational characterization of the first eigenvalue a of the problem
(4.12)-(4.15) we can write that

al min
(2 dx q-’2 dx -F q 1)

(4.19)
> min

4(x)e

fo fx 1(D’2 dx + (,2 dx N )2 dx .qt_
Xo

a 2(0) "-t’- 1)

f d/)2 dx

,2 dx -Jr IA1 2 dx N 2 dx -Ji- gi 2(0)
> min xo

(x)e,’tl t"1 2 dx
J o

where the class///of admissible functions consists of all functions b(x) continuous
on 0 __< x < 1 and continuous differentiable on 0 < x < 1, and where/ta is the
first eigenvalue of the problem

(4.20) @" +/@ 0, Xo < x < 1,

(4.21) @’(Xo) 0,

(4.22) ’(1) + (1/2fl)@(1) 0.



MULTIPLE STABLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS 11

q(x)

--N

ql(x)

qZ(x)!

FIG. 3

The last inequality in (4.19) follows from using the variational characterization of
#1- The last quantity in (4.19) is positive if #1 > N, and thus we conclude that
0 > 0if#l > N.

The eigenvalues #. of (4.20)-(4.22) are the roots of

(4.23) tan (1 Xo)# 1/2

2fl#l/2"
The mechanism governing stability is now clear. The eigenvalue #1 increases as

1-x0 decreases. Hence, the inequality #1 > N expresses the relationship
between the magnitude of the negative values of q l(x) and the length of the interval
on which they occur. (Clearly, the best choice for N is the minimum of q(x); that
is,

-1 1
(4.24) N + f’(),
where f"() 0.)

Let Xo denote the first positive zero of ql(x), and let u0 U(Xo). Thus,

1
(4.25) q(xo)

4fl2 flf’(uo) O.

Since f’() O(1/fl), we can let N lift2. (Actually from experimental values of
the parameters [10], [12] it is often the case that 1 < < 10, or independent of the
practical chemical reactor theory we can force this to be the case by adjusting
values of fl, b, c and k.) Replacing tan x by its power series and solving (4.23) to first
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order in fl, we find that

1
(4.26) /tl 2(1 Xo)fl

if Xo > 1- 12fl2.

Now, #1 > N implies that Xo > 1 fl/(2/), and for/3 sufficiently small we have
1 12/32 > 1 fl/(21). Therefore,

(4.27) /1 > N ifxo > 1- 12fl2.
Now, as we showed in 2, to first order in fl, the asymptotic expansion of u l(x)

on0<x=< lisgivenby

(4.28) v’ f(v),

(4.29) v(0) el,

which immediately implies
v(xo) dv

(4.30) x
, f(v)

For various values of e the solutions of (4.28), (4.29) or equivalently, the curves
given by (4.30), are sketched in Fig. 4. We can now conclude that if el is such that
0 < e < CZo (where the definition of eo is clear from Fig. 4) then the solution u l(x) is
stable. This follows from the facts that on any curve emanating from an czl in
0 < czl < o the inequality Xo > 1- 12fl2 is satisfied and simultaneously u(x)
< Uo, the first value where q(x) becomes negative.

Therefore, by employing the asymptotic description (2.4), (2.5), we have an
easily applicable sufficient condition for stability. For fixed fl and a given function
(1.4) the numbers and Uo are easily calculated. The integral curves of (2.4), (2.5)
are then plotted, and thus a figure like Fig. 4 is generated from which the values of

1-12B21 x

co

/

u0

FG. 4

v(xo)
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1 sufficient for stability are immediately obvious. Furthermore, if an yields
a stable solution, then clearly all values of in 0 < z __< also yield a stable solution.
This last fact is useful in practice because the flow rate (and hence and a) and k
are easily controlled and changed, and as we saw in 2 these changes cause changes
in the intersection point

One final fact we wish to point out is that no matter how small//and Uo we
can always adjust k so that there always exist curves (as in Fig. 4) such that on them
we simultaneously satisfy the inequalities Xo > 1- 12fl2 and V(Xo)< Uo. This
follows because

f dv ek/(X+c)f dv _ek/(l+c) c
(4.31) f-- >

C V
In

and for any u0 > 0 we can find a k sufficiently large that this last quantity exceeds
unity.

Numerical results for very small values of fl are given in Example 3 and Fig. 10
ofAmundson and Luss [12]. For 0 < fl < 0.03 the stability of the upper and lower
of the three solutions computed can be demonstrated by following our procedures.
By direct computation we can show that for the lower solution q(x) is positive and
for the upper solution q(x) is negative on a sufficiently short interval so thata > N.

We have been able to show that the upper and lower solutions are stable only
for special ranges of the parameters. However, we believe that the same is true in all
cases where three solutions exist, and thus, we conjecture that our iteration schemes
of 3 always converge to stable solutions.
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