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Abstract 
 
A multiple-state quantum Carnot engine based on single particle in one dimensional potential well is evalu- 
ated. The general forms of adiabatic and isothermal force as well as work are given. We apply them first to 
the simplest case of two-state system, and then to three-state and general n-state system. The first isothermal 
expansion starts from single ground state and cease to single highest state. In Addition to the simplest case, 
isothermal expansions may terminate not to highest state but an intermediate state but with the same of the 
total expansion. The result is that the efficiency of the multi-state machine could be enhanced by reducing 
the volume of isothermal expansion for the same of the total volume expansion.  
 
Keywords: Potential Well, Quantum Carnot Engine, Efficiency 

1. Introduction 
 
As a device to convert heat energy into mechanical work, 
classically, heat engine consists of gas as working agents 
that expands and pushes a piston in a cylinder. A heat 
engine obtains its energy from high temperature heat 
reservoir TH. A part of this captured energy is converted 
into mechanical energy and the others are transferred to 
the low temperature reservoir TC. Namely, not all of en- 
ergy drawn from the reservoir QH is converted into me- 
chanical work W. Such that the efficiency of the machine, 
which is defined as the ratio between mechanical work W 
and energy absorbed by the machine QH, will be less 
than one  

1
H

W

Q
   .                (1) 

The main problem of a heat engine is none other than 
this efficiency which is generally small or low. Heat en- 
gine, working between high temperature reservoir and 
low temperature reservoir, will reach maximum effi- 
ciency if the process is reversible.  

Mathematical model of an ideal heat engine was pro- 
posed by Sadi Carnot in 1824. It is reversible and has the 
highest possible efficiency for any engine operating 
between two given temperatures. For this reason, it serves 
as a model for real engines to emulate [1]. Carnot’s en- 
gine is constructed by a cylinder containing an ideal gas 
placed in a thermal contact with high and low reser- 

voirs temperatures, alternately. It consists of four proc- 
esses, two isothermal and two adiabatic processes, each 
of which is reversible. First, the gas in the cylinder un- 
dergoes an isothermal expansion at temperature TH while 
it is in contact with the high-temperature reservoir. Sec- 
ond, the gas continues to expand adiabatically in thermal 
isolation until its temperature drops to TC. Third, the gas 
is compressed isothermally in contact with the low tem- 
perature reservoir. Fourth, the gas is compressed adia- 
batically until its temperature rises to TH. As mentioned 
before, the interesting problem is the low efficiency of 
the engine.   

One of the efforts to increase the efficiency of heat 
engine the application of quantum principles to the en- 
gine. The study of quantum engines started in 60’s [2], 
when it was realized that many models of lasers and ma- 
sers are in fact quantum heat engines. A good review of 
this early activity is given by [3] in [4]. Nowadays the 
physics of quantum heat engines is a rich field, some 
papers describe one by studying the quantum thermo- 
dynamical processes, quantum generalization of force or 
preasure to study quantum version of thermodynamic 
cycles [5-8]. To enhance the efficiency of heat engines, a 
paper applied the principles of quantum mechanics to the 
heat engine. It had been efforted using a laser and masser 
in tandem. As an example, it is shown that the perform- 
ance of Otto cycle engine can be improved beyond that 
of the “ideal” Otto heat engine [9]. While, other author 
stated that the quantum efficiency can exceed the classi-
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cal Carnot limit with quantum correlation [10].     
Bender, et al., [11] provided a kind of cyclic Carnot 

heat engine employing a single quantum-mechanical par- 
ticle, as a working substance, confined to a potential well, 
instead of gas-filled cylinder. The cycle consists of iso- 
thermal and adiabatic quantum processes that are close 
analogues of the corresponding classical processes. By 
formulating 2-state quantum heat engine the efficiency of 
this system is analogue of the classical thermodynamical 
result of Carnot. It would be more interesting if it is 
studied for n-state in greater depth. In other hand, by 
reformulating the first law of thermodynamics in the 
fashion of quantum-mechanical operator on the parame- 
ter manifold, Quan et al. proposed a class of quantum 
heat engines using the multilevel quantum system as the 
working substance. They proved for a 3-level QHE the 
work to be looser than that for a 2-level system under 
certain conditions [5].  

The purpose of this paper is further discussion of 
quantum Carnot heat engine employing a single quan- 
tum-mechanical particle confined to a potential well with 
a multiplestate particle. In previous work [11], the results 
of 2-state was generalized to n-state qualitatively without 
detail analysis. Since the particle system has multistate 
then it has some eigenstates, at least one state, before the 
highest state which can be reached as a final state in 
isothermal expansion, this fact in turn gives a possibility 
to choose another final state besides the highest eigenstate 
of the system. For the same total expansion but different 
expansion during isothermal process gives a different 
efficiency.  

This paper is organized as follows: In Section 2 we 
briefly review the simplest quantum mechanical Carnot 
engine based on one-dimensional potential well with two 
eigenstates. In Section 3, three level and generalization 
to n-level quantum system is discussed. Finally, discus- 
sion and conclusions will be given in Section 4.  
 
2. Quantum Carnot Engine 
 
Quantum heat engines (QHEs) [2] produce work using 
quantum matter as their working substance. Because of 
the quantum nature of the working substance, QHE have 
unusual and exotic properties. For example, under some 
conditions, QHEs can surpass the maximum limit on the 
amount of work done by a classical thermodynamic 
cycle [12] and also surpass the efficiency of a classical 
Carnot engine cycle. QHEs offer good model systems to 
study the relation between thermodynamics and quantum 
mechanics. Meanwhile, they can highlight the difference 
between classical and quantum thermodynamic systems, 
and help us understand the quantum classical transition 
problem of thermodynamic processes [6,7].  

We provided a kind of quantum heat engines, i.e. a 
cyclic Carnot heat engine employing a single quantum- 
mechanical particle, as a working substance, confined to 
a potential well, instead of gas-filled cylinder. Rather 
than 2-state, we purpose further discuccion with 3-state 
and n-state of the particle.  
 
2.1. Infinite One-Dimensional Potential Well 
 
The simplest quantum system is a particle mass m con- 
fined in a one-dimensional well of width L with infinite 
potential walls. The motion equation of this system is 
one-dimensional time independent Schrodinger equa-
tion.  

2 2

22

d
E

m dx

  


.                (2) 

The infinite potential walls at x = 0 and x = L provide 
boundary conditions for the state functions    0 L   
0. The general solution of this equation is a linear com-
bination of orthonormal eigenfunctions  n x  

   
1

n n
n

x a x 




  ,               (3) 

and energy E, 

2

1
n n

n

E a E




  ,                (4) 

where n and En have explicit forms as follows. 

  2 π
sinn

n
x x

L L
  

 

 ,            (5) 
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2

2

π

2nE n
mL




.                (6) 

And, the coefficients an satisfy the orthonormal condition 

2

1

1n
n

a




 ,                 (7) 

From Equation (6), the energy (4) becomes 

 
2 2

22
2

1

π

2n
n

E n a
mL





  
.            (8) 

Now, if one of the infinite walls of the potential well, 
say the wall at x = L, is allowed to move an infinitesimal 
amount dL then the general wave function  (x), eigen 
functions n (x) and energy levels En all vary infinitesi- 
mally as function of L. In this situation, it is natural to 
define the force on the wall of the potential well as the 
negative derivative of the energy, 

dE
F

dL
  .                   (9) 
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This force F exerts on the wall. Based on this force, 
several kinds of thermodynamical processes which have 
the quantum analogues to the classics can be defined. 
According to the force, work from L1 to L2 is given by  

2

1

12 d
L

L

W F  .                (10) 

 
2.2. Thermodynamical Quantum Processes 
 
Heat engines are devices that extract energy from its en- 
vironment in the form of heat and do useful work. The 
heart of every heat engine is its working substance. The 
operation of the heat engine is by subjecting the working 
substance of the engine to be a sequence of thermody- 
namics processes that forms a cycle. Carnot heat engine 
operates with isothermal and adiabatic processes. Clas- 
sically, an adiabatic process is one in which the system is 
thermally isolated in such a way that heat cannot flow 
into or out of the system. An isothermal process is one in 
which as the piston moves, the system remain in equilib- 
rium at all times. During the process, the system is in 
contact with a heat reservoir so that the temperature T of 
the gas in cylinder remains fixed. During the piston 
moves, the system does work both in adiabatic as well as 
in isothermal processes. 

Now, the above classical thermodynamical system 
may be applied in a monatomic one-dimensional gas in 
the infinite potential well. One monatomic particle is as a 
working substance, a wall of infinite potential well at x = 
L as a piston can moves and the system remains in equi- 
librium at all times. Two processes for Carnot engine are 
adiabatic and isothermal.  

In adiabatic process, there is no heat transfer from or 
into the system, and the potential wall changes as the 
wall moves. Since the system remains in equilibrium at 
all times, the absolute values of the expansion coeffi- 
cients an must be constant. That is, we do not expect any 
transitions between states can occur during an adiabatic 
process.  

It is clear from Equation (7) that the eigen energy En 
depends on L and the energy (4) will changes during an 
adiabatic process. The energy increases if the system 
compresses and decreases if the system expands. When 
the piston moves out, then the energy decreases and the 
energy that is lost equals the mechanical work done by 
the force F (9), which is given by  

 
2 2

22
3

1

π
n i

n

F n a L
mL





   
 
 

,         (11) 

where an(Li) is the n-th coefficicnt at initial state with a 
width Li.  

Applying the force (11) into Equation (10), we obtain 

a work along adiabatic process from L1 as the initial 
volume to L2 as the final volume  

 
2 2

22
12 1 2 2

1 1 2

π 1 1

2n
n

W n a L
m L L





     
   
 

 .    (12) 

In isothermal process, the system is in contact with a 
heat source so that the temperature T of the gas in the 
cylinder is fixed. It implies that the transition between 
states occur so that the internal energy of the gas during 
isothermal process remains constant. In other word, the 
expansion coefficients an in general change but the or- 
thonormal condition (5) remains satisfied. This im-
plies that during the process the width of the system 
satisfies 

 

 

22

2 1

22

1

n
n

i

n i
n

n a L
L

n a L












2L .            (13) 

Where Li is the initial width.  
The force of the piston is constrained by Equation (12) 

and has a form as follows.  

 
2 2

22
2

1

π
n i

n i

F n a L
mL L





   
 
 

.         (14) 

According to the force, the work along isothermal proc- 
ess from L1 as the initial volume, to L2 as the final 
volume is given by 

 
2 2

22 2
12 1 2

1 11

π
lnn

n

L
W n a L

LmL





      
   
 

.     (15) 

A work of the system is equal to the absorbed energy. 
 

2.3. Two-State Quantum Carnot Engine 
 
Using the two quantum adiabatic processes and two 
quantum isothermal processes above, we can construct a 
Carnot heat engine. The simplest case of the particle in 
the system is the particle has only two states i.e. ground 
state (n = 1) and the first excited state (n = 2). It means 
the orthonormal condition (5) becomes simpler form 

2 2

1 2 1a a  . 
The four-step cyclic quantum process of the quantum 

Carnot engine is illustrated as a diagram between the 
force and the width as in Figure 1. The cycle starts with 
a ground state in a well of width LA. It means the coeffi- 
cients a1 = 1 and a2 = 0. The energy of the system is the 
lowest value. The wall at LA expands isothermally and 
the particle may excite and in general the state of particle 
is combination of two possible states  = a11 + a22. 
Along the expansion, the relation of widths (13) has a 
simple form 
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2 2 2 2
1 24 AL a a L  . 

It gives, in turn, the maximum expansion LB = 2LA 
when the state of particle is purely excited state a2 = 1 
and a1 = 0. If the expansion is maximum then the total 
work, that is the work done to expand from LA to 2LA is 
given by 

2 2

2

π
ln 2AB

A

W
mL




.            (16) 

The second expansion from LB is adiabatic expansion 
with a single state 2. Different from isothermal process, 
there is no definit limit of the maximum width in the 
adiabatic process. Then we assume the piston moves 
from LB to LC = LB where the real number  is bigger 
than one, then the work during the isothermal expansion 
is given by 

2 2

2

π 1
4 1

2BC
B

W
mL 2

 
 

 
 .          (17) 

Next, the system is compressed isothermally from LC 
to LD. At the beginning of compression the system is 
purely in the first excited state, a1 = 0 and a2 = 1. Along 
the compression the transistion occurs, the system is in 
the mixed state and the energy remains constant. In order 
the process occurs in close loop then at width LD the sys- 
tem should be at a single ground state. It means a1 (LD) = 
1, a2 (LD) = 0. Since a1 (LC) = 0, a2 (LC) = 1 then from 
(13) we obtain a maximum compression LD = LC/2. 
Hence, the isothermal work during compression from LC 
to LD = LC/2 is given by 

2 2

2

π
4 lnCD

C

W
mL

 


2 .            (18) 

The last process is adiabatic compression from LD to 
LA. During the compression the system is in single 
ground state. The work of the compression is given by 

2 2

2 2

π 1 1

2DA
D A

W
m L L

 
 

 


 .         (19) 

The mechanical work W done in single cycle of the 
quantum heat engine is represented by the area of the 
closed loop in Figure 1. Using relation between LB = 2LA, 
LC = LB and LD = LC/2 the total mechanical work is the 
sum of WAB, WBC, WCD, and WDA. The total work is 

2 2

2

π 1
ln 2 1

A

W
mL 2

 
 

 
 ,         (20) 

and the efficiency is the ratio between W and WAB and 
given by 

2

1
1


  .                (21) 

B 

C 
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A 

QH 

F

L

QC 

LC LB LD LA  

Figure 1. Cycle of carnot engine. 
 
3. Multiple-State 
 
Formulation can be generalized, as stated qualitatively 
by Bender [11], to be n-state and if the initial width of 
the wall is L1 then the maximum expansion is nL1. We 
study more detail for the case of n-state, and first study 
for 3-state. 
 
3.1. 3-State 
 
We assume the system may have three eigen states 1, 2, 
3 associated with the eigen energies E1, E2 and E3. As in 
case of two-state, we start with the initial state a ground 
state 1 with energy E1 of width LA. The expansion coef- 
ficiens of the initial condition are a1 = 1, a2 = a3 = 0. 
Then, the system isothermally expands and does transi- 
tion to all three possible states. In general the system is 
in a linear combination of three states  = a11 + a22 + 
a33 and satisfies orthonormal condition 

     2 2 2

1 2 3 1a L a L a L   .        (22) 

Using a1 (L) = 1, a2 (L) = a3 (L) = 0, Equation (13) be- 
comes  

 22 22 2
1 2 34 9 AL a a a L   , 

yielding maximum expansion L = LC = 3LA which is oc- 
curred when a1 (LB) = a2 (LB) = 0 and a3 (LB) = 1. Hence, 
the work until maximum expansion is given by 

2 2

2

π
ln 3AB

A

W
mL




.             (23) 

The second expansion from LB to LB = LC occurs in 
highest state 3. The adiabatic work (12) becomes 

2 2

2

π 1
9 1

2
BC

B

W
mL 2

 
 

 
 .          (24) 

For the isothermal compression from LC to LD the ini- 
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tial conditions of the system are a1 = a2 = 0 and a3 = 1 
and then does transition to the linear combination of 
three possible states. Relation (13) reduces to the form 

22 2

1 2 32 24 9

9 C

a a a
L L

 
 , 

yielding a maximum compression to LD = LC/3 with the 
system in a single ground state. The associated work to 
maximum compression is given by 

2 2

2

π
9 lnCD

C

W
mL
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

3 .             (25) 

From relation among LA, LB, LC and LD we obtain work 
of the adiabatic compression in the form of initial width 
LA of the whole process 

2 2

2

π 1
1

2DA
A

W
mL 2

  
 

 
 .          (26) 

Then, the total work is given by 

2 2

2

π 1
ln 3 1

A

W
mL 2

 
 

 
 ,           (27) 

and the efficiency is the same with a case of two states 

2

1
1


  .                (28) 

We are also interested in other case. We consider first 
the multiply factor  that is the same for two cases, 
two-states and three-states,  = LC/LB. But, two previous 
cases are different at total expansion from initial width, 
2 for two-states and 3 for three-states. 

Now we consider a case of the expansion from initial 
witdh LA not to LB = 3LA but to LB = 2LA. When the sys-
tem expands isothermally and comes to rest at LB = 2LA 
then the work of the system is 

2 2

2

π
ln 2AB

A

W
mL




.             (29) 

At LB = 2LA the system still has a linear combination 
of all three possible states, and the coefficients a1, a2 and 
a3 satisfy a relation 

22 2

1 2 34 9a a a   4 .          (30) 

Equation (30) and orthonormal condition (22) form a line 
of condition of the system during adiabatic expansion 
from LB = 2LA to LC (Figure 2).  
When the system expands from 2LA to LC, its state is a 
fixed definite state at a line state Figure 2. For LC = 3LA 

then the work (13) becomes 
2 2

2

π 4 1
1

92BC
A

W
mL

0.0
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0.8

a1
0.0

0.5
1.0　a2　

0.0
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0.4

0.6

a3

 

Figure 2. Parameters |a1|, |a2| and |a3| along the adiabatic 
expansion. 
 

The next process is isothermal compression from LC = 
3LA to LD. Since the expansion from LB to LC is adia- 
batic then the coefficients do not change. It implies that 
condition (30) prevails also at LC. It further implies, from 
relation (13) that the maximum compression from LC is 
is LD = LC/2, and the work is given by 

2 2

2 2

π 4 1
ln 2

9CD
A

W
mL 

    
 


.        (32) 

At wall of width LC/2 the system is at ground state, 
and then expands adiabatically until LA. Since LD = 
3LA/2 then its work of the compression from LD to LA is  

2 2

2

π 4 1
1

92
DA

A

W
mL 

  
 


2


 .          (33) 

The total work of the cycle is 
2 2

2 2

π 4 1
1 l

9A

W
mL 

   
 


n 2 ,          (34) 

and the efficiency of the heat engine W/WAB is given by 

2

4 1
1

9



   

 
3.2. General Equations 
 
It is straightforward to generalize the three-state quantum 
Carnot engine to n-state. For n-state with initial state is 
single ground state and width is LA, the isothermal ex- 
pansion can be maximum of width nLA. During the ex- 
pansion the system does transition to all possible n states 
and it is as a liniear combination of all n-state. The coef-
ficients of the expansion satisfy an orthonormal con- 
dition  

22 2

1 2 1na a a    .         (36) 

2
 
 

 
 .         (31)  At the maximum width the system back to a single 

state, the highest excited state, nth-state. The work of the 
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expansion is 
2 2

1 2

π
ln

A

W
mL




n .              (37) 

The next expansion is adiabatic expansion from nLA to 
nLA. During the expansion, the state is in single n-state. 
The work is 

2 2

2 2

π 1
1

2 A

W
mL 2

 
 

 
 ,            (38) 

that depend on the ratio of final and initial width of the 
adiabatic expansion. 

The isothermal compression occurs with condition (13) 
of the form 

22 2 2
1 22 2

2

4 n
C

a a n a
L L

n

  



, 

then the maximum compression that leads to cyclic proc- 
ess is LD = LC/n. The work is 

2 2

3 2 2

π
ln

A

W
m L
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

n .           (39) 

The adiabatic compression occurs in single ground 
state and its work is negative of adiabatic expansion (38). 
Then the total of cyclic work is  

2 2

2

π 1
ln 1

A

W n
mL 2

 
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 
 ,            (40) 

with the efficiency is equal to efficiency of 2 or 3 states 
(28). 

The second scenario of system with n states is the iso-
thermal expansion not to maximum nLA but kLA where 
integer k is smaller than n. When the system expands 
isothermally and comes to rest at LB = kLA then the work 
of the system is 

2 2

1 2

π
ln

A

W
mL




k .             (41) 

At LB = kLA the system still has a linear combination 
of all possible states, and the coefficients a1, a2, , an 
also satisfy a relation 



22 2 2
1 24 na a n a    2k .       (42) 

Equation (42) and orthonormal condition (36) make in- 
tersection and give a condition of the system along adia- 
batic expansion from LB = kLA to LC.  

When the system expands from kLA to LC its state is a 
fixed definite state at a point at hypervolume of intersect- 
tion of orthonormal condition (36) and coefficient of 
maximum expansion. The coefficient number of force is 
given condition (42) and expansion from LB = kLA to LC 
= nLA is performed by the work 

2 2 2

2 2 2 2

π 1
1

2 A

k
W

mL n 
 
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 


 .          (43) 

The next process is isothermal compression, with the 
initial width LC = nLA. Condition (42) yields a maxi- 
mum compression LD = LC/k where at this width the sys- 
tem is at single a ground state. The work is given by 

2 2 2

3 2 2 2

π 1
ln

A

k
W k

mL n 
 

   
 


.         (44) 

At wall of width LC/k the system is at ground state, 
and then expands adiabatically until LA. The work of 
compression is given by  

2 2 2

4 2 2

π 1
1

2 A

k
W

mL n 2
 

  
 


 .         (45) 

The total work of the cycle is 

2 2 2

2 2 2

π
1 l

A

k
W k

mL n 
 

  
 


n ,         (46) 

and the efficiency of the heat engine W/WAB depends on 
the first expansion factor k and total expansion n 

2

2 2
1

k

n



  .                (47) 

In the perspective of energy, since LC = LB, then the 
efficiency (28) which is also satisfied by system of n- 
state is the same to 

1 B

C

E

E
   .                (48) 

Whereas, the efficiency (47) for the total expansion nLA 
but intermediate expansion kLA is the same to 

1 B

C

E

E



  ,                (49) 

where  2 2
B BE k n E  . 

 
4. Conclusions 
 
We have elaborated the quantum mechanical Carnot en- 
gine [11]. The general result is the same as the previous 
work, that is the efficiency depends on the initial and 
final energy or temperature [11]. This result makes a 
general confirmation that for the higher state QHE the 
work to be looser than than that for lower sate system 
under certain condition [5]. However, there is more in- 
teresting result in the perspective of the volume of sys- 
tem. In the perspective energy or temperature, the effi- 
ciency may be increased if the lower energy is descended. 
It may be performed by, for the same total expansion, 
lowering of the isothermal expansion. The later lower 
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energy is smaller than the former by a factor k2/n2. In 
other statement, if the too many number of state of system, 
causing decreasing efficiency, cannot be control, the 
efficiency can be enhanced by controlling its isothermal 
expansion.  

The maximum isothermal expansion LB of the n states 
system is nLA. It is occurred when both initial and final 
state are single state, ground state for initial state and the 
highest state for the final state. However, if the initial 
width in the state of k then the maximum expansion is 
nLA/k.  
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