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MULTIPLE STRATONOVICH INTEGRAL AND HU–MEYER
FORMULA FOR LÉVY PROCESSES

BY MERCÈ FARRÉ, MARIA JOLIS1 AND FREDERIC UTZET1

Universitat Autònoma de Barcelona

In the framework of vector measures and the combinatorial approach to
stochastic multiple integral introduced by Rota and Wallstrom [Ann. Probab.
25 (1997) 1257–1283], we present an Itô multiple integral and a Stratonovich
multiple integral with respect to a Lévy process with finite moments up to a
convenient order. In such a framework, the Stratonovich multiple integral is
an integral with respect to a product random measure whereas the Itô multiple
integral corresponds to integrate with respect to a random measure that gives
zero mass to the diagonal sets. A general Hu–Meyer formula that gives the
relationship between both integrals is proved. As particular cases, the classi-
cal Hu–Meyer formulas for the Brownian motion and for the Poisson process
are deduced. Furthermore, a pathwise interpretation for the multiple integrals
with respect to a subordinator is given.

1. Introduction. Let W = {Wt, t ≥ 0} be a standard Brownian motion. Itô
[10] defined the multiple stochastic integral of a function f ∈ L2(Rn+, B(Rn+),

(dt)⊗n),

In(f ) =
∫

· · ·
∫

R
n+

f (t1, . . . , dtn) dWt1 · · ·dWtn,

taking care to ensure that the diagonal sets, like {(s1, . . . , sn) ∈ R
n+, s1 = s2}, do

not contribute at all. For this reason the integral has very good properties and is
easy to work with. However, for a function of the form

(g1 ⊗ · · · ⊗ gn)(t1, . . . , tn) := g(t1) · · ·g(tn),

we have that, in general,

In(g1 ⊗ · · · ⊗ gn) �= I1(g1) · · · I1(gn).

That means the Itô multiple integral does not behave like the integral with respect
to a product measure.

Many years later, Hu and Meyer [8] introduced (although they believed that
this integral was already known [8], page 75) a multiple integral, IS

n (f ), which
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followed the ordinary rules of multiple integration. They called it the multiple
Stratonovich integral. Furthermore, Hu and Meyer stated the relationship between
the Itô and Stratonovich integrals, the celebrated Hu–Meyer formula, adding the
contribution of the diagonals to the Itô integral: for a function f (t1, . . . , tn) sym-
metric with good properties,

IS
n (f ) =

[n/2]∑
j=0

n!
(n − 2j)!j !2j

In−2j

(∫
R

j
+

f (·, t1, t1, t2, t2, . . . , tj , tj ) dt1 · · ·dtj

)
.

This formula is simple because the quadratic variation of the Brownian motion
is t , and the integral over coincidences of order three or superior are zero. Follow-
ing their ideas, Solé and Utzet [28] proved a Hu–Meyer formula for the Poisson
process. Again, in that case, the formula is relatively simple because the variations
of any order of the process can always be written in terms of the Poisson process
and t .

From another point of view, Engel [7], working with a general process with in-
dependent increments, related the (Itô) multiple stochastic integral with the theory
of vector valued measures, and Masani [16], using also vector valued measures and
starting from the Wiener’s original ideas, developed both the Itô and Stratonovich
integrals (with respect to the Brownian motion) and proved many profound results.
The vector measures approach is no simple matter; Engel’s work covers 82 pages,
and Masani’s covers 160. An important and clarifying contribution was made by
Rota and Wallstrom [24] who used combinatorial techniques to show the features
of the multiple stochastic integration. They did not really work with integrals, but
with products of vector measures. However, the path towards a general theory of
multiple stochastic integration had been laid. See also Pérez–Abreu [22] for an in-
teresting generalization to Hilbert space valued random measures. Further, Vershik
and Tsilevich [30], in a more algebraic context, constructed a Fock factorization
for a Lévy process, and some important subspaces can be described through Rota
and Wallstrom concepts. We should also mention the very complete survey by
Peccati and Taqqu [21] in which a unified study of multiple integrals, moments,
cumulants and diagram formulas, as well as applications to some new central limit
theorems, is presented.

It is worth remarking that Rota and Walstrom’s [24] combinatorial approach
to multiple integration has been extended to the context of free probability in a
very interesting and fertile field of research, started by Anshelevich (see [1–5] and
the references therein). In fact, Rota and Walstrom’s ideas fit very well with the
combinatorics of free probability (see Nica and Speicher [19]) and noncommuta-
tive Lévy processes. Our renewed interest in Rota and Walstrom’s paper [24] was
motivated by Anshelevich’s work.

In the present paper we use the powerful Rota and Wallstrom’s [24] combina-
torial machinery to study the Stratonovich integral (the integral with respect to the
product random measure) with respect to a Lévy processes with finite moments up
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to a convenient order. The key point is to understand how the product of stochastic
measures works on the diagonal sets, and that leads to the diagonal measures de-
fined by Rota and Wallstrom [24]. For a Lévy process those measures are related
to the powers of the jumps of the process, and hence to a family of martingales
introduced by Nualart and Schoutens [20], called Teugels martingales, which offer
excellent properties. Specifically, these martingales have deterministic predictable
quadratic variation and this makes it possible to easily construct an Itô multiple
stochastic integral with respect to different integrators, which can be interpreted as
an integral with respect to a random measure that gives zero mass to the diagonal
sets. With all these ingredients we prove a general Hu–Meyer formula. The paper
uses arduous combinatorics because of our need to work with stochastic multiple
integrals with respect to the different powers of the jumps of the process, and such
integrals can be conveniently handled through the lattice of the partitions of a finite
set.

As in the Brownian case (see, e.g., [9, 12, 16, 27]), there are alternative methods
to construct a multiple Stratonovich integral based on approximation procedures,
and it is possible to relax the conditions on the integrator process by assuming more
regularity on the integrand function. Such regularity is usually expressed in terms
of the existence of traces of the function in a convenient sense. The advantage
of using Lévy processes with finite moments lies in the fact that simple L2(�)

estimates for the multiple stochastic integral of simple functions can be obtained,
and then the multiple Stratonovich integral can be defined in an L2 space with
respect to a measure that controls the behavior of the functions on the diagonal
sets. In this way, the problem of providing a manageable definition of the traces is
avoided.

We would like to comment that an impressive body of work on multiple stochas-
tic integrals with respect to Lévy processes has been done by Kallenberg, Kwapien,
Krakowiak, Rosinski, Szulga, Woyczinski and many others (see [13–15, 23] and
the references therein). However, their approach is very different from ours, and
assumes different settings to those used in this work. For this reason, we have only
used a few results by those authors.

The paper is organized as follows. In Section 2 we review some combinatorics
concepts and the basics of the stochastic measures as vector valued measures. In
Section 3 we introduce the random measures induced by a Lévy process, and we
identify the diagonal measures in such a case. In Section 4 we study the relation-
ship between the product and Itô measures of a set, and we obtain a Hu–Meyer
formula for measures. In Section 5 we define the multiple Itô stochastic integral
and the multiple Stratonovich integral and also prove the general Hu–Meyer for-
mula for integrals. In Section 6, as particular cases, we deduce the classical Hu–
Meyer formulas for the Brownian motion and for the Poisson process. We also
study the case where the Lévy process is a subordinator, and prove that both the
multiple Itô stochastic integral and the multiple Stratonovich integral can be com-
puted in a pathwise sense. Finally, in order to make the paper lighter, some of the
combinatorial results are included as an Appendix.
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2. Preliminaries.

2.1. Partitions of a finite set. We need some notation of the combinatorics of
the partitions of a finite set; for details we refer to Stanley [29], Chapter 3, or Rota
and Wallstrom [24].

Let F be a finite set. A partition of F is a family π = {B1, . . . ,Bm} of nonvoid
subsets of F , pairwise disjoint, such that F = ⋃m

i=1 Bi . The elements B1, . . . ,Bm

are called the blocks of the partition. Denote by �(F) the set of all partitions of F ,
and write �n for �({1, . . . , n}). Given σ,π ∈ �(F), we write σ ≤ π if each block
of σ is contained in some block of π ; we then say that σ is a refinement of π . This
relationship defines a partial order that is called the reversed refinement order, and
it makes �(F) a lattice. We write 0̂ = {{x}, x ∈ F }, which is the minimal element,
and 1̂ = {F } the maximal one.

We say that a partition π ∈ �(F) is of type (1r12r2 · · ·nrn) if π has exactly r1
blocks with 1 element, exactly r2 blocks with 2 elements, and so on. In the same
way, for σ ≤ π,#σ = m and #π = k, we say that the segment [σ,π ] is of type
(1r12r2 · · ·mrm) if there are exactly r1 blocks of π in σ ; there are exactly r2 blocks
of π that each one gives rise to 2 blocks of σ , etc. Necessarily,

m∑
j=1

rj = k and
m∑

j=1

jrj = m.

In that situation, the Möbius function of [σ,π ] is

μ(σ,π) = (−1)m−k(2!)r3 · · · ((m − 1)!)rm.

We use the Möbius inversion formula, that in the context of the lattice of the parti-
tions of a finite set, says that for two functions f,g :�(F) −→ R,

g(σ) = ∑
π≥σ

f (π) ∀σ ∈ �(F),

if and only if

f (σ) = ∑
π≥σ

μ(σ,π)g(π) ∀σ ∈ �(F)(1)

(see [29], Proposition 3.7.2).

2.2. Diagonal sets induced by a partition. As we commented in the Introduc-
tion, we will introduce two random measures on a n-dimensional space, and the
diagonal sets will play an essential role. Diagonal sets can be conveniently de-
scribed through the partitions of the set {1, . . . , n}. We use the notation introduced
by Rota and Wallstorm [24].

Let S be an arbitrary set, and consider C ⊂ Sn. Given π ∈ �n, we write i ∼π j

if i and j belong to the same block of π . Put

C≥π = {(s1, . . . , sn) ∈ C : si = sj if i ∼π j}
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and

Cπ = {(s1, . . . , sn) ∈ C : si = sj if and only if i ∼π j}.
The sets Cπ are called diagonal sets. Note that Cπ = C ∩Sn

π and C≥π = C ∩Sn≥π .
For example, for n = 4 and π = {{1}, {2}, {3,4}}, we have

C≥π = {(s1, s2, s3, s4) ∈ C : s3 = s4}
and

Cπ = {(s1, s2, s3, s4) ∈ C : s3 = s4, s1 �= s2, s1 �= s3, s2 �= s3}.
The sets corresponding to the minimal and maximal partitions are specially im-

portant

C0̂ = {(s1, . . . , sn) ∈ C : si �= sj ,∀i �= j}
and

C1̂ = {(s1, . . . , sn) ∈ C : s1 = · · · = sn}.
If σ �= π , then

Cσ ∩ Cπ = ∅ and (Cπ)σ = ∅.(2)

The above notation C≥π is coherent with the reversed refinement order

C≥π = ⋃
σ≥π

Cσ (disjoint union).(3)

In particular, C = C≥0̂ = ⋃
σ∈�n

Cσ .

2.3. Random measures. Let (�, F ,P) be a complete probability space. In this
paper, a random measure � on a measurable space (S, S) is an L2(�)-valued σ -
additive vector measure, that means, a map � : S → L2(�) such that for every
sequence {An,n ≥ 1} ⊂ S , such that An ∩ Am = ∅, n �= m,

�

( ∞⋃
n=1

An

)
=

∞∑
n=1

�(An) convergence in L2(�).

The σ -additive vector measures defined on a σ -field inherit some basic proper-
ties of the ordinary measures, but not all. So, for a sake of easy reference, we write
here a uniqueness property translated to our setting. The proof is the same as the
one for ordinary measures.

PROPOSITION 2.1. Let � and � be two random measures on (S, S), and
consider a family of sets C ⊂ S closed under finite intersection and such that
σ(C) = S . Then

� = � on C ⇒ � = � on S.
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2.4. Product and Itô stochastic measures. Assume that the measurable space
(S, S) satisfies that for every set C ∈ S ⊗n and every π ∈ �n, we have Cπ ∈ S ⊗n.
As Rota and Wallstrom [24] point out, this condition is satisfied if S is a Pol-
ish space and S its Borel σ -algebra. We extend the definition of good random
measure introduced by Rota and Wallstorm [24] to a family of measures; specifi-
cally, we say that the random measures �1, . . . ,�k over a measurable space (S, S)

are jointly good random measures if the finite additive product vector measure
�1 ⊗ · · · ⊗ �k defined on the product sets by

(�1 ⊗ · · · ⊗ �k)(A1 × · · · × Ak) =
k∏

j=1

�i(Ai), A1, . . . ,Ak ∈ S,

can be extended to a (unique) σ -additive random measure on (Sn, S ⊗n). This ex-
tension, obvious for ordinary measures, is in general not transferred to arbitrary
vector measures (see Engel [7], Masani [16] and Kwapien and Woyczynski [15]).

Given a good random measure � (in the sense that the n-fold product � ⊗
· · · ⊗ � = �⊗n satisfies the above condition), the starting point of Rota and Wall-
strom ([24], Definition 1) is to consider new random measures given by the restric-
tion over the diagonal sets; specifically, for π ∈ �n they define

�⊗n
π (C) := �⊗n(C≥π) and St[n]

π (C) := �⊗n(Cπ) for C ∈ S ⊗n.

The following definitions are the extension of these concepts to a family of
random measures.

DEFINITION 2.2. Let �r1, . . . ,�rn be jointly good random measures on
(S, S). For a partition π ∈ �n, define

(�r1 ⊗ · · · ⊗ �rn)π (C) = (�r1 ⊗ · · · ⊗ �rn)(C≥π), C ∈ S ⊗n,(4)

and

St(r1,...,rn)
π (C) = (�r1 ⊗ · · · ⊗ �rn)(Cπ), C ∈ S ⊗n.(5)

In agreement with the notation in Rota and Wallstrom [24], when �r1 = · · · =
�rn = �, we simply write �⊗n

π for (�⊗· · ·⊗�)π and St[n]
π for the corresponding

measure given in (5). Since C≥0̂ = C, then �⊗n

0̂
= �⊗n, that is the product mea-

sure. The measure St(r1,...,rn)

0̂
is called the Itô multiple stochastic measure relative

to �r1, . . . ,�rn .
As the ordinary multiple Itô integral, the Itô multiple stochastic measure gives

zero mass to every diagonal set different from C0̂:

PROPOSITION 2.3. Let π ∈ �n such that π > 0̂. For every C ∈ S ⊗n, we have

St(r1,...,rn)

0̂
(Cπ) = 0 a.s.



2142 M. FARRÉ, M. JOLIS AND F. UTZET

PROOF. From (2) we have (Cπ )̂0 = ∅. �

The basic result of Rota and Wallstrom [24], Proposition 1, is transferred to this
situation:

PROPOSITION 2.4.

(�r1 ⊗ · · · ⊗ �rn)π = ∑
σ≥π

St(r1,...,rn)
σ(6)

and

St(r1,...,rn)
π = ∑

σ≥π

μ(π,σ )(�r1 ⊗ · · · ⊗ �rn)σ ,(7)

where μ(π,σ) is the Möbius function defined in Section 2.1.

PROOF. The equality (6) is deduced from (3) and the definitions (4) and (5).
The equality (7) follows from (6) and the Möebius inversion formula (1). �

3. Random measures induced by a Lévy process. Let X = {Xt, t ∈ [0, T ]}
be a Lévy process, that is, X has stationary and independent increments, is contin-
uous in probability, is cadlag and X0 = 0. In all the paper we assume that X has
moments of all orders; however, if the interest is restricted to multiple integral up
to order n ≥ 2, then it is enough to assume that the process has moments up to
order 2n.

Denote the Lévy measure of X by ν, and by σ 2 the variance of its Gaussian part.
The existence of moments of Xt of all orders implies that

∫
{|x|>1} |x|ν(dx) < ∞

and
∫
R

|x|nν(dx) < ∞,∀n ≥ 2. Write

K1 = E[X1],
(8)

K2 = σ 2 +
∫

R

x2ν(dx) and Kn =
∫

R

xnν(dx) < ∞, n ≥ 3.

From now on, take S = [0, T ] and S = B([0, T ]). The basic random measure
φ that we consider is the measure induced by the process X itself, defined on the
intervals by

φ(]s, t]) = Xt − Xs, 0 ≤ s ≤ t ≤ T ,(9)

and extended to B([0, T ]). The measure φ is an independently scattered ran-
dom measure, that is, if A1, . . . ,An ∈ B([0, T ]) are pairwise disjoint, then
φ(A1), . . . , φ(An) are independent.

The random measures induced by the powers of the jumps of the process,

Xt = Xt − Xt−, are also used. Consider the variations of the process X (see
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Meyer [17], page 319)

X
(1)
t = Xt,

X
(2)
t = [X,X]t = ∑

0<s≤t

(
Xs)
2 + σ 2t,(10)

X
(n)
t = ∑

0<s≤t

(
Xs)
n, n ≥ 3.

The processes X(1), . . . ,X(n), . . . are Lévy processes such that

E
[
X

(n)
t

] = Knt ∀n ≥ 1.

So, the centered processes,

Y
(n)
t = X

(n)
t − Knt, n ≥ 1,

are square integrable martingales, called Teugels martingales (see Nualart and
Schoutens [20]), with predictable quadratic covariation〈

Y (n), Y (m)〉
t = Kn+mt, n,m ≥ 1.

NOTATION 3.1. We denote by φn the random measure induced by X(n), and
for n = 1, φ1 = φ (we indistinctly use both φ1 and φ). Every φn is a independently
scattered random measure. For A,B ∈ B([0, T ]),

E[φn(A)φm(B)] = Kn+m

∫
A∩B

dt + KnKm

∫
A

dt

∫
B

dt.

We stress the following property, which is the basis of all the paper, and is a
consequence of Theorem 10.1.1 by Kwapien and Woyczynski [15].

THEOREM 3.2. For every r1, . . . , rn ≥ 1, the random measures φr1, . . . , φrn

are jointly good random measures on ([0, T ]n, B([0, T ]n)).
3.1. The diagonal measures. Rota and Wallstrom [24] define the diagonal

measure of order n of φ as the random measure on [0, T ] given by

�n(A) = φ⊗n(An
1̂), A ∈ B([0, T ]).(11)

To identify the diagonal measures is a necessary step to study the stochastic mul-
tiple integral. In the case of a random measure generated by a Lévy process we
show that the diagonal measures are the measures generated by the variations of
the process.

PROPOSITION 3.3. For every A ∈ B([0, T ]) and n ≥ 1,

�n(A) = φn(A),(12)

where φn is the random measure induced by X(n).
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PROOF. Since both �n and φn are random measures, by Proposition 2.1 it
is enough to check the equality for A = (0, t]. Consider an increasing sequence
of equidistributed partitions of [0, t] with the mesh going to 0; for example, take
t
(m)
k = tk/2m and let

Pm = {
t
(m)
k , k = 0, . . . ,2m}

.

To shorten the notation, write tk instead of t
(m)
k . Consider the sets

Am = (0, t1]n ∪ (t1, t2]n ∪ · · · ∪ (t2m−1, t]n.
Random measures are sequentially continuous and Am ↘ (0, t]n

1̂
, when m → ∞,

so we have that

�n((0, t]) = lim
m

2m−1∑
k=0

(φ((tk, tk+1]))n = lim
m

2m−1∑
k=0

(Xtk+1 − Xtk )
n

in L2(�). For n = 2,

lim
m

2m−1∑
k=0

(Xtk+1 − Xtk )
2 = [X,X]t = φ2((0, t]) in probability,

so the proposition is true in this case. For n > 2, by Itô’s formula,
2m−1∑
k=0

(Xtk+1 − Xtk )
n

= n

2m−1∑
k=0

∫ tk+1

tk

(Xs− − Xtk )
n−1 dXs

+ 1

2
n(n − 1)

2m−1∑
k=0

∫ tk+1

tk

(Xs − Xtk )
n−2 ds

+
2m−1∑
k=0

∑
tk<s≤tk+1

[(Xs − Xtk )
n − (Xs− − Xtk )

n

− n(Xs− − Xtk)
n−1(Xs − Xs−)]

= n

∫ t

0

(2m−1∑
k=0

(Xs− − Xtk)
n−11(tk,tk+1](s)

)
dXs(a)

+
(

n

2

)∫ t

0

(2m−1∑
k=0

(Xs− − Xtk )
n−21(tk,tk+1](s)

)
d[X,X]s(b)

+
n∑

j=3

2m−1∑
k=0

∑
tk<s≤tk+1

(
n

j

)
(Xs− − Xtk )

n−j (
Xs)
j .(c)
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For j = 3, . . . , n − 1, the corresponding term in (c) is(
n

j

)∫ t

0

(2m−1∑
k=0

(Xs− − Xtk )
n−j 1(tk,tk+1](s)

)
dX(j)

s .(d)

Hence, (a), (b) and (d) have the same structure∫ t

0
H(m)

s dZs,

where H
(m)
s = ∑2m−1

k=0 (Xs− − Xtk )
r1(tk,tk+1](s) is a predictable process and Z is a

semimartingale. Since Xs− is left continuous,

lim
m

H(m)
s = 0 a.s.

Moreover, ∣∣H(m)
s

∣∣ ≤ C sup
0≤u≤s

|Xu|r ,

and the process {sup0≤u≤s |Xu|r , s ∈ [0, t]} is cadlag and adapted, and as a con-
sequence, it is prelocally bounded (see pages 336 and 340 in Dellacherie and
Meyer [6]). By the dominated convergence theorem for stochastic integrals (Del-
lacherie and Meyer [6], Theorem 14, page 338),

lim
m

∫ t

0
H(m)

s dZs = 0 in probability.

Finally, for j = n, the term in (c) is
∑

0<s≤t (
Xs)
n = X

(n)
t , and the proposition is

proved. �

Diagonal measures associated to a random measure of the form φr1 ⊗ · · · ⊗ φrn

are needed. This is an extension of the previous proposition, and it is a key result
for the sequel.

THEOREM 3.4. Let r1, . . . , rn ≥ 1, n ≥ 2, and A ∈ B([0, T ]). Then

(φr1 ⊗ · · · ⊗ φrn)(A
n
1̂) = �r1+···+rn(A) = φr1+···+rn(A).

PROOF. As in the proof of the last proposition and with the same notation, it
suffices to prove that for all t > 0

lim
m

2m−1∑
k=0

(
X

(r1)
tk+1

− X
(r1)
tk

) · · · (X(rn)
tk+1

− X
(rn)
tk

) = φr1+···+rn((0, t])

in probability. This convergence follows from Proposition 3.3 by polarization. �
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4. The Hu–Meyer formula: Measures. The Hu–Meyer formula gives the
relationship between the product measure φ⊗n and the Itô stochastic measures
Str

0̂
. In this section we obtain this formula for measures and in the next one we

extend it to the corresponding integrals.
The idea of Hu–Meyer formula is the following. Given C ∈ B([0, T ]n), we can

decompose

C = ⋃
σ∈�n

Cσ .

So

φ⊗n(C) = ∑
σ∈�n

φ⊗n(Cσ ).

Next step is to express each φ⊗n(Cσ ) as a multiple Itô stochastic measure. For
example, take n = 3, σ = {{1}, {2,3}} and C = A3. Then,

A3
σ = {(s, t, t), s, t ∈ A, s �= t},

and we will prove that

φ⊗3(A3
σ ) = St(1,2)

0̂
(A2).

That is, both the product measure and the product set on the last two variables
collapse to produce a diagonal measure, and since s �= t , we get an Itô measure. To
handle in general this property, we need some notation.

Given a partition σ ∈ �n with blocks B1, . . . ,Bm, we can order the blocks in
agreement with the minimum element of each block. When necessary, we assume
that the blocks have been ordered with that procedure, and we simply say that
B1, . . . ,Bm are ordered. In that situation, we write

σ = (#B1, . . . ,#Bm).(13)

We start considering a set C = An, with A ∈ B([0, T ]), and later we extend the
Hu–Meyer formula to an arbitrary set C ∈ B([0, T ]n).

THEOREM 4.1. Let A ∈ B([0, T ]). Then

φ⊗n(An) = ∑
σ∈�n

Stσ0̂ (A#σ ).(14)

To prove this theorem we need two lemmas. The first one is an invariance-type
property of product measures under permutations. We remember some standard
notation.

NOTATION 4.2. We denote by Gn the set of permutations of 1, . . . , n. Con-
sider p ∈ Gn.
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1. For a partition σ ∈ �n with blocks B1, . . . ,Bm, we write p(σ) for the parti-
tion with blocks Wj = p(Bj ) = {p(i), i ∈ Bj }. Note that in general the blocks
W1, . . . ,Wm are not ordered, even when B1, . . . ,Bm are.

2. For a vector x = (x1, . . . , xn) ∈ R
n, we write

p(x) = (
xp(1), . . . , xp(n)

)
.

Given C ⊂ R
n, we put

p(C) = {p(x), for x ∈ C}.

LEMMA 4.3. Let p ∈ Gn and r1, . . . , rn ≥ 1. Then for every C ∈ B([0, T ]n),(
φrp(1)

⊗ · · · ⊗ φrp(n)

)
(p(C)) = (φr1 ⊗ · · · ⊗ φrn)(C)(15)

and

Stp(r)
0̂

(p(C)) = Str0̂(C).(16)

PROOF. Define the vector measure

�(C) = (
φrp(1)

⊗ · · · ⊗ φrp(n)

)
(p(C)).

For C = A1 × · · · × An, we have that

p(A1 × · · · × An) = Ap(1) × · · · × Ap(n),

and it is clear that

�(C) = (φr1 ⊗ · · · ⊗ φrn)(C).

Then, equality (15) follows from Proposition 2.1.
To prove (16), first note that, by definition, the Itô stochastic measure satisfies

Str0̂(C) = Str0̂(C0̂).

Moreover (p(C))̂0 = p(C0̂). So it suffices to prove (16) for a set C = C0̂. De-
note by Bn

0̂
the σ -algebra trace of B([0, T ]n) with [0, T ]n

0̂
, which is composed by

all sets C0̂, with C ∈ B([0, T ]n). This σ -algebra is generated (on [0, T ]n
0̂
) by the

family of rectangles A1 × · · · × An, with A1, . . . ,An pairwise disjoint. By Propo-
sition 2.1, we only need to check (16) for this type of rectangle, and the property
reduces to (15). �

The next lemma is an important step in proving Theorem 4.1. To have an
insight into its meaning, consider the following example: let n = 4 and σ =
{{1}, {2}, {3,4}}. With a slight abuse of notation, we can write

A4≥σ = {(s, t, u,u) : s, t, u ∈ A} = A2 × A2
1̂.
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By Theorem 3.4,

(φr1 ⊗ φr2 ⊗ φr3 ⊗ φr4)(A
4≥σ ) = φr1(A)φr2(A)(φr3 ⊗ φr4)(A

2
1̂)

= φr1(A)φr2(A)φr3+r4(A).

However, if you consider τ = {{1,3}, {2}, {4}}, even though τ and σ have the same
number of blocks with 1 element and the same number of blocks with 2 elements
(they have the same type), the computation of (φr1 ⊗ φr2 ⊗ φr3 ⊗ φr4)(A

4≥τ ) is not
so straightforward. The lemma gives such computation. Its proof demands some
combinatorial results and it is transferred to Appendix A.3.

LEMMA 4.4. Let r1, . . . , rn ≥ 1, σ ∈ �n with blocks B1, . . . ,Bm (ordered),
and A ∈ B([0, T ]). Then

(φr1 ⊗ · · · ⊗ φrn)(A
n≥σ ) =

m∏
j=1

φ∑
i∈Bj

ri (A).

PROOF OF THEOREM 4.1. By Proposition 2.4,

φ⊗n(An) = ∑
σ∈�n

St[n]
σ (An).

So it suffices to prove that

St[n]
σ (An) = Stσ0̂ (A#σ ).

By the second statement in Proposition 2.4 we have

St[n]
σ (An) = ∑

π∈[σ,̂1]
μ(σ,π)φ⊗n

π (An) = ∑
π∈[σ,̂1]

μ(σ,π)φ⊗n(An≥π).(17)

By Lemma 4.4,

φ⊗n(An≥π) = ∏
V ∈π

φ#V (A).(18)

Let B1, . . . ,Bm be the blocks of σ ∈ �n (ordered) and write

σ = (#B1, . . . ,#Bm) = (s1, . . . , sm).

The partition π ∈ [σ, 1̂], with blocks V1, . . . , Vk , induces a unique partition of π∗ ∈
�m, with blocks W1, . . . ,Wk such that

Vi = ⋃
j∈Wi

Bj

(see Proposition A.1 in the Appendix). Hence, for i = 1, . . . , k,

φ#Vi
(A) = φ∑

j∈Wi
#Bj

(A) = φ∑
j∈Wi

sj (A).
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Thus, from (18) and Lemma 4.4,

φ⊗n(An≥π) = ∏
Wi∈π∗

φ∑
j∈Wi

sj (A) = (φs1 ⊗ · · · ⊗ φsm)(Am≥π∗).(19)

By (17) and (19) using again the bijection between [σ, 1̂] and �m stated in Propo-
sition A.1 in the Appendix, and Proposition 2.4, we obtain

St[n]
σ (An) = ∑

π∈[σ,̂1]
μ(σ,π)(φs1 ⊗ · · · ⊗ φsm)(Am≥π∗)

= ∑
ρ∈�m

μ(̂0, ρ)(φs1 ⊗ · · · ⊗ φsm)(Am≥ρ) = Stσ0̂ (A#σ ).
�

In order to extend the Hu–Meyer formula for a general set in B([0, T ]n), we use
a set function to express for an arbitrary set the contraction from An to A#σ . That
is, given a partition σ ∈ �n, with blocks B1, . . . ,Bm ordered, we want to contract
a set C ∈ B([0, T ]n) into a set of B([0, T ]#σ ) according to the structure of the
σ -diagonal sets. With this purpose, define the function

qσ : [0, T ]#σ −→ [0, T ]n,
(20)

(x1, . . . , xm) −→ (y1, . . . , yn),

where yi = xj , if i ∈ Bj . For example, if n = 4 and σ = {{1}, {2,4}, {3}},
qσ (x1, x2, x3) = (x1, x2, x3, x2).

Note that

q−1
σ (An) = A#σ .

See Appendix A.4 for more details.

THEOREM 4.5. Let C ∈ B([0, T ]n). Then

φ⊗n(C) = ∑
σ∈�n

Stσ0̂ (q−1
σ (C)).(21)

PROOF. We separate the proof in two steps. In the first one, we show that it is
enough to prove the theorem for a rectangle of the form

C = A
r1
1 × · · · × A

r
 ,

where A1, . . . ,A are pairwise disjoint. In the second step we check formula (21)
for those rectangles.

First step. By Proposition 2.1, it suffices to prove the theorem for a rectangle
A1 ×· · ·×An. Since every rectangle can be written as a disjoint union of rectangles
such that every two components are either equal or disjoint, we consider one of
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this rectangles, C = A1 ×· · ·×An, where for every i, j , Ai = Aj or Ai ∩Aj = ∅.
Now we show that the formula (21) applied to C is invariant by permutations:
specifically, we see that for any permutation p ∈ Gn

φ⊗n(p(C)) = φ⊗n(C) and
∑

σ∈�n

Stσ0̂ (q−1
σ (p(C))) = ∑

σ∈�n

Stσ0̂ (q−1
σ (C)).

The first equality is deduced from (15). For the second one, applying Proposi-
tion A.4(i), we have

Stσ0̂ (q−1
σ (p(C))) = Stσ0̂

(
p−1

1

(
q−1
p(σ)(C)

))
,

where p1 ∈ G#σ is the permutation that gives the correct order of the blocks of
p(σ) (see the lines before Proposition A.4). By Lemma 4.3

Stσ0̂
(
p−1

1

(
q−1
p(σ)(C)

)) = Stp1(σ )

0̂

(
q−1
p(σ)(C)

) = Stp(σ)

0̂

(
q−1
p(σ)(C)

)
,

where the last equality is due to the fact that p1(σ ) = p(σ) by the definition of p1
[see (37)]. Finally, ∑

σ∈�n

Stσ0̂ (q−1
σ (C)) = ∑

σ∈�n

Stp(σ)

0̂

(
q−1
p(σ)(C)

)
,

because we are adding over all the set �n = {p(σ), σ ∈ �n}.
Second step. Consider

C = A
r1
1 × · · · × A

r


with A1, . . . ,A pairwise disjoint and
∑

i=1 ri = n. By Theorem 4.1,

φ⊗n(A
r1
1 × · · · × A

r
 ) =

∏
i=1

φ⊗ri (A
ri
i ) =

∏
i=1

∑
σi∈�ri

Stσ i

0̂
(A

#σi

i )

= ∑
σ1∈�r1 ,...,σ∈�r

Stσ 1,...,σ 

0̂
(A

#σ1
1 × · · · × A

#σ

 ),

where the last equality is due to the fact that

(A
#σ1
1 × · · · × A

#σ

 )̂0 = (A
#σ1
1 )̂0 × · · · × (A

#σ

 )̂0,

and the definition of the Itô measure Stσ 1,...,σ 

0̂
.

Let τ ∈ �n be the partition with blocks

F1 = {1, . . . , r1},
F2 = {r1 + 1, . . . , r1 + r2},

...

F = {r1 + · · · + r−1 + 1, . . . , n}.
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There is a bijection between the elements σ ∈ �n, with σ ≤ τ , and (σ1, . . . , σ) ∈
�r1 × · · · × �r such that

σ = (σ 1, . . . , σ ) and q−1
σ (A

r1
1 × · · · × A

r
 ) = A

#σ1
1 × · · · × A

#σ

 ,

where we use equality (36) in the Appendix. Then,

φ⊗n(A
r1
1 × · · · × A

r
 ) = ∑

σ∈�n,σ≤τ

Stσ0̂
(
q−1
σ (A

r1
1 × · · · × A

r
 )

)
= ∑

σ∈�n

Stσ0̂
(
q−1
σ (A

r1
1 × · · · × A

r
 )

)
,

where the last equality is due to the fact that if σ �≤ τ , then q−1
σ (A

r1
1 ×· · ·×A

r
 ) =

∅ [see (36)]. �

5. Multiple Itô and Stratonovich integral, and the corresponding Hu–
Meyer formula. We extend Theorem 4.5 to integrals with respect to the random
measures involved. We first define an Itô-type multiple integral and an integral
with respect to the product measure.

5.1. Multiple Itô stochastic integral. We generalize the multiple Itô integral
with respect to the Brownian motion (Itô [10]; see also [11]) to a multiple integral
with respect to the Lévy processes X(r1), . . . ,X(rn). As we will prove, that integral
can be interpreted as the integral with respect to the Itô stochastic measure. The
ideas used to construct this integral are mainly Itô’s; however, the fact that these
processes (in general) are not centered obstructs the classical isometry property,
being substituted by an inequality.

Write L2
n = L2([0, T ]n, B([0, T ]n), (dt)⊗n). Denote by E Ito

n the set of the so-
called Itô-elementary functions, having the form

f (t1, . . . , tn) =
m∑

i1,...,in=1

ai1,...,in1Ai1×···×Ain
(t1, . . . , tn),

where A1, . . . ,Am ∈ B([0, T ]) are pairwise disjoint, and ai1,...,in is zero if two
indices are equal. It is well known (see Itô [10]) that E Ito

n is dense in L2
n. Consider

f ∈ E Ito
n and define the multiple Itô integral of f with respect to X(r1), . . . ,X(rn)

by

I (r1,...,rn)
n (f ) =

m∑
i1,...,in=1

ai1,...,inφr1(Ai1) · · ·φrn(Ain).

LEMMA 5.1. Let f ∈ E Ito
n and r = (r1, . . . , rn). Then

E[(I r
n(f ))2] ≤ αr

∫
[0,T ]n

f 2(t1, . . . , tn) dt1 · · ·dtn,

where αr is a constant that depends on r1, . . . , rn but not on f .
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PROOF. The proof follows exactly the same steps as that of Theorem 4.1 in
Engel [7]. The key point is that the measures φri can be written as

φri (A) = φri
(A) + Kri

∫
A

dt,

where φri
is the centered and independently scattered random measure correspond-

ing to Y (ri). �

The extension of the multiple Itô stochastic integral to L2
n, stated below, is

proved as in the Brownian case (see Itô [10]).

THEOREM 5.2. The map

I r
n : E Ito

n −→ L2(�),

f −→ I r
n(f )

can be extended to a unique linear continuous map from L2
n to L2(�). In particu-

lar, I r
n(f ) satisfies the inequality

E[(I r
n(f ))2] ≤ αr

∫
[0,T ]n

f 2(t1, . . . , tn) dt1 · · ·dtn.(22)

As in the Brownian case, it is useful to express the multiple integral in terms of
iterated integrals of the form∫ T

0

(∫ ti1−
0

· · ·
(∫ tin−1−

0
f (ti1, . . . , tin) dX

(rin )
tin

)
· · ·dX

(ri2 )

ti2

)
dX

(ri1 )

ti1
,

where i1, . . . , in is a permutation of 1, . . . , n. This integral is properly defined for
f ∈ L2

n. This can be checked using the decomposition of X(ri) as a special semi-
martingale X

(ri)
t = Kri t + Y

(ri)
t , where, as we said in Section 3, Y (ri) is a square

integrable martingale with predictable quadratic variation 〈Y (ri), Y (ri)〉t = K2ri t .
The previous iterated integral then reduces to a linear combination of iterated in-
tegrals of type∫ T

0

(∫ ti1−
0

· · ·
(∫ tin−1−

0
f (t1, . . . , tn) dZ

(n)
tin

)
· · ·dZ

(2)
ti2

)
dZ

(1)
ti1

,

being Z
(j)
t either t or Y

(rj )
t . Hence, at each iteration, the integrability condition

E

[∫ t

0
g2 d

〈
Z(i),Z(i)〉] < ∞

of a predictable process g with respect to Z(i) can be easily verified.
Next proposition gives the precise expression of the multiple integral as a sum

of iterated integrals. Since we are integrating with respect to different processes,
we need to separate the space [0, T ]n into simplexs.
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PROPOSITION 5.3. Let f ∈ L2
n. Then

I (r1,...,rn)
n (f ) = ∑

p∈Gn

∫
· · ·

∫
p(�n)

f (t1, . . . , tn) dX
(r1)
t1

· · ·dX
(rn)
tn ,

where �n = {0 < t1 < · · · < tn < T }, and the integrals on the right-hand side are
interpreted as iterated integrals.

PROOF. By linearity and density arguments, it suffices to consider a function

f = 1A1×···×An,

where Ai = (si, ti] are pairwise disjoint, and a computation gives the result. �

When r1 = · · · = rn = 1, we write In(f ) instead of I
(1,...,1)
n (f ); in that case, the

multiple Itô integral enjoys nicer properties.

PROPOSITION 5.4.

1. Let f ∈ L2
n. Then

In(f ) = In(f̃ ),

where f̃ is the symmetrization of f

f̃ = 1

n!
∑

p∈Gn

f � p.(23)

2. Assume E[Xt ] = 0. For f,g ∈ L2
n,

E[In(f )Im(g)] = δn,mKn
2 n!

∫
[0,T ]n

f̃ g̃ dt,

where δn,m = 1, if n = m, and 0 otherwise.
3. Let f ∈ L2

n be a symmetric function. Then

In(f ) = n!
∫ T

0

(∫ t1−
0

· · ·
(∫ tn−1−

0
f (t1, . . . , tn) dXtn

)
· · ·dXt2

)
dXt1 .

We now state the relationship between the Itô stochastic measure Str
0̂

and the Itô
multiple integral I r

n .

PROPOSITION 5.5. Let C ∈ B([0, T ]n) and r = (r1, . . . , rn). Then

Str0̂(C) = I r
n(1C).(24)
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PROOF. By (22) the map C �→ I r
n(1C) defines a vector measure on B([0, T ]n).

On the left-hand side of (24), the Itô measure satisfies

Str0̂(C) = Str0̂(C0̂).(25)

Now, look at right-hand side of (24). For π ∈ �n, we have that Cπ = C ∩ [0, T ]nπ .
For all π > 0̂,

E[(I r
n(1Cπ ))2] ≤ αn

∫
[0,T ]n

1Cπ dt1 · · ·dtn ≤ αn

∫
[0,T ]n

1[0,T ]nπ dt1 · · ·dtn = 0.

Hence,

I r
n(1C) = I r

n(1C0̂
).(26)

From (25) and (26), it suffices to prove (24) for a set C = C0̂. As in the proof
of the second part of Lemma 4.3, this can be reduced to check that equality for a
rectangle (s1, t1] × · · · × (sn, tn], with the intervals pairwise disjoint. This follows
from the fact that both sides of (24) are equal to φr1((s1, t1]) · · ·φrn((sn, tn]). �

The property In(f ) = In(f̃ ) is lost when the integrators are different. However,
from Proposition 5.5 and (16) we can deduce the following useful property:

PROPOSITION 5.6. Let f ∈ L2
n, and r = (r1, . . . , rn), where r1, . . . , rn ≥ 1.

Consider p ∈ Gn. Then

I r
n(f ) = Ip(r)

n (f � p−1).

5.2. Multiple Stratonovich integral and Hu–Meyer formula. Given a map
f : [0, T ]n → R, the integral with respect to the product measure φ⊗n is called
the multiple Stratonovich integral, and denoted by IS

n (f ). Its basic property is that
the integral of a product function factorizes

IS
n (g1 ⊗ · · · ⊗ gn) = IS

1 (g1) · · · IS
1 (gn),

where

IS
1 (g) = I1(g) =

∫ T

0
g(t) dXt .

In order to construct this integral, we consider ordinary simple functions of the
measurable space ([0, T ]n, B([0, T ]n)). Specifically, denote by E Strato

n the set of
functions with the form

f =
k∑

i=1

ai1Ci
,
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where Ci ∈ B([0, T ]n), i = 1, . . . , k. For such f , define the multiple Stratonovich
integral by

IS
n (f ) =

k∑
i=1

aiφ
⊗n(Ci).

The integral of a simple function does not depend on its representation, and it is
linear. Moreover,

PROPOSITION 5.7. Let f ∈ E Strato
n . Then we have the Hu–Meyer formula

IS
n (f ) = ∑

σ∈�n

Iσ
#σ (f � qσ ),(27)

where the function qσ : [0, T ]#σ → [0, T ]n is introduced in (20), σ = (#B1, . . . ,

#Bm) is the vector whose components are the sizes of the ordered blocks of σ ,
and I

(s1,...,sm)
m is the multiple Itô integral of order m with respect to the measures

φs1, . . . , φsm .

PROOF. By linearity, it suffices to consider f = 1C , where C ∈ B([0, T ]n). A
generic term on the right-hand side of (27) is

Iσ
#σ (1C � qσ )

and

1C � qσ = 1
q−1
σ (C)

.

Hence, by Proposition 5.5,

Iσ
#σ (1C � qσ ) = Stσ0̂ (q−1

σ (C)),

and (27) follows from Theorem 4.5. �

Let σ ∈ �n, with #σ = m, and denote by λσ the image measure of the Lebesgue
measure (dt)⊗m by the function qσ : [0, T ]m → [0, T ]n. The image measure theo-
rem implies that for f : [0, T ]n → R measurable, positive or λσ -integrable,∫

[0,T ]n
f (t1, . . . , tn) dλσ (t1, . . . , tn) =

∫
[0,T ]m

f (qσ (t1, . . . , tm)) dt1 · · ·dtm.(28)

Define on B([0, T ]n) the measure

�n = ∑
σ∈�n

λσ ,

and write L2(�n) for L2([0, T ]n, B([0, T ]n),�n).
In order to extend the multiple Stratonovich integral we need the following in-

equality of norms:
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LEMMA 5.8. Let f ∈ E Strato
n . Then

E[(I S
n (f ))2] ≤ C

∫
[0,T ]n

f 2 d�n,(29)

where C is a constant.

PROOF. By (27), (22) and (28),

E[(IS
n (f ))2] ≤ C

∑
σ∈�n

E
[(

Iσ
#σ (f � qσ )

)2]
≤ C

∑
σ∈�n

∫
[0,T ]#σ

(f � qσ )2 dt1 · · ·dt#σ

= C
∑

σ∈�n

∫
[0,T ]n

f 2 dλσ

= C

∫
[0,T ]n

f 2 d�n. �

The main result of the paper is the following theorem:

THEOREM 5.9. The map IS
n : E Strato

n → L2(�) can be extended to a unique
linear continuous map from L2(�n) to L2(�), and we have the Hu–Meyer formula

IS
n (f ) = ∑

σ∈�n

Iσ
#σ (f � qσ ).(30)

PROOF. The extension of IS
n to a continuous map on L2(�n) is proved us-

ing a density argument and inequality (29). To prove the Hu–Meyer formula, let
f ∈ L2(�n) and {fk, k ≥ 1} ⊂ E Strato

n such that limk fk = f in L2(�n). For every
σ ∈ �n, we have limk fk � qσ = f � qσ in L2

#σ ; hence, from Theorem 5.2 the Itô
integrals on the right-hand side of (30) converge, and the formula follows from
Proposition 5.7. �

REMARKS 5.10.

(1) Let g1, . . . , gn ∈ L2n([0, T ], dt). Then g1 ⊗ · · · ⊗ gn ∈ L2
n(�n) and

IS
n (g1 ⊗ · · · ⊗ gn) = IS

1 (g1) · · · IS
1 (gn).

This result is easily checked for simple functions g1, . . . , gn and extended to
the general case by a density argument.

(2) In order to prove the Hu–Meyer formula for IS
n it is enough to assume that the

process X has moments up to order 2n.
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(3) For σ ∈ �n,σ > 0̂, the measure λσ is singular with respect to the Lebesgue
measure on [0, T ]n. For example, for n = 2 and σ = 1̂, let D = {(t, t), t ∈
[0, T ]} be the diagonal of [0, T ]2. Then λ1̂ is concentrated in D, that has zero
Lebesgue measure, but λ1̂ is nonzero

λ1̂(D) =
∫
[0,T ]2

1D(s, t) dλ1̂(s, t) =
∫
[0,T ]

1D(t, t) dt = T .

(4) As in the Brownian case (see [9, 12, 16, 27] and the references therein), there
are other procedures to construct the multiple Stratonovich integral. The main
difficulty in every approach is that the usual condition f ∈ L2

n in Itô’s the-
ory is not sufficient to guarantee the multiple Stratonovich integrability of f .
The reason is that one needs to control the behavior of f on the diagonal sets
[0, T ]nσ that have zero Lebesgue measure when σ > 0̂. We solve this difficulty
using the norm induced by the measure �n, which seems to be appropriate for
dealing with the diagonal sets, avoiding in this way the difficulty of a manage-
able definition of the traces.

When the function f ∈ L2(�n) is symmetric, the Hu–Meyer formula can be
considerably simplified. We show that we can assume that symmetry on f without
loss of generality.

PROPOSITION 5.11. Let f ∈ L2(�n). Then IS
n (f ) = IS

n (f̃ ), where f̃ is the
symmetrization of f [see (23)].

PROOF. The proof is straightforward for f = 1C , C ∈ B([0, T ]n), using
Lemma 4.3. By linearity the equality IS

n (f ) = IS
n (f̃ ) is extended to E Strato

n , and
by density to L2(�n). �

Next we show the Hu–Meyer formula for a symmetric function f . In general
(for f symmetric), the function f � qσ is nonsymmetric, but as we will see in
the proof of the next theorem, its multiple Itô integral depends only on the block
structure of σ (the type of σ ). For example, with n = 3, f (t1, t2, t3) = t1t2t3 and
σ = {{1}, {2,3}}, we have that

f (qσ (t1, t2)) = t1t
2
2 ,

that is nonsymmetric. Its integral is

Iσ
#σ (f � qσ ) = I

(1,2)
2 (f � qσ ) = I

(1,2)
2 (t1t

2
2 ).

Take π = {{1,3}, {2}}. Then f (qπ(t1, t2)) = t2
1 t2 and

Iπ
#π(f � qπ) = I

(2,1)
2 (t2

1 t2) = I
(1,2)
2 (t1t

2
2 ),

where the last equality is due to Proposition 5.6.
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We use the following notation: given nonnegative integers r1, . . . , rk such that∑k
i=1 iri = n, we write

[r1, r2, . . . , rk] = (1, . . . ,1︸ ︷︷ ︸
r1

,2, . . . ,2︸ ︷︷ ︸
r2

, . . .).

Note that this corresponds to σ when

σ = {{1}, . . . , {r1}, {r1 + 1, r1 + 2}, . . . , {r1 + 2r2 − 1, r1 + 2r2}, . . .}.
We also write qr1,...,rk for qσ , with σ the above partition.

THEOREM 5.12. Let f ∈ L2
n(�n) be a symmetric function. Then

IS
n (f ) = ∑ n!

r1!(2!)r2r2! · · · (k!)rk rk!I
[r1,...,rk]
r1+···+rk

(f � qr1,...,rk ),(31)

where the sum is extended over all nonnegative integers r1, . . . , rk such that∑k
i=1 iri = n, for k = 1, . . . , n.

PROOF. Let f ∈ L2(�n) symmetric. For every σ ∈ �n and p ∈ Gn,

I
p(σ)
#p(σ)

(
f � qp(σ)

) =(a) I
p(σ)
#p(σ)(f � p−1 � qσ � p−1

1 )

=(b) I
p(σ)
#p(σ)(f � qσ � p−1

1 ) =(c) Iσ
#σ (f � qσ ),

where (a) is due to Proposition A.4(ii), the equality (b) follows from the symmetry
of f and (c) from Proposition 5.6 and the fact that p1 gives the correct order of
p(σ) [see (37)]. This implies that all the partitions that have the same number of
blocks of 1 element, the same number with two elements, etc. (i.e., they have the
same type) give the same Itô multiple integral in the Hu–Meyer formula. To obtain
(31) it suffices to count the number of partitions of {1, . . . , n} with r1 blocks with
1 element, r2 blocks with 2 elements, . . . , rk blocks with k elements, which is

n!
r1!(2!)r2r2! · · · (k!)rk rk! . �

Final remark. One may expect that by decomposing the Lévy process into a sum
of two independent processes, one with the small jumps and the other with the large
ones, the assumption of the existence of moments could be avoided. However, this
decomposition introduces dramatic changes to the context of the work, and such
an extension is beyond the scope and purposes of the present paper.

6. Special cases.

6.1. Brownian motion. When X = W is a standard Brownian motion,

φ2([0, t]) = t and φn = 0, n ≥ 3.
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It follows that in the Hu–Meyer formula only the partitions with all blocks of
cardinality 1 or 2 give a contribution, and all the Itô integrals are a mixture of
multiple stochastic Brownian integrals and Lebesgue integrals. We can organize
the sum according the number of blocks of two elements. For a partition having j

blocks of 2 elements, and f ∈ L2
n(�n) symmetric, the multiple Itô integral is

I
[n−2j,j ]
n−j (f )

=
∫
[0,T ]n−j

f (s1, . . . , sn−2j ,

t1, t1, . . . , tj , tj ) dWs1 · · ·dWsn−2j
dt1 · · ·dtj

= In−2j

(∫
[0,T ]j

f (·, t1, t1, . . . , tj , tj ) dt1 · · ·dtj

)
,

where the last equality is due to a Fubini-type theorem. Therefore,

IS
n (f ) =

[n/2]∑
j=0

n!
(n − 2j)!j !2j

(32)

× In−2j

(∫
[0,T ]j

f (·, t1, t1, t2, t2, . . . , tj , tj ) dt1 · · ·dtj

)
,

which is the classical Hu–Meyer formula (see [8]).
On the other hand, in the measure �n only participate the measures λσ cor-

responding to the partitions above mentioned. Consider the measure 2 = λ1̂ on
[0, T ]2, that is, for a positive or 2 integrable function h,∫

[0,T ]2
h(s, t) d2(s, t) =

∫
[0,T ]

h(t, t) dt.

Given the partition σ ∈ �n,

σ = {{1}, . . . , {n − 2j}, {n − 2j + 1, n − 2j + 2}, . . . , {n − 1, n}},
we have

λσ = (dt)⊗(n−2j) ⊗ 
⊗j
2 .

6.2. Poisson process. Let Nt be a standard Poisson process with intensity 1,
and consider the process Xt = Nt − t . For every n ≥ 2,

X
(n)
t = Nt = Xt + t,

and hence, a multiple Itô integral can be reduced to a linear combination of mul-
tiple integrals where all the integrators are dX or dt . For f ∈ L2

n(�n) symmetric,
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each integral I
[r1,...,rk]
r1+···+rk

(f �qr1,...,rk ) in (31) can be expressed in terms of the number
of Lebesgue integrals that appear

I
[r1,...,rk]
r1+···+rk

(f � qr1,...,rk )

=
r2+···+rk∑

j=0

Ir1+···+rk−j

(∫
[0,T ]j

(
r1+···+rk∑

l1,...,lj=r1+1
different

(f � qr1,...,rk )

× (t1, . . . , tr1+···+rk )

)
dtl1 · · ·dtlj

)
,

and the Hu–Meyer formula of Solé and Utzet [28] can be deduced from this ex-
pression.

6.3. Gamma process and subordinators. A subordinator is a Lévy process
with increasing paths. An important example of a subordinator with moments of
all orders is the Gamma process, denoted by {Gt, t ≥ 0}, which is the Lévy process
corresponding to an exponential law of parameter 1. Its Lévy measure is

ν(dx) = e−x

x
1{x>0}(x) dx.

The law of Gt is Gamma with mean t and scale parameter equal to one. A Gamma
process can be represented as the sum of its jumps, that are all positive,

Gt = ∑
0<s≤t


Gs.

The Lévy measure of G(n) is (see Schoutens [26])

νn(dx) = e−x1/n

nx
1{x>0}(x) dx, n ≥ 1,

and the Teugels martingales are

Y
(n)
t = ∑

{0<s≤t}
(
Gs)

n − (n − 1)!t, n ≥ 1.

In this case, unlike the Brownian motion and the Poisson process, the Hu–Meyer
formula does not simplify, due to the fact that the diagonal measures cannot be
expressed in a simple way in terms of, say, the process and a deterministic measure.
However, for a Gamma process, and in general, for a subordinator without drift
(see below for the definition) with moments of all orders, both the multiple Itô and
Stratonovich integrals can be computed pathwise integrating with respect to an
ordinary measure. This is a multivariate extension of the property that states that
the stochastic integral and the pathwise Lebesgue–Stieljes integral with respect to
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a semimartingale of bounded variation are equal; such property was proved for the
integral with respect to a Lévy process of bounded variation by Millar [18] under
weak conditions, and part of our proof follows his scheme.

Let X = {Xt, t ≥ 0} be a subordinator. The Lévy–Itô representation of X takes
the form

Xt = γ0t + ∑
0<s≤t


Xs

with γ0 ≥ 0 (see Sato [25], Theorems 21.5 and 19.3). The number γ0 is called
the drift of the subordinator, and we will assume that γ0 = 0. Consider the se-
quence of stopping times {Tk, k ≥ 1} with disjoint graphs that exhaust the jumps of
X :
XTk

�= 0,∀k ≥ 1, and X only has jumps on these times (see, e.g., Dellacherie
and Meyer [6], Theorem B, page XIII, for a construction of this sequence). Denote
by Jn the set of n-tuples (Ti1, . . . , Tin), with Tij ≤ T , and all entries different. For
r1, . . . , rn ≥ 1, define a measure on [0, T ]n by

mr1,...,rn = ∑
(Ti1 ,...,Tin )∈Jn

(
XTi1
)r1 · · · (
XTin

)rnδ(Ti1 ,...,Tin ),

where δa is a Dirac measure at point a, with the convention that the sum is 0 if
Jn = ∅. We have the following property:

PROPOSITION 6.1. Let X = {Xt, t ≥ 0} be a subordinator without drift and
with moments of all orders. With the preceding notation, for every f ∈ L2

n,

I (r1,...,rn)
n (f ) =

∫
[0,T ]n

f dmr1,...,rn a.s.(33)

PROOF. First, note two facts:
(a) mr1,...,rn is a finite measure

mr1,...,rn([0, T ]n) = ∑
(Ti1 ,...,Tin )∈Jn

(
XTi1
)r1 · · · (
XTin

)rn

≤ ∑
Ti1≤T ,...,Tin≤T

(
XTi1
)r1 · · · (
XTin

)rn

= X
(r1)
T · · ·X(rn)

T < ∞.

(b) If the intervals (s1, t1], . . . , (sn, tn] are pairwise disjoint, then (33) is true for
f = 1(s1,t1]×···×(sn,tn]. The proof is straightforward.

We separate the proof of the proposition in two steps.
Step 1. Formula (33) is true for every map f : [0, T ]n → R B0-measurable and

bounded, where B0 is the σ -field on [0, T ]n generated by the rectangles (s1, t1] ×
· · · × (sn, tn], with (s1, t1], . . . , (sn, tn] pairwise disjoint.

To prove this claim we use a convenient monotone class theorem. Denote by H
the family of functions that satisfy (33); it is a vector space such that:
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(i) 1 ∈ H.
(ii) If fm ∈ H, 0 ≤ fm ≤ K for some constant K , and fm ↗ f , then f ∈ H.

To see (i), consider the dyadic partition of [0, T ] with mesh 2−k , write

Bj = (
(j − 1)T 2−k, jT 2−k], j = 1, . . . ,2k,

and define

fk = ∑
j1,...,jn

different

1Bj1×···×Bjn
.

By the remark (b) at the beginning of the proof,

I (r1,...,rn)
n (fk) =

∫
[0,T ]n

fk dmr1,...,rn .

Moreover, fk ↗ 1 out off the diagonal sets [0, T ]nσ , with σ �= 0̂, and then fk ↗ 1
a.e. with respect to the Lebesgue measure, and in L2

n. Therefore,

lim
k

I (r1,...,rn)
n (fk) = I (r1,...,rn)

n (1).

On the other hand, for every ω, the measure mr1,...,rn does not charge on any of the
above mentioned diagonal sets. Thus, the convergence fk ↗ 1 is also mr1,...,rn -a.e.
By the monotone convergence theorem,

lim
k

∫
[0,T ]n

fk dmr1,...,rn =
∫
[0,T ]n

1dmr1,...,rn,

and (i) follows.
Point (ii) is deduced directly from the monotone convergence theorem and tak-

ing into account that under the conditions in (ii) we have fm → f in L2
n.

Again by remark (b) above, the indicator of a set (s1, t1] × · · · × (sn, tn], with
(s1, t1], . . . , (sn, tn] pairwise disjoint, is in H, and this family of sets is closed
by intersection. By the monotone class theorem, it follows that all bounded B0-
measurable functions are in H.

Step 2. Extension of (33) to all f ∈ L2
n. First, note that B0 is the σ -field gen-

erated by the Borelian sets B ∈ B([0, T ]n) such that B ⊂ [0, T ]n
0̂
. Then, given

B ∈ B([0, T ]n), the indicator 1B∩[0,T ]n
0̂

is B0 measurable. Let f ∈ L2
n, and as-

sume f ≥ 0. There is a sequence of simple (and then bounded) functions such that
0 ≤ fm ↗ f . Define f 0

m = fm1[0,T ]n
0̂
, which is B0 measurable, and f 0

m ↗ f a.e.

with respect to the Lebesgue measure. The convergence is also in L2
n, and then

limm In(f
0
m) = I (f ). On the other hand, f 0

m ↗ f , mr1,...,rn -a.e. so

lim
m

∫
[0,T ]n

f 0
m dmr1,...,rn =

∫
[0,T ]n

f dmr1,...,rn .

By Step 1, we get the result. For a general f ∈ L2
n, decompose f = f + − f −. �
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Finally, for a subordinator without drift and with moments of all orders, the
multiple Stratonovich measure can be identified with the n-fold product measure
of φ = ∑

k 
XTk
δTk

. So for f ∈ E Srato
n , by definition,

IS
n (f ) =

∫
[0,T ]n

f dφ⊗n.

Using similar arguments as in the previous proposition, but easier, it is proved that

IS
n (f ) =

∫
[0,T ]n

f dφ⊗n ∀f ∈ L2(�n).

Then, the Hu–Meyer formula can be transferred to a pathwise context.

APPENDIX

A.1. The isomorphism [σ,̂1] � �#σ . Fix a partition σ ∈ �n, with blocks
B1, . . . ,Bm. Let π ≥ σ , with blocks V1, . . . , Vk; each block Vi is the union of
some of the blocks B1, . . . ,Bm. Hence, we can consider the partition π∗ ∈ �m

that gives the relationship between the Vi ’s and the Bj ’s, that is, π∗ has blocks
W1, . . . ,Wk defined by

Vi = ⋃
j∈Wi

Bj , i = 1, . . . , k.

PROPOSITION A.1. Let σ ∈ �n with #σ = m. With the above notation, the
map

[σ, 1̂] −→ �m,

π �→ π∗

is a bijection and, for π, τ ∈ [σ, 1̂],
π ≤ τ ⇐⇒ π∗ ≤ τ ∗.

Moreover,

μ(n)(σ,π) = μ(m)(̂0, π∗),

where μ(r) is the Môbius function on �r .

The proof is straightforward.

A.2. Permutations and partitions. Let p : {1, . . . , n} −→ {1, . . . , n} be a
permutation. This application induces a bijection on �n, and a bijection on R

n.
Specifically:

1. For a subset B ⊂ {1, . . . , n} we denote by p(B) the image of B by p

p(B) = {p(j), for j ∈ B}.
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Given a partition σ ∈ �n, with blocks B1, . . . ,Bm, let p(σ) be the partition
with blocks W1, . . . ,Wm defined by Wj = p(Bj ). Note that in general the blocks
W1, . . . ,Wm are not ordered. The application

p :�n −→ �n,

σ �→ p(σ)

is a bijection and for σ, τ ∈ �n,

σ ≤ τ ⇐⇒ p(σ) ≤ p(τ).

This last property is clear, because if V ∈ τ , and V = Br1 ∪ · · · ∪ Brk , then

p(V ) = p(Br1) ∪ · · · ∪ p(Brk ).

Further, this application is compatible with the relationship introduced in Sec-
tion 2.2

i ∼σ j ⇐⇒ p(i) ∼p(σ) p(j).(34)

2. For a vector x = (x1, . . . , xn) ∈ R
n, we write

p(x) = (
xp(1), . . . , xp(n)

)
,

and the application x �→ p(x) determines a bijection on R
n, that we also denote

by p. For a set C ⊂ R
n, we write

p(C) = {p(x), for x ∈ C}.
In particular, for A1, . . . ,An ⊂ R,

p(A1 × · · · × An) = Ap(1) × · · · × Ap(n).

Notice that if we look for the position of a particular set, say A1, in p(A1 × · · · ×
An), we find it at place p−1(1)

Ai1 × · · · × A1 × · · · × Ain

↑
p−1(1).

This last observation gives some light to the next property:

PROPOSITION A.2. Consider p ∈ Gn, C ⊂ R
n and σ ∈ �n.

(i) p(Cσ ) = (p(C))p−1(σ ).
(ii) p(C≥σ ) = (p(C))≥p−1(σ ). In particular, p(An≥σ ) = An

≥p−1(σ )
.
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PROOF. (i) Let x = (x1, . . . , xn) ∈ p(Cσ ) ⊂ p(C). Write

p−1(x) = (
xp−1(1), . . . , xp−1(n)

) = (y1, . . . , yn) = y ∈ Cσ .

Therefore,

y ∈ C and yi = yj ⇐⇒ i ∼σ j.

The condition on the right is equivalent to p−1(i) ∼p−1(σ ) p−1(j) [see (34)]. So,
returning to the x’s,

x ∈ p(C) and xp−1(i) = xp−1(j) ⇐⇒ p−1(i) ∼p−1(σ ) p−1(j).

Call p−1(i) = r and p−1(j) = s. We have

x ∈ p(C) and xr = xs ⇐⇒ r ∼p−1(σ ) s.

Hence, x ∈ (p(C))p−1(σ ).
The reciprocal inclusion is analogous.
(ii) Applying (i),

p(C≥σ ) = p

( ⋃
π≥σ

Cπ

)
= ⋃

π≥σ

p(Cπ) = ⋃
π≥σ

(p(C))p−1(π)

= ⋃
τ≥p−1(σ )

(p(C))τ = (p(C))≥p−1(σ ).

�

Consider a partition σ ∈ �n with blocks B1, . . . ,Bm (ordered). If the elements
of each block are consecutive numbers, then,

An≥σ =
m×

j=1
A

#Bj

1̂
.(35)

When σ does not fulfill the previous condition, the expression (35) is not valid.
However, since we are interested in computing (φr1 ⊗ · · · ⊗ φrn)(A

n≥σ ), thanks to
Lemma 4.3, we fortunately can permute both the set and the product measure to
make things work. The next proposition is essential for this purpose.

PROPOSITION A.3. Let A ⊂ R and σ ∈ �n be a partition, with blocks
B1, . . . ,Bm (ordered). There is a permutation p ∈ Gn such that

p(An≥σ ) =
m×

j=1
A

#Bj

1̂
.

PROOF. Write sj = #Bj , j = 1, . . . , n, and let p′ ∈ Gn such that

p′(B1) = {1, . . . , s1},
p′(B2) = {s1 + 1, . . . , s1 + s2}

...

Take p = (p′)−1 and apply Proposition A.2(ii). �
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A.3. Proof of Lemma 4.4. We prove the following lemma:

LEMMA 4.4. Let r1, . . . , rn ≥ 1, σ ∈ �n with blocks B1, . . . ,Bm (ordered),
and A ∈ B[0, T ]. Then

(φr1 ⊗ · · · ⊗ φrn)(A
n≥σ ) =

m∏
j=1

φ∑
i∈Bj

ri (A).

PROOF. Let B1, . . . ,Bm be the blocks of σ ordered. If σ is such that An≥σ =
×m

j=1 A
#Bj

1̂
, by Theorem 3.4,

(φr1 ⊗ · · · ⊗ φrn)(A
n≥σ ) =

m∏
j=1

(⊗
i∈Bj

φri (A
#Bj

1̂
)

)
=

m∏
j=1

φ∑
i∈Bj

ri (A).

For the general case, let p be the permutation given by Proposition A.3 and write
Vj = p−1(Bj ), j = 1, . . . ,m. By Proposition A.3 (first), and #Bj = #Vj (second),
we have

p(An≥σ ) =
m×

j=1
A

#Bj

1̂
=

m×
j=1

A
#Vj

1̂
.

By Lemma 4.3 and the first part of the proof,

(φr1 ⊗ · · · ⊗ φrn)(A
n≥σ ) = (φrp(1)

⊗ · · · ⊗ φrp(n)
)(p(An≥σ ))

= (φu1 ⊗ · · · ⊗ φun)

(
m×

j=1
A

#Vj

1̂

)

=
m∏

j=1

φ∑
i∈Vj

ui
(A),

where ui = rp(i). For every j = 1, . . . ,m,∑
i∈Vj

ui = ∑
i∈Vj

rp(i) = ∑
i∈p−1(Bj )

rp(i) = ∑
i∈Bj

ri .

�

A.4. The function qσ . Given a partition σ ∈ �n, with blocks B1, . . . ,Bm (or-
dered), the function qσ [see (20)] is defined by

qσ : [0, T ]m −→ [0, T ]n,
(x1, . . . , xm) → (y1, . . . , yn),

where yi = xj , if i ∈ Bj . This function is a bijection between [0, T ]m and [0, T ]n≥σ ,
and it is Borel measurable because

q−1
σ (A1 × · · · × An) =

( ⋂
i∈B1

Ai

)
× · · · ×

( ⋂
i∈Bm

Ai

)
.(36)
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Given a partition σ ∈ �n, with blocks (ordered) B1, . . . ,Bm and a permutation
p ∈ Gn, as we commented, the blocks of p(σ) in general are not ordered. It is
convenient to consider the permutation p1 ∈ Gm that gives the correct order of the
blocks of p(σ), that means, p1(1) = i if p(Bi) is the first block of p(σ), p1(2) = j

if p(Bj ) is the second block, and so on; in other words,

p
(
Bp1(1)

)
, . . . , p

(
Bp1(m)

)
are the blocks of p(σ) ordered. Remember that we defined [see (13)] the m-
dimensional vector σ = (#B1, . . . ,#Bm). Then

p1(σ ) = p(σ).(37)

PROPOSITION A.4. Consider σ ∈ �n, with #σ = m, p ∈ Gn, and let p1 ∈ Gm

be the permutation that gives the correct order of the blocks of p(σ).

(i) For A1, . . . ,An ∈ B([0, T ]),
q−1
σ

(
p(A1 × · · · × An)

) = p−1
1

(
q−1
p(σ)(A1 × · · · × An)

)
.

(ii) p−1 � qσ = qp(σ) � p1.

PROOF. (i) Let B1, . . . ,Bm the blocks of σ (ordered). We have

q−1
σ

(
p(A1 × · · · × An)

) = q−1
σ

(
Ap(1) × · · · × Ap(n)

)
=

( ⋂
i∈B1

Ap(i)

)
× · · · ×

( ⋂
i∈Bm

Ap(i)

)

=
( ⋂

i∈p(B1)

Ai

)
× · · · ×

( ⋂
i∈p(Bm)

Ai

)
= G1 × · · · × Gm,

where

Gj = ⋂
i∈p(Bj )

Ai, j = 1, . . . ,m.

Since p1 gives the correct order of p(B1), . . . , p(Bm),

q−1
p(σ)(A1 × · · · × An) =

( ⋂
i∈p(Bp1(1))

Ai

)
× · · · ×

( ⋂
i∈p(Bp1(m))

Ai

)

= Gp1(1) × · · · × Gp1(m) = p1(G1 × · · · × Gm),

and then

p−1
1

(
q−1
p(σ)(A1 × · · · × An)

) = G1 × · · · × Gm.

(ii) Consider y = (y1, . . . , yn) ∈ [0, T ]n. Since {y} = {y1} × · · · × {yn},
(p−1 � qσ )−1({y}) = q−1

σ ({p(y)}) =(∗) p−1
1

(
q−1
p(σ)({y})) = (

qp(σ) � p1
)−1

({y}),
where the equality (*) is due to part (i). �
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