
Complex & Intelligent Systems (2021) 7:1–16

https://doi.org/10.1007/s40747-020-00148-1

ORIG INAL ART ICLE

Multiple-strategy learning particle swarm optimization for large-scale
optimization problems

Hao Wang1 ·Mengnan Liang1 · Chaoli Sun1 · Guochen Zhang1 · Liping Xie1

Received: 15 March 2020 / Accepted: 26 April 2020 / Published online: 26 May 2020

© The Author(s) 2020

Abstract

The balance between the exploration and the exploitation plays a significant role in the meta-heuristic algorithms, especially

when they are used to solve large-scale optimization problems. In this paper, we propose a multiple-strategy learning particle

swarm optimization algorithm, called MSL-PSO, to solve problems with large-scale variables, in which different learning

strategies are utilized in different stages. At the first stage, each individual tries to probe some positions by learning from

the demonstrators who have better performance on the fitness value and the mean position of the population. All the best

probed positions, each of which has the best fitness among all positions probed by its corresponding individual, will compose

a new temporary population. The temporary population will be sorted on the fitness values in a descending order, and will

be used for each individual to find its demonstrators, which is based on the rank of the best probed solution in the temporary

population and the rank of the individual in the current population, to learn using a new strategy in the second stage. The first

stage is used to improve the exploration capability, and the second one is expected to balance the convergence and diversity

of the population. To verify the effectiveness of MSL-PSO for solving large-scale optimization problems, some empirical

experiments are conducted, which include CEC2008 problems with 100, 500, and 1000 dimensions, and CEC2010 problems

with 1000 dimensions. Experimental results show that our proposed MSL-PSO is competitive or has a better performance

compared with ten state-of-the-art algorithms.

Keywords Large-scale optimization · Multiple-strategy learning particle swarm optimization · Two-stage searching

mechanism

Introduction

Optimization problems can be seen everywhere, for example,

the optimization of the water distribution network [36], the

Hao Wang and Mengnan Liang are co-first authors.

B Chaoli Sun

chaoli.sun.cn@gmail.com

Hao Wang

h_wang_cn@163.com

Mengnan Liang

liangmn5@163.com

Guochen Zhang

imzgc@hotmail.com

Liping Xie

xieliping@tyust.edu.cn

1 Department of Computer Science and Technology, Taiyuan

University of Science and Technology, Taiyuan 030024,

China

optimization strategy of the resource allocation [16], the task

assignment [19], and many others [1,12,21,24,39–41,48,50,

72]. As a maximum optimization problem can be transferred

to a minimum one by multiplying −1, in this paper, only

the minimization problems are considered. The mathematical

model of a minimization problem can be described in the

following:

min f (x) (1)

s.t. x ∈ ℜD, (2)

where D is the dimension of the problem, and f (x) is the

objective of the optimization. Meta-heuristic optimization

algorithms, including evolutionary algorithms [11,14], and

swarm optimization algorithms [15,20,26,27,31,32,44,46,

56] have been paid more and more attention and applied suc-

cessfully in many optimization problems [23,27,43,52,70]

because of its ease of usage and independence on the char-

acteristics of the optimization problems.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00148-1&domain=pdf
http://orcid.org/0000-0002-8011-8222

2 Complex & Intelligent Systems (2021) 7:1–16

Traditional meta-heuristics have shown excellent abili-

ties for solving lower dimensional optimization problems.

However, their performances would deteriorate dramatically

when the number of dimensions exceeds 100 [6], called

large-scale optimization problems, because of the curse of

dimensionality [34,59]. The search process will then stagnate

into a local optimum and, therefore, result in a premature

convergence. Thus, it is critical to enhance the diversity

of the population so as to improve the exploration capa-

bility for tackling the large-scale optimization problems.

Some approaches have been proposed for solving problems

with large-scale dimensions, which can be divided into two

categories: cooperative coevolution (CC) methods and new

learning strategies.

1. The cooperative coevolutionary methods adopt the divide-

and-conquer strategy, which decomposes the popula-

tion into a number of subpopulations and solves them

independently. Many algorithms based on cooperative

coevolutionary frameworks for large-scale optimization

problems have been proposed, such as cooperative coevo-

lutionary genetic algorithms [2,3,22,42,55,69] coopera-

tive coevolutionary PSO (CCPSO) [30], and cooperative

coevolutionary DE (DECC) [29,37,51,64–67], etc. The

methods are efficient when the optimization problems

are separable. However, the performance is not so good

when the problems are nonseparable. Therefore, differ-

ent decomposition strategies, such as random dynamic

grouping [66], multilevel dynamic grouping [67], and

differential grouping [29,38], have been proposed. Also,

it is obvious that the performance of CC algorithms is

highly sensitive to the decomposition strategies for dif-

ferent classes of optimization problems.

2. In each meta-heuristic algorithm, the learning strategy

plays a significant role to find an optimal solution.

Therefore, researchers try to develop different learning

strategies for meta-heuristic algorithms so as to enhance

the exploration capability of the population, which aims

to promote the chances of escaping from local optima [5–

8,17,18,25,28,47,58]. The performance of exploration is

improved by keeping the diversity of the population.

However, more evaluations on the objective functions are

required for the final convergence.

In recent years, the surrogate-assisted evolutionary algo-

rithms, such as SA-COSO [54], SHPSO [68], and MGP-

SLPSO [57], have been paid attention for solving computa-

tionally expensive high-dimensional problems (generally not

more than 100 dimensions). However, not so many methods

have been proposed for solving computationally expensive

large-scale optimization problems. Ivanoe De Falco et al.

[9,10] decomposed the large-scale optimization problems

into some lower-dimensional sub-problems and optimized

using the surrogate-assisted optimization algorithms and

parallel computing techniques. Sun et al. [53] proposed

to solve large-scale optimization problems by a modified

PSO algorithm assisted by the fitness estimation strategy.

Generally, the number of exact fitness evaluation in the

surrogate-assisted evolutionary algorithms for solving a com-

putationally expensive problem is very limited, which will

not be considered in this paper. That is, only the large-scale

optimization problems with cheap fitness evaluation are con-

sidered to be solved in this paper, in which a large number

of fitness evaluations are allowed.

To balance between the exploration and exploitation in

solving large-scale optimization problems, in this paper, we

propose a multiple strategy learning particle swarm optimiza-

tion (MSL-PSO) method, in which two steps with different

learning strategies are proposed to generate a new population.

At the first step, the current population will be sorted from

the worst to the best based on the fitness values, and each

individual will probe different positions by learning from its

demonstrators and the mean position of the current popu-

lation. The best position probed by each individual will be

kept and compose a temporary population, which will also

be sorted from the worst to the best based on their fitness

values. Each individual will update its position by learning

demonstrators from different sub-sets of the temporary popu-

lation, which is used to balance the convergence and diversity.

Similar to those learning strategies that have been proposed,

such as SL-PSO [6], CSO [5], and DEGLSO [63], etc., our

MSL-PSO method also focuses on the learning strategy that

concerns the trade-off between the convergence and diversity

of the population.

The remainder of this paper is organized as follows. The

section “Related work” gives a brief introduction on the

canonical particle swarm optimization (PSO) algorithm and

the methods for solving the large-scale optimization prob-

lems. Our proposed MSL-PSO algorithm is described in

detail in the section “The proposed algorithm”. In the section

“Experimental studies”, experiments are conducted to verify

the effectiveness and efficiency of MSL-PSO by comparison

with ten state-of-the-art algorithms. Finally, the conclusion

of this paper is given in the section “Conclusion”.

Related work

Particle swarm optimization

The particle swarm optimization (PSO), which simulates the

bird flocking or fish schooling, was proposed by Kennedy and

Eberhart [13], is one of the swarm optimization algorithms.

In PSO, each individual has its own velocity and position,

which will be updated using the following equations:

123

Complex & Intelligent Systems (2021) 7:1–16 3

vid(t + 1) = ωvid(t) + c1r1(pid(t)

−xid(t)) + c2r2(gd(t) − xid(t)) (3)

xid(t + 1) = xid(t) + vid(t + 1), (4)

where vi (t) = (vi1(t), vi2(t), . . . , vi D(t)) and xi (t) =

(xi1(t), xi2(t), . . . , xi D(t)) represent the velocity and posi-

tion of individual i at t th generation, respectively. pi (t) =

(pi1(t), pi2(t), . . . , pi D(t)) and g(t) = (g1(t), g2(t), . . . ,

gD(t)) are the best historical position of individual i and the

swarm, respectively. w is called the inertia weight, c1 and c2

are two cognitive parameters, and r1 and r2 are two random

number generated uniformly in the range of [0, 1]. The PSO

algorithm has been shown better convergence performance;

however, it is not good for solving large-scale optimization

problems [6]. Therefore, different PSO variants, such as CSO

[5], SL-PSO [6], LLSO [61] and DEGLSO [63], have been

proposed, in which different learning strategies were utilized

in the swarm optimization algorithms to improve the diver-

sity of PSO so as to enhance the exploration capability.

Optimization of the large-scale problems

Generality, the meta-heuristic algorithms proposed for solv-

ing large-scale optimization problems can be classified into

two categories. One is the cooperative coevolutionary meta-

heuristic algorithms, and the other is the meta-heuristic

methods with efficient learning strategies.

Cooperative coevolutionary algorithms

The cooperative coevolution (CC) mechanism divides the

large-scale problem into a number of small subproblems,

and then optimize them separately using the canonical meta-

heuristics. Generally, there are also two categories of CC

evolutionary algorithms according to the decomposition

strategies: the static and dynamic decomposition strategies.

The static decomposition strategy first detects the correla-

tionship between variables and then decompose them in a

fixed way before the optimization. For example, Omidvar et

al. [37] proposed a differential grouping (DG) strategy, in

which the problem is separated into a number of small sub-

problems. Mei et al. [33] extended the DG method to identify

the independent subproblems to be optimized by a covari-

ance matrix adaptation evolution strategy. Different to the

static decomposition strategy, the variables are decomposed

to different subproblems at different generations, which

can be further classified into random-based decomposition

and learning-based decomposition. Li et al. [29] proposed

CCPSO2 for large-scale optimization problems, in which

the random grouping was adopted to decompose the variables

into subcomponents dynamically. However, the performance

will be deteriorated when the problem is nonseparable. Ray

and Yao [45] proposed an adaptive variable partitioning based

on the correlation, which was utilized in the cooperative

coevolutionary algorithms to deal with nonseparable prob-

lems.

The decomposition strategy plays significant importance

in the cooperative coevolutionary algorithms. Poor decom-

position will deteriorate the performance the algorithms, and

also, it will be inefficient when all variances of the problem

are correlated to each other.

New learning strategies for meta-heuristic algorithms

Different to the cooperative coevolutionary algorithms, some

learning strategies are proposed to be put into the meta-

heuristic algorithms to improve the diversity of the popu-

lation, and thus enhance the exploration capability of the

algorithms. In our method, we focus on studying a new learn-

ing strategy for PSO to find a global optimal solution for

the large-scale optimization problems. Therefore, only PSO

variants for large-scale optimization were reviewed in this

section. Cheng and Jin [5] proposed a competitive swarm

optimizer (CSO) algorithm, in which a random competition

strategy was utilized and any individual with a better fitness

value in a pair will be the winner. Instead of learning from the

personal best position of the individual and of the swarm, in

CSO, the loser in the pair will learn from its winner. Inspired

by CSO, Yang et al. [62] proposed a segment-based pre-

dominant learning swarm optimizer (SPLSO), in which the

dimension will be divided into a number of segments and

variables in different segments will be evolved by learning

from different exemplars. The social learning PSO [6] was

also proposed by Cheng and Jin, in which the population

will be sorted according to the fitness and each individual

will learn from its demonstrators [4] who have better fitness

values than this individual. Later, Yang et al. [61] separated

the population into a number of levels based on the fitness

values, and each individual will learn from particles in two

higher layers.

The proposed algorithm

The trade-off between the convergence and diversity of the

population is crucial for meta-heuristic algorithms to solve

large-scale optimization problems, because the search space

will increase exponentially when the dimension of the prob-

lem increases [62], which will put significant challenges to

find the global optimal solution. PSO has been shown to be

implemented easily and has quick convergence capability.

However, the diversity of the population will be lost quickly

after some generations because of the quick convergence of

the algorithm. Therefore, the PSO algorithm is not efficient to

solve large-scale optimization problems. Some PSO variants,

123

4 Complex & Intelligent Systems (2021) 7:1–16

such as CSO [5], SL-PSO [6], SPLSO [62], and LLSO [61],

have put forward different learning strategies to improve the

diversity of the population to solve large-scale optimization

problems. In this paper, we propose a multi-strategy learning

particle swarm optimization (MSL-PSO) method, in which

the idea of social learning proposed in [6] is adopted to update

the position of each individual in the population. However,

different to the SL-PSO algorithm, two stages with different

learning strategies are used to generate a new population. In

the first stage, each individual will probe some positions by

learning from its demonstrators who have better fitness values

than this individual and the mean position of the population.

The best probed position, which has the minimal fitness value

among all of its probed positions, will be kept. All the best

probed positions at current generation will compose a tem-

porary population, which will be sorted from worst to best on

the fitness values. Then, in the second stage, a new strategy,

which is used to balance the diversity and convergence, will

be used to update the velocity and position of each individ-

ual. In the following, we will give a detailed description of

the proposed method.

The overall framework of MSL-PSO

Algorithm 1 gives a pseudocode of the MSL-PSO algorithm.

A population Pop will be initialized, and the fitness of each

individual in Pop will be evaluated. While the stopping cri-

teria is not met, the following process will be repeated: all

individuals will be sorted on the fitness values in a descending

order. Each individual will probe Kmax positions by learning

from its demonstrators and the mean position of the current

population. The best probed position, which has the min-

imum fitness value among Kmax positions, will be kept for

each individual (lines 6–7). All of these best probed positions

will compose a temporary population NPop. Then, individ-

uals in the NPop will also be sorted on their fitness values in

a descending order. Afterwards, each individual i will find

two sub-sets of NPop, one is composed of all individuals

whose rank in NPop is between the rank of individual i in

the sorted NPop and that of individual i in the sorted Pop,

and the other is composed of all individuals whose rank is

larger than that of individual i in the sorted NPop, for select-

ing demonstrators to update its velocity using the strategy

proposed in our method (line 11). At each generation, an

individual will explore Kmax + 1 different positions by the

two learning criteria, and all of these Kmax +1 positions will

be evaluated using the objective function. Therefore, there

will be Kmax +1 fitness evaluations for each solution at each

generation, and the total number of fitness evaluations will be

(Kmax + 1)∗ NP, where NP is the size of current population.

Algorithm 1: The pseudocode of MSL-PSO

Input: Population size N P , the number of maximal fitness

evaluations M AX_F E S;

Output: The optimal solution and its fitness;

1 Initialization of a population Pop;

2 Evaluate the fitness of each individual in Pop, f es = N P;

3 while f es ≤ M AX_F E S do

4 Sort the population in a descending order;

5 for i = 1 : N P do

6 Probe Kmax positions using the social learning

technique proposed in [6] for individual i ; (Refer to

Algorithm 2)

7 Evaluate these Kmax positions and keep the best

solution among these Kmax solutions;

8 end for

9 Sort the new population NPop, which is composed of the

best probed position of each individual in Pop, in a

descending order;

10 for i = 1 : N P do

11 Find two sub-sets in the new population NPop for the

social learning of individual i , and the population Pop

will be updated; (Refer to Algorithm 3)

12 end for

13 f es = f es + (Kmax + 1) ∗ N P;

14 end while

15 Output the optimal solution and its fitness value;

Fig. 1 Population sorting

Position probing

Algorithm 2 gives the detail on how an individual probes dif-

ferent positions by social learning technique proposed in [6].

Similar to SL-PSO [6], all individuals in the current popula-

tion will be sorted in a descending order based on the fitness

value, which is shown in Fig. 1. Suppose that the rank of

individual i is j , and then, individuals that have larger rank

than j are all demonstrators of individual i .

For each individual i , Kmax positions will be probed

using Eqs. (5) and (6) by learning from the demonstrators

to improve the exploration capability of the population:

vvk
id = r k

1 ∗ vid(t) + r k
2 ∗ (x jd(t) − xid(t))

+φ ∗ r k
3 ∗ (x̄d(t) − xid(t)) (5)

xxk
id = xid(t) + vvk

id , (6)

where k = 1, 2, . . . , Kmax; Kmax is the maximum number of

probation for each individual. vvk
i = (vvk

i1, vvk
i2, . . . , vvk

i D)

and xxk
i = (xxk

i1, xxk
i2, . . . , xxk

i D) represent the velocity

and position that individual i learns from its demonstra-

tors at kth time, respectively. vi (t) = (vi1, vi2, . . . , vi D) and

xi (t) = (xi1, xi2, . . . , xi D) are the velocity and position of

123

Complex & Intelligent Systems (2021) 7:1–16 5

individual i at generation t , respectively. x̄(t) = 1
NP

∑NP
i=1 xi

is the mean position of the population at generation t . r k
1 , r k

2 ,

and r k
3 are random numbers uniformly generated in the range

of [0, 1] at kth time. φ is a constant called the social learning

probability which is used to define the degree to learn from

the mean position of the population. Note that the Kmax posi-

tions have little probability to be same, because the individual

will choose different demonstrators to learn on each dimen-

sion. It can be easily imaged that more positions are probed

by learning from demonstrators, more chances it will have to

find a better solution at each generation. However, the com-

putational resources will be quickly exhausted, because too

many fitness evaluations will be consumed at each genera-

tion, which, in turn, will impede the population to explore the

search space and, correspondingly, will not be able to find a

good optimal solution. On the other hand, the less positions

are probed, the less probability it has to find a better solution

at each generation. The best probed position with the min-

imum fitness value among Kmax solutions will be kept and

denoted as xc (line 9 in Algorithm 2), and its corresponding

velocity is denoted as vc.

Algorithm 2: Position probing

Input: individual i ;

Output: the best probed position xci ;

1 for k = 1 : Kmax do

2 for d=1:D do

3 Randomly select one individual from its

demonstrators;

4 Update the velocity on dth dimension using Eq. (5);

5 end for

6 Generate kth candidate position using Eq. (6);

7 end for

8 Evaluate the fitness values of these candidate positions;

9 xci = argmin{ f (xx1), f (xx2), . . . , f (xxKmax)};

Position updating

The convergence and diversity are two key factors in find-

ing the global optimal solutions for large-scale optimization

problems. A good performance on the diversity can improve

the exploration capability, while a good performance on the

convergence can speed up locating at the optimal position.

Therefore, in the second stage of MSL-PSO, we propose a

new strategy, in which the demonstrators of each individual

are selected from two sub-sets of NPop, which is composed of

all best probed positions, i.e., NPop = {xc1, xc2, . . . , xcNP},

to update the velocity of each individual in the population

Pop. Equations (7) and (8) show how to update the veloc-

ity and position of each individual in the stage of position

updating for each individual:

vid(t + 1) = r1 ∗ vcid + r2 ∗ (xc jd − xcid(t))

+φ ∗ r3 ∗ (xckd − xcid(t)) (7)

xid(t + 1) = xcid + vid(t + 1). (8)

In Eqs. (7) and (8), vci = (vci1, vci2, . . . , vci D) and xci =

(xci1, xci2, . . . , xci D) are the velocity and position, respec-

tively, of the best probed position for individual i . j and k

represent the two demonstrators in NPop for individual i to

learn on dimension d. φ is the social learning probability

which has the same meaning to that in Eq. (5).

Figure 2 gives a simple example to show how to select two

demonstrators in the second stage. In Fig. 2, demonstrator_1

and demonstrator_2 represent two sub-sets for individual i

to choose demonstrators to learn, respectively. For each indi-

vidual i , we have its rank in Pop and rank in NPop. When

the rank of the best probed position of individual i in the

NPop is worse than the rank of the individual i in the Pop, it

means that it falls behind more other individuals in the NPop

compared to it does in the Pop. For example in Fig. 2a, the

rank of xci in NPop is k, and the rank of xi (t) in Pop is j ,

k < j , then the demonstrators between k and j will be used to

guide the individual to exploit a better solution. Conversely,

when the rank of the best probed position of an individual

i in NPop is better than that of the individual i in Pop, it

means that the best probed position has a better performance

among NPop than the individual i in Pop. To prevent prema-

ture convergence, we also learn from some losers of the best

probe solution. Seen from Fig. 2b, we can see that j < k,

and the losers between j and k will be selected as one of the

demonstrators. The other demonstrator is selected from the

sub-set demonstrator_2 which is composed of all individuals

that have better fitness than the best probed position.

Algorithm 3 gives the pseudocode of the position updat-

ing. Each individual i will update its velocity and position

according to Eqs. (7) and (8), respectively. The global best

position gbest will be updated if a new position is better than

it.

Algorithm 3: Position updating

Input: the best probe position of individual i (xci);

Output: the position of individual i at generation t + 1;

1 Update the velocity and position using Eqs. (7) and (8),

respectively;

2 Evaluate the fitness value of individual i ;

3 if f (xi (t + 1)) < f (gbest) then

4 gbest = xi (t + 1);

5 f (gbest) = f (xi (t + 1));

6 end if

123

6 Complex & Intelligent Systems (2021) 7:1–16

Table 1 Summary of the CEC2008 benchmark functions

Function name Properties Search range

F1 Shifted sphere function Unimodal; shifted; separable; scalable; [−100, 100]D

F2 Schwefel’s problem Unimodal; shifted; non-separable; scalable; [−100, 100]D

F3 Shifted Rosenbrok’s function Multi-modal; shifted; non-separable; scalable; [−100, 100]D

F4 Shifted Rastrigin’s function Multi-modal; shifted; separable; scalable; [−5, 5]D

F5 Shifted Griewank’s function Multi-modal; shifted; non-separable; scalable; [−600, 600]D

F6 Shifted Ackley’s function Multi-modal; shifted; separable; scalable; [−32, 32]D

F7 Fast fractal ’double dip’ function Multi-modal; Non-separable;Scalable; [−1, 1]D

Fig. 2 A simple example to show the method in the second stage

Experimental studies

Experimental setup and benchmark functions

To verify the performance of MSL-PSO, a series of experi-

ments are conducted on CEC2008 and CEC2010 large-scale

benchmark problems. The main characteristics of these two

function sets are summarized in Tables 1 and 2.

The parameter settings of MSL-PSO are given in the fol-

lowing: the population size NP is set to 100 if the dimension

is not larger than 100, and otherwise, NP= M + ⌊(D/10)⌋,

where M = 100 and D is the dimension of the problem.

The social learning probability φ is set to D/M ∗ 0.01. The

number of dimensionality D is set to 100, 500, and 1000 for

CEC2008 test problems and 1000 for CEC2010 benchmark

problems, respectively. The algorithm will be run 20 times

independently on each problem. The stopping criteria are

Fig. 3 The experimental results on the 1000-dimensional CEC2010

F9 problem obtained by the proposed method with different maximum

number of candidate positions

that the maximum number of function evaluation reaches

3000 ∗ D. Generally, more candidate positions provided,

more chances to find a better optimal solution. However,

the number of fitness evaluation will be consumed much

quicker if more candidate positions are considered. On the

contrary, less positions are probed, less probability it has to

find a better solution at each generation. To see which value

is best for assisting the proposed method to obtain good opti-

mal solutions, we compare the mean optimal solutions of the

1000-dimensional CEC2010 F9 problem obtained by the pro-

posed method using different maximum number of candidate

positions. Figure 3 gives the mean results of 20 independent

runs with 1, 2, 3, and 4 positions probed by each individ-

ual at each generation, respectively. From Fig. 3, we can see

that the performance of MSL-PSO is best when the maxi-

mum number of probed position is set to 3. Therefore, in our

experiments, only three positions are probed for each indi-

vidual by learning from its demonstrators, i.e., Kmax = 3.

Comparisons to theMSL-PSO variants

From the detailed description of MSL-PSO, we can see that

there are two stages to generate a new position for each indi-

vidual. To see the performance of our proposed method, we

first compare the results obtained on F6 and F9, which are

multi-model and uni-model, respectively, with two MSL-

PSO variants, in which one variant uses the first stage of

MSL-PSO only (denoted as mSL-PSO) and the other one

123

Complex & Intelligent Systems (2021) 7:1–16 7

Table 2 Summary of the CEC2010 benchmark functions

Function name Properties Search range

F1 Shifted elliptic

function

Unimodal;

shifted; sepa-

rable; scalable;

[−100, 100]D

F2 Shifted Rastri-

gin’s function

Multi-modal;

shifted; separa-

ble; scalable;

[−5, 5]D

F3 Shifted Ackley’s

function

Multi-modal;

shifted; separa-

ble; scalable;

[−32, 32]D

F4 Single-group

shifted and m-

rotated elliptic

function

Unimodal;

shifted; single-

group m-rotated;

single-group

m-rotated;

[−100, 100]D

F5 Single-group

shifted and

m-rotated Rastri-

gin’s function

Multi-modal;

shifted; single-

group m-rotated;

single-group

m-non-separable;

[−5, 5]D

F6 Single-group

shifted and m-

rotated Ackley’s

function

Multi-modal;

shifted; single-

group m-rotated;

single-group

m-non-separable;

[−32, 32]D

F7 Single-group

shifted and m-

dimensional

Schwefel’s prob-

lem

Unimodal;

shifted;

single-group

m-non-separable;

[−100, 100]D

F8 Single-group

shifted and m-

dimensional

Rosenbrock’s

function

Multi-modal;

shifted;

single-group

m-non-separable;

[−100, 100]D

F9 D
2m

-group shifted

and m-rotated

elliptic function

Unimodal;

shifted; D
2m

-

group m-rotated;
D

2m
-group m-

Non-separable

[−100, 100]D

F10 D
2m

-group shifted

and m-rotated

Rastrigin’s func-

tion

Multi-modal;

shifted; D
2m

-

group m-rotated;
D

2m
-group m-

Non-separable

[−5, 5]D

replaces the strategy used in the second stage with the strategy

proposed in SL-PSO (denoted as SL-PSOs). Table 3 gives the

statistical results of these algorithms on CEC2010 F6 and F9

benchmark problems with 1000 dimensions. Each algorithm

is run independently for 20 times on each test problem, and

the Wilcoxon rank sum test with a significance level of 0.05

is applied to assess whether the performance of a solution

obtained by one of the two compared algorithms is expected

to be better than the other [60]. In Table 3, ‘+’,‘≈’, and ‘−’

represent that MSL-PSO is significantly better, equivalent

to, and worse than the compared algorithms, respectively,

according to the Wilcoxon rank sum test on the mean fitness

values. The best mean optimal solution on each benchmark

problem is highlighted with an underline. From Table 3, we

can see that our proposed MSL-PSO can obtain better results

than mSL-PSO and SL-PSOs on both of these problems,

which showed that the method using two stages is effective

to solve large-scale optimization problems.

123

8 Complex & Intelligent Systems (2021) 7:1–16

Table 2 continued

Function name Properties Search range

F11 D
2m

-group Shifted

and m-rotated

Ackley’s func-

tion

Multi-modal;

Shifted; D
2m

-

group m-rotated;
D

2m
-group m-

Non-separable

[−32, 32]D

F12 D
2m

-group

Shifted and

m-dimensional

Schwefel’s prob-

lem

Unimodal;

Shifted;
D

2m
-group m-

Non-separable

[−100, 100]D

F13 D
2m

-group

Shifted and

m-dimensional

Rosenbrock’s

function

Multi-modal;

Shifted;
D

2m
-group m-

Non-separable

[−100, 100]D

F14 D
m

-group shifted

and m-rotated

elliptic function

Unimodal;

shifted; D
m

-

group m-rotated ;
D
m

-group m-Non-

separable

[−100, 100]D

F15 D
m

-group shifted

and m-rotated

Rastrigin’s func-

tion

Multi-modal;

shifted; D
m

-

group m-rotated ;
D
m

-group m-Non-

separable

[−5, 5]D

F16 D
m

-group shifted

and m-rotated

Ackley’s func-

tion

Multi-modal;

shifted; D
m

-

group m-rotated ;
D
m

-group m-Non-

separable

[−32, 32]D

F17 D
m

-group shifted

m-dimensional

Schwefel’s func-

tion

Unimodal;

shifted; D
m

-group

m-Non-separable

;

[−100, 100]D

F18 D
m

-group shifted

m-rotated Rosen-

brock’s function

Multi-modal;

shifted; D
m

-group

m-Non-separable

[−100, 100]D

F19 Shifted Schwe-

fel’s problem

Unimodal;

shifted; fully-

nonseparable

[−100, 100]D

F20 Shifted Schwe-

fel’s problem

Multi-modal;

shifted; fully-

nonseparable

[−100, 100]D

Table 3 Comparisons on the mean values and standard deviation between MSL-PSO and its variants on CEC2010 F6 and F9 test problems with

1000 dimensions (D = 1000)

mSL-PSO SL-PSOs MSL-PSO

F6 Mean 1.42E−07 (+) 1.48E−07 (+) 9.07E-08

Std 2.72E−09 7.14E−09 7.11E-01

F9 Mean 4.53E+07 (+) 6.96E+07 (+) 1.23E+07

Std 2.40E+06 6.97E+06 1.13E+06

123

Complex & Intelligent Systems (2021) 7:1–16 9

Fig. 4 Comparison on CEC

2008

123

10 Complex & Intelligent Systems (2021) 7:1–16

Table 4 Comparisons of the mean value and standard deviation between MSL-PSO and other algorithms on CEC2008 test problems with 100

dimensions (D = 100)

SL-PSO CCPSO2 MLCC Sep-CMA-ES EPUS-PSO DMS-L-PSO MSL-PSO

F1 Mean 1.09e−27 7.73e−14 6.82e−14 9.02e−15 7.47e−01 0.00e-00 6.97e−28

Std 3.50e−28 3.23e−14 2.32e−14 5.53e−15 1.70e−01 0.00e−00 3.14e−28

F2 Mean 9.45e−06 6.08e+00 2.53e+01 2.31e+01 1.86e+01 3.65e+00 5.03e-06

Std 4.97e−06 7.83e+00 8.73e+00 1.39e+01 2.26e+00 7.30e−01 1.70e-06

F3 Mean 5.74e+02 4.23e+02 1.50e+02 4.31e+00 4.99e+03 2.83e+02 9.15e+01

Std 1.67e+02 8.65e+02 5.72e+01 1.26e+01 5.35e+03 9.40e+02 1.85e+01

F4 Mean 7.46e+01 3.98e−02 4.39e−13 2.78e+02 4.71e+02 1.82e+02 1.18e+02

Std 1.21e+01 1.99e−01 9.21e−14 3.43e+01 5.94e+01 2.16+01 9.34e+01

F5 Mean 0.00e+00 3.45e−03 3.41e−14 2.96e−04 3.72e−01 0.00e−00 0.00e+00

Std 0.00e+00 3.45e−03 7.87e−14 1.48e−03 5.60e−02 0.00e−00 0.00e+00

F6 Mean 2.10e−14 1.44e−13 1.11e−13 2.12e+01 2.06e+00 0.00e−00 1.78e−14

Std 5.22e−15 3.06e−14 7.87e−15 4.02e−01 4.40e−01 0.00e−00 7.72e−15

F7 Mean −1.48e+03 −1.50e+03 −1.54e+03 −1.39e+03 −8.55e+02 −1.14e+03 -2.45e+03

Std 1.90e+01 1.04e+01 2.52e+00 2.64e+01 8.48e+00 8.48e+00 1.00e+00

Table 5 Comparisons of the mean value and standard deviation between MSL-PSO and other algorithms on CEC2008 test problems with 500

dimensions (D = 500)

SL-PSO CCPSO2 MLCC Sep-CMA-ES EPUS-PSO DMS-L-PSO MSL-PSO

F1 Mean 7.24e−24 7.73e−14 4.30e−13 2.25e−14 8.45e+01 0.00e+00 6.83e-24

Std 2.20e−25 3.23e−14 3.31e−14 6.10e−15 6.40e+00 0.00e+00 3.30e-25

F2 Mean 3.47e+01 5.69e+01 6.67e+01 2.12e+02 4.35e+01 6.89e+01 3.11e+01

Std 1.03e+00 4.21e+01 5.70e+00 1.74e+01 9.51e−01 2.01e+00 7.14e−01

F3 Mean 6.10e+02 7.24e+02 9.25e+02 2.93e+02 5.77e+04 4.67e+07 4.85e+02

Std 1.87e+02 1.54e+02 1.73e+02 3.59e+01 8.04e+03 5.87e+06 3.43e+02

F4 Mean 2.72e+03 3.98e−02 1.79e−11 2.18e+03 3.49e+03 1.61e+03 4.34e+03

Std 3.25e+02 1.99e−01 6.31e−11 1.51e+02 1.11e+02 1.04e+02 5.22e+02

F5 Mean 3.33e−16 1.18e−03 2.13e−13 7.88e−04 1.64e+00 0.00e+00 8.76e-18

Std 0.00e+00 4.61e−03 2.48e−14 2.82e−03 4.69e−02 0.00e+00 0.00e+00

F6 Mean 1.46e−13 5.34e−13 5.34e−13 2.15e+01 1.64e+00 2.00e+00 3.46e−14

Std 2.95e−15 8.61e−14 7.01e−14 3.10e−01 4.49e−01 9.66e−02 5.01e−16

F7 Mean −5.94e+03 −7.23e+03 −7.34e+03 −6.37e+03 −3.51e+03 −4.20e+03 − 7.78e+03

Std 1.72e+02 4.64e+01 8.03e+00 8.59e+00 1.29e+01 1.29e+01 7.11e+00

Comparisons to other state-of-the-art algorithms

In our experimental analysis, we further compare the results

of MSL-PSO with ten state-of-the-art algorithms, which are

shown in the following, to verify the performance of our pro-

posed MSL-PSO algorithm. The best mean optimal solution

on each benchmark problem is highlighted with an underline.

Note that except the result of CSO, SL-PSO, and CCPSO2,

all other results of the comparison algorithms are copied from

their corresponding paper.

1. DECC-G [66]: Instead of using a static grouping, the

optimization problem is randomly decomposed into k

subproblems in the decision space, and then co-evolute

to find the global optimal solution.

2. MLCC [67]: The decomposer is selected by a self-

adapted mechanism based on the historic performance

at the start of each cycle.

3. DECC-DG [29]: A differential grouping is utilized to

uncover the underlying interaction structure of the deci-

sion variables, and then, a number of subproblems are

formed.

4. CSO [5]: A new competitive learning strategy for PSO

was proposed to solve the problems with large-scale

dimensions, in which every two individuals will be com-

123

Complex & Intelligent Systems (2021) 7:1–16 11

Table 6 Comparisons of the mean value and standard deviation between MSL-PSO and other algorithms on CEC2008 test problems with 1000

dimensions (D = 1000)

SL-PSO CCPSO2 MLCC Sep-CMA-ES EPUS-PSO DMS-L-PSO MSL-PSO

F1 Mean 7.10e−23 5.18e−13 8.46e−13 7.81e−15 5.53e+02 0.00e+00 9.33e-25

Std 1.40e−24 9.61e−14 5.01e−14 1.52e−15 2.86e+01 0.00e+00 5.80e-23

F2 Mean 8.87e+01 7.82e+01 1.09e+02 3.65e+02 4.66e+01 9.15e+01 1.61e+01

Std 5.52e+00 4.25e+01 4.75e+00 9.02e+00 7.14e-01 7.14e-01 6.67e-01

F3 Mean 1.04e+03 1.33e+03 1.80e+03 9.10e+02 8.37e+05 8.98e+09 9.75e+02

Std 5.14e+01 4.06e−01 3.37e−10 2.48e+01 4.39e+05 4.39e+08 4.32e+01

F4 Mean 5.89e+02 1.99e−01 1.37e-10 5.31e+03 7.58e+03 3.84e+03 5.50e+02

Std 9.26e+00 4.56e−01 3.37e-10 2.48e+02 1.71e+02 1.71e+02 7.65e+01

F5 Mean 4.44e−16 1.18e−03 4.18e−13 3.94e−04 5.89e+00 0.00e+00 1.10e-16

Std 0.00e+00 3.27e−03 2.78e−14 1.97e−03 3.91e−01 0.00e+00 0.00e+00

F6 Mean 3.44e−13 1.02e−12 1.06e−12 2.15e+01 1.89e+01 7.76e+00 1.11e-14

Std 5.32e−15 1.68e−13 7.68e−14 2.19e+00 2.49e+00 8.92e−02 2.32e-15

F7 Mean −1.30e+04 −1.43e+04 −1.47e+04 −1.25e+04 −6.62e+03 −7.51e+03 −3.00e+04

Std 1.04e+02 8.27e+01 1.51e+01 9.36e+01 1.63e+01 1.64e+01 5.30e+00

Fig. 5 Comparison on CEC

2010

Fig. 6 Convergence tendency

on F7 problem

123

12 Complex & Intelligent Systems (2021) 7:1–16

Table 7 Comparisons of the mean value and standard deviation between MSL-PSO and other algorithms on CEC2010 test problems with 1000

dimensions (D = 1000)

SL-PSO CSO CCPSO2 DECCDG DECC-G MA-SW-Chains MSL-PSO

F1 Mean 8.73e−18 4.75e−12 1.88e+00 7.80e+03 2.93e−07 2.10e−14 8.31e-19

Std 3.30e−18 7.90e−13 2.26e+00 2.66e+04 8.62e−08 1.99e−14 1.43e-19

F2 Mean 1.93e+03 7.48e+03 5.06e+00 4.43e+03 1.31e+03 8.10e+02 7.92e+02

Std 1.12e+02 2.63e+02 1.10e+00 1.98e+02 3.26e+02 5.88e+01 1.25e+01

F3 Mean 1.85e+00 2.57e−09 5.61e−03 1.67e+01 1.39e+00 7.28e−13 1.45e-13

Std 3.30e−01 3.35e−10 1.73e−03 3.10e−01 9.73e−02 3.40e−13 8.44e-13

F4 Mean 3.04e+11 6.87e+11 2.14e+12 4.95e+12 1.70e+13 3.53e+11 5.30e+11

Std 7.16e+10 1.79e+11 1.54e+12 1.33e+12 3.37e+12 3.12e+10 2.77e+12

F5 Mean 3.17e+07 2.46e+06 4.56e+08 1.49e+08 2.63e+08 1.68e+08 5.98e+06

Std 6.21e+06 1.79e+06 1.38e+08 2.15e+07 6.84e+07 1.04e+08 3.43e+06

F6 Mean 2.15e+01 8.16e−07 1.79e+07 1.63e+01 4.96e+06 8.14e+04 9.07e-08

Std 2.63e+00 2.68e−08 5.21e+06 3.45e−01 1.03e+06 2.84e+05 7.45e-09

F7 Mean 6.49e+04 2.13e+04 2.48e+08 1.14e+04 1.63e+08 1.03e+02 9.12e-02

Std 5.60e+04 3.86e+03 4.31e+08 1.26e+04 5.44e+08 8.70+01 7.11e-01

F8 Mean 2.34e+07 3.86e+07 3.55e+07 3.30e+07 6.44e+07 1.41e+07 8.16e+06

Std 2.64e+06 6.81e+04 3.30e+07 2.63e+07 2.64e+07 3.68e+07 9.47e+05

F9 Mean 3.22e+07 6.68e+07 1.00e+08 5.90e+08 3.21e+08 1.41e+07 1.23e+07

Std 4.45e+06 5.73e+06 3.30e+07 6.45e+06 4.87e+06 1.15e+06 1.13e+06

F10 Mean 2.60e+03 9.58e+03 5.11e+03 4.55e+03 1.06e+04 2.07e+03 6.55e+03

Std 2.17e+02 7.67e+01 7.81e+02 1.29e+02 3.11e+02 1.44e+02 9.85e+01

F11 Mean 2.30e+01 3.98e−08 1.98e+02 1.04e+01 2.34e+01 3.80e+01 5.83e−12

Std 2.10e+00 5.12e−09 2.12e+00 8.71e−01 1.73e+00 7.35e+00 1.28e-13

F12 Mean 1.75e+04 4.37e+05 4.09e+04 2.56e+03 8.93e+04 3.62e-06 1.06e+04

Std 9.70e+03 6.22e+04 1.19e+04 9.55e+03 1.08e+03 5.92e-07 8.61e+03

F13 Mean 8.48e+02 5.53e+02 1.32e+03 5.64e+03 5.12e+03 1.25e+03 4.72e+02

Std 3.74e+02 2.32e+02 1.72e+02 4.16e+03 3.65e+03 5.72e+02 6.54e+01

F14 Mean 2.49e+08 2.46e+08 2.58e+08 3.40e+08 8.08e+08 3.11e+07 1.38e+07

Std 1.53e+07 1.53e+07 1.19e+08 7.52e+07 2.42e+07 1.93e+06 5.94e+06

F15 Mean 1.01e+04 1.11e+04 1.05e+04 5.86e+03 1.22e+04 2.74e+03 7.06e+02

Std 5.23e+01 8.65e+01 1.35e+03 8.24e+02 8.42e+02 1.22e+02 3.34e+01

F16 Mean 5.89e−08 5.68e−08 3.97e+02 7.57e-13 7.66e+01 9.98e+01 7.11e-12

Std 5.61e−09 5.61e−09 5.73e−01 6.43e+00 6.43e+00 1.40e+01 1.14e-13

F17 Mean 2.20e+06 2.21e+06 1.32e+05 3.05e+04 2.87e+05 1.24e+00 5.56e+04

Std 1.56e+05 1.55e+05 5.25e+04 2.24e+03 2.24e+04 1.25e-01 1.32e+04

F18 Mean 1.73e+03 1.64e+03 2.91e+03 1.46e+10 2.46e+04 1.30e+03 1.27e+03

Std 5.22e+02 5.22e+02 2.45e+02 2.03e+09 1.53e+04 4.36e+02 6.32e+02

F19 Mean 1.01e+07 9.86e+06 1.53e+06 1.74e+06 1.11e+06 2.85e+05 8.01e+06

Std 5.64e+05 5.64e+05 7.10e+04 1.10e+05 6.23e+04 1.78e+04 5.67e+05

F20 Mean 1.05e+03 1.07e+03 2.15e+03 6.28e+10 4.06e+03 1.07e+03 9.37e+03

Std 1.49e+02 1.49e+02 1.79e+02 6.97e+09 1.05e+01 7.29e+01 1.57e+03

123

Complex & Intelligent Systems (2021) 7:1–16 13

Fig. 7 Convergence tendency

on F8 problem

pared on the performance, and the loser will learn from

the winner and the winner be kept to next generation.

5. SL-PSO [6]: A new learning technique was proposed

to solve large-scale optimization problems, in which the

population is sorted in descending order, and each indi-

vidual learns from its demonstrators who have better

fitness values than this individual.

6. CCPSO2 [30]: It is a PSO variant based CC, in which

the decision variables are randomly grouped, the size of

which is also randomly generated.

7. sep-CMA-ES [47]: A simple covariance matrix adapta-

tion evolution strategy variant proposed for large-scale

optimization problems, in which the internal time is

reduced and the space complexity is simplified from

quadratic to linear.

8. EPUS-PSO [49]: A PSO variant is adopted to optimize

the initial parameters of the Reservoir Computing. The

results of EPUS-PSO are better than those obtained by

an exhaustive search for global parameters generation of

Reservoir Computing.

9. DMS-L-PSO [71]: The multi-swarm learning strategy

is raised in DMS-L-PSO, and the sub-swarms will be

re-grouped to exchange information among all the indi-

viduals.

10. MA-SW-Chains [35]: Each individual is assigned to local

search intensity based on its features, and then, different

local searches are chained.

Tables 4, 5, and 6 give the statistical results on CEC2008

test problems with 100, 500, and 1000 dimensions, respec-

tively, and Fig. 4 is a bar-graph to show the number of CEC

2008 test problems with 100, 500, and 1000 dimensions that

our proposed MSL-PSO obtained better, equal, and worse

mean optimal results than each comparison algorithm. In

Fig. 4, the region in red, red, and earth yellow represent the

number of problems that MSL-PSO wins, loses, and draw

with each comparison algorithm, respectively. From Tables 4,

5 and 6 and Fig. 4, we can see that MSL-PSO outperforms the

other six excellent algorithms on most problems. To be spe-

cific, MSL-PSO obtains better results on 15/21 problems than

SL-PSO, CCPSO2, MLCC, sep-CMA-ES, and EPUS-PSO.

Specially, the mean optimal solutions found by MSL-PSO

are all better than EPUS-PSO. Note that the results of DMS-

L-PSO come from [71], in which the maximum number of

fitness evaluation on CEC2008 is 5000 ∗ D. Compared to

DMS-L-PSO, we can easily find that our MSL-PSO algo-

rithm obtained better results than DMS-L-PSO on all seven

benchmark problems except F1 and F6 with 100, 500, and

1000 dimensions, respectively, even the number of fitness

evaluations of DMS-L-PSO is much more than SML-PSO.

From Tables 4, 5, and 6, we can see that the results of

SML-PSO is not better than, but almost same to, those of

DMS-L-PSO on F1 and F6, which, we think, is because a

local search is utilized in the latter, so that the precise of the

results can be improved. SML-PSO is better than the other

compared algorithms on solving unimodal problems, i.e., F2,

in CEC2008 test suite. Also, MSL-PSO gets better results

on F7 than other algorithms. MSL-PSO algorithm failed to

obtain better results than sep-CMA-ES and MLCC on F3

and F4, respectively; however, the result of MSL-PSO is still

better than the other four compared algorithms.

Table 7 lists the results obtained by six state-of-the-art

algorithms and our proposed MSL-PSO on 20 CEC2010

problems with 1000 dimensions, and Fig. 5 gives the bar-

graph to show the number of CEC 2010 benchmark problems

with 1000 dimensions that our MSL-PSO wins, loses, and

draws with each comparison algorithm. Among the 20 test

instances, MSL-PSO obtained 11 best mean optimal results

among all of these algorithms. Compared to CCPSO2, DEC-

CDG, and DECC-G, which utilize the cooperative coevolu-

tionary strategies, we can see that the proposed MSL-PSO

got only four worse results than both CCPSO2 and DEC-

CDG, and only obtain one worse mean result than DECC-G.

The results compared to SL-PSO and CSO, both of which are

PSO variants, show that MSL-PSO can get 18/20 and 19/20

better mean optimal solutions than both of these algorithms,

which shows that our proposed learning strategy is efficient

to solve the large-scale optimization problems.

For further observations, Fig. 6 and Fig. 7 plot the conver-

gence tendency of MSL-PSO, SL-PSO, CCPSO2, CSO, and

123

14 Complex & Intelligent Systems (2021) 7:1–16

MA-SW-Chains on CEC2010 F7 and F8 problems, respec-

tively, in which F7 is unimodal function and F8 is multimodel

one. From Figs. 6 and 7, we can see that the MSL-PSO can

converge much quicker than others, especially on unimodal

F7. From Table 7, we can also find that MSL-PSO obtained

worse results on the unimodal functions F2, F17, and F19,

which, we analyze, is because all of these three problems are

separable. Therefore, the cooperative coevolutionary algo-

rithms are much suitable for solving this kind of problems.

Conclusion

A multiple-strategy learning particle swarm optimization

was proposed for solving large-scale optimization problems.

Some positions are probed for each individual by learning

its demonstrators and the mean position of the population

at first. And then, each individual updates its velocity and

position by learning two demonstrators coming from differ-

ent sub-sets, which is expected to balance the diversity and

convergence. Experimental results show that MSL-PSO has a

better performance on solving large-scale optimization prob-

lems proposed in CEC2008 and CEC2010. However, for the

separable problems, its performance is not better than coop-

erative coevolutionary algorithms, so in the future, we will try

to introduce the grouping approaches used in CC algorithms

into our proposed MSL-PSO to get much better performance

on solving this kind of problems.

Acknowledgements This work was supported in part by National Natu-

ral Science Foundation of China (Grant no. 61876123), Natural Science

Foundation of Shanxi Province (201801D121131, 201901D111264,

and 201901D111262), Shanxi Science and Technology Innovation

project for Excellent Talents (201805D211028), Shanxi Province Sci-

ence Foundation for Youths (201901D211237), the Doctoral Scientific

Research Foundation of Taiyuan University of Science and Technol-

ogy(20162029), and the China Scholarship Council (CSC).

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

1. Cagnina L, Errecalde M, Ingaramo D, Rosso P (2014) An efficient

particle swarm optimization approach to cluster short texts. Inf Sci

265(5):36–49

2. Cai Z, Peng Z (2002) Cooperative coevolutionary adaptive genetic

algorithm in path planning of cooperative multi-mobile robot sys-

tems. J Intell Robot Syst 33(1):61–71

3. Chen WN, Jia YH, Zhao F, Luo XN, Jia XD, Zhang J (2019) A

cooperative co-evolutionary approach to large-scale multisource

water distribution network optimization. IEEE Trans Evolut Com-

put 23(5):842–857

4. Cheng R, Jin Y (2014) Demonstrator selection in a social learn-

ing particle swarm optimizer. In: IEEE congress on evolutionary

computation

5. Cheng R, Jin Y (2015) A competitive swarm optimizer for large

scale optimization. IEEE Trans Cybern 45(2):191–204

6. Cheng R, Jin Y (2015) A social learning particle swarm optimiza-

tion algorithm for scalable optimization. Inf Sci 291:43–60

7. Cheng R, Sun C, Jin Y (2013) A multi-swarm evolutionary frame-

work based on a feedback mechanism. In: IEEE congress on

evolutionary computation, pp 718–724. IEEE, New York

8. Cuevas E, González A, Zaldívar D, Pérez-Cisneros M (2015) An

optimisation algorithm based on the behaviour of locust swarms.

Int J Bio-Inspired Comput 7(6):402–407

9. De Falco I, Cioppa A.D, Trunfio G.A (2017) Large scale optimiza-

tion of computationally expensive functions: an approach based on

parallel cooperative coevolution and fitness metamodeling. In: Pro-

ceedings of the genetic and evolutionary computation conference

companion, pp 1788–1795

10. De Falco I, Della Cioppa A, Trunfio GA (2019) Investigating

surrogate-assisted cooperative coevolution for large-scale global

optimization. Inf Sci 482:1–26

11. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-

tist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut

Comput 6(2):182–197

12. Du ZG, Pan JS, Chu SC, Luo HJ, Hu P (2020) Quasi-affine trans-

formation evolutionary algorithm with communication schemes

for application of RSSI in wireless sensor networks. IEEE Access

8:8583–8594

13. Eberhart R, Kennedy J (1995) A new optimizer using particle

swarm theory. In: MHS’95. Proceedings of the sixth international

symposium on micro machine and human science, pp 39–43. IEEE,

New York

14. Fan Q, Yan X (2015) Self-adaptive differential evolution algorithm

with zoning evolution of control parameters and adaptive mutation

strategies. IEEE Trans Cybern 46(1):219–232

15. Gong YJ, Ge YF, Li JJ, Zhang J, Ip WH (2016) A splicing-driven

memetic algorithm for reconstructing cross-cut shredded text doc-

uments. Appl Soft Comput 45:163–172

16. Gong YJ, Zhang J, Chung SH, Chen WN, Zhan ZH, Li Y, Shi

YH (2012) An efficient resource allocation scheme using particle

swarm optimization. IEEE Trans Evolut Comput 16(6):801–816

17. Hansen N, Auger A, Ros R, Finck S, Posík P (2010) Comparing

results of 31 algorithms from the black-box optimization bench-

marking BBOB-2009. In: Genetic & evolutionary computation

conference

18. Hansen N, Ostermeier A (2001) Completely derandomized self-

adaptation in evolution strategies. Evolut Comput 9(2):159–195

19. Ho SY, Lin HS, Liauh WH, Ho SJ (2008) OPSO: orthogonal

particle swarm optimization and its application to task assign-

ment problems. IEEE Trans Syst Man Cybern Part A Syst Hum

38(2):288–298

20. Hu M, Wu T, Weir JD (2013) An adaptive particle swarm optimiza-

tion with multiple adaptive methods. IEEE Trans Evolut Comput

17(5):705–720

21. Ishaque K, Salam Z (2013) A deterministic particle swarm

optimization maximum power point tracker for photovoltaic sys-

tem under partial shading condition. IEEE Trans Ind Electron

60(8):3195–3206

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Complex & Intelligent Systems (2021) 7:1–16 15

22. Jia YH, Chen WN, Gu T, Zhang H, Yuan HQ, Kwong S, Zhang

J (2018) Distributed cooperative co-evolution with adaptive com-

puting resource allocation for large scale optimization. IEEE Trans

Evolut Comput 23(2):188–202

23. Jr I.F, Perc M, Kamal S.M, Fister I (2015) A review of chaos-based

firefly algorithms: perspectives and research challenges. Appl Math

Comput 252(C):155–165

24. Kashan AH, Kashan MH, Karimiyan S (2013) A particle swarm

optimizer for grouping problems. Inf Sci 252(17):81–95

25. Kazimipour B, Omidvar M.N, Li X, Qin A.K (2014) A novel

hybridization of opposition-based learning and cooperative co-

evolutionary for large-scale optimization. In: 2014 IEEE congress

on evolutionary computation (CEC), pp 2833–2840. IEEE, New

York

26. Kennedy J (2000) Stereotyping: improving particle swarm perfor-

mance with cluster analysis. In: Proceedings of the 2000 congress

on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol. 2,

pp 1507–1512. IEEE, New York

27. Kennedy J, Eberhart R (1995) Particle swarm optimization (PSO).

In: IEEE international conference on neural networks, pp 1942–

1948

28. LaTorre A, Muelas S, Peña JM (2013) Large scale global optimiza-

tion: Experimental results with MOS-based hybrid algorithms. In:

IEEE congress on evolutionary computation, pp 2742–2749. IEEE,

New York

29. Li X, Mei Y, Yao X, Omidvar MN (2014) Cooperative co-evolution

with differential grouping for large scale optimization. IEEE Trans

Evolut Comput 18(3):378–393

30. Li X, Yao X (2011) Cooperatively coevolving particle swarms for

large scale optimization. IEEE Trans Evolut Comput 16(2):210–

224

31. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehen-

sive learning particle swarm optimizer for global optimization of

multimodal functions. IEEE Trans Evolut Comput 10(3):281–295

32. Liao T, Socha K, Oca MAMD, Stutzle T, Dorigo M (2014) Ant

colony optimization for mixed-variable optimization problems.

IEEE Trans Evolut Comput 18(4):503–518

33. Mei Y, Omidvar MN, Li X, Yao X (2016) A competitive divide-

and-conquer algorithm for unconstrained large-scale black-box

optimization. ACM Trans Math Softw (TOMS) 42(2):1–24

34. Molina D, LaTorre A, Herrera F (2018) SHADE with iterative local

search for large-scale global optimization. In: 2018 IEEE congress

on evolutionary computation (CEC), pp 1–8. IEEE, New York

35. Molina D, Lozano M, Herrera F (2010) MA-SW-chains: memetic

algorithm based on local search chains for large scale continuous

global optimization. In: IEEE congress on evolutionary computa-

tion, pp 1–8. IEEE, New York

36. Montalvo I, Izquierdo J, Pérez R, Iglesias PL (2008) A diversity-

enriched variant of discrete PSO applied to the design of water

distribution networks. Eng Optim 40(7):655–668

37. Omidvar MN, Li X, Mei Y, Yao X (2013) Cooperative co-evolution

with differential grouping for large scale optimization. IEEE Trans

Evolut Comput 18(3):378–393

38. Omidvar MN, Yang M, Mei Y, Li X, Yao X (2017) DG2: A faster

and more accurate differential grouping for large-scale black-box

optimization. IEEE Trans Evolut Comput 21(6):929–942

39. Palafox L, Noman N, Iba H (2013) Reverse engineering of gene

regulatory networks using dissipative particle swarm optimization.

IEEE Trans Evolut Comput 17(4):577–587

40. Pan JS, Hu P, Chu SC (2019) Novel parallel heterogeneous meta-

heuristic and its communication strategies for the prediction of

wind power. Processes 7(11):845

41. Pan JS, Kong L, Sung TW, Tsai PW, Snášel V (2018) A clustering

scheme for wireless sensor networks based on genetic algorithm

and dominating set. J Internet Technol 19(4):1111–1118

42. Potter MA, Jong KAD (1994) A cooperative coevolutionary

approach to function optimization. Third Parallel Probl Solving

Form Nat 866:249–257

43. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a

practical approach to global optimization. Springer, New York

44. Qiang Y, Chen WN, Yu Z, Gu T, Yun L, Zhang H, Zhang J (2017)

Adaptive multimodal continuous ant colony optimization. IEEE

Trans Evolut Comput 21(2):191–205

45. Ray T, Yao X (2009) A cooperative coevolutionary algorithm with

correlation based adaptive variable partitioning. In: 2009 IEEE

congress on evolutionary computation, pp 983–989. IEEE, New

York

46. Ren Z, Zhang A, Wen C, Feng Z (2013) A scatter learning parti-

cle swarm optimization algorithm for multimodal problems. IEEE

Trans Cybern 44(7):1127–1140

47. Ros R, Hansen N (2008) A simple modification in CMA-ES achiev-

ing linear time and space complexity. In: International conference

on parallel problem solving from nature, pp 296–305. Springer,

New York

48. Ruiz-Cruz R, Sanchez EN, Ornelas-Tellez F, Loukianov AG,

Harley RG (2013) Particle swarm optimization for discrete-time

inverse optimal control of a doubly fed induction generator. IEEE

Trans Cybern 43(6):1698–1709

49. Sergio AT, Ludermir TB (2012) PSO for reservoir computing opti-

mization. In: International conference on artificial neural networks,

pp 685–692. Springer, New York

50. Setayesh M, Zhang M, Johnston M (2013) A novel particle swarm

optimisation approach to detecting continuous, thin and smooth

edges in noisy images. Inf Sci 246:28–51

51. Shi Y, Teng H, Li Z (2005) Cooperative co-evolutionary differen-

tial evolution for function optimization. Lect Notes Comput Sci

3611:1080–1088

52. Stützle T (2009) Ant colony optimization. In: International con-

ference on evolutionary multi-criterion optimization, pp 2–2.

Springer, New York

53. Sun C, Ding J, Zeng J, Jin Y (2018) A fitness approximation assisted

competitive swarm optimizer for large scale expensive optimiza-

tion problems. Memet Comput 10(2):123–134

54. Sun C, Jin Y, Cheng R, Ding J, Zeng J (2017) Surrogate-assisted

cooperative swarm optimization of high-dimensional expensive

problems. IEEE Trans Evolut Comput 21(4):644–660

55. Sun Y, Kirley M, Halgamuge SK (2017) A recursive decomposition

method for large scale continuous optimization. IEEE Trans Evolut

Comput 22(5):647–661

56. Tian J, Sun C, Tan Y, Zeng J (2020) Granularity-based surrogate-

assisted particle swarm optimization for high-dimensional expen-

sive optimization. Knowl Based Syst 187:104815

57. Tian J, Tan Y, Zeng J, Sun C, Jin Y (2018) Multiobjective infill

criterion driven gaussian process-assisted particle swarm optimiza-

tion of high-dimensional expensive problems. IEEE Trans Evolut

Comput 23(3):459–472

58. Tizhoosh HR (2005) Opposition-based learning: a new scheme

for machine intelligence. In: International conference on compu-

tational intelligence for modelling, control and automation and

international conference on intelligent agents, web technologies

and internet commerce (CIMCA-IAWTIC’06), vol 1, pp 695–701.

IEEE, New York

59. Weise T, Chiong R (2012) Evolutionary optimization: pitfalls and

booby traps. J Comput Sci Technol 27(5):907–936

60. Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN (2018) Ensem-

ble of differential evolution variants. Inf Sci 423:172–186

61. Yang Q, Chen WN, Da Deng J, Li Y, Gu T, Zhang J (2017) A

level-based learning swarm optimizer for large-scale optimization.

IEEE Trans Evolut Comput 22(4):578–594

123

16 Complex & Intelligent Systems (2021) 7:1–16

62. Yang Q, Chen WN, Gu T, Zhang H, Deng JD, Li Y, Zhang J (2016)

Segment-based predominant learning swarm optimizer for large-

scale optimization. IEEE Trans Cybern 47(9):2896–2910

63. Yang Q, Chen W.N, Gu T, Zhang H, Yuan H, Kwong S, Zhang J

(2019) A distributed swarm optimizer with adaptive communica-

tion for large-scale optimization. IEEE Trans Cybern

64. Yang Q, Chen WN, Zhang J (2018) Evolution consistency based

decomposition for cooperative coevolution. IEEE Access 6:51084–

51097

65. Yang Z, Tang K, Yao X (2007) Differential evolution for high-

dimensional function optimization. In: 2007 IEEE congress on

evolutionary computation, pp 3523–3530. IEEE, New York

66. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimiza-

tion using cooperative coevolution. Inf Sci 178(15):2985–2999

67. Yang Z, Tang K, Yao X (2008) Multilevel cooperative coevo-

lution for large scale optimization. In: 2008 IEEE congress on

evolutionary computation (IEEE world congress on computational

intelligence), pp 1663–1670. IEEE, New York

68. Yu H, Ying T, Zeng J, Sun C, Jin Y (2018) Surrogate-assisted

hierarchical particle swarm optimization. Inf Sci 454–455

69. Yu Y, Yu X (2007) Cooperative coevolutionary genetic algorithm

for digital IIR filter design. IEEE Trans Ind Electron 54(3):1311–

1318

70. Zhang YH, Gong YJ, Zhang HX, Gu TL, Zhang J (2016) Toward

fast niching evolutionary algorithms: a locality sensitive hashing-

based approach. IEEE Trans Evolut Comput 21(3):347–362

71. Zhao SZ, Liang JJ, Suganthan PN, Tasgetiren MF (2008) Dynamic

multi-swarm particle swarm optimizer with local search for large

scale global optimization. In: 2008 IEEE congress on evolutionary

computation (IEEE world congress on computational intelligence),

pp 3845–3852. IEEE, New York

72. Zhu Z, Zhou J, Zhen J, Shi YH (2011) DNA sequence compression

using adaptive particle swarm optimization-based memetic algo-

rithm. IEEE Trans Evolut Comput 15(5):643–658

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

	Multiple-strategy learning particle swarm optimization for large-scale optimization problems
	Abstract
	Introduction
	Related work
	Particle swarm optimization
	Optimization of the large-scale problems
	Cooperative coevolutionary algorithms
	New learning strategies for meta-heuristic algorithms

	The proposed algorithm
	The overall framework of MSL-PSO
	Position probing
	Position updating

	Experimental studies
	Experimental setup and benchmark functions
	Comparisons to the MSL-PSO variants
	Comparisons to other state-of-the-art algorithms

	Conclusion
	Acknowledgements
	References

