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Many specific models have been proposed to study evolutionary
game dynamics in structured populations, but most analytical
results so far describe the competition of only two strategies. Here
we derive a general result that holds for any number of strategies,
for a large class of population structures under weak selection. We
show that for the purpose of strategy selection any evolutionary
process can be characterized by two key parameters that are
coefficients in a linear inequality containing the payoff values.
These structural coefficients, σ1 and σ2, depend on the particular
process that is being studied, but not on the number of strategies,
n, or the payoff matrix. For calculating these structural coefficients
one has to investigate games with three strategies, but more are
not needed. Therefore, n = 3 is the general case. Our main result
has a geometric interpretation: Strategy selection is determined by
the sum of two terms, the first one describing competition on the
edges of the simplex and the second one in the center. Our for-
mula includes all known weak selection criteria of evolutionary
games as special cases. As a specific example we calculate games
on sets and explore the synergistic interaction between direct rec-
iprocity and spatial selection. We show that for certain parameter
values both repetition and space are needed to promote evolution
of cooperation.

Evolutionary games arise whenever the fitness of individuals
is not constant, but depends on the relative abundance of

strategies in the population (1–7). Evolutionary game theory is
a general theoretical framework that can be used to study many
biological problems including host–parasite interactions, eco-
systems, animal behavior, social evolution, and human language
(8–18). The traditional approach of evolutionary game theory
uses deterministic dynamics describing infinitely large, well-
mixed populations. More recently the framework was expanded
to deal with stochastic dynamics, finite population size, and
structured populations (19–32).
Here we consider a mutation–selection process acting in

a population of finite size. The population structure determines
who interacts with whom to accumulate payoff and who com-
petes with whom for reproduction. Individuals adopt one of n
strategies. The payoff for an interaction between any two strat-
egies is given by the n × n payoff matrix A = [aij]. The rate of
reproduction is proportional to payoff: Individuals that accu-
mulate higher payoff are more likely to reproduce. Reproduction
is subject to symmetric mutation: With probability 1 − u the
offspring inherits the strategy of the parent, but with probability
u a random strategy is chosen. Our process leads to a stationary
distribution characterizing the mutation–selection equilibrium.
Important questions are the following: What is the average fre-
quency of a strategy in the stationary distribution? Which strat-
egies are more abundant than others?
To make progress, we consider the limit of weak selection.

One way to obtain this limit is as follows: The rate of re-
production of each individual is proportional to 1 + w Payoff,
where w is a constant that measures the intensity of selection; the
limit of weak selection is then given by w → 0. Weak selection is
not an unnatural situation; it can arise in different ways: i) Payoff
differences are small, ii) strategies are similar, and iii) individuals
are confused about payoffs when updating their strategies. In
such situations, the particular game makes only a small contri-
bution to the overall reproductive success of an individual.

For weak selection, all strategies have roughly the same av-
erage frequency, 1/n, in the stationary distribution. A strategy is
favored by selection, if its average frequency is >1/n. Otherwise it
is opposed by selection. Our main result is the following: Given
some mild assumptions (specified in SI Text), strategy k is fa-
vored by selection if

ðσ1akk þ !ak#− !a#k − σ1!a##Þ þ σ2ð!ak#− !aÞ> 0: [1]

Here !a## ¼ ð1=nÞ∑n
i¼1aii is the average payoff when both individ-

uals use the same strategy, !ak# ¼ ð1=nÞ∑n
i¼1aki is the average pay-

off of strategy k, !a#k ¼ ð1=nÞ∑n
i¼1aik is the average payoff when

playing against strategy k, and !a ¼ ð1=n2Þ∑n
i¼1∑

n
j¼1aij is the aver-

age payoff in the population. The parameters σ1 and σ2 are struc-
tural coefficients that need to be calculated for the specific
evolutionary process that is investigated. These parameters de-
pend on the population structure, the update rule, and the muta-
tion rate, but they do not depend on the number of strategies or on
the entries of the payoff matrix.
How can we interpret this result? Let xi denote the frequency of

strategy i. The configuration of the population (just in terms of
frequencies of strategies) is given by a point in the simplex Sn,
which is defined by ∑n

i¼1 xi ¼ 1. The vertices of the simplex cor-
respond to population states where only one strategy is present.
The edges of the simplex correspond to states where two strategies
are present. In the interior of the simplex all strategies are present.
Inequality [1] is the sum of two terms, both of which are linear in
the payoff values. The first term, σ1akk þ !ak# − !a#k − σ1!a##,
describes competition on the edges of the simplex that include
strategy k (Fig. 1A). In particular, it is an average over all pairwise
comparisons between strategy k and each other strategy, weighted
by the structural coefficient, σ1. The second term, σ2ð!ak# − !aÞ,
evaluates the competition between strategy k and all other strat-
egies in the center of the simplex, where all strategies have the
same frequency, 1/n (Fig. 1B).
Therefore, the surprising implication of our main result (Eq.

1) is that strategy selection (in a mutation–selection process in
a structured population) is simply the sum of two competition
terms, one that is evaluated on the edges of the simplex and the
other one in the center of the simplex. The simplicity of this
result is surprising because an evolutionary process in a struc-
tured population has a very large number of possible states; to
describe a particular state it is not enough to list the frequencies
of strategies but one also has to specify the population structure.
Further intuition for our main result is provided by the concept

of risk dominance. The classical notion of risk dominance for
a game with two strategies in a well-mixed population is as fol-
lows: Strategy i is risk dominant over strategy j if aii+ aij> aji+ ajj.
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If i and j are engaged in a coordination game, given by aii > aji and
ajj > aij, then the risk-dominant strategy has the bigger basin of
attraction. In a structured population the risk-dominance condi-
tion is modified to σaii + aij > aji + σajj, where σ is the structural
coefficient (31). Therefore, the first term in inequality 1 represents
the average over all pairwise risk-dominance comparisons be-
tween strategy k and each other strategy (taking into account
population structure). The second term in inequality 1 measures
the risk dominance of strategy k when simultaneously compared
with all other strategies in a well-mixed population; it is the gen-
eralization of the concept of risk dominance tomultiple strategies,
!ak! > !a.
In SI Text we show that the structural coefficients, σ1 and σ2,

do not depend on the number of strategies. To calculate σ1 and
σ2 for any particular evolutionary process, we need to consider
games with n = 3 strategies. More than three strategies are not
needed. Therefore, n = 3 is the general case. An important
practical implication of our result is the following: If we want to

calculate the competition of multiple strategies in a structured
population for weak selection but any mutation rate, then all we
have to do is to calculate two parameters, σ1 and σ2. This cal-
culation can be done for a very simple payoff matrix and n = 3
strategies. Once σ1 and σ2 are known, they can be applied to any
payoff matrix and any number of strategies.
For n=2 strategies, inequality [1] leads to (a11− a22)(2σ1 + σ2)

+ (a12 − a21)(2 + σ2) > 0. If 2 + σ2 ≠ 0, we obtain the well-known
condition σa11 + a12 > a21 + σa22 with σ = (2σ1 + σ2)/(2 + σ2).
Many σ-values have been calculated characterizing evolutionary
games with two strategies in structured populations (31).
For a large, well-mixed population we know that σ1 = 1 and

σ2 = μ, where μ = Nu is the product of population size and
mutation rate (30). Therefore, if the mutation rate is low, μ → 0,
then the evolutionary success of a strategy is determined by av-
erage pairwise risk dominance, akk þ !ak! − !a!k − !a!!. If the mu-
tation rate is high, μ → ∞, then the evolutionary success depends
on risk dominance, !ak! − !a:
For any population structure, we can show that low mutation,

μ → 0, implies σ2 → 0. Therefore, in the limit of low muta-
tion, the condition for strategy k to be selected becomes
σ0akk þ !ak! > !a!k þ σ0!a!! where σ0 is the low mutation limit of
the structure coefficient σ = (2σ1 + σ2)/(2 + σ2). Hence, for low
mutation it suffices to study two-strategy games, and all known σ
results (31) carry over to the multiple-strategy case.
In the limit of high mutation, μ → ∞, we conjecture (but

cannot prove) that, for a large class of processes, σ2 becomes
>>σ1 and >>1. In that case the selection condition is simply risk
dominance, !ak! − !a, which is also the high mutation limit for
a well-mixed population. Thus, if the mutation rate is large
enough, then the effect of population structure on strategy se-
lection is destroyed.
In SI Text we give a computational formula for how to cal-

culate σ1 and σ2 for any process with global updating (which
means all individuals compete globally for reproduction).

A B

Fig. 1. Our main result has a simple geometric interpretation, which is il-
lustrated here for the case of n = 3 strategies. (A) The first term of inequality
1 describes competition on the edges of the simplex. (B) The second term of
inequality 1 describes competition in the center of the simplex. In general,
the selective criterion for strategy 1 is the sum of the two terms.
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Fig. 2. The dependence of σ1 and σ2 on the strategy mutation rate, μ. We choose M = 100 sets and show different values of the set mutation rate: (A) ν = 0,
(B) ν = 3, (C) ν = 10, (D) ν = 100, (E) ν = 1,000, and (F) ν = ∞. We observe that σ2 ∼ μ. For ν → 0 and ν → ∞ we obtain the same behavior, because both cases
correspond to a well-mixed population. For a particular strategy mutation rate, μ*, we have σ1 = σ2. For μ < μ* structural effects prevail over mutation,
because σ1 > σ2. For μ > μ* mutation destroys the effect of population structure, because σ1 < σ2.
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Let us now study a specific evolutionary process, where the
individuals of a population of size N are distributed over M sets
(32). These sets can be geographic islands, social institutions, or
tags (32–35). At any one time each individual belongs to one set
and adopts one of n strategies. Individuals interact with others in
the same set and thereby obtain payoff. Individuals reproduce
proportional to payoff. Offspring inherit their parent’s strategy,
subject to a strategymutation rate, u, and their parent’s set, subject

to a set mutation rate, ν. We use rescaled mutation rates μ = Nu
and ν = Nv. In SI Text we calculate σ1 and σ2 for this process and
provide analytic results for large population size, N, but for any
numberof sets,M, and for anymutation rates. For largeμweobtain
σ1∼M(1+ ν)/(M+ ν) andσ2∼μ. Note that large strategymutation
rate, μ, destroys the effect of population structure, as expected.
In Fig. 2, we show the dependence of σ1 and σ2 on the strategy

mutation rate, μ. We choose M = 100 sets and show different
values of the set mutation rate, ν. For ν→ 0 and ν→∞ we obtain
the same behavior, because both cases correspond to a well-
mixed population. A particular strategy mutation rate, μ*, exists
for which σ1 = σ2. For μ < μ* structural effects prevail over
mutation, because σ1 > σ2. For μ > μ* mutation destroys the
effect of population structure, because σ1 < σ2. For large M, the
critical mutation rate is given by μ* ∼ 1 + ν.
We now use these results to study a particular game on sets. Our

game has three strategies, always cooperate (AllC), always defect
(AllD), and tit-for-tat (TFT), and ismeant to describe the essential
problem of evolution of cooperation under direct reciprocity. We
assume there are repeated interactions between any two players
subject to a certain continuation probability; and the average
number of rounds is given bym. In any one round, cooperation has
a cost, c, and yields benefit, b, for the other player, where b> c> 0.
Defection has no cost and yields no benefit.We use average payoff
per round to denote the entries of the payoff matrix:

AllC AllD TFT
AllC
AllD
TFT

0

@
b− c − c b− c
b 0 b=m

b− c − c=m b− c
:

1

A [2]

AllD is the only strict Nash equilibrium. If b− c≥ b/m, then TFT is
a Nash equilibrium, but not an evolutionarily stable strategy.
We are interested in calculating the condition for natural selec-

tion to oppose AllD, which means that its frequency is <1/3 in the
stationary distribution.We observe that selection opposes AllD for

Fig. 3. The effect of strategy and set mutations on the condition to select
against AllD. Selection opposes AllD for small strategy mutation rates and
intermediate set mutation rates. For high strategy mutation rate and for low
and high set mutation rate the structure behaves like a well-mixed pop-
ulation. There is an optimum set mutation rate. Parameters: b = 2, c = 1, m =
7, and M = 8.

Fig. 4. The synergistic interaction of direct reciprocity and spatial selection. For certain parameter choices neither repetition nor structure alone can select
against AllD. (A) c = 1, b = 3, μ = 0, and ν = 0.5. Either repetition or structure is sufficient. (B) c = 1, b = 2, μ = 0, and ν = 5. A minimum number of sets is needed.
(C) c = 1, b = 3, μ = 0, and ν = 0.05. A minimum number of rounds is needed. (D) c = 1, b = 2, μ = 0, and ν = 0.5. Both a minimum number of rounds and
a minimum number of sets are needed to select against AllD.
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small strategy mutation rates and intermediate set mutation rates
(Fig. 3). For high strategy mutation rate and for low or high set
mutation rate the structure behaves like a well-mixed population,
which is detrimental to cooperation. There is an optimum set mu-
tation rate that maximally supports evolution of cooperation (32).
Next we study how the condition for selecting against AllD

depends on repetition and structure (Fig. 4). We make the fol-
lowing observations. For b/c < 3, even if the game is infinitely
repeated, m → ∞, we still need population structure to oppose
AllD. In this parameter region repetition alone is not enough.
For b/c < 1 + (ν+ 3)/(ν (ν+ 2)), even if there are infinitely many
sets (M → ∞), we still need repetition to oppose AllD. Hence,
for certain parameter choices both repetition and spatial struc-
ture must work together to promote evolution of cooperation
(36, 37). This example demonstrates the need for synergistic
interactions between various mechanisms for the evolution of
cooperation (38). In particular it is of interest that unless the
benefit-to-cost ratio is substantial, b/c > 3, repetition alone does
not provide enough selection pressure to oppose AllD.
In summary, we have derived a simple, general condition that

characterizes strategy selection, if multiple strategies compete in

a structured population under weak selection. The condition is
linear in the payoff values and includes two structural coefficients,
σ1 and σ2, which depend on the population structure, the update
rule, and mutation rates, but do not depend on the number of
strategies or on the entries of the payoff matrix. The condition is
a simple sum of two terms: One describes competition on the
edges of the simplex and the other one describes that in the
center. Future research directions suggested by this result include
i) a classification of population structures and update rules based
on the two structural parameters, ii) numerical and analytic ex-
plorations of how the weak selection result carries over to
stronger selection intensities in specific cases, and iii) extending
our theory from pairwise interactions to multiplayer games. Fi-
nally our general result can be used to guide the exploration of
many specific evolutionary processes.
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SI Text
Model and Results. We consider stochastic evolutionary dynamics
(with mutation and selection) in a structured population of finite
size N. Individuals adopt one of n strategies, and they obtain
a payoff by interacting with other individuals according to the
underlying population structure. For example, the population
structure could imply that interactions occur only between
neighbors on a graph (1), inhabitants of the same island, or in-
dividuals that share certain phenotypic properties (2). On the
basis of these interactions, an average (or total) payoff is cal-
culated according to the payoff matrix A = (aij). We assume that
the payoff is linear in the payoff values aij, with no constant
terms. For instance, the total payoff of an individual using
strategy k is ∑i½aki ×ðnumber of i− interactantsÞ$. The effective
payoff of an individual is given by 1 + w payoff, where by
payoff we mean the player’s total payoff. The parameter w
denotes the intensity of selection. The limit of weak selection
is given by w → 0.
Reproduction is subject to symmetric mutation. With proba-

bility u the offspring adopts one of the n strategies at random.
With probability 1 − u the offspring adopts the parent’s strategy.
For u = 0 there is no mutation, only selection. For u = 1 there is
no selection, only mutation. If 0 < u < 1, then there is mutation
and selection.
We say that a strategy is selected for (or is favored by selection)

if it is more abundant than the average, 1/n, in the stationary
distribution of the mutation–selection process:

hxki> 1=n: [S1]

We call this concept “strategy selection.”Here xk is the frequency
of strategy k. The angular brackets denote the average taken
over all states of the system, weighted by the probability of
finding the system in each state.
A state S of the population assigns to each player a strategy (k,

with k = 1, . . . , n) and a “location” (in space, phenotype space,
etc.). A state must include all information that can affect the
payoffs of players. For our proof, we assume a finite state space.
We study a Markov process on this state space. Because the state
space is finite and because we have symmetric mutation, the
process will have a unique stationary distribution. We denote by
Pij the transition probability from state Si to state Sj. These
transition probabilities depend on the update rule and on the
effective payoffs of individuals. Because the effective payoff is of
the form 1 + w payoff and the payoff is linear in the entries of A,
it follows that the transition probabilities are functions PijðwAÞ.
Now we can state our main result.
Theorem 1. Consider a population structure and an update rule (as
described above) such that i) the transition probabilities are in-
finitely differentiable at w = 0 and ii) the update rule is symmetric
for the n strategies. Then, in the limit of weak selection, the con-
dition that strategy k is selected for is a two-parameter condition
either of the form

σ1ðakk − a——%% Þþ ða——k% − a——%k Þþ σ2ða——k% − !aÞ> 0 [S2]

or of the form

σ1ðakk − a——%% Þþ σ2ða——k% − !aÞ> 0 [S3]

where σ1 and σ2 are unique and depend on the model and the
dynamics (population structure, update rule, and the mutation
rates) but not on the entries of the payoff matrix, aij. Moreover, the

parameters σ1 and σ2 do not depend on the number of strategies.
They are intrinsic to the model and the dynamics and they are the
same for any number of strategies n ≥ 3.
Because σ1 and σ2 do not depend on the number of strategies, it

follows that for calculating them it suffices to study n=0 strategies.
That is already the most general case. The case n ¼ 2 is special
because then the expressions akk − a——%% ; a

——
k% − a——%k ; and a——k% − !a are

not linearly independent.
Let us now discuss the two assumptions.

Assumption i. The transition probabilities are differentiable at w = 0.
We require the transition probabilities pij (wA) to have first-order
Taylor expansions at w = 0. Examples of update rules that satisfy
Assumption i include the death–birth (DB) and birth–death (BD)
updating on graphs (1), the synchronous updating on the basis of the
Wright–Fisher process (2, 3), and the pairwise comparison (PC)
process (4). If a game does not satisfy this property, then its solu-
tions near w = 0 are not well behaved, and it becomes difficult to
even define the game’s action in the limit of weak selection.

Assumption ii. The update rule is symmetric for the n strategies. The
update rule differentiates between the n strategies only on the basis of
payoff. Arbitrarily relabeling the n strategies and correspondingly
swapping the entries of the payoff matrix must yield symmetric dynam-
ics. This statement says that the difference between the n strategies is
fully captured by the payoff matrix, whereas the population structure
and the update rule do not introduce any additional differences.

Proof of Theorem 1. Consider an evolutionary game with n com-
peting strategies, whose interactions are given by the matrix A =
(aij). The dynamics describe a Markov process, which, by as-
sumption, has transition probabilities differentiable at w ¼ 0. We
want to study the stationary distribution of this Markov process.
As above, we let xk be the frequency of strategy k. The average
frequency over the stationary distribution is denoted by hxki: We
say that strategy k is selected for if its abundance (average fre-
quency) is greater than the average, 1/n, as described by ref. 2.
Using the same argument as in ref. 5, we know that the abun-
dances are differentiable at w = 0 and thus we can write their
first-order Taylor expansions:

hxki ¼h xki0 þ w
∂
∂w

hxki
!!!
w¼0

: [S4]

Here hxki0 denotes the average abundance of strategy k at
neutrality. When w = 0, all strategies have equal payoffs and
using the second assumption of our theorem, we conclude that
all strategies must have equal abundances hxki0 = 1/n for all k.
Because every strategy has the same abundance at w = 0, the
relative success of the strategies in the limit as w tends to 0 is
determined by the first derivative of their abundances. Hence,
strategy k is selected for if

Rk :¼
∂
∂w

hxk〉
!!!
w¼0

> 0· [S5]

Here
"
xk
#
¼ ∑

S
xk;SπS; [S6]

where πS is the probability that the system is in a given state S
and xk,S is the frequency of strategy k in state S. For our types of
processes, these probabilities were shown in ref. 5 to be con-
tinuous and differentiable at w = 0. Moreover, the same paper
shows that the the first-order derivative of these probabilities
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with respect to w evaluated at w = 0 depends linearly on aij and
has no constant terms. Hence we conclude that Rk depends
linearly with no constant terms on aij. Then strategy k is selected
for if and only if

∑
n

i¼1
∑
n

j¼1
ckijaij > 0; [S7]

where each ckij is a constant.
Next we use our assumption that the type labeling is immaterial,

to reduce the total number of constants we must consider. Be-
cause we know that permuting the labeling system with any bi-
jection π, {1, . . . , n}→ {1, . . . , n} does not change the operation
of the game, we must have that cπ(kij) = ckij for any such per-
mutation π. We say that the ordered triples (k, i, j) and (k′, i′, j′)
lie within the same equivalence class if a permutation exists with
π ((k, i, j)) = (k′, i′, j′). In fact, the only things that matter are the
equality relations between the indexes; this analysis leads to five
different equivalence classes: k = i = j, k = i ≠ j, k = j ≠ i, i = j
≠ k, and i ≠ j ≠ k ≠ i. Each ordered triple belongs to one of
these five equivalence classes. Thus, the game depends on only
the five constants associated to each of these possibilities. That
is, we can write

Rk ¼ αakk þ βa——k% þ γa——%k þ δa——%% þ ε!a [S8]

for some constants α, β, γ, δ, and ε. However, because xk are
frequencies, they must sum up to 1. Hence the sum of the Rk
must be 0:

0 ¼ ∑
n

k¼1
Rk ¼ nðαþ δÞa——%% þ nðβþ γþ εÞ!a: [S9]

Because this equation holds for any payoff matrix A, we must
have that 0 = α + δ = β + γ + ε. Thus, the condition that
strategy k is selected for is

Rk ¼ λ1ðakk − a——%% Þ þ λ2ða——k% − a——%k Þ þ λ3ða——k% − !aÞ> 0; [S10]

for λ1 := α, λ2 := −γ, and λ3 := −ε. These parameters depend on
the structure and the dynamics, as well as on the number of
strategies, n. However, next we show that this condition can be
further simplified.
Next we show that the condition can be put in the form given by

either Eq. S2 or Eq. S3, where σ1 and σ2 do not depend on the
number of strategies.
Instead of playing the game with n strategies, let us play it with

mn strategies, where each one of the previous n strategies is re-
placed bym copies of itself. Due to the fact that we mutate to any
other strategy equally likely, this change will not affect the relative
ranking of strategies. Its only effect will be that now the abundance
of strategy k from the initial game ism times larger than any one of
the abundances of its m copies. Let xðsÞk and RðsÞ

k be, respectively,
the frequency and the derivative evaluated at 0 of the frequency of
strategy k in the game with s strategies. So we can write

xðnÞk ¼ 1
n
þ wRðnÞ

k ; xðmnÞ
k ¼ 1

mn
þ wRðmnÞ

k ; and xðmnÞ
k ¼ 1

m
xðnÞk :

[S11]

Thus, RðnÞ
k ¼ mRðmnÞ

k . Noting that the pairwise comparisons
akk − a——%% , a——k% −  a——%k ; and a——k% −  !a are the same for both games,
we conclude that λi(n) = mλi(mn) for all integers n, m ≥ 1.
Switching the roles of m and n we obtain the symmetric
relationship so that λi(m) = nλi(mn) for all n, m ≥ 1. Combining
these two equations one can write nλi(n) = nmλi(nm) = mλi(m)

∀ m, n ≥ 1. Thus, setting m = 3, we obtain nλi(n) = 3λi(3).
Hence the condition (Eq. S10) that strategy k is selected for
becomes

3
n
$
λ1ð3Þðakk − a——%% Þ þ λ2ð3Þða——k% − a——%k Þ þ λ3ð3Þða——k% − !aÞ

%
> 0:

[S12]

Denoting by σ1 = λ1(3)/λ2(3) and by σ1 = λ3(3)/λ3(3) and di-
viding by 3/nλ3(3) we can write the final condition that strategy
k is selected for,

σ1ðakk − a——%% Þ þ ða——k% − a——%k Þ þ σ2ða——k% − !aÞ> 0; [S13]

where the σi do not depend on the number of strategies n. This is
condition [S2].
If, for certain processes, λ2(3) = 0, then we simply divide by 3/n

above and let σ1 = λ1(3) and σ2 = λ2(3) and write the condition
for strategy k to be selected for as

σ1ðakk − a——%% Þ þ σ2ða——k% − !aÞ> 0: [S14]

This is condition [S3]. This concludes our proof.

Low Mutation. In the limit of low mutation, the population spends
most of the time in a homogeneous state. When a mutant arises, it
rapidly either goes to fixation or dies out. In both cases, we return
to a homogeneous population. Because we assume that all
mutants are equally likely to arise, the steady-state frequency
distribution of strategies is given by the eigenvector with eigen-
value 1 of the transition matrix P. In the limit of low mutation,
the transition probabilities Pij are given by the fixation proba-
bilities. Thus, Pij = ρij, which is the fixation probability of
a strategy i mutant into a population of j players. Similarly,
Pii ¼ 1− 1=ðn− 1Þ∑j≠iρji:
In the limit of weak selection, we can write the first-order

Taylor expansion of the fixation probability ρij as

ρij ¼
1
N

þ wγij: [S15]

This holds because at neutrality, all mutants in a population of
size N have the same probability to fixate, 1/N. Using this to-
gether with the Taylor expansion [S4] of the frequencies xk, the
solving for the eigenvector of P of eigenvalue 1 becomes

&
. . . ; 

1
n
þ wRk; . . .

't
¼

&
1
N

þ wγi;j
'&

. . . ; 
1
n
þ wRk; . . .

't
:

[S16]

It immediately follows that

Rk ∼ ∑
i
ðγki − γikÞ ¼ ∑

i
ðρki − ρikÞ: [S17]

Thus, in lowmutation, only the pairwise comparisons between the
fixation probabilities of strategies matter. Ref. 5 shows that in the
limit of low mutation

ρki − ρik ∼ σ0akk þ aki − aik − σ0aii; [S18]

where σ0 is the low mutation limit of the structure coefficient σ
that characterizes games between two strategies. Thus, to study
games on structured populations with several strategies, in the
limit of low mutation and weak selection, it suffices to know the
structure coefficient for games with two strategies. The condition
for several strategies then becomes
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σ0ðakk − a——%% Þ þ ða——k% − a——%k Þ> 0: [S19]

Connection to Previous Results. Games with two strategies in structured
populations. Suppose we restrict ourselves to the case where there
are only n = 2 distinct strategies. In this case the term !a becomes

!a ¼ 1
4
ða11 þ a12 þ a21 þ a22Þ ¼

1
2
ða——k% þ a——%k þ a——%% − akkÞ [S20]

for k = 1, 2. A quick check also confirms that

a——k% − !a ¼ 1
2
ðakk − a——%% Þ þ

1
2
ða——k% − a——%k Þ; [S21]

which means that we may equivalently rewrite the equation in
Theorem 1 as

ðσ1 þ σ2=2Þðakk − a——%% Þ þ ð1þ σ2=2Þða——k% − a——%k Þ> 0: [S22]

Supposing 1 + σ2/2 is positive, we may divide by it to yield

σ1 þ σ2=2
1þ σ2=2

ðakk − a——%% Þ þ a——k% − a——%k > 0: [S23]

[This occurs only if strategy 1 is favored under the matrix&
0 1
0 0

'
. This condition essentially requires just that strategies

with higher payoffs do better; see Tarnita et al. (5) for further
discussion.]
Defining σ :¼ σ1 þ σ2=2

1þ σ2=2
and rearranging, we get that strategy

1 is favored if

σa11 þ a12 > a21 þ σa22; [S24]

which is the result for two strategies proved in ref. 5.
Games with multiple strategies in well-mixed populations. Consider
a well mixed population with N individuals playing n strategies.
Ref. 6 showed that if we fix μ:= Nu but let N tend to infinity,
then in the limit of weak selection the strategy k is favored if

akk − a——%% þ a——k% − a——%k þ μða——k% − !aÞ> 0: [S25]

Checking, we see that this is a special case of Theorem 1 with σ1 =
σ2 = 1 and σ3 = μ.
To derive this result, the authors of ref. 6 explicitly computed

the probabilities with which individual strategies interact and
how these interactions affect the abundance of each strategy.
Theorem 1 predicts the form of the general condition; however,
the specific values must still be calculated explicitly. Theorem 1
also predicts extensions and generalizations of this result. For
example, whereas the result in ref. 6 is only for the limit of large
N, we now know that for any fixed, finite N we must have
a similar result, although the values of σ1 and σ2 may be more
complex.

Global Updating Formula. Here we derive formulas for the sigma
coefficients that hold for all processes satisfying two conditions: i)
global updating, which means individuals compete uniformly with
all others for reproduction, and ii) constant birth or death rate,
which means the payoff from the game can affect either the birth
rate or the death rate but not both.
These assumptions are fulfilled, for example, by games in

phenotype space (2) and by games on sets (3). They do not hold,
however, for games on graphs (1). The first assumption is nec-
essary because our calculation requires that the update rule
depends only on fitness and not on locality. Local update rules
are less well behaved. The second assumption ensures that the
change in the frequency of players is due only to a change in

selection. Without this second assumption the conditions would
be more complicated.
Such a dynamic is very special: Payoff is obtained through local

interactions, according to the structure, but reproduction is
global, like in a well-mixed population. Thus, if condition ii also
holds, the dynamics can be described by a replicator equation,
where the change in the frequency of type k is given as _xk=
xk(fk − f tot). Here fk is the effective payoff of an individual using
strategy k and f tot ¼ ∑i fi is the total effective payoff in the
population. Using the fact that fi = 1 + wpi where pi is the payoff
of an individual playing strategy i, we can rewrite the replicator
equation as _xk= wxk(pk − ptot). Here ptot is the total payoff in the
population. Because pk is the payoff of an individual of strategy
k, then xkpk ¼ ptotk is the total payoff of strategy k and we can
write _xk ¼ wðptotk − ptotÞ. The condition that strategy k is favored
by selection is that on average, over the stationary distribution of
the mutation–selection process, there is a positive change in its
frequency h_xki> 0. In the limit of weak selection, one can write
the first-order Taylor expansion of this inequality to obtain
h_xki ¼h _xki0 þ w

D
∂
∂w _xk

E

0
> 0: Now the averages are taken at neu-

trality, δ = 0. Because at neutrality all strategies have equal fre-
quency, the condition for strategy k to be favored in the limit of
weak selection becomes

D
∂
∂w _xk

E

0
> 0: This result is equivalent to

"
ptotk − ptot

#
0 > 0: [S26]

The only difference between this replicator equation and the
typical one used for well-mixed populations is that the inter-
actions are given by the underlying structure (sets, phenotype, and
dynamical networks). To describe the payoff under these cir-
cumstances, let us introduce the following notation. For each
state of the system, let Nk be the number of individuals using
strategy k. Furthermore, let Iij denote the total (weighted)
number of interactions that i individuals have with j individuals.
Note that every i − i pair is counted twice because each i in-
dividual in the pair has an encounter with another i individual.
Then the payoff of strategy k in the population is given by
ptotk ¼ ∑jakjIkj and the total payoff in the population is given by
ptot ¼ ∑k;jakjIkj: Plugging these into Eq. S6 and collecting terms,
we find that up to the same constant factor, the λi are pro-
portional to

λ1 ∝
"
xkIjj

#
0 −

"
xkIij

#
0

λ2 ∝
"
xkIjk

#
0 −

"
xkIij

#
0

λ3 ∝ n
"
xkIij

#
0 [S27]

with i ≠ j ≠ k ≠ i. This result then yields the values for σ1 and σ2.
A different, more rigorous derivation of these results can be

given along the lines of ref. 7.
Games on sets. Consider a population of N individuals distributed
over M islands. The sets could be geographical islands but they
could also be phenotypic traits or tags. Two individuals interact
only if they are on the same island (have the same tag).
The system evolves according to global updating. At each time

step, one individual is picked to die and an individual is picked
proportional to payoff to reproduce. The offspring inherits the
strategy of the parent with probability 1 − u and picks a random
one with probability u. Moreover, the offspring inherits the tag
or the location of the parent with probability 1 − υ or chooses
a random tag with probability υ. Thus, there is a strategy mu-
tation rate u and a set mutation rate (or migration rate) υ. This
system has been studied for only two strategies by refs. 2 and 3.
Here we show what happens when the N individuals can choose
to play one of n strategies.
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Let xi* be the fraction of individuals using strategy i; let xil be
the fraction of individuals using strategy i and belonging to island
l; and finally, let x*l be the total number of individuals in set l.
Here i can take values from 1 through n and l can take values
from 1 throughM. Then, we can use our global updating formula
where the total number of interactions between individuals
having strategy i and individuals having strategy j is given by

Iij ¼ ∑
M

l¼1
xilxjl: [S28]

Then it immediately follows that

λ1 ∝
D
xk%x2jl

E

0
−
"
xk%xilxjl

#
0

λ2 ∝
"
xk%xklxjl

#
0 −

"
xk%xilxjl

#
0

λ3 ∝
"
xk%xilxjl

#
0: [S29]

One can interpret these quantities as follows. Pick three indi-
viduals at random. Then hxk%x2jli0 is the probability that two of
them are on the same island and have the same strategy, dif-
ferent from the third’s; hxk%xilxjli0 is the probability that two of
them are on the same island and all three have different strat-
egies; and finally, hxk%xklxjli0 is the probability that two have the
same strategy, different from the third’s, and the other two are
on the same island.
To calculate these quantities we use the same method of the

coalescent described in refs. 2, 3, 6, and 8. We fix the time τ to
the most recent common ancestor and account for what could
have happened since then. We perform the calculations in the
limit of large population size N. The three important quantities
are the probability s2(τ) that two individuals have the same
strategy, the probability z2(τ) that two individuals are on the
same island, and the probability s3(τ) that three individuals have
the same strategy at time τ after their most recent common
ancestor. Following the trajectory of individuals back in time, we
see that strategy mutations happen at rate μ/2 = Nu/2 and island
migrations happen at rate ν/2 = Nυ/2 to each trajectory.
The coalescence time is described by the density function

p2(τ) = e−τ. Immediately after the coalescence of two players,
they are identical with respect to both island and strategy. To
find out what is the probability that they still have the same
strategy at time τ afterward, we proceed as follows: With prob-
ability e−μτ neither one mutated and hence they have the same
strategy; otherwise at least one of them mutated and hence they
have the same strategy with probability 1/n. A similar derivation
occurs for the island migration. Thus, we can write

s2ðτÞ ¼ e− μτ þ 1− e− μτ

n
z2ðτÞ ¼ e− ντ þ 1− e− ντ

M
: [S30]

To find the probability that three individuals have the same
strategy requires a little more but similar work. This calculation
has already been done in Antal et al. (2) and we can write

s3ðτ2; τ3Þ ¼ 1
n2
$
s2ðτ2Þð1þ 3ðn− 1Þe− μτ3 þ ðn− 1Þðn− 2Þe− 3=2μτ3Þ

þ ð1− s2ðτ2ÞÞð1þ ðn− 3Þe− μτ3 − ðn− 2Þe− 3=2μτ3Þ
%
:

[S31]

Here τ3 is the time to the first coalescence event and τ2 is the
time from between the first and the last coalescence events. The
probability density function that describes this coalescence event
is p3ðτ2; τ3Þ ¼ 3e− τ2 − 3τ3 : Having derived these quantities, one
can immediately calculate some quantities of interest as follows:

"
x2kl
#
0 ¼

ð∞

0
p2ðτÞs2ðτÞz2ðτÞdτ

D
xk%x2jl

E

0
¼ 1

3

ð∞

0

ð∞

0
p3ðτ2; τ3Þs3ðτ2; τ3Þ½z2ðτ3Þ

þ z2ðτ2 þ τ3Þ þ z2ðτ2 þ τ3Þ$dτ2dτ3

hxk%xklx%li0 ¼
1
3

ð∞

0

ð∞

0
p3ðτ2; τ3Þ½s2ðτ3Þz2ðτ2 þ τ3Þ

þ s2ðτ2 þ τ3Þz2ðτ3Þ þ s2ðτ2 þ τ3Þz2ðτ2 þ τ3Þ$dτ2dτ3:
[S32]

The other quantities can be easily found by symmetry as

hxk%xklxili0 ¼
1

n− 1

)D
xk%xklx%l

E

0
−
"
xk%x2kl

#
0

*

"
xk%xilxjl

#
0 ¼

1
n− 2

)
hxklxili0 − 2hxk%xklxili0

*
; [S33]

where for the first equality we used the fact that xil ¼ x%l −∑j≠i xjl
and for the second one we used the fact that xk% ¼ ∑jxkj: Finally,
we obtain

λ1 ∝ ð1þ νÞð3þ μþ νÞðMð2þ μÞð3þ 3μþ 2νÞþ νð4þ 3μþ 2νÞÞ
λ2 ∝ Mð2þ μÞð9þ 3μð4þ μÞ þ 6νþ 5μνþ ν2Þ

þ  νð3μ3 þ 2ð2þ νÞð3þ νÞ2 þ μ2ð21þ 8νÞ
þ μð49þ νð38þ 7νÞÞÞ

λ3 ∝ μ
h
Mð2þ μÞð9þ 3μð4þ μÞ þ 7νþ 5μνþ 2ν2Þ

þ νð34þ 3μ3 þ 40νþ 2ν2ð8þ νÞ þ μð3þ νÞð16þ 7νÞ

þ μ2ð21þ 8νÞÞ
i
:

[S34]
Because λ2 ≠ 0, one immediately finds σ1 = λ1/λ2 and σ2 = λ3/λ2.
Repetition and structure. We now use these results to study a par-
ticular game on sets. Our game is meant to capture the essential
problem of evolution of cooperation based on direct reciprocity.
We consider three strategies: always cooperate (AllC), always
defect (AllD), and tit-for-tat (TFT). We assume there is a re-
peated interaction between any two players subject to a certain
continuation probability; the average number of rounds is given
by m. We have the following payoff matrix:

AllC AllD   TFT
AllC
AllD
TFT

0

@
mðb− cÞ −mc mðb− cÞ

mb 0 b
mðb− cÞ − c mðb− cÞ

:

1

A

We find the condition for AllD to be selected against and note
that there are parameter regions where one needs both structure
and repetition to select against defection. Neither one can do it on
its own. We can solve for the asymptotes; for simplicity, here we
give only the low strategy mutation limit. Let mM→∞ be the
horizontal asymptote (the required number of repetitions) and
let Mm→∞ be the vertical asymptote (the required number of
sets). Then, for low mutation

mM→∞ ¼
ðbc þ 1Þð3þ νÞ

b
cð3þ 9νþ 4ν2Þ− 9− 11ν− 4ν2

Mm→∞ ¼
νð2þ νÞð− b

cð− 1þ νÞ þ 5þ 3νÞ
b
cð3þ 9νþ 4ν2Þ− 9− 11ν− 4ν2

:

[S35]

The condition for repetition to be needed is mM→∞ > 1, which
yields
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b
c
< 1þ νþ 3

νðνþ 2Þ: [S36]

The condition for structure to be needed is Mm→∞ > 1, which
yields

b
c
< 3: [S37]

Thus, the condition for both structure and repetition to be needed
is

b
c
<min

+
3; 1þ νþ 3

νðνþ 2Þ

,
: [S38]

This parameter region captures a very realistic situation because
most games are played for small values of benefit relative to cost.
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