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1  Introduction.

Both the statistics and econometrics literature coutain a vast amount. of work on issnes
related to structural change, most of it specifically designed for the case of a single change.
Heveever, the problem of mnltiple structural changes has received considerably less attention.
Recently, Bai and Perron (1998, 1999) provided a comprehensive (reatment of varions issies
m the context of multiple structural change models: consistency of estimates of the hreak
dates, tests for structural changes, confidence intervals for the break dates, methods (o
select the number of breaks and efficient algorithms to compute the estimates. However.
their results are solelyv asvinptotic in nature and the adequacy in finite samples remains to
he investigated. In this paper, we intend to partially fill this gap.

We present siimulation results pertaining to the behavior of the estimators and tesis in
[imte samples. We consider the problem of [orming confidence intervals for the break dates
under various hypotheses about the structure of the data and errors across segments. In
particular. we may allow the data and crrors to have dillerent distributions across seginents

~or impose a commen structure. The issue of testing for structural changes is also considered
under verv general conditions on the data and the errors and the propertics of tests, both i
the data-generating processes and in the specification of the tests. We also address the issne
of estimating the number of breaks. To that effect, we discuss methods based on information
criteria and a method bhased on a sequential testing procedure as suggested in Bai and Perron
(1998).

The rest of this paper is structured as follows. Section 2 presents the model and the
estimator.  Section 3 summarizes the relevant asymptotic results about the construction
of confidence intervals for the break dates, the tests for multiple structural changes and
methods to estimate the number of breaks. It describes the exact nature of the various
tests and procedures upon various specifications about the naturc of the errors and data
across segments. Section 4 presents the results of simulations analyzing the adequacy of the
asymptotic approximations in finite samples, the size and power of the various tests and
the relative merits of scveral methods to estimate the number of structural changes. Some

concluding remarks and practical recommendations are contained in Section 5.



2 The Model and Estimators.

For the purpose of the simulation study, we consider the following multiple linear regression

with m breaks (m 4 1 regimes):

3}!:2;(5]‘*‘”1,: =T, + 1.7, (1)
for j=1....m+1. This is a spccial case of the general model considered in Bai and Perron

(1998) corresponding to a pure structural change model. Tlere, y, is the observed dependent
vartable at time f; 2 (g % 1) is a vectors of covariates and &, (j = 1,...,m + 1) is the
corresponding vector of coeflicients; u, is the disturbance at time /. The indices (15.....T5,),
or the break points, are explicitly treated as unknown (we use the convention that 77 = 0
and I, = T). The purpose is to estimate the unknown regression coeflicients together
with the break points when T observations on (y;.z,) arc available.

The method of estimation considered is that based on the least-squares principle. For
each mi-partition (T).....T,), the associated least-squares cstimates of é; are obtained by

minimizing the sun of squared residuals

m+1 T;

Sr(TiTw) =Y. > [y — 26"

=1 (=T, +1

Let &( {T;}) denote the resulting estimates based on the given m-partition (77, .... T, ) denoted
{T;}. Substituting these estimates in the objective function, the estimated break points

(T,.....T,,) are such that

(711, AN Tm) = argmin'rll.“.TmST(Tl, Tm), (2)

where thie minimization is taken over all partitions (T}, ....T) such that T, = T;_; > h > q.
Thus the break-point estimators are global minimizers of the objective function. Finally, the
regression parameter estiinates are obtained using the associated loast.-squares estimales ad
the estimated m-partition {T}}, i.e. 6 = §({T}}). An efficient algorithm, based on the prin-
ciple of dvnamic programming, to obtain giobal minimizers of the sum of squared residuals
is presented in Bai and Perron (1999).

Note that, in general, h need not be set to g. Indeed, in many instances the choice of the
trimming is made independently of the number of regressors. This is the case, in particular
when obtaining estimates for the purpose of constructing test statistics (sce Section 3.2

helow).
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A central result derived in Bai and Pervon (1998) concerns the convergence of the breat:
fractions \, = 7177 and the rate of convergence.  The results obtained show not only that
A, converges to its true value /\? but that it does so at the fast rate T, i.e. T(\, — A =
O for all 7. This convergence result is obtained under a very general set of assinptions
allowing a wide variety of models. It however, precludes iutegrated variables (with an
atoregressive wmit root) but. permits trending regressors: for example with a trend of the
form g, = a + b(t/T). The assumptions concerning the nature of the errors in relation to
the regressors {z} are of two kinds. First, when no lagged dependent. variable is allowed
m {z}. the conditions on the residuals are quite general and allow substantial correlation
and heteroskedasticity. The second case allows lagged dependent variables as regressors but.
then, of conrse, no serial correlation is permitted in the crrors {u ). In both cases, the
assumptions are general enough to allow different distributions for both the regressors and

the errors across segients.

3  Summary of Relevant Asymptotic Results.
3.1 Constructing Confidence Intervals.

To get an asvinptotic distribution for the break dates, the strategy considered is to adopt an
asvuiptotic framework where the magnitudes of the shifts converge (o zero as the sample size
increases. The resulting limiting distribution is then independent of the specific distribution
of the pair {z.u }. To describe the relevant distributional result, we need to define some
notations. For i = 1....m. and AT? =T? - T? |, let

A = 5?“._(5(.)_‘

7
Q; = lim(AT")™! E(zz,).
=T  +1
U L
Q, = lim(AT))™! E(z zuruy).

In the case where the data are non-trending, we have, under various assumptions' stated in

I'The important ones are as follows: the magnitude of the shifts decreases at a suitable rate as the sample
size increases, a functional central limit theorem holds for the partial sums of the variables {z,u,}. also

. - TP, +{sAT])
p]lm(AT?) ! Z‘=T,.“-| t1

trending regressors.

E(z2;) = sQ; is assumed to exist with @; a fixed matrix. The latter precludes
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Bai and Perron (1998), the following limiting distribution of the break dates:

ANQ,A)? -
(2iQ,8)°

(A0.A) (T, = T") = argmax V"(s). (1= 1....m). (3)
where
"!ll(g)z J Hvl(l)(—g)"'lsl/:z Ifc’_i() (”
l \I’E(@z,z/’«f),.l)“75*)(-8) — & fsl/20 i s > 0.
and

5:‘ = AZQ:‘HA,/A;Q:A;,
@ = ANLAJAQN,.
r(-'fz == A:SZ,;.]A,/A:(L),.HA,'.

1,2

Also. Il',‘ ”(.9) and IVQ(”(.S) arc Independent standard Weiner processes defined on {0. o).
starting at the origin when s = 0. These processes are also independent across i.

The cumulative distribution function of argmax,V7")(s) is derived in Bai (1997a) and all
that is needed to compute the relevant critical values arc estimates of A;, @,, and ,. These
are given by

Ai = 51+1‘51-
Qi = (AT,-)_] Z 22y,
l=7“,-]+]

and an estimate of ), can be constructed using the covariance matrix estimator of An-
drews (1991) applied to the vector {z4,} and using data over segment i only. We use the
Quadratic Spectral kernel with an AR(1) approximation for each element of the vector {z4,}
to construct the optimal bandwidth (henceforth referred to as a HAC estimator).

In practice, one may want to impose some constraints on this general framework rclated to
the distribution of the errors and regressors across segments. For ease of reference, especially
with the simulation results presented later, we shall adopt the following notation. We denote
bv cor _u =1 the case where the errors are allowed to be correlated and by cor_u = 0 the
case where no correction for serial correlation is made. Similarly, het _z =1 denotes the case
where the regressors are allowed to have heterogenous distributions across segfi;éi}ts and by
het _z = 0 the case where the distributions are assumed to be homogenous across segments.
Finally. het _u = 1 permits heterogenous variances of the residuals across segments and
het _u = 0 imposes the same variance throughout. We have the following cases when adding

restrictions:




* The regressors z¢ are identically distributed across segments (cor _u =1 het z=0.
et o= 1). Then Q; = Q. = @ which can consistently be esl.inm.l.u(l hy () =

] ——‘]
T=7 Y121 zizr. In this case, the limiting result states that

AIQA)? |
E——.—’.iA—)('[', — T = arp max (),
(A4

with &, = 1.

o The errors are identically distributed across segments (cor_u = 1.het _z = 1, hel o =
0). Then Q, = (. = Q which can consistently be estimated using a HAC estimator

applied to the variable {z4,} using data over the whole sample.

e The errors and the data arc identically distributed across segments (cor _u = |I.
het _z = 0. het_u = 0). Here, we have §; = 1, and ¢,; = &,, and the limiting

distribution reduces to
AIQA)?
(——'TQ—'—)-(E ~TM) = argmax{11""(s) — |s]/2}.
which hias a density function symmetric about the origin.

e The crrors are serially uncorrelated (cor _u =0, hel _z =1, het_u = 1). In this case

Q; = 02Q; and 8}, = 6?, = a? which can be estimated using 72 = (AT;)~! Z{ i LU

The confidence intervals can then be constructed from the approximation

(AQI i)

0’

(T, = T?) = arg max ,VV(s).

—_
[\bs |
——

1

o The crrors are serially uncorrelated and the regressors are identically distributed across
segments (cor_u =0, het_z =0, het_u = 1). Here d),?'] = qbiz =o?and £ = 1. The
confidence intervals can then be constructed from the approximation

————'—)(T: —T% = arg 111§Lx{!f1’(i)(s) - |s]/2}. (6)

e The errors are serially uncorrelated and identically distributed across segments (cor _u =
0.het _z = 1. het_u = 0). The approximation is the same as (5) with 6> = T-' ¥7_ i?
instead of 62.

(W]



e The errors are serially uncorrclated and both the data and the errors are identically
cistributed across segments (cor_w =0, het _z = 0. het _u = 0). The approximation

- . . ~7 . ~
is the same as (6) with @7 instead of 72,

Sinee the break dates are integer valued. we consider confidence intervals that are Lkewise
mteger-valued by using the highest smaller integer for the Jower hound and the siallest

hgher integer for the upper bound.

3.2 Test Statistics for Multiple Breaks.

3.2.1 A Test of no break versus a fixed number of breaks.

We consider the sup I7 type test of no structural break (m = 0) versus the aliernative
hvpothesis that there are m = k& breaks. Let (T7.....Tk) be a partition such that 7} = [T'A,]
(1= L.k Let R be the conventional matrix such that (28)" = (6] — 4. 8) — &1a ).

Define
1

Frid... Ag) = T (

T—-(k+1 N S -

——(A———)g> & R'(RV(8)R) 'R, (7)
v

where 17(&) is an estimate of the variance covariance matrix of & that is robust to serial

correlation and heteroskedasticity; i.e. a consistent. estimate of
V(&) =plimT(ZZ)'Z'0Z(ZZ)". (8)

The statistic F} is simply the conventional F-statistic for testing 01 = -+ = 4 against
& # &y for some ¢ given the partition (77.....T:). The supF tyvpe test statistic is then

defined as

supFy(kiq) = sup  F(M. .., Akiq),
(A1ee.ny Ap)E Ac
where
Ac = {(Alr ~A’C); I/\i+1 — ’\1| 2 G,A] _>_ Ea/\k S 1 - E}?

for some arbitrary positive number €. In this general case, allowing for serial correlation in
the errors, the supF7.(k; q) may be rather cumbersome to compute. Iowever, one can obtain
a much simpler, yet asymptotically equivalent, version by using the estimates of the break
dates obtained from the global minimization of the sum of squared residuals. Denote, these
estimates by A = T,»/T for7 =1...., k, the test is then

supFr(k; q) = Ff(Ar, . Mdiiq)
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The estimates Aj. . Ap are equivalently the arguments that maximizes the following -

statistic:

anel

T - /\7 1 ~1 —~ - -
Fr(d. . dq) = <——#> SRRV ()RR,
o]
P(é) = (%2

the covatiance matrix of & assuming spherical errors.  This procedure is asymptotically

equivalent since the break dates are consistent even in the presence of serial correlation. The

asvinptotic distribution still depends on the specification of the set A, via the imposition of

the minimal length /i of a segment. Hence, ¢ = h/T.

Various versions of the tests can be obtained depending on the assumptions made with

respect. to the distribution of the data and the errors across segments. These variations relates

to different specifications in the construction of the estimate of the limiting covariance matrix

!’(fi) given by (8). Thev are the following.

e No serial correlation, different. distributions for the data and identical distribution for

the crrors across segments (cor _u =0, het_z = 1. het_u = 0). In this base casec. the

V(8) =62 <Z>—l .

estiinate is

T

-No serial correlation in the errors, different variances of the crrors and different dis-

tributions of the data across segments (cor _u = 0. het _z = 1, het_u = 1). In this
case.
V(6) = diag(V(61), .., V(8ms1))s

where \;'(Si) is the covariance matrix of the estimate 8; using only data from segment.
.. % .2 L T _ . -2 SN T ~ .
i, le. V(&) = 6;((AT) ™ T, L, 2zt with 67 = (AT)) "X ig 4 4 These arc
simply the OLS estimates obtained using data from each segment separately.

Serial correlation in the errors, different distributions for the data and the errors across
segments (cor_u = 1, het_z = 1, het_u = 1). Here, we make use of the fact that
the errors in different segments are asymptotically independent. Hence, the limiting
variance is given by

V(6) = diag(V(6y), ..., V (bms1))-
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where. for i =1.....m + 1.
V(6,) = plim(AT,)(Z/2,) 7 710,22 7).

This can be consistently estimated, segment. by segment., with a TTAC estimator of

V(&) using onlyv data from segment. 7.

Serial correlation in the errors, same distribution for the errors across segments (cor _u=

I.het _z=1.het _u =0). In this case the limiting covariance matrix is

—_——

V(&) = pimT(Z'Z) (A =222 7).
where (using the convention that A\, = 0 and A\,.y = 1)

/\1—/\0
Ay — A

/\m-l-] - /\m

This can be consistently estimated using A, = T,/T and a HAC estimator based on the
pair {1, } constructed using the full sample. Note that we have an implicit assumption
that the regressors z, have the same distribution across segments since the consistent
estitnate of plim Z'QQZ/T is constructed using the full sample. For reasons, discussed
below we do not impose that restriction when evaluating p lim A /T. That is, we still
use Z Z/T instead of an estimate of (A 2 Q) obtained using Q = T! Y7, 2zl based

on the full sample.

In the construction of the tests we do not consider imposing the restriction that the
distribution of the regressors z; be the same across segments even if they are (except as they
enter in the construction of a HAC estimate involving the pair {za,}). This might at first
sight seem surprising since imposing a valid restriction should lead to more precise estimate.
This is, however, not true. Consider the case with no serial correlation in the errors and
the same distribution for the errors across segments (cor v = 0. het _u = 0). huposing the

restriction het _z = 0, leads to the following asymptotic covariance matrix

V(§) =’ (A2 Q)"




where () = limy . T} Z,L] E(zz)). Note that a consistent estimate can be obtained using
S I AR gt T n A R o
=TT/ zz2 b =TV 42 and A constructed using A, = L;/T (1 = 1.....m).

Suppoese that the z's are exogenous and the errors have the same variance across segments,

Then for a given partition (77.....T5,), the exact variance of the estimated coeflicients & is
s =1
frc oy Z Z
V(§)=»m" -
1

Using the asvinptotic version \"((i) = a?(A = ()7 may inply an inaceurate approximation
to the exact distribution. This would occur especially il small segments are allowed in which
case the exact moment matrix of the regressors may deviate substantially from its fll smnple
analog.

The same problem occurs in the case with no serial correlation in the errors and different
variance for the residuals across segments (cor _uw = 0. het _u = 1). Imposing hiet 2 = ()

gives the imiting variance

where
7 — M)
- (7%(/\2 — /\1)
=
U?n-k-](Am-é-l - )\m)
which can be consistently estimated using Q, M\ = T/T and &% = (Aj“i)—l ZII—Y N i
===

Again. in finite samples, imposing the constraint that Z{Z,-/(Aﬁ) be approximated by Q
over all segments may imply a poor approximation in finite samples. We have found. in
these two cases, that imposing a common distribution for the regressors across scgments
leads to tests with worse properties even when the data indeed have an invariant distribution.
These distortions becomes less important, however, when the sample size is large and/or the
trimming ¢ is large. |
The relevant asymptotic distribution has been derived in Bai and Perron (1998) and
critical values can be found in Bai and Perron (1998) for a trimming ¢ = .05 and values
of & from 1 to 9 and values of ¢ from 1 to 10. As the simulation experiments will show, a
trimming as small as 5% of the total sample can lead to tests with substantial size distortions
when allowing different variances of the errors across segments or when serial correlation is

permitted. This is because one is then tryving to estimate various quantities using very fow

A3
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observations: for example, if T = 100 and ¢ = .05, one ends up estimating, for some segments.
quantities like the variance of the residuals using only 5 observations. Similarly, with serial
correlation a ITAC estimator would need to be applied to very short. samples. The estimates
are then highly imprecise and the tests accordingly show size distortions. When allowing
different variances across segments or serial correlation ahigher value of ¢ should be used.
Henceo the case (cor_u = 0. het _z =1, het _u = 0) should be considered the base case
i which the tests can be constructed using an arbitrary small trimming ¢, For all other
cases, care should be exercised i the choice of ¢ and larger values should be considered.
Critical values for trimming parameter ¢ = .10, .15, .20 aud .25 can be found in Bai and

Perron (1999). Note that when e = .10 the maxinmuun nmmmber of break considered is & since

allowing 9 breaks iimpose the estimates to be exactly Ay = 10 Ay = 2 up to \g = 9. T
sunilar reasons, the maxinnun munber of breaks allowed is 5 when ¢ = .15, 3 when ¢ = .20

and 2 when ¢ = .25,

3.2.2 Double maximum tests.

Often. an investigator wishes not to pre-specify a particular number of breaks to make infer-
ence. To allow this Bai and Perron (1998) have introduced two tests of the null hypothesis
of no structural break against an unknown number of breaks given some upper bound /.
These are called the double mazimum tests. The first is an equal weighted version defined
bv

U'Dmax F7(M.q) = max sup  Fr(A. . Anig).

T<m<M (y e,
We use the asviptotically equivalent version

UDmax Fr(M.q) =  fnax, Fr(M. o Amiq),
where \; = T;/T (j = 1....m) are the estimates of the break points obtained using the
global minimization of the sum of squared residuals.

The second test applies weights to the individuals tests such that the marginal p-values
are equal across values of m. This implies weights that depend on ¢ and the significance
level of the test, say a. To be morc preéise, let ¢(g,a,m) be the asymptotic critical value
of the test supy, a.yea, FT{A1, s Ami @) for a significance level a. The weights are then

defined as a; = 1 and for m > 1 as a,, = ¢(g.a.1)/c(q.a.m). This version is denoted

a1 .
WD max F-(M.q) = max C—(q—i—) sup Fr(Ay. o Amiq). (9)

1Zm<M (g 0.m) (a,a0eA,

10 =



Again. we nse the asymptotically equivalent version

’ elg.a.l
WD max I'r(M.q) = max clg.a.1)
1<m<Al e(q oo m)

Note that, unlike the U D max Fp(M. q) test, the value of the 11D max (A q) depends
on the significance level chosen since the weights themsehves depend on a. Critical valnes
can be found in Bai and Perron (1998, 1999) [or ¢ = .05 (M = 5), ¢ = .10 (M = 5), .IH
(M =5), .20 (M = 3) and .25 (M = 2).

3.2.3 A test of 7/ versus / + 1 breaks.

Bai and Perron (1998) proposed a test for  versus £ 4 1 breaks.  This test is fabelied
sup fp00+ 1), The method amounts to the application of (€4 1) tests of the null hypothests
of no structural change versus the alternative hypothesis of a single change. The test is
applied to each segment containing the observations T_,toT, (i = 1.....041). The estimates
T, need not be the clobal minimizers of the sum of squared residuals, all that is required is
that the break fractions A, = T,/T converge to their true value at rate T. We conclude for
a rejection in favor of a model with (£ + 1) breaks if the overall minimal value of the sumn
of squared residuals (over all segments where an additional break is included) is sufficiently
smaller than the sum of squared residuals from the ( breaks model. The break date thus
selected is the one associated with this overall minimum.

Asymptotic critical values were provided by Bai and Perron (1998, 1999) for g ranging
from: 1 to 10. and for trimming values ¢ of .05, .10, .15, .20 and .25. Of course, all the same
options arc available as for the previous tests concerning the potential specifications of the

nature of the distributions for the errors and the data across segments.

3.3 Estimating the number of breaks.

A common procedure to select the dimension of a model is to consider an information
criterion. Yao (1988) suggests the use of the Bayesian Information Criterion (B31C) defined

as
BIC(m) = Ing*(m) + p" In(T)/T,

where p~ = (m + 1)g+ m +p, and 6°(m) = T-1Sr(Th, ..., Tin). He showed that the number
of breaks can be consistently estimated (at least for normal sequence of random variables

with shifts in mean). An alternative proposed by Liu, Wu and Zidek (1994) is a modified

11



Schwarz” eriterion that takes the form:
LIWZ(m) = (Sr(Tye ... T) /(T = p7)) A (p" [ T)ea(In(T)) .

They suggest using & = 0.1 and ¢ = 0.299. Perron (1997) presented a simulation study of
the behavior of the these two information criteria and of the A7C in the context, of estimnating,
the mnmber of changes in the trend function of a series in the presence of serial correlation.
The results first showed the AIC to perform very badly and, hence, this criterion will nof
be considered any further. The B1C and LW Z perform reasonably well when no serial
correfation m the errors is present. but imply choosing a number of breaks much higher than
the trae value when serial correlation is present. When no serial correlation is present in
the errors bt a lagged dependent. variable is present. the BI7C perforins badly when the
coeflicient on the lagged dependent variable is large (aud more so as it approaches nnity).
In such cases. the L2 performs better under the null of no break but underestimate the
munber of breaks when some are present.. |

The method suggested by Bai and Perron (1998) is based on the sequential application
of the sup Fy(f + 1|7) test. The procedure to estimate the number of breaks is the following.
Start by estimating a model with a small number of breaks that are thought to be necessary
(or start with no break). Then perform parameter-constancy tests for each subsamples
(those obtained by cutting off at the estimated breaks), adding a break to a subsample
associated with a rejection with the test sup Fr(€ + 1|€). This process is repeated increasing
{ sequentially until the test sup Fr(€+ 1|€) fails to reject the null hypothesis of no additional
structural changes. The limiting distribution of the test is the same when using global
minimizers for the estimates of the break dates or sequential one-at-a-time estimates since .
both imply break fractions that converge at rate T (see Bai (1997Dh)). The final number of
breaks is thus equal to the number of rejections obtained with the parameter constancy tests
plus the nuinber of breaks used in the initial round.

A distinct advantage of model selection procedures based on hypothesis testing is that,
unlike information criteria, they can directly take into account the possible presence of serial

correlation in the errors and non-homogeneous variances across segments.

4 Simulation Experiments.

In this section. we present the results of simulation experiments to analyze the size and
power of the tests. the coverage rates of the confidence intervals for the break dates and the

adequacy of the various methods to select the number of structural changes. A wide variety

12




of data generating processes are considered allowing different variances for the residuals
and different distributions for the regressors across segments as well as serial correlation.
All computations are performed in GAUSS using a computer program that is available on
request for non-profit academic use (sec Bai and Perron (1999) for a thorough description of

the features of this program).

4.1 The case with no break.

Westart with the case where the data generating processes exhibit no striactuval change and.
heneeo analvze the size of the tests and how well the methods to select the turber of hroak
points actually select none. Throughout {e,} denotes a sequence of ii.d. N(0.1) random
variables. [} s a sequence of ci.d. N(1.1) random variables uncorrelated with {¢,}. \We
nse sample sizes of T = 120 and T = 240). The values of the trimming ¢ and the maximun
maber of breaks (A7) considered are: e = .05 and A/ =5, ¢ = .10 and M =5, ¢ = .15 and
M=5c=20and AT =3, ¢ =25 and M = 2. In all cases, 2,000 replications are used.

The data generating processes and the corresponding regressors used arc:

e DGP-1: y, =¢; and z, = {1} (g = 1);

e DGP-2: y, =¥, + ¢ and' z={1,¥} (¢ =2);

e DGP-3. y = 0.5y, + e and z = {1,y,-1} (g =2).

e DGP-4: y, = v, with vy = 0.5v,-; + ¢ and z, = {1} (g = 1);

o DGP-5: y, = v with vy = ¢ + 0.5¢,_; and z, = {1} (¢ = 1);

DGP-6: yr = v, with vy = ¢, — 0.3¢,-; and z, = {1} (¢ =1);

The DGP-1 with i.i.d. data is a basc case to assess the basic properties of the tests and
methods to select the number of breaks. It is useful to assess the effect of allowing different
variances of the errors across segments and/or serial correlation when these features arc not
present. The DGP-2 is a variation which includes an exogenous regressor. DGP-3 is one
where serial correlation is taken into account parametrically. DGPs 4 to 6 are used to assess
the effect of serial correlation in the errors and how well the corrections for its presence leads
to tests with adequate sizes.

The results are presented in Table 1. Considcr first, the base case represented by DGP-1

where the series is white noise. With the specification cor _u = 0 and het _u = 0 all tests
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have the right size for any value of the trimming . As axpecied. the sequential procedure
chooses no break around 95% of the time. The BIC between 94% and 98 % (depending on =)
and the L1172 100% of the time. When different variances of the residuals are allowed across
seaments. we see substantial size distortions when the trimming « is small. These. however.,

disappear when £ reaches (15 or 20, The sequential procedure is somewhat bhiased when

= .05 but this bias disappears quicklyv as soon as = reachies 100 Similar size distortions
acenr when allowing serial correlation in the errors (cor_u = 1). These are somewhal more
severe i in addition. different variances are allowed.  When et _u = 0, the sequential
procedure shows no size distortion at any values of =, However il het = 1, the sequential
procedure is adequate only if < is at least. .15.

A siilor picture amerges for DGP-2 where o random regressors s inclnded 16 cor o =
het _uw = 0. all tests have the right size. However, allowing for either dillerent variances
andyor serial correlation in the residuals induces substantial size distortions unless ¢ is Laee.
When no serial correlation is allowed, the procedures have the right size if = is at least .15
when serial correlation is allowed a larger value is needed.

The results for DGP-3, which is an AR(1), shows that if one is testing against a large
number of breaks (or using the WD max test) there are some distortions even if cor _u =
het _u = 0 when = is small. The sequential procedure remains, however. adequate for any
values of =. If different variances are allowed size distortions occur unless ¢ is at least .20,

The DGPs 4 to 6 are cases where serial correlation is present in the residuals. As expected.
if cor _u = 0, all procedures show substantial size distortions (with positive correlation
the tests are liberal and with negative correlation they arc conservative). It is therefore
important to correct for serial correlation. This, however, can be done adequately only if a
large trimming is used, .15 or .20 depending on the cases. An interesting feature, however,
is that the sequential procedure works very well for any values of £ when the variances are
constrained to be the same (het _u = 0). In particular, it performs much better than the
information criterion BIC (and also LW Z in the case of positive AR errors).

In summary, if no serial correlation is present and allowed for, all procedures work well
for any values of the trimming ¢ when the specification cor _u = het _u = 0 is used. If serial
correlation is present a larger value of the trimming is needed when constructing the tests
using the specification cor v = 1. This is also the case if different variances are allowed
across segments. Also, the results show the sequential procedure to perforn quite well for
anyv values of the trimnning provided one is correcting for serial correlation when needed and

not correcting for it when it is not needed.
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4.2 The case with one break.

The basic data generating process considered is (Case 1):

Yoo o=+ 7, o if 1 < [0.57).
Y= pygt 7V e, it > [0.577,

where 0t - v0.d N(1.1) and ¢, ~ i.i.d N(0,1) and both are uncorrelated. Since, no serial
correlation is present in the errors and no change in the distribution of the data or the errors
is allowed. we use the specification cor _uw = het _u = 0 and ¢ = .05. For the tests, we use
het = =1 and to construct the confidence intervals on the break dates, we use het = = 0.
We consider three types of shifts: a) a change in intercept. only (v, = v, = 1), b) a change
in slope only (1 = 1, = 0), and ¢) a simultaneous change in slope and intercept..

We also consider a variation without the regressor W; with errors that are serially corre-

lated:
e Casc 2: 5, =~, =0, and ¢, replaced by vy = 0.5¢_) + ¢,. Here z, = {1}.
In this second case, we use the specifications cor_u =1, het _u =0 and = = .20. Again.

for the tests. we use et _z = 1 and to construct the confidence intervals on the break da.t:(‘s.k
we use het _: = 0. The experiments are performed for T = 120 and T = 240 and again 2.000
replications are used.

The results are presented in Table 2. Row (a) presents a case with a small change in
intercept only. Here the power of the test is rather low and the coverage rate of the break
date is imprecise. We shall use this base case to investigate what increases power. There arc.
nevertheless, some features of interest. First, the power of the sup F'(k) test is decreasing
as k increases (more so as k reaches 5; not shown). However, both D max tests have power
as high as the case with k& = 1 (which gives the highest power). Also, of the three methods
to select the number of breaks, the sequential methods works best. The criterion LW Z is
quite inaccurate since it chooses no break 98% of the times. Row (b) considers the same
specifications but doubling the sample size to 240. The power of the tests increases, the
sequential method selects 1 break more often and the coverage rate is better but not to a
great extent. For comparisons, row (c) keeps T' = 120 but doubles the size of the shift in
intercept. Here power increases a lot, the sequential procedure chiooses m = 1 95% of the
time and the exact coverage rate is close to the nominal 95%. Hence, we can conclude that

what is important is not the size of the sample but the size of the break.
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Row {d0) presents the case of a mild change in slope. Again, the power of the supF (i
decreases as A jucreases but the Dimax tests have as high power as the sup F(1) test. Also.
the sequential procedure is best to select the correct value i = 1 while the LIV /7 is very
maceurate. Row (e) considers merging the small shifts in intercept and slope. We see that
the simultaneans occurrence of two shifts at the same dates increases considerably the power
of the tests and the precision of the selected number of breaks. as well as the coverage rate
of the break date (imuch more than an increase in sample size). Rows (¢) and (1) consider a
lavger change in slope ouly and larger simultancous changes, respectively. Here, the power
of the tests is one. In such cases, the coverage rates are aceurate and all methods select the
correct munber of breaks accurately.

Rows (h) to (k) consider case 2 of a chiange i mean with serially correlated ervors. We
sce that the presence of serial correlation decreases the power of the test substantially. Here.
for a given shift. doubling the sample size induces a negligible increase in power and in the
accuracy of the selection methods or coverage rates. Nevertheless, the coverage rates are
quite accurate which shows that the non-parametric correction for the presence of serial

correlation seems to he effective.

4.3 The case with two breaks.

For Case 1. the basic structnre is similar except that now the data generating process is:

vy = py + 7Y+ €. if1<t<(T/3].
Y = o+ 7V +oey. if [T/3] <t <[2T/3),

ye o= py+0+e.  M2T/3) <t <T.
where

Uy ~ ii.d N(s.1). if1<1<[T/3].

U, ~ 1.d.d N{ga. 1). if [T/3] <t <[2T/3].

U o~ iid N(sz. 1), if[27/3) <t < T,
and

e; ~ iid N(0,07). if1<t<[T/3).
e; ~ iidN(0,0}), if[T/3]<t<(2T/3)].
e; ~ iid N(0,03), if[2T/3] <t <T.
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For Case 2. we have only changes in mean with seriallv correlated errors. That is

Yo = | + 1. if1 <t _<_ [T//’;]
Yoo = o1y, i T/3] < 1 < (273,
Yoo = gt if 27°/3) <1 < T.

where vy = 051y + o with e ~i.4.d. N(0,1).

We first consider Case 1 where the data and ervors are identically distributed across
segments. that is ¢ = 02 = o2 and ¢; = ¢; = ¢3. Resulls arce first presented in Table 3
for cases where the shifts involve cither only the intercept (rows (a) to (h)) or in the slope
(rows (j) to (0)). Inall cases T = 120, T} = 40, T, = 80, ¢ = .05, cor_u =0, het _u = (1,
and het 2 =1 for the construction of the tests and het = = 0 for the construction of (he
confidence intervals for the break dates.

We start with a case where the detection of the number of breaks is notoriously difficult.
Here, the intercept increases by some value at Ty = 40 and goes back to its original value
at T = 80. Row (a) considers the case where this change is .5. The power is, indeed. very
low and all methods basically select no break. The case where the change is 1 (row (1))
is very instructive about the usefulness of the D max tests and the sup (£ + 1]{) test to
determine the number of breaks. Here the power of the sup F'(1) test is very low and, hence.
the sequential procedure selects 2 breaks only 31% of the time. However, the U D max and
"D max tests have high power (82% and 88%, respectively). The sup(2|1) test also has
high power (73%). Hence, a useful strategy is to fist decide that some break is present basec
on the D max test. Then look at the sup F/({+ 1|{) to see if more than one is present. In the
example of row (b) this would lead to selecting 2 breaks 64% of the time. Another examplc
of the usefulness of this strategy is presented in row (k). Here there is a change in slopc
from 1 to 2 then back to 1. The sequential procedure chooses 2 breaks only 69% of the
time. However, the strategy discussed above would lead to select 2 breaks almost 100% of
the times since the D max tests have 99% power and the sup[(2|1) has 98% power.

The case discussed above clearly show the usefulness of considering tests for multiple
structural changes. As shown in Andrews (1993) a test for a single change is consistent
against an alternative hypothesis of multiple changes. However, as shown here, in finite
samples its power can be quite low while tests against more than one change can have
much higher power. This also suggests that a mechanical application of a specific to general
sequential testing procedure to select the number of breaks can be sub-optimal. Indeed, in

practice it is advisable to look at the double maximum tests first to avoid such cases where it.
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is diffiendt to distinguish between no break and a single hreak while it is casy Lo distingnish
between no break aund more than on break.

The other cases of Table 3 show varions configivations for changes in intercept. or slope.
The results can be smmmarized as follows. First. intercept changes of the form g1, = 0,
jry = 1. iy = 2 (inereasing steps) are also diflicult cases swhere most procedures fail Lo select
two breaks (the same js true for slope changes of the same form). In general, when the
magnitnde of the change is small (or diflicult to identify) the coverage rates for the break
dates are too small (e.g. rows (a,h,j,l,0)). If the changes are very large (e.g., row () or row
(f. second break)) they are too wide. However, in most. cases where the munber of breaks is
well identified the coverage rates are adequate.

Table 3 first considers Case T with simuiltancous changes ininteveept and slope. Row (a)
shows that very little gain in power or accuracy of the coverage rates is gained when two
shifts that are very difficult to identify individually occur simultancously. However, rows (b)
and (c) shows that. ilr'xf)OI"t,allt, gains can be obtained in other cases (in particular compare
row (b) of Table 4 with row (c) of Table 3).

The other parts of Table 4 consider Case 2 with intercept shifts and scrially correlated
errors with the specification cor _u = 1. Rows (d) to (k) consider the difficult cases where the
mean return to its old value at the second break. Here power is low when the change is .5 and
even 1. Hence. serial correlation induces a loss in power. The coverage rates are adequate
and we conclude that the non-parametric correction for the presence of serial correlation
works well. Also, we see that for given changes in mean, an increase in the sample size has
some effect on power. probably due to the fact that, for given trimming ¢, a larger number
of observations allows more precise estimates of nuisance parameters related to correlation
in the residuals. When the change in nean is larger, say 2 or 4 (see rows (h) to (k)) the
power of the sup F(1) test is low but the power of the supF(2) and sup F'(2]1) tests are high.
Hence, a model selection strategy based on these statistic would conclude basically 100% of
the times that 2 breaks are present.

Tables 5.a and 5.b consider cases where the distribution of the errors and the data arc
heterogenous across segments. The goal is to see if applying the required corrections lead to
tests, model sclections and coverage rates that are better. Table 5.a considers data generated
bv the two breaks model with v, = 1,v, = 1.5,y = 1.5 and i =0, 15 = 1.5, 43 = .5. Table

5.b considers data generated by the two breaks model with v, = 1,7, = 1.5,v; = 2 and

jy = 0.py = 5.py3 = 1. Inall cases, 02 = 02 = 1, ¢; = 3 = 1 and we vary o3 anfl
2. To ensure tests with adequate sizes, we set € = .15 for the cases in Table 5.a and we
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consider = =20 for the cases in Table 5.b. We compare the properties of the procedures
nsing the nncorrected versions (het _z = 1 and het v = 0 in the construction of the tests.
het = = het _u = 0 in the construction of the confidence intervals) and the corrected
versions (het _: = het _v = 1 in the construction of the tests and in the construction of
the confidence intervals). The relevant columns are the sup I7(2]1) test. the probabilities
of selecting 2 breaks and the coverage rates of the break dates (note that for the selection
procedures hased on the BIC and L1V Z, only the nncorrected version is presented sinee
these methods cannot be modified to account for heterogeneity across scgments).

The results show that important gains in the power of the tests can be obtained when
allowing for different. distribution of the errors across segments. In almost all cases, the power
of the sup(2]1) test is higher when corrected. For example, in Table 5. when the variance
of the errors is four times higher in the middle segment (and the mean of the regressors is
also 4 times higher) and T = 120 (row(g)), the power of the uncorrected version is .53 while
it s .78 when allowing for different variances. This also translates into a higher probability

“~of selecting two breaks. 767 instead of 52% making the sequential procedure more adequate
to select the number of breaks than the BIC. Even stronger comparisons obtain with the
second case presented in Table 5.b. For example, in row (g) we see an increase in the power
of the sup F(2]1) test and the probability of choosing 2 breaks rising from 22% to 60%. The
results also show that correcting for heterogeneity in the data improves the coverage rates

of the confidence intervals of the break dates.

5 Summary and Practical Recommendations.

The simulations have shown the tests, model selection procedures and the construction of the
confidence intervals for the break dates to be useful tools to analyze models with multiple
breaks. However, care must. be taken when using particular specifications. We make the

following recornmendations.

e First, ensurc that the specifications are such that the size of the tests are adequate
under the hypothesis of no break. If serial correlation and/or heterogeneity in the
data or errors across segments are not allowed in the estimated regression model (and
not present in the DGP), using any value of the trimming ¢ will lead to tests with
adequate sizes. However, if such {eatures are allowed. a higher trimming is necded.
The simulations show that, with a sample of T' = 120, ¢ = .15 should be enough for

lieterogeneity in the errors or the data. If serial correlation is allowed, £ = .20 may be
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needed. These could be reduced if larger sample sizes are available.

Overall. selecting the break point using the BIC works well when breaks are preseut.
but less so under the null hypothesis, especially if serial correlation is present. The
methaod based on the L1 Z eriterion works better under the null iypothesis (even with
serial correlation) by imposing a higher penalty. However, this higher penalty translates
imto a very bad performance when breaks are present. Also, model selection procedures
based on information criteria cannot, take into account. potential heterogencity across
segments unlike the sequential method. Overall, the sequential procedure works hest.

m selecting the munber of breaks.

There are important instances where the performance of the sequential procedure can
be improved. A useful strategy is to first look at the UD max or 11"D max tests to sce
il at least a break is present. Then the number of breaks can he decided based upon
an examination of the sup /(£ + 1|£) statistics constructed using estimates of the break
dates obtained from a global minimization of the sum of squared residuals. This is, in

our opinton. the preferred strategy.

The power of the U D max or WD max tests is alinost. as high as the power of a test of
no change versus an alternative hypothesis that specifies the true number of changes.

This provides added justifications for its use in practice.

The coverage rates for the break dates are adequate unless the break is eithier too small
(so small as not to be detected by the tests) or too big. This is, from a practical point
of view, however, an encouraging result. The confidence intervals are inadequate (in
that they miss the true break value too often) exactly in those cases where it would
be quite difficult to conclude that a break is present (in which case they would not be
used anyway). When the breaks are very large the confidence intervals do contain the
true values but are quite wide leading to a conservative assessment. of the accuracy of
the estimates. It was found that correcting for heterogencity in the data and/or errors
across segments yields improvements over a more straight{orward uncorrected interval.

Correcting for serial correlation also does lead to substantial improvements.

Correcting for heterogeneity in the distribution of the data or the errors and for serial
correlation also improves‘the power of the tests and the accuracy in the sclection of

the number of breaks.
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Table 1: Size of the tests and probabilities of selecting breaks

DGP-1 ] DGP-2 DGP-3
‘ 95 100 15 .20 25 05 .10 .15 200 25| .05 .10 .15 .20 25
cor_u=0het_u=1(
sup (1) D501 05 04 011.06 08 05 05 05 .05 06 .07 .05 .06
sap F(2) 05 .05 05 04 04700 04 00 05 05106 .07 08 07T 06
sup F(3) 0505 .04 .03 05 .05 .08 .05 090 .09 08 07
sup (1) 06 .05 .04 07 .06 .01 A211 08
sup F{(5) 060 .05 .04 08 .07 .08 A5 12 .07
UDMAX 05 .00 05 01 04005 01 05 05 051.06 .06 .07 06 .07
WDATAY N6 .05 04 048 0406 05 05 05 0510 09 .09 .07 .06
Sequa - Prln = 0 U506 095 096 061 .95 96 05 95 0951 .95 05 91 0n
Sequa - rim = 1] 05 .00 05 018 00 .05 .01 05 05 05105 05 06 .05 06
Sequa - Prlin = 2! 00000 .00 .00 00} .00 00 .60 .00 .00 .00 00 .00 .00 .00
cov o= 0. het R 1 -
sup F11) A00.06 066 05 0436 0% .07 06 .05 .18 10 .10 .07 .07
cup [2) 2001 .08 06 06(.35 409 06 06| .40 .22 14 10 08
sup Fi3) 200 07 05 A2 07 08 07 A9 26 14 1
sup F{4) 29 11 .07 A48 .19 .08 D59 20 15
sup F(5) g1 12 .06 L3 18 .07 65 .30 .13
UDATAY 27 10 06 05 04 46 14 08 06 .06) .51 .17 .13 .09 08
WDMAX 343 .12 .07 06 054 .57 .19 .10 .07 06{ .66 .27 .16 .10 .08
Sequa — Prim = 0 90 94 94 95 964 .85 92 93 94 951.82 90 90 .93 .93
Sequa — Prim = 1] 09 06 06 .05 04(.14 08 .07 .06 .05(.16 .09 .09 .07 .07
Sequa — Prim = 2] 01 00 .00 .00 0O0Of.01 00 .00 .00 .00|.02 .01 .01 .00 .00
cor_u=1het_u=20
sup I(1) 06 06 .06 .05 05{.08 .06 .06 .07 .07
sup F(2) .08 .08 07 .06 .06(.10 .09 .09 .08 .08
sup F(3) A1 .10 .08 .05 d4 .12 10 .08
sup F(4) A5 .12 .08 A8 .16 .10
sup F(5) 21 14 .07 23 20 10
UDMAN 08 07 07 06 .05).12 .09 .08 .08 .07
WDMWAY Jd4 11 08 06 05 .20 17 11 .09 .07
Sequa — Prim = 0 9495 94 95 95 .92 91 93 93 .93
Sequa — Prim = 1| 06 05 .06 .05 .05{.07 .06 .07 .07 .07
Sequa — Prim = 2] 00 00 00 .00 00|.01 .00 .00 .00 .00
cor_u=1lhet_u=1
sup F(1) 2 08 07 05 05 .25 .14 .11 .10 .08
sup F(2) 29 14 10 07 07154 31 19 13 .10
sup F{(3) g2 15 .10 .07 65 .39 .22 15
sup F(4) 37 16 .09 75 4425
sup F(3) g9 .16 .09 81 48 24
UDMAX B6 .14 09 07 05).77 35 .18 .12 .09
WDMAYX 43 17 .10 07 06 .86 .49 24 .15 .10
Sequa — Prim = 0} 88 92 93 95 95}1.75 .86 .89 .90 .92
Sequa — Pr{m = 1} 11 .08 07 05 .05).21 13 .11 .10 .08
Sequa — Prim =2 01 00 00 00 .00{.04 .01 .00 .00 .00
BIC — Prim =0} 94 96 97 98 98| .97 .98 99 99 .99 .97 .98 .98 .98 99
BIC - Prim = 1] 04 03 03 02 02103 02 01 01 01).03 .02 .02 .02 .0
BIC - P’rjm = 2] .02 01 .00 .00 .00|.00 .00 .00 .00 .00|.00 .00 .00 .00 .00
LWZ - Prim = (] 10 10 10 10 10(1.0 10 10 10 10{10 10 1.0 1.0 1.0
LWZ - Prim=1] 00 00 .00 .00 .00}.00 .00 .00 .00 .00}.00 .00 .00 .00 .00
LWZ ~ Prim =2 00 00 00 00 00(.00 00 00 00 001.00 .00 .00 .00 .00
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Table 1 (cont’d): Size of the tests and probabilitics of selecting breaks

DGP-1 [ DGP-5 DGP-6
3 An 10 15 20025 05 .10 15 20 25| .05 10 15 20 25
ror i =) 11(_'!»;1 =) ’
sup (1) 520052 50 4t 24 24 210 .21 .20 .00 .00 .00 .00 00
sup [12) K277 69 59 534 .42 38 34 29 240.00 .00 .00 .00 .00
sup F13) 00 .84 71 60 51 4420 3 00 .00 .00 .00
sup f(4) O 88 75 600 49 .39 00 .00 .00
sup Fi{5) 95 89 .71 67 53 .36 .00 .00 .00
UDMAX L1073 64 53 49138 33 .31 .25 237 .00 .00 .00 .00 .00
WDMAY 92 8 73 59 53 1.55 A6 .38 .28 241 .00 .00 .00 .00 .00
Sequa — Prim = O A8 48 50 56 561 .76 96 76 .79 80) 1.0 1.0 1.0 10 L0
Scqua — Prim = 1} 29 031 33 31 35} .18 .18 21 18 1S | .00 .00 .00 .00 .00
Sequa - Prim = 2 J6 15 a4 12 09 (05 05 03 03 .027.00 .00 .00 .00 .00
cor _uy={0het _u=1|
sup Fule 61 58 52 46 44135 30 28 22 211 .01 .00 .00 .00 .00
sup [ 92 8472 62 56 .70 51 11 3L 27 .04 .00 .00 000 00
sup F(3i 496 B9 77 .64 g6 .57 D33 02 .00 .00 .00
sup Fi1) 98 .92 78 84 63 46 03 .00 .00
sup (5} 49 93 .76 87 65 .43 .02 .00 .00
UDMAN A6 &1 70 57T 511 .77 49 38 27 241 .04 .00 .00 .00 .00
WDMWAX 98 92 78 62 554 .85 62 16 .31 .27 .04 .00 .00 .00 N0
Scqua = Prim = ()] B9 42 48 55 A5G .65 70 73 78 791 .99 1.0 1.0 1.0 1.0
Sequa — Primn = 1] 27 032 33 032 354123 23 23 19 197.01 .00 .00 .00 .00
Sequa — Prim = 2| 21 18 15 .12 09.09 06 .04 03 02).00 .00 .00 .00 .00
cor_u=1.het_u=90 '
sup F(1) H7 08 08 07 O07].09 .08 .10 .08 .087.03 .03 .03 .03 .03
sup F(2) J2 14 12 10 09% .15 16 .14 12 11 7.0 04 04 03 .03
sup F(3) 22 21 16 .10 25 22 17 .12 07 .06 .04 .03
sup F{4) g4 28 17 38 29 .18 A1 .08 .05
sup F(5) 46 .32 .15 47 32 17 15 .09 .04
UDMAX J8 14 11 08 084).18 .14 12 10 08} .04 03 03 .03 .03
WDMAY 85 .27 1 .11 .084.36 .26 .17 12 10 .09 .06 .05 .03 .03
Sequa — Prim = 0] 93 92 92 93 93191 92 91 92 Y3 .97 97 97 97 97
Sequa — Prim = 1| 06 0 .08 06 .07}.08 .08 .09 .08 07).03 .03 .03 .03 .03
Sequa — Prim = 2] 0Nl 00 .00 00 00).01 .00 .00 .00- .00].00 .00 .00 .00 .00
cor_u=1hel_u=1
sup F(1) 22 15 .13 08 .08).18 .13 .11 .09 08| .04 .02 .02 .02 .02
sup F(2) 56 .36 .23 .14 12451 .28 .19 .13 .11 .11 .04 .03 .02 .02
sup F(3) b4 41 26 .15 56 31 21 13 10 .03 02 .02
sup F(4) 76 .47 .28 65 34 .21 11 .03 .02
sup F(5) .82 51 .28 J0 .37 .19 10 .03 .02
UDMAX g5 39 24 11 0962 26 .7 .11 09 .11 .03 .02 .02 .02
WDMAYX 84 52 31 15 114).72 36 .21 .13 .11).14 .04 .03 .02 .02
Sequa — Prim = 0} .78 8 87 92 .93|.82 .87 .89 92 .92].96 98 .98 98 .98
Sequa — Prim = 1] A7 14 12 08 O07)1.5 12 11 08 0837.04 02 .02 .02 .02
Sequa — Prim = 2] 04 01 01 .00 .007.03 .01 .00 .00 .00].00 .00 .00 .00 .00
BIC - Prlim = 0] 21 33 45 B8 63).62 .71 77 84 8710 10 1.0 1.0 1.0
BIC ~ Prim = 1] A1 20 .25 .23 26).13 .13 .15 .12 .114.00 .00 .00 .00 .00
BIC - Prim = 2] 21 24 22 17 1.5 22 07 04 02].00 00 .00 .00 .00
LWZ - Prim = 0] 82 84 87 90 92|97 98 98 98 99|10 10 1.0 10 10
LIWZ - Prim = 1] J2 310 10 08 .077.03 .02 .02 .02 .01).00 .00 .00 .00 .00
LWZ - Prim = 2] H5 05 03 01 01f.00 00 .00 .00 .00].00 .00 .00 .00 .00




) . Table 2: Power of the tests and break selection when m = |, .
1!
Tests (pml)g\hility of rejection) Probability of selecting k In‘n:les Coverago
sup (&) sup F(F4 10 | D max Sequan Tire N Rate
Case Values Specitications! [ 1 [2 [.’i 21 r:i]‘_’ [ l 10 I 1 [-_) 0 [ [ l-_) "(T"'Ll [2 9501
a1 M= =1 cor_u = () A3 35 30 03 01 A2 012 0T 12 02 660 32 02 s 02 00 T
e 08 =02 =0
T =120
hy 1 M ="=1 cor_u =) .66 .53 500 .02 0L L6562 65 00 57 B 00 99 0t .00 .80
¢ =.05 Iy = 0,/12 =.5
T =240
¢) 1 Mm=r2=1 cor.u=10 499 97 96 .04 02 99 9% et 95 00 02 95 03 36 .61 000 .93
e=.00 =0 =1
T =120
d) 1 y1=1L71=13 corau=1 7969 66 .03 . a8 7T 20 7T 02 28 68 03 8T 13 000 .83
e=05 pm=p2=0
T =120
e) 1 vi=1,7v2=15 coru=0 1.0 .99 98 .04 .02 1.0 1.0 .00 96 .0+ 01 96 .03 .18 .82 .00 .94
e =.05 131 =0,/L2 =.9
T =120 :
fy 1 M =17 =2 cor_u =) 1.0 1.0 1.0 O .02 1.O 1.0 .00 96 .04 00 097 03 .02 93 00 .93
e=.00 p=p2=0
T =120
g) 1 yi=1lvr=2 cor_u =10 1.0 1.0 1.0 .04 .02 Lo 1.0 .00 96 .04 00 97 .03 00 1.0 .00 96
c=.05 i =0p=1
T =120
h) 2 =0, =59 ecorou=1 25 .27 30 04 .00 A0 31 75 2 0 32 48 18 68 29 03 .93
£ =.20
T =120
i) 2 =0y =.5 corou=1 48 34 31 .02 .00 g9 38 62 37 01 21 58 19 64 35 01 0
¢ =.20
T =240
j2 i =0,p2 =1 corau=1 66 61 61 .03 .00 68 69 34 63 02 05 v 22 23 74 04 89
¢ =.20
T =120
k) 2 /t} ::0;:2?} cgr-u:l 91 85 .82 .03 .00 o1 90 09 88 03 01 .74 23 0y 90 .02 91
Ee=20 o Cr
po T =240

Note: ! In all cases het_u

= (). When constructing the tests, hefoz = 1 and when constructing the confidence intervals hef.z = ().

L



Table 3: Power of the tests and break selection when i = 2,

!
Case 1, T = 120, ¢ = .05, cor.w =0, hetae = o.M
Tests (probability of rejection) Probability of sclecting k breaks Coverage
sup (&) sup F(F 4 1] | Dmnax Sequa BIC LWZ Rate | 9550 |

Values [ [2 [3 [[92 T IW 0 J1 [2 [0 [0 (2[00 [T 12 [ # |#

a) =1 =1=1 A3 23 26 11 01 A8 25 8T e 02 90 06 04 L0 00 .00 5l 19
Hy = 3y = (),/L')_ =.5

b)) y=y=m=l 4189 80 .73 .03 8288 50 08 31 31 05 62 98 00 02 37 .85
=g =0,piz = 1

¢) Ti=T2=mn=1 1.0 1.0 1.0 .56 .03 L0 1.0 .00 44 54 00 38 59 .00 96 .01 88 .86
=02 =1pg =2

d) i=n=wn=I1 1.0 1.0 1.0 .86 .04 1.0 1.0 00 bb 82 00 13 .83 .02 .67 31 .89 .96
p1=0,p2 =1, pu3 = -1

() y=m=y= 1.0 10 10 .86 .05 10 10 .00 .14 .82 00 .13 .82 .00 Tl 29 38 .99
i =0, =13 =2

g m=rn=n=1 10 1.0 10 .83 06 LO L0 00 AT 7T 00 15 80 .00 .75 25 .88 .96
=02 =13 =3 ’

hy v=mn=mn=1 10 1.0 10 1.0 .05 1.O L0 .00 00 9 .00 00 86 .00 .00 1.0 .93 .99
=00 =2, 03 = =1

D m=Em=lLyn=15 22 49 52 28 03 40 30 78 14 0T 75 08 16 LO 00 00 67T .66

jrp = gio =y =0

k) mi=y=ly=2 7710 10 98 04 99 99 23 0L 60 02 01 93 61 01 38 02 93
=g =g =10

1) =1Ly =15,y =2 1.0 10 to .14 .02 1.o- .99 00 8 .13 01 85 .13 .24 76 .00 .68 .63
= po = iy = 0
m yi=lm=21n= Lo 1.0 L0 97 .05 1.0 1.0 .00 03 8 .00 .02 94 00 .36 .6+ .92 92
oy ==y =10 V :
o) m=lye=50wm=-5 1.0 1.0 L0 41 (M4 1.0 1.0 .00 59 39 00 57 40 00 98 02 72 ST

po= gy = opy =0

Notes TFor the construction of the rests, we use hef_z = 1 and for the construction of the confidonce intervals of the hrosd dates, we



Table 4: Power of the tests and break selection when m = 2 (cont’d). R v
. —4d —
Tests (probability of rejection) ) Probability of selecting k breaks Coverage
sup F(K) sup F(C+ 1M | Dmax Sequa i Wz Rate | 95% |

Case Values Specifications' [ 1 2 3 20 ]2 U Tw o T [ 2 o J1 ]2 IE # 49

1 N=lLy=5u=1 rcoru=0 220 20 R0l 7 25 8§ .10 02 00 06 03t 00 00 A6 a6
s=06 gy =qa=0 =10
T =120

h) 1 =l =15v=2 coru=0 L0 10 L0 L0 05 O LO 00 .00 39 .00 00 95 00 .12 88 95 .05
s:.()5 n =0,u;;=1./t2='..
T =210

¢) 1 n=lLvw=2mn=1 cor_n =} L0 1.0 1o .82 .0t Lo Lo 00 19 78 00 A7 .79 0u 0 72 280 .95 .85
e=.05 jy=0pe=13=2
T =120

dy 2 jip = i3 =0, 20 =5 cor_u =1 Jd40.28 0 25 9 .00 23 28 860 13 01 M2t 37 79 12 08 .96 95
s =.20
T =120

e) 2 iy =p3 =02 =. cor.u =1 A8 32 29 11 .00 26 .31 .82 15 03 .32 .20 460 .82 11 .07 .96 .95
€=.20
T = 240

fy 2 piy =g =0, 0 = cor.u =1 25 .88 .53 .29 .00 A8 55 75 1 0% 13 12 73 Al 12 360 94 94
€ =.20
T =120

g) 2 i =pu3=0,p0=1 cor.u =1 43 8 .74 55 .0 7178 57 16 260 03 .04 90 33 1l 56 .93 .93
e =.20
T =210

h)y 2 =3 =02 =2 cor.u =1 47 97 91 86 .00 D4 96 53 .06 L 00 00 95 02 6L 860 93 93
e=.20
T =120

iy 2 =3 =0,p0 =2 cor-u =1 91 1.0 1.0 1.0 .00 1.0 1.0 .09 .00 90 .00 .00 97 00 00 1O .95 04
& =.20
T =240

2 i =jpa=0,p2 =4 cor_u =1 37 1.0 10 1.0 .00 1.0 1.0 .63 .00 37 00 .00 LO 00 00 1.0 .99 .99
e=.20
T =120 )

k) 2 m=p3=0p2=4 cor.u :% 96 10 1.0 1.0 .00 1.0 1.O 01 00 96 .00 .00 1.0 00 .00 1.0 .99 .99
s =.20
T = 240

Note: ' In all cases hetou = ). When constricting the tests, het_z = 1 and when constructing the confidence intervals het_z = ().



_ . I
Different distributions for the errors and data across segments; coronw =0, ¢ = |15,

Case 1 with vy = Ly = LDy =0 and py = 0,510 = 5,03 = -.5.

Table 5.a: Power of the tests and break selection when m = 2.

Tests (probability of rejection)

Probability of selecting k breaks

Coverage

sup F(k) sup F(€+ 1]f) Sequa Bl Lz Rate | 957% |

Values Spnciﬁ(‘.ati()nsl 1 | 2 I 3 21 [3|?. 10 I 1 2 0 ] l ] 2 0 I l 2 ##1 #2
a) T =120 uncorrected 1.0 o 1.0 91 .02 D009 89 00 08 .89 01 5y 2 90 96

nl=103=203=1

g=La=2,g=1 corrected Lo Lo L0 94 .01 000 .06 .92 .39 96
h) T =240 uncorrected 1.0 Lo 1.0 1.0 .02 N0 00 98 00 00 98 .00 .20 .80 .93 .96

ay = l,n’% =203 =1

a=lg=2g=1 corrected 1.0 10 1.0 L0 .02 000 .00 98 03 97
¢) T=120 uncorrected 1.0 1.0 10 .78 .02 00022 77 00 21 76 .01 .75 .23 .83 94

n;'l = l,rrg =2,n§ =

a=1la=4Gg=1 correctal 10 L0 L0 .89 .02 00 .11 .87 89 .96
d) T =240 uncorrected 1.0 1.0 10 .99 .02 00 01 98 00 02 97 00 44 56 87 97

ol =1,08=203=

q=1¢=4¢=1  corrected 1.0 1.0 1.0 1.0 .01 000 .00 .99 92 .98
e) T=120 uncorrected 1.0 1.6 10 .70 .02 00 30 68 00 22 73 .09 68 .23 .84 93

rli=103=4,0%=

g=lae=2,g=1 corrected .0 1.0 Lo .76 .02 000 24 .75 87 04
fy T=240 uncorrected 1.0 1.0 t0 97 .02 00 03 96 00 .03 93 00 .54 46 .88 94

nl=1.03=d,03=1

a=lg=2g=1 corrected 1.0 1.0 1.0 98 .02 .00 .02 97 90 96
a) T=120 uncorrectecd 1.0 1.0 1.0 .54 .03 00 46 53 00 36 539 09 80 .11 .79 .93

ol =103 =4,0% =

gq=leo=4¢g=1 corrected 1.0 1.0 10 .80 .04 .00 .19 .79 .86 04
h) T =240 uncorrected 1.0 1.0 10 91 .02 00 .09 90 00 09 86 .00 77 .23 88 97

0" ﬂ?:l,n§=4,n§=l '
g=la=d4g=1 corrected 1.0 1.0 1.0 98 .03 00 .01 96 90 97

confidence intervals,

Note: U Uneorrected means using het_z == 1 and het o =0 in the construction of the tests aud het_ > = 00 het_u = 0 in the
construction of the contidence intervals. Correctod means that etz = 1 and heton = 1 for the construction of the tests and the
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5.h: Power of the tests and break selection when = 2.

C i
Different distributions for the errors and data across segments; corow = 0, = .20,

Case L with yy = 1L, y2 = 1.0, y3 =2 and gty = 0,40 = 5,113 = |

Tests (probability of rejection)

Probability of selecting k breaks

Coverage

sup F(k) sup F(€+ 1) Sequa BIC LWz Rate | 95% |

Values Specifications' [T T2 [3 | 2[1]3[2 0 | [2 Jo [t J2 To JU ]2 |#1 | #2
a) T =120 Uncorrected Lo Lo L0 .73 .00 00027 73 00 28 .72 .01 91 .09 92 91

ol=102=203=1

ga=l¢o=2¢=1 Corrected 1.0 1.0 L0 .78 .00 0002277 91 90
by T =240 Uncorrected 1.0 1.0 L0 1.0 .00 00 .01 98 .00 .01 .99 00 46 54 94 RIX1

ri=100}=2a%=1

gq=la=2,g=1 Corrected 1.0 1o 10 1.0 .00 000 .00 .93 94 .94
¢) T=120 Uncorrected 1.0 1.0 LO .63 .00 00 37 63 00 39 61 .00 95 .05 .83 85

a2 =103 =203 =1

q=lw=4,=1  Corrected 10 1.0 1.0 .79 .00 00 .21 .79 00 .91
dy T =240 Uncorrected 1.0 1.0 1.0 .99 .00 00 .02 98 00 .03 97 .00 89 31 .83 .89

rr'l‘Z = 1,(7’% =2,¢')":,‘2 =1

g=l¢=4g=1 Corrected 1.0 1.0 1.0 .99 .00 000 .01 98 93 92
e) T=120 Uncorrected 1.0 1.0 1.0 .28 .00 00 .72 28 00 68 32 .03 91 .01 .90 91

n?:l,ﬁ«g:‘l,(r%:l :

a=1,e=2¢g=1  Corrected 1.0 1.0 1.0 40 .02 00 .60 .40 92 92
f) T =240 Uncorrected 1.0 1.0 1.0 87 .00 00 13 87 00 153 8 .00 94 .06 .92 91

ni=1,03=4,02=1

Gg=lan=2,g=1 Corrected 1.0 1.0 L0 91 .00 00 .09 .90 92 93
g) T =120 Uncorrected 1.0 1.0 1.0 .22 .0 00078 22 00 71 .28 .06 .93 .01 .84 .84

2_142=4 2= B

of =log=4,03=1 :

g=leg=4g=1 . Cogfgf:ped 10 1.0 10 .60 .02 .00 40 .60 90 .90

T =240 : Uncorrected 1.0 1.0 10 .82 .00 00 18 81 00 23 77 .00 97 .03 83 .89

caf=lef=403=1 . o
G=1lsw=4a=1 " Corrected 10 1.0 1.0 .98 -.01 00 .02 .96 91 .01

e

coustruction of the confidence intervals. Corrected means that het.z = 1 and hetou = 1 for the construction of the tests and the

Note: ' Uncorrected means using hef_z = 1 and hetou = 0 in the construction of the tests and het_z = 0. hetow = O in the

confidence intervals.
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