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should be adjusted for home advantage [3]. It is interesting that the
home advantage increases from regular season to playoff competition
in the NBA and for European club soccer, remains the same for the
NHL and declines for MLB. Adjustive ratings have been proposed
using maximum likelihood, least squares and exponential smoothing.
The probabilities of the various outcomes have been calculated using
Gaussian and Poisson assumptions. For sports with few draws, the
correct winner can be predicted correctly about 70% of the time. See
[3] for comparisons of various methods and for a bibliography.

VI. CONCLUSIONS

Systems analysis was applied to a comprehensive list of 83 sports.
Each of those sports can be placed into one of three categories:
combat sports where each competitor tries to control the opponent,
object sports where each competitor tries to control an object or
independent sports where each competitor in unimpeded by the
opponent and therefore must control him(her)self. Each ensuing SRS
consists of three phases: evaluation, weighting and rating. The input
to the evaluation phase is a performance in a sport. Each performance
is then evaluated by either judgement, measurement or objective
scoring. In the weighting phase, a matrix of weights is applied
to the evaluated performances. In the rating phase, operations are
classified as being accumulative or adjustive. Most accumulative
SRS’s are ad-hoc using a sum of some or all of the weighted
evaluated performances. For accumulative SRS’s, each rating changes
monotonically except for data ageing. Most adjustive SRS’s are
based on some theoretical concept in which predictor-corrector action
causes ratings to either increase, decrease or remain the same as
required by the corrector. Each SRS is analogous to a one-level neural
network (weighting phase) followed by an inference engine (rating
phase) generating the ratings.

Accumulative SRS’s, in contrast to adjustive SRS’s, appear to
encourage more participation by high-rated players as noted by
administrators of men’s and women’s professional tennis. Conversely,
adjustive SRS are about equally sensitive to motion up or down and
are more commonly used to predict future performance. For adjustive
SRS’s applied to sports with few draws and operating on margin of
victory adjusted for home advantage, it is possible to predict the
correct winning team about 70% of the time.

It is hoped that this survey and taxonomy of SRS’s may be an aid
to those who are interested in evaluating human performance (not
necessarily restricted to sports).
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Multiple Stochastic Learning Automata for Vehicle
Path Control in an Automated Highway System

Cem Ünsal, Pushkin Kachroo, and John S. Bay

Abstract—This paper suggests an intelligent controller for an automated
vehicle planning its own trajectory based on sensor and communication
data. The intelligent controller is designed using learning stochastic
automata theory. Using the data received from on-board sensors, two
automata (one for lateral actions, one for longitudinal actions) can learn
the best possible action to avoid collisions. The system has the advantage
of being able to work in unmodeled stochastic environments, unlike
adaptive control methods or expert systems. Simulations for simultaneous
lateral and longitudinal control of a vehicle provide encouraging results.

Index Terms—Automated highway system (AHS), intelligent vehicle
control, reinforcement learning, stochastic learning automata.

I. INTRODUCTION

Growing traffic congestion and the number of traffic casualties are
two of the most significant transportation problems today. At the same
time, building additional highways is becoming increasingly difficult
for both monetary and environmental reasons. One of the solutions
to this problem is the Automated Highway System (AHS). AHS will
evolve from today’s roads, and provide a fully automated “hands-
off” operation at better levels of performance than today’s roadways
in terms of safety, efficiency, and operator comfort. Vehicle control
is one of the most vital parts of the AHS research. Considering the
complexity of an intelligent vehicle/highway system, it is becoming
apparent that conventional methods are not sufficient to provide a
fully automated, collision-free environment. The task of creating
intelligent systems that we can rely on consequently brings the idea
of “artificial intelligence” (AI) to mind. Several AI paradigms are
emerging as candidate solutions.

Automatic vehicle control, as defined within AHS, proposes to
remove the driver as the source of control in the vehicle. In the
early stages of this evolution, not all vehicles may be equipped with
this technology; “intelligent” and “nonintelligent” vehicles will have
to coexist for some time. In this paper, we suggest an intelligent
controller for an automated vehicle that plans its own trajectory based
on sensor—and, in the future, communication—data received. We
visualize our controller as a part of the five-layer hierarchical control
architecture described by Varaiya [20]. The layers of this architecture,
starting at the top, arenetwork, link, planning and coordination,
regulation and physical layers. The planning layer creates a plan
that approximates the desired path. The regulation layer controls
the vehicle trajectory so that it conforms to this plan. Below the
regulation layer, the physical layer provides sensor data and responds
to actuator signals.
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Our intelligent controller can be visualized as part of this planning
layer. It uses an AI technique calledlearning stochastic automata.
The aim is to design a system that can learn the best possible action(s)
based on the data from on-board sensors and/or roadside-to-vehicle
communications. We visualize the intelligent controller of a vehicle
as two stochastic automata (one for lateral, the other for longitudinal
control) in a nonstationary environment. The system will control
the path of the vehicle in the automated highway in the case of
communication loss with the higher layer in the hierarchy and/or
during the transition from automatic to manual control. It may also be
used as the sole system for path planning, though it is not necessarily
fail-safe. A learning automaton system for vehicle control has the
advantage of being able to work in unmodeled dynamic environments,
unlike adaptive control methods or expert systems that need detailed
information about the system. It is also possible to model driver
characteristics as a part of the system.

In the next section, we will introduce the learning automata and
related definitions. Section III describes our application in intelligent
vehicle control. Simulation results and discussion of improvements
and further research are in Sections IV and V, respectively.

II. L EARNING AUTOMATA

Classical and modern control techniques require a fair amount
of knowledge of the system to be controlled, in the form of a
mathematical model of the system or statistical values such as mean
and variances of the uncertainties. However, not all those assumptions
on the system or uncertainties may be valid or accurate. It is therefore
necessary to obtain further knowledge of the system by observing
it during operation. One approach is to view this as a problem in
learning [6], [16], [18]. Rule-based systems, although performing well
on many control problems, cannot handle unanticipated situations.
The idea behind designing a learning system is to guarantee robust
behavior without the complete knowledge, if any, of the system and/or
environment. A crucial advantage of reinforcement learning com-
pared to other learning approaches is that it requires no information
about the environment except for the reinforcement signal [9], [14].
“In a purely mathematical context, the goal of a learning system is
the optimization of a functional not known explicitly” [13].

The stochastic automaton attempts a solution of the problem
without anya priori information on the optimal action. One action is
selected at random, the response from the environment is observed,
action probabilities are updated based on that response, and the
procedure is repeated. A stochastic automaton acting as described
to improve its performance is called alearning automaton[3], [14].
Stochastic automata were first used in control applications by Fu
et al. [5]. Several researchers studied different learning schemes
(e.g., [4] and [7]) and applications to different control problems
(e.g., [12] and [14]). Recent applications to real life problems
include control of absorption columns [11], pattern recognition [17],
active vehicle suspension [9], path planning for manipulators [15],
and mobile robots [1]. Here, we will describe the use of learn-
ing automata as an intelligent controller for vehicle path planning
in unmodeled traffic.

When a specific action� is performed at timen; the environment
responds by producing an environment� that is stochastically related
to the action (Fig. 1). In the simplest case, this response may be
favorable or unfavorable (0 for reward and 1 for penalty). The
environment may be time varying, i.e., the stochastic characteristics
of the output of the environment may be caused by the actions of other
agents unknown to the automaton. If the probability of receiving a
penalty for a given action is constant, the environment is called a
nonstationary environment. The need for learning and adaptation in
systems is mainly due to the fact that the environment changes with

Fig. 1. The automaton and the environment.

time. Performance improvement can only be a result of a learning
scheme that has sufficient flexibility to track the better actions.

The main concept behind the learning automaton model is the
concept of a probability vector defined asp(n) = fpi(n) 2
f0; 1gjpi(n) = Pr[�(n) = �i]g where�i is one of the possible
actions. The updating of the probability vector at every time step
with a reinforcement schemeprovides the learning behavior of the
automaton. A reinforcement scheme, is a mapping from current action
�; current environment response�; and current action probability
vector p(n) to p(n + 1); the action probability vector at the next
time step.

If the automaton is “learning” in the process, its performance
must be superior to an automaton for which the action probabilities
are equal. Based on the average value of the penalties received by
the automaton, several definitions of behavior, such asexpediency,
optimality, andabsolute expediency, are given in the literature [14].
An automaton is absolutely expedient if the expected value of the
average penalty at one iteration step is less than it was at the
previous stepfor all steps. Absolutely expedient learning schemes are
presently the only class of schemes for which necessary and sufficient
conditions of design are available [2], [14]. The algorithm we will
present in this paper is derived from a nonlinear absolutely expedient
reinforcement scheme presented by Baba [2].

A learning automaton may send its action to multiple environments
at the same time. In that case, the action of the automaton results in
a vector of responses from environments (or “teachers”). Then, the
automaton has to find an optimal action that satisfies all the teachers.
This problem was previously discussed in [2]. Some difficulties arise
while formulating a mathematical model of the learning automaton
in a multiteacher environment. The question of how to interpret
the output vector�(n) is important: Are the outputs from different
teachers to be summed after normalization? Can we introduce weight
factors associated with specific teachers? If so, how?

The elements of the output vector must be combined in some
fashion to form the input to the automaton. In this application,
since the environment response is binary, teacher responses are
combined using an OR gate, which forces the system to satisfy
all the teachers simultaneously. However, due to safety reasons, the
finalized function for the combined response includes conditions in
which one teacher response inhibits the others, as we discuss later
in Section III-B.

III. I NTELLIGENT VEHICLE CONTROL

We model the path controller of an intelligent vehicle as a pair of
automata. The aim is to design an automata system that can learn
the best possible action(s) based on the information received from
on-board sensors. Vehicle-to-vehicle and roadside-to-vehicle commu-
nications could be future extensions. The system we define will be
useful as a backup system (or the only system in a homogeneous
traffic network) in controlling the path of a vehicle in the case of
communication loss with the higher layer in the hierarchy, as well as
during the transition between fully automatic and manual control.

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on April 05,2010 at 15:43:44 EDT from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Automata in a multiteacher environment connected to the physical environment.

Our model for lane and speed control of a vehicle is shown in
Fig. 2. The automata that constitute the decision structure have three
actions each:stay in lane, shift to right(lane),shift to left for lateral
control (SiL, SR, and SL);accelerate, decelerateand same speed
for longitudinal control (ACC, DEC, and SS). We assume that there
are four different types of sensors (front, right, left and speed) that
provide data. Each sensor block is a “teacher” in a nonstationary
environment. (Inter-vehicle and roadside-to-vehicle communications,
as well as a feedback from the regulation layer, could be added
as additional “teachers.”). The response of the environment is a
combination of the outputs of all four teachers. The mappingF from
sensor block outputs to the input� to the automata can be a binary
function, a linear combination of five teacher outputs, or a more
complex function—as is the case in this application. The functionF

is described in Section III-B.
It is important to differentiate between the “automaton environ-

ment” and the “physical environment.” The automaton environment
is the stochastic system model that provides responses to the automata
actions. The action� of the automaton is a signal to the regulation
layer that defines the current choice of action. It is the regulation
layer’s responsibility to interpret this signal. When an action is
carried out, it affects the physical environment. The teachers/sensors
in turn sense the changes in the environment, and the feedback
loop is closed with the signal�: The discussion of nonstationary
environments is based on the changing penalty probabilities of
actions. In this application, the action probabilities in the learning
automaton environment are functions of the status of the physical
environment (e.g., a vehicle in front will result in a penalty response
from front sensor/teacher if the chosen action is SiL or ACC). The
realization of a deterministic model of this physical environment
would be extremely difficult.

A. Sensors

The four sensor/teacher modules listed above are simple decision
blocks that calculate the penalty response associated with the corre-
sponding sensor, based on the chosen action. Tables I and II below
describe the output of the decision blocks for front and side sensors.
As seen in Table I, a penalty response from left sensor module is
received only when the lateral action is SL and there is a vehicle in
the left sensor’s field of view. Similarly, the action SR is penalized
if there is a vehicle on the right lane. All other situations result in a
reward response for the lateral actions. Longitudinal actions are not
affected by the side sensor responses.

TABLE I
OUTPUT OF THE LEFT AND RIGHT SENSOR BLOCKS

TABLE II
OUTPUT OF THE FRONT SENSOR BLOCK (REGIONS DEFINED IN FIG. 3)

We assume that the front sensor is capable of providing the head-
way distanceand we can measure its rate of change by comparing
two consecutive sampling values. If the sensor “sees” a vehicle at a
very close distance(d1); a penalty is sent in response to automata
actionsSiL, ACC,and SS. All other actions may serve to avoid a
collision, and therefore, would be “encouraged.” If the vehicle in
front is not too close (i.e., the distance to the vehicle is greater than
d1; but less thand2) and is not approaching, the response from front
sensor is favorable (Table II).

Consider the situation shown in Fig. 3, where the controlled
vehicle’s left and front sensors detect vehicles, and the vehicle in
front is slower that the controlled vehicle. If the current automata
actions are SL and ACC, the lateral automaton will receive a penalty
from the left sensor. At the same time, the longitudinal automaton will
receive a penalty from the front sensor because of the approaching
vehicle.

Table III gives the penalty definitions for the speed sensor. The
deviation (dev) is defined as the difference between current speed
and the desired speed. A penalty response is received only by
longitudinal actions. Lateral actions are not affected by the speed
sensor block.

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on April 05,2010 at 15:43:44 EDT from IEEE Xplore.  Restrictions apply. 
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Fig. 3. The vehicle, sensing the approaching vehicle in front, can avoid a
collision by shifting to the leftmost lane.

TABLE III
OUTPUT OF THE SPEED SENSOR BLOCK

The values of the limitsd1; d2; andds define the capability of the
sensors as well as the “behavior” of the vehicle, i.e., the sensitivity
to the headway distance and to the speed fluctuations. The fifth block
in Fig. 2 represents the evaluation of the information received via
vehicle-to-vehicle and/or roadside-to-vehicle communications [19].
The addition of communication capabilities increases an autonomous
vehicle’s capability to handle complex traffic situations. Here, we will
emphasize the learning algorithm and its application to automated
vehicle control, and therefore will not include this block in our
discussion for reasons of clarity.

In the case shown in Fig. 3, the action SL will receive a penalty
response, although it is one of the two actions needed to avoid a
collision (the other one is DEC). Using the present algorithm, the
vehicle decelerates in a situation like this (the mappingF forces
this), and although it is able to avoid a collision, the resulting path
is far from optimal. We can show that additional information about
the environment would enable the vehicle to “escape” the pocket
created by the slow-moving vehicles [19]. We expect our automata
and multiteacher automata environment to guide the vehicle without
collision using the learning algorithm described below.

B. The Algorithm

In a stationaryN -teacherP -model environment, if an automaton
has the action�i and the environment responses are�ji = 1; � � � ; N
at time stepn; then the probabilities forr actionsP (n + 1) =
fp1 p2 � � � prg are updated as follows:

if �(n) = �+ i;

pi(n+ 1) = p+ i(n) +
1

N

N

k=1

�ki �

r

j=1

�j(P (n))

� 1�
1

N

N

k=1

�ki �

r

j=1

 j(P (n))

pj(n+ 1) = pj(n)�
1

N

N

k=1

�ki � �j(P (n))

+ 1�
1

N

N

k=1

�ki � j(P (n)) for all j 6= i (1)

where the functions�i and i satisfy the following conditions:

�1(P (n))

p1(n)
= � � � =

�r(P (n))

pr(n)
= �(P (n))

 1(P (n))

p1(n)
= � � � =

 r(P (n))

pr(n)
= �(P (n))

pj(n) +  j(P (n))> 0

pi(n) +

r

j=1

�j(P (n))> 0

pj(n)� �(P (n))< 1 (2)

for all i; j = 1; � � � ; r; i.e., the update functions�i and i have a
constant value for all components ofP (n); and updates of probability
vector do not force the values outside of the range (0, 1) for all
pi 2 (0; 1):

Theorem: If the functions�(P ) and �(P ) satisfy the following
conditions:

�(p) � 0

�(p) � 0

�(p) + �(p)< 0 (3)

then the automaton with the reinforcement scheme in (1) is absolutely
expedient in a stationary environment.

The proof of this theorem can be found in [2]. In this application,
we defined a single environment response that is a function of four
teacher outputs, however, the theorem is also valid for our description
of a single-teacher model. Our simulations are based on the following
model and assumptions.

• There are three actions defined for each of two automata:stay in
lane, shift left, shift right, andaccelerate, decelerate, same speed.

• Four sensor modules are assumed: front, left and right range
sensors and a speed sensor.

• The environment is of P-model, i.e., all inputs are binary. The
basic function for the mappingF that computes the combined
input to the automaton is an OR-gate. However, the front sensor
block inhibits the penalty response from the speed sensor block
in order to avoid a collision. This enables the action DEC to be
sent to the regulation layer even if the actual speed of the car
is much less than the desired speed. Otherwise, the action DEC
would receive a penalty response from the speed sensor block
that would restrain its action probability from approaching 1.
Prioritizing the sensor information in this way is important.

• To smooth the system output, the regulation layer carries out
an action if it is recommendedm times consecutively by the
automaton. (In other words, the length of thememoryvector is
m:Whenever this vector/buffer is filled with the same action, the
action is fired.) This may of course be changed to “k times in the
lastm choices,” or to a more sophisticated decision rule. When
an action is carried out, action probabilities are re-initialized to
1=r: The value m is chosen to be equal to the processing speed
in iterations per second. Therefore, the regulation layer executes
and action if it is sent consecutively over a period of 1 s.

• The technological requirements for the models used in the
simulation (as well as the model described above) are no
different from those defined in the current AHS research [8].
Processing speed range is [25, 200]. This is related only to
computation; the sensor data feeds have a different rate.

• MappingF can be represented as shown in Fig. 4.
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Fig. 4. Definition of the mappingF:

From (1), we can write our update algorithm as

if �(n) =�i

pi(n+ 1) = pi(n) + f � (�k � � �H(n)) � [1� pi(n)]

�[1� f ] � (��) � [1� pi(n)]

pj(n+ 1) = pj(n)� f � (�k � � �H(n))

� pj(n) + [1� f ] � (��) � pj(n) for all j 6= i

(4)

i.e.:

 k(P (n)) ��� � pk(n)

�k(P (n)) ��k � � �H(n) � pk(n) (5)

where learning parametersk and� are real values and satisfy:

0<�< 1 0<k�< 1 (6)

The feedbackf is given as in Fig. 4, and the functionH is defined as:

H(n) � min 1; max
pi(n)

k�(1� pi(n))
� "; 0 (7)

Parameter" is an arbitrarily small positive real number. Also note
that the functionH includes pi which is the action probability
corresponding to thecurrent action.

We now show that the defined algorithm [(4)–(7)] satisfies all the
conditions in (2) and (3).

• From (5), we have

�k(P (n))

pk(n)
=
�k � � �H(n) � pk(n)

pk(n)

=�k � � �H(n) � �(P (n)) (8)

and

 k(P (n))

pk(n)
=
�� � pk(n)

pk(n)
= �� � �(P (n)): (9)

That is, our definition is consistent with the first two conditions of (2).

• Using (4) and (5), the rest of the conditions on�i and  i

translates to the following:

a) pi(n) + � � (1� pi(n))< 1

b) pj(n)� � � pj(n)> 0

c) pi(n)� k � � �H(n) � (1� pi(n))> 0: (10)

Conditions (a) and (b) are associated with the reward updates while
the last one is associated with the penalty updates. These conditions

guarantee that the probabilities stay in the range (0, 1) at all times
(with the assumption that none of the probabilities is initially 0 or 1).
Conditions (a) and (b) can be shown to be satisfied as follows, using
the fact that the sum all probabilities is 1:

a) pi + � � (1� pi)<pi + � �

r

j=1

pj <pi

+

r

j=1

pj = 1 since 0<�< 1 (11)

b) pj(n)� � � pj(n) = pj � (1� �)> 0

since 0<pj < 1 and0<�< 1 (12)

For the third condition, we have

c) pi(n)� k � � �H(n) � (1� pi(n))> 0

, k � � �H(n) � (1� pi(n))<pi(n)

, H(n)<
pi(n)

k � � � (1� pi(n))
: (13)

This condition is already satisfied by the previous definition of the
functionH(n): For the limiting values 0 and 1, we have:

• H = 0 ) pi(n)> 0 which is true for all probabilities at all
times.

• ForH = 1; we must havepi(n)�k�� �(1�pi(n))> 0 to satisfy
condition (c). From the definition of the function, we conclude
that H = 1 implies

pi(n)

k � � � (1� pi(n))
� "> 1: (14)

This inequality can be rewritten as

pi(n)> (1 + ") � k � � � (1� pi(n)) (15)

or, omitting the time step variable and rearranging

pi � k � � � (1� pi)� " � k � � � (1� pi)> 0: (16)

Since, all the factors of the third term are positive real, we may omit
this term without affecting the inequality to obtain

pi � k � � � (1� pi)> 0 (17)

which is exactly what we must have forH = 1:

Thus, all the conditions (2) in the definition of the reinforcement
scheme are satisfied. Furthermore, the functions� and� satisfy the
following:

�(P (n)) =�� < 0

�(P (n)) =�k � � �H � 0

�(P (n)) + �(P (n)) =�� � k � � �H < 0 (18)

because0<�< 1; 0< l � � < 1; and 0<H< 1:
Comparing (18) and (2), we see that the theorem is satisfied, i.e.,

the algorithm given in (4)–(7) is absolutely expedient in a stationary
environment.

The physical environment (the automated highway) is of course
changing with time. However, the automata environment can be
considered to be stationary, since the update rate for the action
probabilities is relatively high. That is, for a physical environment that
does not change quickly, the automata would be capable of finding
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TABLE IV
CONVERGENCE RATES FOR A SINGLE OPTIMAL ACTION OF

A 3-ACTION AUTOMATON IN A STATIONARY ENVIRONMENT

the necessary action by a learning process that does better at each
time step. Here, the reinforcement scheme updates the probability
values so that the expected value of the total penalty received from
the environment decreases at each iteration.

The choice of the functionH is also due to another factor besides
the conditions for absolute expediency (2). Our algorithm converges
to a solution faster than the one given in [2]. We compared two
reinforcement schemes using three actions and two different initial
conditions. Our definitions result in a faster update in general as
shown in Table IV. The new definitions are based on the fact that
the update rate for a penalty response from the environment is higher
when the probability of the current action is close to 1. [Note that
H is a function of the probability of the current actionpi; it is not
related to the indexj in (1).] This provides a much faster convergence
rate when the actions receiving a penalty from the environment have
high associated probability values.

The data shown in Table IV are the results of two different initial
conditions where 1) all probabilities are initially the same with
only one action receiving reward (i.e., optimal action) and 2) the
optimal action initially has a small probability value. The difference in
convergence rate is more distinct in the situation where the probability
of the optimal action is initially very close to 0. (This situation occurs
frequently in our application. For example, while the probability of
the lateral actionshift left is converging to 1, a vehicle may enter
the left sensor range. In this case, we need a “strong” penalty update
to decrease the probability of this action, while “encouraging” the
actionstay in lane.) In order to have a fast update on the probability
vector, the functionH is set to the highest possible value [see (6) and
(7)] satisfying the conditions given in (2). As seen in Table IV, when
popt = 0:005; the number of iteration steps to reachpopt = 0:995

is reduced drastically for relatively large values of the learning
parameter�:

IV. SIMULATION RESULTS

In this section, we will give the snapshots of a very short segment
of the simulation (14 s) with the action probability vectors of two
automata. As seen in Fig. 5, the controlled vehicle (darker color)
travels in a traffic moving from left-to-right with an speed of 88 km/h
at timet = 10 s. The action probabilities for lateral and longitudinal
automata (Fig. 6) are updated based on the sensor data received.
Sensor ranges during the given simulation ared = 10 m for side
sensors, andd1 = 6 andd2 = 12 meters for the front sensor.

Controlled vehicle that is initially in the middle lane decelerates
from 90 km/h as it detects the car in front. While decelerating, the
lateral action SR (shift right) is fired at aroundt = 15 s, due to the
penalty responses received from left and front sensors. After shifting
to the leftmost lane, vehicle speed increases (ACC is fired around
t = 18 s) because the front sensor no longer detects any vehicle.

Fig. 5. The trajectory of a vehicle (darker color) traveling left-to-right.

Fig. 6. Action probabilities for the same time interval.

Fig. 7. A situation where Shift Right is the optimal lateral action.

This increase is the result of our definition of the desired speed range
which is90�3 km/h (i.e.,ds = 3). As soon as the car in the rightmost
lane enters the front sensor range, the controlled vehicle shifts to the
middle lane. It can also be seen from Fig. 6 that the probability of
the action DEC increases until the moment that the lateral action SL
(shift left) is fired (t � 23 s). The velocity keeps increasing after
t = 24 s, until it is in the desired range. Betweent = 14 s and
t = 16 s, the probability of the action DEC is decreased although
the velocity is already less than the desired value. This is the direct
result of the definition of mappingF as described in Section III-
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(a) (b)

(c) (d)

Fig. 8. Effect of parameters on action decision (the dot shows the average value, and vertical lines show the range of data over 500 runs).

B, and is necessary. Otherwise, the vehicle could not shift lanes in
time because of the presence of vehicles on both sides. The slowest
update rate used for both the sensor data and the decision algorithm
is 25 iterations per second which is very low considering the values
assumed in current AHS research [8].

V. DISCUSSION ONRESULTS AND FURTHER RESEARCH

With its limited sensor capabilities, the vehicle cannot obtain a
global view of its environment. The need for a higher layer of
hierarchy (such as thelink layer in [20]) and vehicle-to-vehicle
communications is inevitable. In the situation shown in Fig. 3, one
of the two possible solutions for avoiding a collision is shifting to
the leftmost lane. If the vehicle is not capable of quickly changing its
speed, the vehicle’s decision block based on local sensor data cannot
avoid an imminent collision, because action SL is prohibited by the
left sensor. For similar reasons, a connection to a higher layer (of

information) is necessary. Such a layer that has more complete data
of the changing environment, must assist/supervise the vehicle in its
actions/decisions.

In the simulations, we assumed an execution time of 0.5 s for ac-
tions in order to guarantee a comfortable acceleration for lane change
maneuvers. However, the regulation layer that controls the vehicle
trajectory may not always be ready to execute the recommended
action. Therefore, the regulation layer must inform the planning layer
about the feasibility of the actions.

The behavior of the controlled vehicle currently depends on several
factors, such as frequency of update, sensor definitions, and learning
parameters. For example, the vehicle sometimes changes its lane after
a short period of time, and sometimes in the last possible moment.

Consider the situation shown in Fig. 7. Controlled vehicle (V = 90

km/h) approaches two other vehicles, one in the middle lane (V = 86

km/h), the other in left lane (V = 87 km/h). Suppose that at the
instant that the other vehicles are at 12.5 m (in front) and 10m (on
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the left) from the controlled vehicle, the probabilities of the three
actions SiL, SR, and SL are equal (1/3). It is obvious that the vehicle
will shift to the rightmost lane as soon as the action SR is chosen m
times, in order to avoid collision (if it does not change its speed).

Fig. 8 shows the effect of sensor limitd2; learning parameters
k and �; and processing speed on the convergence to the optimal
solution. As seen in Fig. 8(a), the decision to change lane is obtained
faster if the sensor limitd2 is higher. Since the initial headway
distance is defined as 12.5 m, the response is the same ford2 � 13

m. A 2 m increase (from 10 to 12 m) in the sensor limit provides a
change of179 � 74 = 105 iterations (i.e.,105=30 = 3:5 s) on the
maximum, and116:81�46:15 � 70 iterations (2.3 s) on the average
in the decision process. Again, for an action to be carried out, it must
be chosen 30 times consecutively.

A second important factor is the learning parameters. As� in-
creases, the time to shift lane decreases, since the probability updates
are faster [Fig. 8(b)]. The data obtained suggest that values greater
than or equal to 0.04 must be used for this application. When the
learning parameterk is increased, the time to shift lane decreases, this
time due to faster updates when a penalty is received [Fig. 8(c)]. For
k � 10; the effect on the decision is the same. Small values ofk can
be used to adjust the “reaction” time. Furthermore, the effects of the
learning parameters are not as significant as the sensor limit definition.

The last parameter we tested is the processing speed. If we keep
the length of the memory vector for a regulation layer decision the
same, increasing the frequency of the updates will of course decrease
the time to reach the optimal decision. However, if the definition
of this memory vector is kept the same as the processing speed
(i.e., one-second memory), larger values of the processing speed
increase the time to reaction [Fig. 8(d)]. Again, the data show that
doubling the processing speed (and the length of the memory vector)
results in a loss of (82/25)-(101/50)= 1.26 s on the maximum, and
(43.23/25)-(64.31/50)= 0.44 s on the average.

Extension to theS-model (where the teacher outputs are contin-
uous) may help to decrease the update frequency, because it will
give the automaton more time to adjust. Adjusting the parameters
simultaneously for optimum results is a very difficult task, even for
a simple automaton/environment pair.

The need for more complicated sensor definitions and for a
“hierarchical interference” (such as commands from a higher layer
[20]) is obvious. Our research will continue toward the development
of a more complex decision system. Initially, learning automata
algorithms are found to be a promising tool for intelligent control
of vehicles in AHS. Since highway traffic may have a heterogeneous
character (i.e., automatically and manually controlled vehicles in the
same highway), it is important for an automatically controlled vehicle
to differentiate between “intelligent” and “dumb” vehicles. This is
important because the roadside structure may not have complete
information about those vehicles without communication capabilities.
Therefore, a controlled vehicle must rely on its own sensors input
for complete data on its immediate neighborhood in heterogeneous
traffic. Also, some form of feedback from the lower/regulation layer,
describing the plausibility of the action requested by the automata
(planning layer), must be included in order to guarantee safe operation
of the vehicle.

As a practical matter, we should note that our model of vehi-
cle control is consistent with the current assumptions on sensors
and communications capabilities. Desired sensor and communication
characteristics for the controller described here are generally the
same, if not lower, than the ones required by other control aspects
of AHS. Some applications of longitudinal vehicle control require
a communication rate of 200 Hz and headway sensors with a few
centimeters resolution.

There are many ways to improve our initial controller design. Some
of the issues that need investigation are as follows.

• The P-model environment may be extended toS-model in order
to incorporate a priority level with the teacher outputs. The
multiteacher characteristic of the environment will then show
its potential application. The weighting factors and/or parameters
associated with each teacher/sensor output define the “behavior”
of the vehicle. The adjustment of these can be viewed as another
level of learning.

• The use of two or more automata for vehicle control will move
the control problem toward a multi-automata system, which
could subsequently bring us to an application of game theory
to interconnected automata.

• Our intelligent controller model must be incorporated with a
realistic vehicle model to simulate the physical constraints of the
actions to be carried out by the regulation layer. Emerging hybrid
system modeling applications provide the necessary simulation
platform for such applications.

The parameters of the learning automata and the definition of
sensor ranges, as well as the processing speed and the size of
the memory vector for the regulation layer, define the behavior
of a single vehicle on a highway. Simulation of vehicle flow in
a single lane highway using learning automata may prove to be
useful, since previous attempts using more “discrete” methods (e.g.,
cellular automata) and simpler control rules were successful [10]. Our
approach should bring a “less discrete” model to traffic simulations,
and multilane simulations would be possible.

VI. CONCLUSION

The intelligent controller for vehicle path planning described here
consists of two stochastic learning automata. Using the data received
from on-board sensors, each automaton can learn the best possible
lateral/longitudinal action to be sent to lower layer in the control
hierarchy in order to avoid collisions. This nonmodel-based adaptive
method would be especially useful in situations where complete
information about the flowing traffic is not provided by the higher
levels of the control hierarchy. The reinforcement scheme for the
learning process is designed to guarantee a fast convergence to
an action that is optimal. Simulations for simultaneous lateral and
longitudinal control provided encouraging results. This method is also
capable of capturing the overall dynamics of the system that includes
the vehicle, the driver and the roadway.

REFERENCES

[1] T. Aoki, T. Suzuki, and S. Okuma, “Acquisition of optimal action selec-
tion in autonomous mobile robot using learning automata (experimental
evaluation),” inProc. IEEE Conf. Fuzzy Logic Neural Networks/Evol.
Computation, 1995, pp. 56–63.

[2] N. Baba,Lecture Notes in Control and Information Sciences: New Topics
in Learning Automata Theory and Applications. Berlin, Germany:
Springer-Verlag, 1984.

[3] R. R. Bush and F. Mosteller,Stochastic Models for Learning. New
York: Wiley, 1958.

[4] B. Chandrasekharan and D. W. C. Shen, “On expediency and conver-
gence in variable structure stochastic automata,”IEEE Trans. Syst., Sci.,
Cybern., vol. SSC-5, pp. 145–149, 1968.

[5] K. S. Fu, “Stochastic automata as models of learning systems,” in
Computer and Information Sciences II, J. T. Lou, Ed. New York:
Academic, 1967.

[6] U. Herkenrath, D. Kalin, and W. Wogel, Eds.,Mathematical Learning
Models: Theory and Applications. New York: Springer-Verlag, 1983.

[7] S. Lakshmivarahan,Learning Algorithms: Theory and Applications.
New York: Springer-Verlag, 1981.

[8] T. L. Lasky and B. Ravani, “A review of research related to automated
highway system (AHS),” Interim Rep. for FHWA, DTFH61-93-C-
00189, Univ. California, Davis, Oct. 1993.

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on April 05,2010 at 15:43:44 EDT from IEEE Xplore.  Restrictions apply. 



128 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 1, JANUARY 1999

[9] C. Marsh, T. J. Gordon, and Q. H. Wu, “Stochastic optimal control
of active vehicle suspensions using learning automata,” inProc. Mech.
Eng. Part I, J. Syst. Contr. Eng., vol. 207, pp. 143–152, 1993.

[10] K. Nagel and S. Rasmussen, “Traffic at the edge of chaos,” inArtificial
Life IV. Cambridge, MA: MIT Press, 1994, pp. 222–235.

[11] K. Najim, “Modeling and self-adjusting control of an absorption col-
umn,” Int. J. Adap. Contr. Signal Process., vol. 5, pp. 335–345, 1991.

[12] K. Najim and A. S. Poznyak, Eds.,Learning Automata: Theory and
Applications. Oxford, U.K.: Elsevier, 1994.

[13] K. S. Narendra and M. A. L. Thathachar, “Learning automata—A
survey,” IEEE Trans. Syst., Man, Cybern., vol. SMC-4, July 1974.

[14] K. S. Narendra and M. A. L. Thathachar,Learning Automata. Engle-
wood Cliffs, NJ: Prentice-Hall, 1989.

[15] K. Naruse and Y. Kakazu, “Strategy acquisition of path planning of
redundant manipulator using learning automata,”IEEE Int. Workshop
Neuro-Fuzzy Ctrl., 1993, pp. 154–159.

[16] M. F. Norman,Markov Processes and Learning Models. New York:
Academic, 1972.

[17] B. J. Oommen and E. V. de St. Croix, “String taxonomy using learning
automata,” Tech. Rep. TR-234, School of Computer Science, Carleton
Univ., Ottawa, Ont., Canada, Mar. 1994.

[18] M. L. Tsetlin, Automaton Theory and Modeling of Biological Systems,
Vol. 102 in Mathematics in Science and Engineering. New York:
Academic, 1973.
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Semantic Constraints for
Membership Function Optimization

J. Valente de Oliveira

Abstract—The optimization of fuzzy systems using bio-inspired strate-
gies, such as neural network learning rules or evolutionary optimization
techniques, is becoming more and more popular. In general, fuzzy systems
optimized in such a way cannot provide a linguistic interpretation,
preventing us from using one of their most interesting and useful features.
This work addresses this difficulty and points out a set of constraints that
when used within an optimization scheme obviate the subjective task of
interpreting membership functions. To achieve this a comprehensive set of
semantic properties that membership functions should have is postulated
and discussed. These properties are translated in terms of nonlinear
constraints that are coded within a given optimization scheme, such as
backpropogation. Implementation issues and one example illustrating the
importance of the proposed constraints are included.

Index Terms—Adaptive systems, fuzzy systems, learning, membership
functions, neural networks, optimal interfaces, optimization, semantic
constraints.

I. INTRODUCTION

When compared with other nonlinear modeling techniques such as
artificial neural networks, Hammerstein, Wiener, or more generally
NARMAX models (cf. [3]), fuzzy systems have the important ad-
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vantage of providing an insight on the linguistic relationship between
the variables of the system.

In the context of approximation tasks, the optimization of fuzzy
systems (such as controllers, models, or classifiers) using biolog-
ical inspired strategies (such as neural networks learning rules,
or evolutionary optimization techniques like genetic algorithms) is
becoming more and more popular. What is common in these bio-
inspired strategies is that the only indicator guiding the search process
is concerned exclusively with the system quality in terms of the
approximation task (e.g., with the errors between system output
and training data). For example, this is case with the so-called
performance index of the neural networks learning rules [7] and with
the fitness function of the genetic algorithms [5].

In the presence of such unconstrained optimization processes the
parameters of membership functions (e.g., centers and widths) are
treated just like any other parameter of the system. Furthermore,
usually a fuzzy system has very many independent parameters
(degrees of freedom). As a consequence, several local minima of
the performance function are likely to exist. In face of this we
simply cannot ensure that the resulting membership functions have
any semantic value in what concerns their ability to be interpretable
as linguistic terms. To ignore this aspect during fuzzy system design
is first of all to renounce the richness of concepts and techniques
provided by fuzzy sets and systems. It is comparable to let the fuzzy
parameters outgoing their range (usually [0, 1]) violating the set or
logic nature of fuzzy calculus. It is equivalent to consider fuzzy
systems as a tool for initializing artificial neural networks (in the
sense that without semantics a fuzzy system can be viewed as a
neural net).

While this is undebatable, one may legitimately ask 1) whether con-
straining the optimization to preserve semantics would not degrade
the fuzzy system performance, and 2) what would be the reasons to
translate the functioning of, e.g., a ready-to-implement fuzzy control
algorithm into a natural-language equivalent description.

For addressing the first issue, it is recalled that, in general,
unconstrained optimization methods are more susceptible to get stuck
in local minima than conveniently constrained ones. One the other
hand, minima are necessarily local in that region of parameters space
where there is no possible interpretation. A typical case being the
absence of membership functions in a subset of the universe of
discourse. This being so, there would be input values for which
the system would have no response. Constraints may help to avoid
local minima. The systematic avoidance of local minima leads to the
global minimum, and thus to optimal performance. This contradicts
the naive belief that constrained optimization cannot perform better
than unconstrained optimization. Take adaptive control as an example.
In certain model-reference schemes unconstrained optimization of the
controller gains leads to unstable closed-loop responses. However
when equipped with convenient constraints, these control schemes
leads to guaranteed stability, cf. [1].

Later on, this semantics/performance synergy is further illustrated
by means of an included example where a fuzzy system optimized
with semantic constraints performs better than other with the same
structure and initial conditions, but optimized without taking care of
semantics.

Notice also that the first applied fuzzy (control) systems were
designed using heuristic methods based on the knowledge and expe-
rience of experts, and thus they were necessarily semantically valid.
However this has not degraded their performances; by the opposite in
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